INFO290 Midterm Project Report

Project Title: Party Guest Recommender

Group

Sarah Friedman (sarah_friedman@mba.berkeley.edu / 2 units),
Genevieve Wang (genevieve_wang@mba.berkeley.edu / 2 units), and
Jeff Williamson (jeff_williamson@mba.berkeley.edu / 2 units)

Abstract

For this project, we attempt to develop a solution that identifies the optimal group of people to invite to
a party, where the objective of the party is to encourage the development of new connections between
guests. We also attempt to identify the handful of people who must commit to attend the party first, in
order to maximize yield (positive response rate) from the remaining invitees, while minimizing the
time/effort spent by the host.

Project Background (Revised)

We are interested in two main research questions: 1) how to design a party guest list that best enables
new connections to be made at a party and 2) how to gather positive responses (RSVPs) from guests as
quickly as possible, with as little effort on the part of the party creator as possible. This project focuses
on larger parties, where the host’s motivation is to create a great environment for guests to meet and
mingle — for example, nonprofit fundraisers, tailgates, or networking events. In this project, we focus on
a party of 50 people, and we assume that all 50 guests are friends with the host of the party. We use
Facebook friendships as a proxy for real-life connections.

The first question is interesting to us, because one of the main motivations for people to attend large
parties is to meet new people. However, if left to the host’s subjective selection of guests, the party
may not end up with the optimal group of attendees. For instance, the host may select 50 people who
are mostly connected to each other already (a social network with very high density). In this situation,
there are few opportunities to make new connections. Or, the host may not know of commonalities
that his/her friends may have with one another, which we hypothesize increase people’s likelihood of
forming connections with one another. We believe that we can optimize the selection process with the
power of social network data analysis.

Regarding the second research question, our primary research with people has shown that, when
invited to a party, people commonly wait for others they know to sign up for the party before
committing to attend themselves.® This results in a chicken-and-egg problem for the first few people
who sign up. However, once a party reaches a tipping point of a certain size/number of attendees, more
people will readily sign up. Itisin the party creator’s interest to get RSVPs back as quickly as possible, as
the number of attendees is a key piece of information required for planning the party. As a result, party

! In almost all event planning websites (e.g. Facebook Events, Evite, Eventbrite), the default is to allow guests to
see who else has already signed up to attend the event.

creators often need to actively market their parties to early adopters - via email, Facebook message, etc.
—to get a committed “base group” for the party. This process, however, can be haphazard,
unsystematic, and inefficient. Our objective is to help the party creator identify the handful of people
he/she must market to and get to RSVP first, such that other invitees will respond as quickly as possible.

For this project we are interested in developing a systematic way for any party creator to:

(1) PART I: Identify the 50 best people to come to any party, if the objective of the host is to have as
many attendees make as many new connections as possible, and

(2) PART IlI: Identify the key people in the party creator’s social network who need to commit to the
party first, such that the rest of the invitees sign up as quickly as possible.

Please note that we have extended our thinking about this project since the submission of our original
project proposal. Originally, we had scoped the project primarily around PART Il — identifying the few
key people who need to commit first to a party, while optimizing for the quality of the party. As we
explored our technical execution options, we realized that our best approach involved defining and
developing a tool for creating the optimal party guest list first. To this end, we have focused on “making
new connections,” as the primary party objective to solve for, and we define the optimal guest list as
one that is most conducive to guests making new connections.

If successful, this project may be integrated as a feature of Rakoko?, a web application that makes it
easier to plan social events with friends.

PART I

Original Solution Approach

In this section, we will briefly review the high-level solution approach that we attempted to execute for
PART | of our project, creating an optimal guest list of 50 people. We have been able to execute closely
to this vision, with a few exceptions. In the “Problems Encountered” section of this paper, we will
review in detail the technical issues that we encountered, and the correctional measures we took to
address those issues. (We will refer to the party creator as Host).

1. Access Host’s Facebook Data
Access information about Host’s demographic characteristics and social graph using Facebook’s
Graph API (through the pyfacebook Python wrapper). Upon accessing our SocialComputing
Facebook app, the user is asked for permission to access his/her information. Please note that
the current version of the program is designed to only work with team member accounts?, but it
will be easy to update the program to work with any Facebook account once core functionality
is complete.

2. Evaluate Guest List Quality

? Rakoko is a start-up project that Genevieve and Sarah are working on outside of class; much of the early-stage
customer research we conducted for Rakoko led to the motivation for this project; no technical work to solve this
problem was performed before the beginning of this course.

* For most of the project, we have focused on using data from Genevieve’s Facebook account, thus assuming that
Genevieve is the party Host.

For a given combination of 50 friends of the Host, we need to determine how many new
connections will be made between guests at the party.

a. Potential new connections: There are two inputs that determine whether there exists a
potential new connection between two people. First, we look at the social graph and
determine if there is an existing connection (there should not be an existing connection).
Secondly, we evaluate user data about religion, teams and brand likes, hometown, past
employers, etc., to see if the two people have something in common (e.g., they both list
Boston as their hometown). If they have at least one item in common, we consider this
a “potential new connection.”

b. Potential new connection score: We quantify the strength/quality of each “potential
new connection” by summing up the number of things the two people have in common
and taking the In(1+ number of things in common). This yields the Individual Connection
Score. The sum of all the individual connection scores yields the Group Connection Score
for the set of 50 people. This sum is log-transformed so that each additional
commonality between two people will improve the connection score an ever-decreasing
amount. This ensures that the value (Group Connection Score improvement) of adding a
new pair of people with only one commonality will be greater than the value of a new
connection pair finding one additional commonality.

3. Iterate to Find the Group with the Highest Group Connection Score
Evaluate all possible combinations of 50 friends and identify the group of 50 friends with the
highest Group Connection Score (the maximum).

4. Test for Further Party Quality Optimization
Optimize for other descriptive statistics, e.g., targeting 50% male and female.

a. We use weights on each variable to account for the importance of the new metric
introduced (e.g., “group connection score” is more important than a perfect 50/50% mix
of males and females, so we weight the former factor more).

b. We will test weights with surveys. We will ask real people on the guest list to rate the
party guest list generated against a randomly generated guest list.

Execution/Progress Update
In this section, we will review in detail the progress we have made in executing PART I.

Build Application/Connect to Facebook - Completed

Our SocialComputing application is able to successfully connect to Facebook, request the appropriate
user permissions, acquire an authorization token, and initiate an authenticated session. Because the
official Facebook API does not include a Python interface, we rely on pyfacebook for the bulk of the
interactions with the website. However, the pyfacebook wrapper does not implement all of the methods
that the Facebook APl makes available, so where appropriate we rely on direct URL calls to obtain the
necessary information (e.g. we cannot request extended user permissions through pyfacebook).

Obtain Host’s Friends Data - Completed

Once connected, we access the Host’s friends list to identify friends in the same current geographic area
(currently hard-coded for San Francisco, Oakland, and Berkeley).4 From this list, we filter for only those
friends who have granted access to all of the following pieces of information: hometown,
current/former employers, and current/former educational institutions. We also need to know which of
the Host’s friends are already connected to each other, so that we can identify possibilities for new
connections.

Unfortunately, Facebook does not make available the list of friends of the Host’s friends through the
API, even though that information is readily available through the web interface. We spent a great deal
of time trying to scrape this information from the web page itself, but because of the dynamic loading
nature of Facebook, and possibly the intentional obfuscation of its design, we were unsuccessful with
this approach®. We later realized that we could obtain most of what we needed through the “mutual
friends” attribute, which Facebook does make available through the API. This property indicates if two
of the Host’s friends are connected. The limitation of this approach is that all of the invitees must
already be friends with the Host, so the Host him/herself will not be able to make any new connections
at the party.

Determine Group Connection Score for Any Party Guest List - Completed

We have finalized the algorithms and statistical techniques that we plan to use to define an optimal
party guest list. Our objective was to create an elegant, systematic definition that we could leverage our
code to evaluate and replicate. We identified that using Facebook data to look for commonalities in
people with no prior Facebook connection would be a good way to identify people who would enjoy
connecting at a party. We then identified a way to calculate the number of commonalities based on
Facebook data. We use the natural log to give extra weight to strong potential relationships, as
described above.

Develop and Build Method for Optimizing Party Guest List — In Progress

Using a greedy algorithm approach, we have built a program that iterates through different
combinations of 50 people by selectively adding and subtracting potential invitees one at a time to see
how that affects the overall Group Connection Score. For each iteration, the program removes the
person with the lowest Individual Connection Score from the group of 50. From the remaining pool of
potential invitees, the program selects the person with the highest Individual Connection Score (specific
to the group being tested) and adds that person to the party guest list. With this new set of 50 people,
the program iterates again to see if dropping the person with the lowest score and adding a new person
will increase the score even further. Using this approach, our program is not guaranteed to find a global
maximum, but it will find a local maximum if it continues to iterate until no additional person increases
the Group Connection Score. Or, for practicality’s sake, it could continue to iterate until the score
increases by less than a specified threshold (e.g. 5%).

Please note that this searching algorithm has a strong potential of being the program bottleneck, so our
team is anticipating having to factor the code, so that these parts are written in a fast compiled language
like C and called from the main Python program. Even with this approach, the algorithm as described
may take too long to be feasible, so our team is prepared to revisit this key part of our program to
explore other options.

* We made a conscious decision to restrict to the Host’s friends in the same geography, given that this is a realistic
constraint in planning a party guest list. This decision also results in fewer computations.
> We thank Nate Murray for his time advising our team about ways to try solving this problem.

Develop and Execute Plan for Testing Quality of Solution — In Progress

We want to know how well our tool works in a real context. We know that people have trouble
answering questions like “on a scale of 1 to 10, how good is [X],” but are much better at comparing.
Therefore, we want to create a testing system that allows people to compare the party our system
creates versus a random party. This way, we as a team can be sure that we are creating a preferable
guest list to a random draw.

We will test two versions of our tool, likely testing two different weight levels for the “group connection
score” vs. a gender split score. When testing the two versions of our tool, there will be some people
who show up in both guest lists generated. We propose asking those people which of the two parties
they prefer, in addition to having them compare each to a random sample. This means we should have a
sample of 50 who rated each guest list against a random sample and 20-30 people who rated the two
generated guest lists against one another.

We will begin by running the tool on Genevieve’s friends list and surveying Genevieve’s friends selected
for the guest list(s). We would then execute the same test with Sarah’s friends list and with a few test
users (who would assist in distributing the survey to their friends). In the end, we aim to have surveyed
both versions of the tool with 2-5 hosts and their potential guest lists to have directional results as to
which version is the best. An additional potential test will be to run the algorithm on many individuals’
Facebook accounts to see if they, as party hosts, like the suggested party guest list that the tool creates.
This would enable us to test more people, but we believe the results will less conclusive®.

Detail on Problems Encountered and Responses
As we have attempted to execute on our original solution approach, we have come across a number of
challenges. In this section, we review the key challenges and our team’s responses to those challenges.

* Problem #1: massive data processing required to analyze all possible combinations of guest lists
of 50 people.

o Response: We cannot include “friends of friends” in the guest list; this makes the pool of
potential guests far too large.

o Response: People will only get together if they are in same geography. For this test we
will limit party guests to only friends currently located in the Host’s geographic area.
Please note that we have currently hard-coded this modification; in the long run we
would want to build a more robust, flexible solution.

* Problem #2: We tried to manually scrape connections data by going to each friend’s “friend
page”, and then going to the source code. Unfortunately, the source code page does not list all
of the friend’s friends. The source code only has the code for the frame, and not all of the
content inside the friends-of-friend list. We also tried other technical approaches including: URL
open, open with cookies set, and the curl. We also consulted with both Natarajan Chakrapani
and Nate Murray. Nate gave us some helpful recommendations, but warned that Facebook
does not actually want users getting a full graph. (To that point, we could not make any of his
recommendations work.)

o Response: We were able to obtain a list of mutual friends without scraping. Since we
have already decided to constrain potential guests to only the Host’s friends (and not

® 1t may also be challenging to obtain Facebook permissions from a large number of people.

friends of friends), this gets us enough information to know all potential connections
between anyone that can be chosen for the group of 50.

* Problem #3: The Group Connection Score reflects double-counting, since, for each person, we
count their “individual connection score” with every single other person in the group.
o No change required: While we are counting twice, because of the nature of Facebook,
all relationships are symmetrical, so all scores will be twice as high as they should be.
Thus, so long as we are comparing within this set of scores, this should not be a problem.
(We will need to keep this in mind if we choose to change something else in the scoring
system that changes the symmetric nature of the data.)

* Problem #4: How do we pick the first group of 50 friends to kick off the iterative optimization
process?
o Response: We start with friends that have the fewest mutual friends with the host, as a
percentage of their total friends. This is because friends with the fewest mutual friends
with the host have the most potential to make new connections at the part.

* Problem #5: Even with restricting the potential pool to the Host’s geography, running through
every single combination of 50 friends is not feasible. If we cannot evaluate the Group
Connection Score for every group of 50, how can we find the optimal group?

o Response: Professor Irwin King directed us to study the greedy algorithm approach as a
potential solution to this problem. We accept that using the greedy algorithm approach
will only help us find a local maximum, not the global optimal solution (which can only
be achieved by exhaustively running through every single combination).

Having studied this approach, we have devised a solution. From the starting guest list of
50, and we will remove the person with the lowest Individual Connection Score. We will
then calculate the Individual Connection Score for everyone in the total friend pool to
identify the best person to add to the guest list. We then re-sort the guest list by
Individual Connection Score and exclude the new person with the lowest score. We will
iterate this process to move closer and closet to the local maximum.

* Problem #6: Following the response to Problem #5, at what point should we stop trying to
iterate to improve the Group Connection Score?

o Response: We are considering two methods. The first is following the greedy algorithm
approach: we will loop through all possibilities an unlimited number of times until we
have reached a local maximum (or perhaps until we’ve reached a minimal level of
incremental improvement). The other method is using a score threshold. After we have
conducted testing, we may be able to identify a Group Connection Score, above which
we have a “great party”. With this information, we can iterate the optimization process
until the guest list of 50 meets this threshold score.

* Problem #6: It is not feasible to evaluate the Individual Connection Score using all factors
available via Facebook user data.

o Response: We will start with the three factors that we believe are the most likely to
drive new connections (and are readily available across most users). These three factors
are: hometown location ID, work employer ID, education school ID. We realize that an
optimization exercise for our algorithm in the future could be testing adding other

commonality factors (and perhaps removing ones that do not, in reality, support the
creation of new connections).

* Problem #7: Due to some people’s Facebook privacy settings, we cannot gather all pieces of
data for each person.
o No change: We have accepted this to be a limitation of our method. We have ensured
that we do not count two “blanks” as a match, and we realize that we are missing some
potential new connections due to data imperfections.

Next Steps
Our next steps for finalizing PART | of our project are focused on potentially improving the performance
of the search algorithm and testing the quality of our solution, as described above.

PART II

The majority of our time in the remainder of the semester will be focused on executing PART Il of our
project. PART Il follows PART I. After we have identified our optimal party guest list of 50 people, we
then determine how the Host can get the greatest number of people to sign up for the party as quickly
as possible, while expending the least amount of effort. Please note that we are holding the
“availability” and “convenience” variables constant — we assume that all invitees are available on the
date and time of the event and that the location of the event does not pose a deterrent.

Solution Approach and Planned Next Steps

1. We assume that the effort expended by the Host increases linearly, with each additional invitee
whom he/she must initially convince to sign up for (RSVP “yes” to) the party. We also assume
that sending out reminders to invitees about the party takes effort.

2. We will explore centrality and reachability as our two key social graph metrics for evaluating the
level of influence that an individual invitee has in getting additional party guest invitees to sign
up for the party. We will call the initial subset of guests whom the Host convinces to sign up for
the party, Group A.

a. Simple degree centrality may make sense as a starting point for measuring influence,
since degree centrality indicates which people within the group of 50 have the highest
number of direct connections to the other party guest invitees.” We hypothesize that
direct connections will be a source of influence. For example, the Host convinces a
small group of people (Group A) with high degree centrality to sign up for the party
before the invitation goes out to the rest of the guest list. When other invitees receive
the party invitation, they will see that they already have a friend who has signed up to
attend, and they will be more likely to respond “yes”. Note: we intend to refine this

’ Betweenness centrality and closeness centrality, while useful in other situations, is less relevant for our context,
given that an individual may have no idea what his/her geodesic (shortest path) distances are to other people on
the guest list.

measure to arrive at an overall degree centrality score for Group A; e.g. we wouldn’t
necessarily focus on the top three guests with the highest individual degree centrality,
but rather focus on the group of three that collectively connect to the greatest number
of guests.

b. Exploring reachability will allow us to explore what happens if we encourage cascading
influential behavior. The Host convinces Group A to sign up for the party. If Group A
influences all of their friends on the guest list to attend (let’s call these friends Group B),
then Group B will influence all of their friends as well, and so on. Again, we need to
evaluate based on an overall group reachability score (rather than looking at individual
scores). Please note that this approach will take longer and may require additional
reminders and updates from the host, given that we may be working with greater
distances between people and thus a cascading, non-simultaneous effect.

3. We will build a solution algorithm that identifies the people on the party guest list with the
greatest influence. We may explore two kinds of solutions:
a. The optimal set of people to pre-invite if the Host has a one-shot deal to get invitees to
sign up (either because of time or attention — e.g. the party is happening tonight or the
Host has only one chance to entice invitees to read and respond the invitation).
b. The optimal set of people (Group A) for the Host to pre-invite, if there is time and
opportunity for the cascading effect to occur among guests.

Note: We would also like to explore and attempt to incorporate the concept of a tipping point.
For example, is there a point at which the party has gathered so much momentum (positive
response rate), such that all invitees are apt to respond positively?

4. We will test our hypothesis and solution by surveying the people in our party guest list. For
example, we may ask them, “If you knew these people were going to this party, how willing are
you to attend?” As in PART |, we intend to test against a random selection of people as a control
measure. We may need to conduct a few rounds of surveys to account for the cascading effect
of the increasing guest list over time (from Group A to Group B).

References
Borgatti, Stephen. “Graph Theory.”

Chen, Jilin; Werner Geyer; Casey Dugan; Michael Muller; Ido Guy. “Make New Friends, but Keep
the Old — Recommending People on Social Networking Sites.” 2009.

Cook, D. J. and L. B. Holder. Mining Graph Data, 1st ed. Wiley-Interscience, 2006.

Cormen, Thomas H.; Charles E. Leiserson; Ronald L. Rivest; Clifford Stein. “Chapter 16: Greedy
Algorithms." Introduction to Algorithms. The MIT Press, 2001.

Hanneman, Robert A. and Mark Riddle. Introduction to social network methods. University of
California, Riverside, 2005.

Appendix: SocialComputing Application Code

#!C:\Python26\python.exe

INFO290: Social Computing

Group Project

Project Title: PartyAwesome

Members: Sarah Friedman, Genevieve Wang, Jeff Williamson
#

#

#

Description:
Part 1: Map facebook social graph of logged-in user

import facebook #python wrapper for facebook API

import webbrowser #so we can open URLs directly through browser

from django.utils.encoding import smart str, smart_unicode #so we can handle unicode strings properly
import time

#SocialComputing App facebook IDs
my_api_key = "258927080808294"
my_secret_key = "[redacted]"

#get facebook object and authentication token
f = facebook.Facebook (api_key=my_api_key, secret_key=my secret_key)
f.auth.createToken ()

Show login window

Set popup=True if you want login without navigational elements

TODO: find way of not having to login every time; maybe through cached cookies?
f.login ()

Login to the window, then press enter

This step is only necessary because we need to wait till after user is logged
in and we can't tell when that's happened, so we wait for user input.

print 'After logging in, press enter...'

raw_input ()

f.auth.getSession()
friends = f.friends.get ()

Get all user attributes from all friends of current user and save to Excel
file to see what information we have to work with

from pyexcelModule import pyexcel as x1

wb = x1.Workbook ()

Get all non-array info for friends
sht = wb.add_sheet("Friendslnfo")

Add column headers

sht.writerow (0, 0, items)

i=0
for friend in friendInfo:
line = []
friend['uid'] = smart_str(friend['uid']) #make into string b/c Excel 2002/03 can't handle big longs
if friend['current_ location']:
friend['current_location'] = friend['current_ location']['city']l + ', ' +

friend['current_ location']['country']
if friend['hometown_location']:

friend['hometown_location'] = friend['hometown_ location']['city']l + ', ' +
friend['hometown_location']['country']
for item in items:

line.append(friend[item])
i +=1
for x in range(len(line)):

if type(line[x]) is long or type(line[x]) is int:

line[x] = smart_str(line[x])

sht.writerow(i, 0, line)

Add array info; 1 sheet per item

items = ['uid', "name', \
'affiliations’', 'meeting sex', 'meeting for','family', 'work', 'education', 'sports', \
'favorite_athletes', 'favorite_teams', 'inspirational_people', 'languages'

i=0

friendInfo = []

while i <= len(friends):
friendInfo.append(f.users.getInfo(friends[i: (i + 200 - 1)], items)
i += 200
time.sleep (2)

#flatten friendInfo list
import itertools
friendInfo list (itertools.chain.from iterable (friendInfo)

def ProcessPropertyList (item, line) :
if type(subItem) is dict:
for property in subItem:
if type(subltem|[property]) is dict:
for key in subItem[property].keys():
colname smart_str(item) + '
if not colname in structure:
structure[colname] [1
structure[colname].append(smart_str (property))
structure[colname].append(smart_str (key))
structure[colname] .append(len (structure))
structure[colname] .append('dict")
elif type(subltem[property]) is list:
for x in range (len(subltem[property])):
assume this is a dictionary
for keyl in subItem[property] [x].keys():
if type (subItem|[property] [x] [keyl]) list:
for y in range (len(subItem[property] [x][keyl])):
assume this is a dictionary
for key2 in subItem[property] [x] [keyl][y].keys():
colname smart_str(item) + '_' + smart_str(property)
str(x) +'_' + keyl + ' ' 4+ str(y) + '_' + key2
if not colname in structure:
structure[colname] [1

subItem, structure,

+ smart_str(property) + '_' + key

P

+\

structure
structure
structure
structure
structure
structure

colname
colname
colname
colname
colname
colname

1
1
1
1
1
1

structure[colname]

elif type (subItem[property] [x] [keyl]
for key2 in subItem[property] [x] [keyl].keys():

' + smart_str (property)

colname

str(x
if not colname in structure:

structure[colname]
colname
colname
colname
colname
colname

structu
structu
structu
structu
structu

re
re
re
re
re

)

smart_str (item)

P

[

else:

co

str

lname

smart_str (item)

1
1
1
1
1
1

ucture [colname

if not colname in structure:

P

.append
.append
.append
.append
.append
.append

smart_str (keyl))
len (structure))
'list2'")

x)

smart_str (key2))

-append (y)

+

]

.append
.append
.append
.append
.append
.append

+ keyl +

dict:

+ key2

smart_str (property))
smart_str (keyl))

len (structure))
'"listDict")

x)

smart_str (key2))

+ smart_str (property)

structure[colname] = []
structure[colname].append(smart_str (property))
structure[colname].append(smart_str (keyl))
structure[colname] .append (len (structure))
structure[colname] .append('listl"')
structure[colname] .append (x)

else:

colname = smart_str(item) + '_' + smart_str(property)

if not colname in structure:
structure[colname]

[

structure[colname].append(smart_str (property))
structure[colname] .append (None)
structure[colname] .append(len (structure))
structure[colname] .append('simpleDict")

+

smart_str (property))

+

+

+ str(x

)

4

+ keyl

else:

colname smart_str(item)

if not colname in structure:
structure[colname] [1
structure[colname] .append (None)
structure[colname] .append (None)
structure[colname] .append (len (structure))
structure[colname] .append('simpleType')

for property in sorted(structure.iteritems(), x[1]1[2]):
if property[1][3] 'simpleDict':
line.append (subItem.get (property[1][0],None))
elif property([1][3] 'dict':
line.append (subItem.get (property[1]1[0],{}) .get (property[1l][1l],None)
elif property([1][3] 'listl':
try:

key=lambda x:

line.append (subItem[property[1][0]] [property[1l][4]] [property[1]1[1]])

except:
line.append (None)
elif property[1l][3] == 'list2':

try:

line.append (subItem[property[1][0]] [property[1l][4]] [property[1l][1]] [property[l][6]] [property[1l][5]])

except:
line.append (None)
elif property([1l][3] == 'listDict':
try:
line.append (subItem[property[1][0]] [property[1l][4]] [property[1l][1]] [property[l][5]])
except:
line.append (None)
elif property[l][3] == 'simpleType':

line.append (subItem)
return line

for item in items:

if item == 'uid' or item == 'name': continue
sht = wb.add_sheet (item)

structure = {}

i=0

for friend in friendInfo:
if friend[item]:
for subItem in friend[item]:
line = []
line.append (friend['uid'])
line.append(friend['name'])
ProcessPropertyList (item, subItem, structure, line)
for x in range(len(line)):
if type(line[x]) is long or type(line[x]) is int:
line[x] = smart_str(line[x])

i +=1
sht.writerow(i, 0, line)

Make column headers

line=[]

line.append('uid")

line.append('name"')

for property in sorted(structure.iteritems (), key=lambda x: x[1][2]):
line.append (property[0]

sht.writerow (0, 0, line)

wb.save ("dbgOutput.xls")
Process friends list to calculate social connection scores

[iidddiddddddddddddtddddddtdddtdddttddddddddtdtsdtdddadai
Step 1. Filter for San Francisco / Berkeley / Oakland
[iidddiddddddddddddtddddddtdddtdddtdddddddddtdtsdtdddadai
Location IDs:

Oakland, CA: 108363292521622

San Francisco, CA: 114952118516947

Berkeley, CA: 113857331958379

frLoc = f.users.getInfo(friends, ['uid', 'current location'])
friendsF = []
for fr in frloc:

if fr['current_location'] and 'id' in fr['current_ location'] \

and fr['current_location']['id'] in [108363292521622L,114952118516947L,113857331958379L]:
friendsF.append(fr['uid'])

[iidddsdsdsdddsdddsdddsdsdddsdddsdddddddsdddadadaddidid

Step 2. Get relevent info for filtered friends list

fiidddsdsdsdddsdddsdddsdddddddddsdddddddddddadadddddid

items = ['uid', 'name','sex', 'current location', 'hometown_ location','friend count', \
'mutual_friend_count', 'work', 'education']

i=0

friendInfo = []

while i <= len(friends):
friendInfo.append(f.users.getInfo(friendsF[i: (i + 200 - 1)], items)
i += 200

#flatten friendInfo list

import itertools

friendInfo = list(itertools.chain.from iterable (friendInfo))
#identify which friends have all the info we're looking for
x=0

for fr in friendInfo:
fr['fullInfo'] = True

for i in items:

if i not in fr.keys() or fr[i] is None or fr[i] == [] or (i=='hometown_location' and 'state' not in
frii].keys()):
fr['fullInfo'] = False
break

liidddddddtdddddddddddddtdtddttdddddddddtdtdtdtsddtdtdtdddddddddtddddddddadai
Step 3. Choose the 50 friends with the least number of shared connections
as percentage of total connections
(iidddddddddddddddddddddtdttdttdtddddttttdttddtsddtdtdtddtdtddtdtddddddddadai
#calculate connection %
#friendInfol:]['mutual_ connect_pct'] = 1.0 why doesn't this work?
for fr in friendInfo:
if fr['fullInfo']:
fr['mutual_connect_pct'] = fr['mutual friend count'] / float (fr['friend count']
else:
fr['mutual_connect_pct'] = 1.0

friendInfo.sort (key=lambda fr: fr['mutual connect_pct'])

friendGroup = friendInfo[0:50]

(iidddddddtdddddddddddddtdtddttdtdddddtttdtttdtsddtdtdtddtddddtdtdtddddddadai
Step 4. Calculate social connection score
liidddddddtdddddddddddddtdtddttdtdddddtdtddtddtsddddtdtdddddddtdtddddddddadai
import math
def calcSocConnectScore (friendData) :

scr = 0

for frl in friendData:

if 'connectScore' not in frl.keys():

frl['connectScore'] = 0
for fr2 in frl['connectMatrix'].keys():
frl['connectScore'] 4= frl['connectMatrix'] [fr2]
if frl['connectScore'] > 0: frl['connectScore'] = log(frl['connectScore']

scr += frl['connectScore']
return scr

import urllib
import ast #so we can convert the string representation of mutual friends into an actual dictionary

for frl in friendGroup:

#TODO: Can't figure out how to get an OAuth access token

#t = "https://graph.facebook.com/ocauth/access_token?client id={YOUR APP} ID& \
redirect_uri=https://www.facebook.com/connect/login_success.html \

&client_secret={YOUR APP_SECRET}" \

.format (YOUR_APP=my_api_key, YOUR_APP_SECRET=my_secret_key)

#res = urllib.urlopen (t)

#access_token = res.read()

s = "https://graph.facebook.com/me/mutualfriends/{uid}? \

access_token=AAACEdEose0cBACVyG7imQeRVhTmYx10tZAZAgGwgHPzZCktiWmYao7g0j60IT7bsaZBWrqEJJOVDZAWYWFQFL6gZzZADTXS

gmEIZD" \
.format (uid=frl['uid'])
res = urllib.urlopen(s)
mutualFriends = ast.literal eval (res.read()
frl['connectMatrix'] = {}
for fr2 in friendGroup:
fr2 uid_str = str(fr2['uid'l])
#Don't count connection to self

if fri['uid'] == fr2['uid']:
frl['connectMatrix'] [fr2_ uid_str] = 0
elif fr2['uid'] not in [mutFriend['id'] for mutFriend in mutualFriends['data']]:
#Not connected, so there is a basic connection potential
frl['connectMatrix'] [fr2 uid _str] =1
#Check if common hometown state
if frl['hometown_location']['state'] == fr2['hometown_location']['state']:
frl['connectMatrix'] [fr2_ uid_str] +=1
#Check if common past/current employer
if [empl['employer']['id'] for empl in frl['work']] in [emp2['employer']['id'] for emp2 in
fr2['work']]:
frl['connectMatrix'] [fr2_ uid_str] +=1
#Check if common educational institution
if [edl['school']['id'] for edl in frl['education']] in [ed2['school']['id'] for ed2 in
fr2['education']]:
frl['connectMatrix'] [fr2_uid_str] +=1
else:
frl['connectMatrix'] [fr2_ uid_str] = 0

12

import pickle

#Save friendGroup variable for later
'friendGroup.pkl', 'wb')
Pickle dictionary using protocol 0.

output = open (

pickle.dump (fr
output.close ()

pkl_file = ope
friendGroup =
pkl_file.close

from math impo

def calcSocCon
scr = 0

for frl in

if 'co

fr

iendGroup, output)

n('friendGroup.pkl',
pickle.load(pkl_file)
()

rt log

"rb')

nectScore (friendData) :

friendData:
nnectScore' not in fr
1['connectScore'] = 0

l.keys ():

for fr2 in frl['connectMatrix'].keys():

if
scr +=
return scr

frl['connectScore']
frl['connectScore']
frl['connectScore']

+= frl['connectMatrix'][fr2]
> 0: frl['connectScore'] = log(frl['connectScore']

score = calcSocConnectScore (friendGroup)

13

