
INFO 290 Social Computing

Irwin King

UC Berkeley School of Information

http://irwinking.com

©2011 All Rights Reserved.

http://wiki.cse.cuhk.edu.hk/irwin.king/home
http://wiki.cse.cuhk.edu.hk/irwin.king/home

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Social Network Theory

• Consider many kinds of networks:

• social, technological, business, economic, content, ...

• These networks tend to share certain informal
properties:

• large scale; continual growth

• distributed, organic growth: vertices “decide” who to link to

• interaction restricted to links

• mixture of local and long-distance connections

• abstract notions of distance: geographical, content, social,…

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Six Degree of Separation

• “Six degrees of separation between us and everyone else
on this planet” 	
 	
 	
 	
 	
 	
 [John Guare, 1990]

• What is the probability of two strangers having a mutual
friend?

• What is the chain of intermediaries between two
strangers?

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Small World Networks

• A network that most nodes can be reached from every
other node by a small number of steps

• , where L is the steps and N is the network
size

• Examples: road, power grid, online social networks, email
network, neural networks, WWW, etc.

L ∝ logN

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Dunbar’s Number

• It is theoretical cognitive limit to the number of people
with whom one can maintain stable social relationships

• It is assumed to be between 100 to 230 with 150 as the
norm in various studies

• Allen curve--the exponential drop of frequency of
communication as the distance between them increases

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

The Tipping Point

• It is “the moment of critical mass, the threshold, the
boiling point”

• Three rules

• The Law of the Few

• The Stickiness Factor

• ...the specific content of a message that renders its impact
memorable, i.e., Apple’s 1984 Super Bowl commercial

• The Power of Context

• ...are sensitive to the conditions and circumstances of the times
and places in which they occur

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Pareto Principle

• Also known as the “80-20 Rule” or “The Law of the Vital
Few”

• Roughly 80% of the effects come from 20% of the causes

• In 1906, the observation that 80% of the land in Italy was
owned by 20% of the population

• 80% of your profits come from 20% of your customers

• 80% of your complaints come from 20% of your customers

• 80% of your sales are made by 20% of your sales staff

• 80% of the work will be done by 20% of the participants

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Social Network Theory

• Do these networks share more quantitative universals?

• What would these “universals” be?

• How can we make them precise and measure them?

• How can we explain their universality?

• This is the domain of social network theory

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Some Interesting Quantities
• Connected components

• how many, and how large?

• Network diameter

• maximum (worst-case) or
average?

• exclude infinite distances?
(disconnected
components)

• the small-world
phenomenon

• Clustering

• to what extent that links
tend to cluster “locally”?

• what is the balance
between local and long-
distance connections?

• what roles do the two
types of links play?

• Degree distribution

• what is the typical degree
in the network?

• what is the overall
distribution?

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Types of Relations
• Kinship–mother of, wife

of

• Other role-based–boss
of, teacher of, friend of,
brother of, father of, sister
of, enemy of, lover of

• Cognitive/perceptual–
knows, aware of what they
know, is familiar with

• Affective–likes, loves,
hates, admires, trusts

• Interactive–give advice,
talks to, fights with, sex/
drugs with, buys from, sells
to

• Affiliations–belong to
same clubs, is physically
near

• Derived–has subscription
to the same magazine as, is
taller than, distance
between

• Flows–moves to, flows to

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Define Graphs

Alice

Bob Gigi

David

Cathy Elisa

Frank

Henry

Alice

Bob

10

Gigi

1

David

6

Cathy

8

Elisa
3

8

2

5

Frank

7

4

Henry

3

5

9

4

Alice

Bob Gigi

David

Cathy Elisa

Frank

Henry

• A graph G = (V,E) consists of a set of vertices, V , and a set of edges, E.

• Each edge is a pair (v, w), where v, w ∈ V . It is said to join the vertices

v and w.

• If the edge e = (v, w) ∈ E, then u and v are both said to be incident with
e and adjacent to each other.

• If the pair is ordered, then the graph is directed (digraphs).

• One can associate an attribute to the edge which is called weight.

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Define Graph Isomorphism

a g

h

i

b

jc

d

a 1
b 6
c 8
d 3
g 5
h 2
i 4
j 7

• Two graphs G and H are said to be isomorphic, denoted by G ∼ H, if
there is a one-to-one correspondence, called an isomorphism, between the
vertices of the graph such that two vertices are adjacent in G if and only
if their corresponding vertices are adjacent in H.

• Likewise, a graph G is said to be homomorphic to a graph H if there is
a mapping, called a homomorphism, from V (G) to V (H) such that if two
vertices are adjacent in G then their corresponding vertices are adjacent
in H.

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Define Adjacency Matrix

A graph G with n nodes can be represented by an n-by-n matrix. Given
V = {v1, v2, · · · , vn}. Then the adjacency matrix A is an n-by-n matrix whose
entry Aij is defined to be:

Aij =
�

1, if there is an edge from vi to vj

0, otherwise. (1)

Note that for the an undirected graph, Aij = Aji so the adjacency matrix
is a symmetric matrix. Moreover, we can put value attributes to the edges and
define Aij to be:

Aij =
�

w, if there is an edge from vi to vj and w is its weight
0, if there is no edge from vi to vj .

(2)

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Examples of Adjacency Matrix

����������

Alice Bob Cathy David

Alice − 1 0 0
Bob 0 − 0 1

Cathy 0 1 − 0
David 1 0 0 −

����������

Alice

Bob

David

Cathy

����������

Alice Bob Cathy David
Alice − 3 0 4
Bob 3 − 1 8

Cathy 0 1 − 0
David 4 8 0 −

����������

Alice

Bob

3 David
8

4

Cathy
1

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Define Length, Path, and Cycle
• A path p in G is a sequence of vertices w1, w2, w3, · · · , wN such that

(wi, wi+1) ∈ E for 1 ≤ i ≤ N and that wi �= wj with i �= j.

• The length of p is the number of edges on the path, which is equal to

N − 1.

• The length can be zero for the case of a single vertex.

• The distance between two nodes is the length of shortest path.

• A path with no repeated vertices is called a simple path.

• A cycle with no repeated vertices aside from the starting and ending vertex

is a simple cycle. A simple cycle that includes every vertex of the graph

is known as a Hamiltonian cycle.

• Two paths are independent if they do not have any internal vertex in

common.

• For a weighted graph, the weight of a path is the sum of the weights of

the traversed edges.

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Define Trail and Walk

• A trail t in G is a sequence of vertices w1, w2, w3, · · · , wN such that
(wi, wi+1) ∈ E for 1 ≤ i ≤ N and that ei �= ej with i �= j.

• A walk is an alternating sequence of vertices and edges, beginning and
ending with a vertex, where each vertex is incident to both the edge that
precedes it and the edge that follows it in the sequence, and where the
vertices that precede and follow an edge are the end vertices of that edge.

• A walk is closed if its first and last vertices are the same, and open if they
are different.

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Example of Path, Trial, and Walk
Walk is the most general!

Walk: {1,4,5,1,6,5,4,3}

Trail is a special type of walk with
no repeated edges.
Trail: {2,7,6,1,7,8,9}

Path is a walk with no repeated
vertices.

Path: {1,4,5,6,7,8,9}

A walk is closed if the starting and
ending nodes are the same.

A cycle is a closed trail. A cycle of
length k is called a k-cycle.

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Define Some Graph Properties
• The eccentricity � of a vertex v is the greatest distance between v and

any other vertex.

• The radius of a graph is the minimum eccentricity of any vertex.

• The diameter of a graph is the maximum eccentricity of any vertex in
the graph, i.e., it is the greatest distance between any two vertices.

• A peripheral vertex in a graph of diameter d is one that is distance d
from some other vertex, i.e., a vertex that achieves the diameter.

• A pseudo-peripheral vertex v has the property that for any vertex u,
if v is as far away from u as possible, then u is as far away from v as
possible.

• The girth of a graph is the length of a shortest cycle contained in the
graph. If the graph does not contain any cycles, its girth is defined to be
infinity.

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Define Connected Component

• A connected component of an undirected graph is a subgraph in which
any two vertices are connected to each other by paths, and to which no
more vertices or edges can be added while preserving its connectivity.
That is, it is a maximal connected subgraph.

• An undirected graph is connected if there is a path from every vertex to
every other vertex.

• A directed graph with this property is called strongly connected.

• A weakly connected graph is a a directed graph which is not strongly
connected, but the underlying graph (without direction to the edges) is
connected.

• A complete graph is a graph in which there is an edge between every
pair of vertices.

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Example of Components

1

2 3 4 5 6 7

8 9 10

11

12

13

14

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Connected Components
>>> G = nx.generators.random_graphs.gnp_random_graph
(10,0.15)
>>>
>>> nx.is_connected(G)
False
>>> nx.number_connected_components(G)
4
>>> nx.connected_components(G)
[[0, 8, 2, 3, 7], [4, 5, 6], [1], [9]]

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Define Cutpoint

• A cutpoint is a vertex whose removal from the graph increases the number
of components. That is, it makes some points unreachable from some
others. It disconnects the graph.

• A cutset is a collection of points whose removal increases the number of
components in a graph.

• A minimum weight cutset consists of the smallest set of points that
must be removed to disconnect a graph. The number of points in a mini-
mum weight cutset is called the point connectivity of a graph.

• If a graph has a cutpoint, the connectivity of the graph is 1.

• The minimum number of points separating two nonadjacent points s and
t is also the maximum number of point-disjoint paths between s and t.

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Define Cutpoint

• A bridge is an edge whose removal from a graph increases the number of
components (disconnects the graph).

• An edge cutset is a collection of edges whose removal disconnects a
graph.

• A local bridge of degree k is an edge whose removal causes the distance
between the endpoints of the edge to be at least k.

• The edge-connectivity of a graph is the minimum number of lines whose
removal would disconnect the graph. The minimum number of edges sep-
arating two nonadjacent points s and t is also the maximum number of
edge-disjoint paths between s and t.

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Example of a Cutpoint and Bridge

1
2

4

5

3

6

1

2

3

4 5

6

9

7

8

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Define Graph Density
For undirected simple graphs, the graph density is defined as:

D =
2|E|

|V |(|V |− 1)
, (1)

where |E| denotes the number of edges and |V | denotes the number of vertices.
The maximum number of edges is 1

2 |V |(|V | − 1), so the maximal density is 1
(for complete graphs) and the minimal density is 0.

5 3

46

7

89

2 1

5

3

46

7

8

9
10

2

1

4

3

5

6

7

8

9

10

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Define Graph Distance

5 3

46

7

89

• The distance dG(u, v) between two (not necessary distinct) vertices u and
v in a graph G is the length of a shortest path between u and v.

• When u and v are identical, their distance is 0. When u and v are un-
reachable from each other, their distance is defined to be infinity ∞.

• The average distance is the summation of the distance between all pairs
of reachable nodes divided by the number of nodes.

dav(G) =

�V
u,v dG(u, v)

|V |

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Define Degree Centrality

Let G = (V,E) with n vertices, the Degree Centrality CD(v) for a vertex
v is defined as

CD(v) =
deg(v)
n− 1

(1)

For directed graphs, the above can be decomposed to include indegree and
outdegree as

CDin(v) =
indeg(v)
n− 1

(2)

CDout(v) =
outdeg(v)

n− 1
(3)

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Define Group Degree Centralization

The Group Degree Centralization is defined by Freeman as

CD(G) =
�

v
(∆G − CD(v))

maxH

�
v∈H

(∆H − CD(v))
, (1)

where ∆G is the maximum degree of any node in G, CD(v) is the degree of node
v in G and the maximum is taken over all possible graph of the same order (the
same number of nodes).

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Define Group Degree Centralization

Let n and m denote the numbers of nodes and edges, respectively. We have

CD(G) =
n∆G −

�
v(CD(v))

(n− 1)(n− 2)
. (1)

For an undirected graph,

CD(G) =
n∆G − 2m

(n− 1)(n− 2)
(2)

For a directed graph,

Cin
D (G) =

n∆in
G −m

(n− 1)(n− 2)
(3)

and
Cout

D (G) =
n∆out

G −m

(n− 1)(n− 2)
. (4)

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Define Degree Centrality for G
Let V

∗ be the node with the highest degree centrality in G. Let G
� = (V �

, E
�)

be the n node connected graph that maximizes the following quantity

H =
|V �|�

j=1

CD(v�∗)− CD(v�
j) (1)

Then the degree centrality of the graph G is defined as

CD(G) =
�|V |

i=1[CD(v∗)− CD(vi)]
H

(2)

H is maximized when the graph G
� contains one node that is connected to

all other nodes are connected only to this one central node (a star graph). In
this case

H = (n− 1)(1− 1
n− 1

) = n− 1 (3)

so the degree centrality of G reduces to

CD(G) =
�|V |

i=1[CD(v∗)− CD(vi)]
n− 2

(4)

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Define Closeness Centrality

Let d(u, v) denote the distance from u to v and D(v) =
�

u
d(v, u) be the

total distance from v to all other nodes. The Closeness Centrality of v
is measured by 1/D(v) and normalized to CC(v) = (n − 1)/D(v) since the
minimum D(v) is n− 1, which happens at the center of a star graph. Freeman
defines the group centrality as follows,

CC(G) =
�

v
(CC(v∗)− CC(v))

maxH

�
v∈H

(CC(v∗)− CC(v))
, (1)

where v∗ is the node of maximum closeness.

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Define Between Centrality

The Between Centrality is a measure of a vertex within a graph (this can

also be extended to edge as well). Vertices that occur on many shortest paths

between other vertices have higher betweenness than those that do not. Hence,

Betweenness Centrality of a node counts the number of times that a node lies

along the shortest path between two others vertices in the graph. It is defined

as

CB(v) =

�

s �=v �=t∈V

σst(v)

gσst
. (1)

where σst is the number of shortest paths from s to t and σst(v) is the number

of shortest paths from s to t that pass through a vertex v.

The normalized betweenness of undirected graphs is given by

C �
B(v) =

CB(v)

(n− 1)(n− 2)/2
. (2)

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Define Group Between Centrality

The normalized betweenness of directed graphs is given by

C �
B(v) =

CB(v)
(n− 1)(n− 2)

. (1)

To compute the group betweenness centrality, we compute the one of a star
at first. For a star, the center has betweenness (n − 1)(n − 2)/2 and it is zero
for all the others. The group centrality of a star is then (n−1)2(n−2)/2. Then
we have

CB(G) =
P

v(CB(v∗)−CB(v))
(n−1)2(n−2)/2

=
P

v(C�
B(v∗)−C�

B(v))
n−1

(2)

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Complete Graph
• A complete graph is a simple graph in which every pair of distinct

vertices is connected by an edge.

• The complete graph on n vertices has n vertices and n(n − 1)/2 edges,
and is denoted by Kn.

• It is a regular graph of degree n− 1.

• All complete graphs are their own cliques. They are maximally connected
as the only vertex cut which disconnects the graph is the complete set of
vertices.

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Bipartite Graph

a g

h

i

b

jc

d

a

d e f

b ca

d e f

b

• A bipartite graph (or bigraph) is a graph whose vertices can be divided
into two disjoint sets U and V such that every edge connects a vertex in
U to one in V , i.e., U and V are independent sets.

• Equivalently, a bipartite graph is a graph that does not contain any odd-
length cycles.

• A balanced bipartite graph is a bipartite graph that satisfy the condi-
tion |U | = |V |.

• A complete bipartite graph G = (U + V,E) is bipartite such that for
any two vertices u ∈ U and v ∈ V that (u, v) is an edge in G.

• The complete bipartite graph with partitions of size |U | = m and |V | = n,
is denoted Km,n.

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Properties of Bipartite Graphs

• A graph is bipartite if and only if it does not contain an
odd cycle. Therefore, a bipartite graph cannot contain a
clique of size 3 or more.

• A graph is bipartite if and only if it is 2-colorable.

• The size of minimum vertex cover is equal to the size of
the maximum matching.

• The size of the maximum independent set plus the size
of the maximum matching is equal to the number of
vertices.

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Basic Functions

is_bipartite(G)

• Returns True if graph G is bipartite, False if not.
is_bipartite_node_set(G, nodes) Returns True if nodes and G/
nodes are a bipartition of G.

sets(G)

• Returns bipartite node sets of graph G.

color(G)

• Returns a two-coloring of the graph.

density(B, nodes)

• Return density of bipartite graph B. degrees(B, nodes[, weighted])
Return the degrees of the two node sets in the bipartite graph B.

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Bipartite Module in NetworkX

• This module provides functions and operations for bipartite
graphs. Bipartite graphs G(X, Y, E) have two node sets X, Y
and edges in E that only connect nodes from opposite sets.

• For example:

>>> import networkx as nx
>>> top_nodes=[1,1,2,3,3]
>>> bottom_nodes=['a','b','b','b','c']
>>> edges=zip(top_nodes,bottom_nodes) # create 2-tuples of
edges
>>> B=nx.Graph(edges)
>>> print(B.edges())

• The bipartite algorithms are not imported into the networkx
(version 1.5) namespace at the top level so you need to do:

 >>> from networkx.algorithms import bipartite

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Examples of Basic Functions

• networkx.algorithms.bipartite.basic.sets

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> X, Y = bipartite.sets(G)
>>> list(X)
[0, 2]
>>> list(Y)
[1, 3]

• networkx.algorithms.bipartite.basic.color

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> c = bipartite.color(G)
>>> print(c)
{0: 1, 1: 0, 2: 1, 3: 0}

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

More Examples

• networkx.algorithms.bipartite.basic.density

>>> from networkx.algorithms import bipartite
>>> G = nx.complete_bipartite_graph(3,2)
>>> X=set([0,1,2])
>>> bipartite.density(G,X)
1.0
>>> Y=set([3,4])
>>> bipartite.density(G,Y)
1.0

• networkx.algorithms.bipartite.basic.degrees

>>> from networkx.algorithms import bipartite
>>> G = nx.complete_bipartite_graph(3,2)
>>> Y=set([3,4])
>>> degX,degY=bipartite.degrees(G,Y)
>>> degX
{0: 2, 1: 2, 2: 2}

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Other Functions

• Spectral

spectral_bipartivity(G[, nodes, weight])

• Returns the spectral bipartivity.

• Clustering

clustering(G[, nodes, mode])

• Compute a bipartite clustering coefficient for nodes.

average_clustering(G[, nodes, mode])

• Compute the average bipartite clustering coefficient.

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Examples of Clustering
• networkx.algorithms.bipartite.cluster.clustering

>>> from networkx.algorithms import bipartite
>>> G=nx.path_graph(4) # path is bipartite
>>> c=bipartite.clustering(G)
>>> c[0]
0.5
>>> c=bipartite.clustering(G,mode='min')
>>> c[0]
1.0

• networkx.algorithms.bipartite.cluster.average_clustering

>>> from networkx.algorithms import bipartite
>>> G=nx.star_graph(3) # path is bipartite
>>> bipartite.average_clustering(G)
0.75
>>> X,Y=bipartite.sets(G)
>>> bipartite.average_clustering(G,X)
0.0
>>> bipartite.average_clustering(G,Y)
1.0

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Bipartite Cluster Clustering
• The bipartie clustering coefficient is a measure of local density of connec-

tions defined as

cu =

�
v∈N(N(v)) cuv

N(N(u))

where N(N(u)) are the second order neighbors of u in G excluding u, and
cuv is the pairwise clustering coefficient between nodes u and v.

• cuv can be defined in three ways.

–

cuv =
�N(u) ∩N(v)�
�N(u) ∪N(v)�

– min:

cuv =
�N(u) ∩N(v)�

min(�N(u) ∪N(v)�)
– max:

cuv =
�N(u) ∩N(v)�

max(�N(u) ∪N(v)�)

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

More Functions

• Redundancy

node_redundancy(G[, nodes])

• Compute bipartite node redundancy coefficient.

• Centrality

closeness_centrality(G, nodes[, normalized])

• Compute the closeness centrality for nodes in a bipartite
network.

degree_centrality(G, nodes)

• Compute the degree centrality for nodes in a bipartite network.

betweenness_centrality(G, nodes)

• Compute betweenness centrality for nodes in a bipartite
network.

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Examples of Redundancy

• networkx.algorithms.bipartite.redundancy.node_redundan
cy

>>> from networkx.algorithms import bipartite
>>> G = nx.cycle_graph(4)
>>> rc = bipartite.node_redundancy(G)
>>> rc[0]
1.0

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Example

import networkx as nx
import matplotlib.pyplot as plt
import pygraphviz

top_nodes=[1,1,2,3,3]
bottom_nodes=['a','b','b','b','c']
edges=zip(top_nodes,bottom_nodes) # create 2-tuples of
edges
G=nx.Graph(edges)
print(G.edges())

nx.draw(G)
plt.savefig("example.png")
plt.show()

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

>>> centrality.degree_centrality(G)
{'a': 0.20000000000000001, 1: 0.40000000000000002, 2:
0.20000000000000001, 'b': 0.60000000000000009, 'c':
0.20000000000000001, 3: 0.40000000000000002}
>>> centrality.betweenness_centrality(G)
{'a': 0.0, 1: 0.40000000000000002, 2: 0.0, 'b':
0.80000000000000004, 'c': 0.0, 3: 0.40000000000000002}
>>> centrality.closeness_centrality(G)
{'a': 0.38461538461538464, 1: 0.55555555555555558, 2:
0.45454545454545453, 'b': 0.7142857142857143, 'c':
0.38461538461538464, 3: 0.55555555555555558}

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

>>> from networkx.algorithms import bipartite
>>> G = nx.complete_bipartite_graph(3,2)
>>> X=set([0,1,2])
>>> bipartite.density(G,X)
>>> Y=set([3,4])

>>> centrality.degree_centrality(G)
{0: 0.5, 1: 0.5, 2: 0.5, 3: 0.75, 4: 0.75}
>>> centrality.betweenness_centrality(G)
{0: 0.055555555555555552, 1: 0.055555555555555552, 2:
0.055555555555555552, 3: 0.25, 4: 0.25}
>>> centrality.closeness_centrality(G)
{0: 0.66666666666666663, 1: 0.66666666666666663, 2:
0.66666666666666663, 3: 0.80000000000000004, 4: 0.80000000000000004}

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Subgroup Cohesion
• A Clique in an undirected graph G = (V,E) is a subset of the vertex

set C ⊆ V , such that for every two vertices in C, there exists an edge
connecting the two. This is equivalent to saying that the subgraph induced
by C is complete.

• The size of the clique is the number of vertices it contains.

• The clique number ω(G) of a graph G is the order of a largest clique in
G.

• An n-clique S of a graph is a maximal set of nodes in which for all
u, v ∈ S, the graph-theoretic distance d(u, v) ≤ n.

• In other words, an n-clique is a set of nodes in which every node can reach
every other in n or fewer steps, and the set is maximal in the sense that
no other node in the graph is distance n or less from every other node in
the subgraph.

• A 1-clique is the same as an ordinary clique.

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Clan

An n-clan is an n-clique in which the diameter of the subgraph G� induced
by S is less than or equal to n.

An n-club is a subset S of nodes such that in the subgraph induced by S,
the diameter is n or less. Every n-clan is both an n-club and an n-clique.

A k-plex is a subset S of nodes such that every member of the set is con-
nected to n − k others, where n is the size of S. The k-plex generalizes the
clique by relaxing density.

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Example of Cliques, Clans, Clubs, etc.

6 4

5

3
2

1

(a) A complete graph and also a clique of size 5. (b) An example of a
clique of size 3. (c) An example of 2-clique with {1, 2, 3, 4, 5}. An example

of 2-clan with {2, 3, 4, 5, 6}. An example of 2-club with {1, 2, 3, 6}.

(a)

(b)

(c)

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

The Clique Problem
• There is a clique of size at least k iff there is an independent set of

size last least k in the complement graph.

• Brute Force Algorithm

• Examine each subgraph with at least k vertices and check to see if it
forms a clique.

• Polynomial if k is the number of vertices, or a constant

• Consider each node to be a clique of size one, and to merge cliques into
larger cliques

• Linear time by the edges

• Disjoint-set data structure

�
V
k

�
=

V !
k!(V − k)!

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Clique Example

from networkx.algorithms import clique

G = nx.complete_graph(5)

clique.graph_clique_number(G) # Return the clique number
(size of the largest clique) for G
5
list(clique.find_cliques(G)) # Search for all maximal
cliques in a graph.
[[0, 1, 2, 3, 4]]
clique.cliques_containing_node(G) # Returns a list of
cliques containing the given node.
{0: [[0, 1, 2, 3, 4]], 1: [[0, 1, 2, 3, 4]], 2: [[0, 1, 2,
3, 4]], 3: [[0, 1, 2, 3, 4]], 4: [[0, 1, 2, 3, 4]]}

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

>>> G = nx.complete_bipartite_graph(3,2)
>>> G.add_edge(3,4)
>>>
>>> clique.graph_clique_number(G) # Return the clique
number (size of the largest clique) for G
3
>>> list(clique.find_cliques(G)) # Search for all maximal
cliques in a graph.
[[3, 4, 0], [3, 4, 1], [3, 4, 2]]
>>> clique.cliques_containing_node(G) # Returns a list of
cliques containing the given node.
{0: [[3, 4, 0]], 1: [[3, 4, 1]], 2: [[3, 4, 2]], 3: [[3, 4,
0], [3, 4, 1], [3, 4, 2]], 4: [[3, 4, 0], [3, 4, 1], [3, 4,
2]]}

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

Graph Measures
>>> from networkx.algorithms import generators
>>> from networkx.algorithms import distance_measures
>>> G = nx.generators.random_graphs.gnp_random_graph(6,0.5)

>>> distance_measures.diameter(G)
2
>>> distance_measures.eccentricity(G)
{0: 2, 1: 2, 2: 2, 3: 2, 4: 2, 5: 2}
>>> distance_measures.center(G)
[0, 1, 2, 3, 4, 5]
>>> distance_measures.periphery(G)
[0, 1, 2, 3, 4, 5]
>>> distance_measures.radius(G)
2

UC Berkeley, School of Information, INFO290 Social Computing, Irwin King

References

• NetworkX, http://networkx.lanl.gov/

• D. J. Cook and L. B. Holder, Mining Graph Data, 1st ed.
Wiley-Interscience, 2006

• T. G. Lewis, Network Science: Theory and Applications, 1st
ed. Wiley, 2009.

• M. Gladwell, The Tipping Point: How Little Things Can Make
a Big Difference. Back Bay Books, 2002.

http://networkx.lanl.gov
http://networkx.lanl.gov

