Lecture 3 — REST Intro

1290-rmm
Patrick Schmitz



Services and the Project

« Services underlie the application, manage and
provide access to all CMS data

* \Web-services approach enables mashups
— Also, new applications now yet envisioned.

 REST-based services easy to use and integrate

— Services model common entities, and relations, but are extensible
to provide a flexible “data model” for each collection

— Provide permanent URI for objects for linking, citation, etc.
— Easy access to data for other applications, research projects, etc.

Lecture 3

Slide 2



Lecture 3

REST Access to CollectionSpace

Example URIs, e.g., for loans, objects associated to one

loan, and for a given collection object:
your.museum.org/cspace-services/loans
your.museum.org/cspace-services/loans/{id}/collectionobjects
your.museum.org/cspace-services/collectionobjects/{id}

REST payload (XML content) includes core schema
Information, and your custom extensions

Dissemination and publishing tools have easy access to
collections data

Research applications have access to data without
compromising database security or access policies

Slide 3



Lecture 3

REST ... In 1slide ...

“... resources are just consistent mappings from an
Identifier [such as a URL path] to some set of views on
server-side state.

“If one view doesn’t suit your needs, then feel free to
create a different resource that provides a better view

“These views need not have anything to do with how
the information Is stored on the server ... [They just
need] to be understandable (and actionable) by the
recipient.” - Roy T. Fielding

Slide 4



" A
REST ... In 2slides ...

Every resource is URL-addressable:

/collectionobjects
/collectionobjects/{i1d}
/1oans

You can get creative!

/collectionobjects/moviescripts
/loans/overdue

Slide 5



Lecture 3

REST ... In 3 slides ...

To change system state, simply change a
resource.

Within the /col lectionobjects “bucket”,
you can:

e Create an item
e Update an item with new data
e Delete an item

Slide 6



ecture

RESTTful APIs (generic)

Create POST a new item to a “bucket”
POST /collectionobjects

Read GET an item by its ID
GET /collectionobjects/{i1d}

Read (multiple) GET the items in a “bucket”
GET /collectionobjects

Slide 7



" J
RESTTful APIs (generic)

Read (multiple) GET the items in a “bucket”
GET /collectionobjects

Results returned as list of items, each of which has:
e CSID (unique identifier for each record)

o Summary info: museum number and/or title

 URI to access each item

Read can also be search or filter:

» For paging (page size, page number)

« Search parameters (keyword, term completion, etc.)
 Information returned — extra info, deep records

Lecture 3 Slide 8



RESTTful APIs (generic)

Update PUT a fully updated item to an ID
PUT /collectionobjects/{csid}
(Can handle sparse/partial updates!)

Delete DELETE an item by its ID
DELETE /collectionobjects/{csid}

Proposed, NYI.
Resource discovery GET info about resource

GET /collectionobjects/schema
GET /collectionobjects/description

Lecture 3 Slide 9



Lecture 3

RESTful APIs for search

Search Not REST-defined. Often:
GET /collectionobjects?g=term

Keyword based search on most services:
GET /collectionobjects/?kw=whetstone

Partial term completion on certain services:
GET /collectionobjects/?pt=patr

Specialized search on specific services:
GET /relations?sbjType=intakes

&objType=collectionobjects

Slide 10



"

Lecture 3

Status Codes

HTTP status codes returned in the response header:

« 200 OK The resource was read, updated, or deleted.

e 201 Created The resource was created.

« 400 Bad Request The data sent in the request was
bad.

e 403 Not Authorized The Principal named in the
request was not authorized to perform this action.

e 404 Not Found The resource does not exist.

o 409 Conflict A duplicate resource could not be
created.

500 Internal Server Error A service error occurred.

Slide 11



"
Error Responses

Response in body when a 4xx or 5xx status Is returned:

<error>
<code>{Mandatory code}</code>
<message>{Optional message}</message>
<resource-i1d>{Resource 1D, 1f avairlable}
</resource-i1d>
<request-uri>{URI of request}</request-uri>
</error>

CollectionSpace 12
Lecture 3 Slide 12



Demos/Lab

1. Open and understand a schema
2. Open and play with a payload

3. Play with REST services, and use the Ul
to see the effects.

4. Open a JSON payload (from the app-layer
services) just to see It.

5. Convert XML to and from JSON



