
CollectionSpace 
Configuration and Extension

i290-rmm
Patrick Schmitz



Lecture 7 Slide 2

• Architecture and function 
• Shared semantics, domain and local extensions
• IT Architecture and community dynamics 
• Extensions, overlays, and replacements 
• Multi-tenancy and its implications 
• Communications and project workflows (using 

the wiki, IRC, email lists) 

Overview



Lecture 7 Slide 3

CollectionSpace Architecture

Repository (Smart Database)

Services

Application (Configuration)

User Interface
S

er
ve

r
B

ro
w

se
r



Lecture 7 Slide 4

Repository
Repository

Services

Application

User Interface

• Smart Database (a.k.a. Object Store)
• Provided by ECM platform
• Manages objects, relations in the database
• XML Schema driven
• Handles versioning, media, etc.
• Supports SQL-like query language
• Used directly by Reporting engine



Lecture 7 Slide 5

Services
Repository

Services

Application

User Interface

• Provide Web-Services abstraction/access
• Support “CRUDL”, search
• Manage the repository

– Coordinate common and extension schemas
– Handle Security (authentication and authorization)
– Provide “multi-tenancy” support

• Also model some state, workflow
• Largely independent of one another
• Fairly low-level (entity-, not page- based)
• Mostly XML payloads (currently)



Lecture 7 Slide 6

Services examples
Repository

Services

Application

User Interface

• /cspace-services/collectionobjects
• …/intakes
• …/loansin?kw=damaged
• …/personauthorities

– …/personauthorities/{id}/items/{item-id}
– …/personauthorities/{id}/items?pt=joe

• …/media
– …/media/{id}/blob/content
– …/media/{id}/blob/derivatives/thumbnail

• …/reports?doctype=Accession
• …/users
• …/relations



Lecture 7 Slide 7

Application Layer
Repository

Services

Application

User Interface

• Provides a UI-specific abstraction
– Also supports web services, but page-based
– Maps/aggregates UI requests to service requests
– Mostly json payloads

• Aggregates service payloads into application data 
model
– For editors and admin (cataloging, loans, intakes, etc.)
– For widgets/tools (sidebar lists, term-completion, etc.)

• Manages configuration of termlists, authorities
• Manages UI-model aspects of customization and 

extension (overlays), and multi-tenancy



Lecture 7 Slide 8

User Interface
Repository

Services

Application

User Interface

• Client (browser) software (Javascript-based)
• Kind of like a template engine
• Maps a “UI-schema” from application layer, to the 

page templates (HTML)
• Synthesizes HTML for lists, repeating blocks, etc.
• Also maps HTML back to a data-model, for create 

and update (Save) operations
• Includes various widgets

– Term completion, Structured date editor, pagination
– Can integrate “foreign” widgets, like GTK Calendar



Lecture 7 Slide 9

Shared semantics, extensions

• Want to have common information that covers 
many cases, many domains

• Must support additional information, and alternate 
models

• Traditional services model has fixed “contract”
(XML schema for information)

• CollectionSpace supports multiple parts
– Services only “understand” common part
– But manage (save+get, search over) additional parts
– UI does not really care whether common or custom



Lecture 7 Slide 10

Schema model for a customized service deployment

Schema Extension Model



Lecture 7 Slide 11

IT Architecture and community dynamics

• Community supported and sustained
• Need sub-communities to form, and share 

ownership for domain extensions
– This is largely new to museums, for software
– There are some already, e.g., herbaria

• How to get them thinking as community?
– Step one: push their extensions into this model, using 

domain plus local schemas
– Step two: foster shared discussion/governance



Lecture 7 Slide 12

Extensions, overlays, replacements

• Application+UI ship with base (default) config
• Framework allows for key pieces to be replaced 

(in whole or in part), or extended:
– HTML templates and widgets
– Message bundles (labels, static text)
– CSS (for general themes, or specific layout)
– Javascript files (for UI logic)

• Default resources are replaced/overlaid by tenant
resources



Lecture 7 Slide 13

HTML templates

• Main and Admin record editors
– Cataloging, Intake, Loans UI 
– Users, Roles, Reports, Controlled-vocabs, etc.

• Advanced Search editors
– Subset of fields used for search
– UI varies by field type (strings, dates, numbers)

• Widgets and components, e.g., 
– Term completion widget
– Structured Date editor
– Media uploader

• Overlays replace a template



Lecture 7 Slide 14

Message Bundles

• All strings are named, and have default values
• UI Framework binds values to HTML templates
• Override to change form labels, titles, etc.
• Can be used to localize the UI
• Overlays bundles are additive (selectively replace 

values)



Lecture 7 Slide 15

CSS, javascript, json

• These define style, page logic, data models
• Modularized for pages, components, etc.
• Can override individually (replace)
• Can also add extension script, stylesheets, etc.



Lecture 7 Slide 16

Multi-tenancy implications

• Each tenant has separate model in repo
• Base resources shared across all tenants

– Services schemas and configuration
– Application configuration of data models, etc.
– UI templates, CSS, bundles, etc.

• Default/demo tenant has no extensions
• Additional tenants specify extensions, 

customizations, overlays, etc.
• User Accounts must be tied to one or more tenants
• Media, reports, etc. could be shared, should not be



Lecture 7 Slide 17

UI config layout 

• Files (also) shipped as part of Web-app
– In /defaults, includes “base” resources

• /defaults/bundle, /defaults/css, /defaults/js , /defaults/config, 
etc.

• /defaults/html: high level page layouts
• /defaults/html/pages: record editor templates
• /defaults/html/components: widget templates

– In /tenants, folders for each tenant by name, within 
which same structure is used to add overlays

• Only need add the ones you want to customize



Lecture 7 Slide 18

Application config layout 

• Files shipped as part of Web-app
– In resources/defaults, includes “base”

configuration for each procedure
– In resources/tenants, folders for each tenant by 

name, within which domain and local overrides 
for configuration can be added.

• Only need add the ones you want to 
customize



Lecture 7 Slide 19

Services config layout 

• Base schemas shipped as part of Web-app
– Expanded to /nuxeo-server/schemas
– Development framework handles this, but 

requires Java development tools (ant, maven).
• Extension schemas added for a service, then 

declared in configuration
• Plan is to generate this from the Application 

configuration (automatically)



Lecture 7 Slide 20

Project+Community process 
• New procedures, objects, features etc.,

– Proposals presented to community for review
– Schemas sketched on wiki, discussed on talk list
– UI Wireframes attached to wiki
– Integration issues discussed on work, tech lists
– May be developed by core team, or some museum or group of 

museums
– Formal review process for contributing to core

• Bugs, refinements, etc.
– Filed as issues in JIRA
– Fixed with patches

• Mapping, customizations often public, some on local wikis
• Started with SVN, moving to Git


