
INFO 290TA (Information Organization Lab)
Kate Rushton & Raymon Sutedjo-The

IO Lab:
Object-Oriented
Javascript

November 6, 2013

Object-Oriented Programming
Encapsulation: provide access only to an object’s essential details
and hide non-essential ones.

Inheritance: inherit the attributes and behavior of another class (to
increase reusability).

Polymorphism: make use of an entity in several different forms
without affecting the original identity of the entity.

Abstraction: decide on which details are important (and not
important) for an object.

http://voices.yahoo.com/features-object-oriented-programming-1607731.html

http://voices.yahoo.com/features-object-oriented-programming-1607731.html
http://voices.yahoo.com/features-object-oriented-programming-1607731.html

OOP & Javascript
Object creation patterns (encapsulation)

Code reuse patterns (inheritance)

http://javascriptissexy.com/oop-in-javascript-what-you-need-to-know/

http://javascriptissexy.com/oop-in-javascript-what-you-need-to-know/
http://javascriptissexy.com/oop-in-javascript-what-you-need-to-know/

Javascript Objects
Literal notation

! var iolabObject = {...}

Constructor function

! function iolabObject() {...}

Properties: variables attached to an object.

Methods: functions attached to an object.

Literal Notation
var iolabObject = {
 name : "iolab",
 shout : function() {
 alert(this.name);
 }

Property
// iolabObject.name will return "iolab"

Method
// iolabObject.shout() will bring up a dialog box
that says "iolab"

Literal Notation
An object literal creates an object that can be immediately used
without first having to use the new keyword.

However, an object literal cannot implement the basic OOP
principles of encapsulation and inheritance.

E.g. say you defined a “gallery” object. If you want to have multiple galleries on the page, you
have to duplicate the object multiple times and give it a different name each time.

Constructor Function
function iolabObject() {
 this.name = "iolab";
 this.shout = shoutFunction;
 function shoutFunction() {
 alert(this.name);
 }
}

Constructor Function
var courseOne = new iolabObject();
var courseTwo = new iolabObject();

courseTwo.name = "iolabF13";

Property
// courseOne.name will return "iolab"
// courseTwo.name will return "iolabF13"

Method
// courseOne.shout() will bring up a dialog box
that says "iolab"
// courseTwo.shout() will bring up a dialog box
that says "iolabF13"

Constructor Function
A constructor creates a blueprint of objects, not the object itself.

Methods & properties are declared with a this prefix.

New objects are initialized with the new keyword.

As such, we can create multiple instances of an object easily.
E.g. say you defined a “gallery” object. If you want to have multiple galleries on the page, you
can initiate those instances with the new keyword:
var articleSlideshow = new gallery();
var popularPhotos = new gallery();

Final Project

Final Project
Open-ended as long as it’s somehow related to IO/IR.

Start thinking about ideas! Post them on Piazza or pitch it
next week (after P 3 presentations).

Remember, this is the final project, so be creative & think bigger.

Next Class

Next Class
P 3 presentations

7 minutes per group
< 1 min. group introduction

5 mins. project summary & demo

2 mins. Q&A

Time limit will be strictly enforced
Final project pitches and group formation at the end of class

