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The perceptron, again
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ŷ = V1h1 + V2h2

x1

h1

x2

x3

h2

y



W V
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we can express y as a function only of the input x and the weights W and V

x1

h1

x2

x3

h2

y
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This is hairy, but differentiable

Backpropagation: Given training samples of 
<x,y> pairs, we can use stochastic gradient 
descent to find the values of W and V that 
minimize the loss.
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Autoencoder
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• Unsupervised neural network, where y = x 
• Learns a low-dimensional representation of x



Word embeddings
• Learning low-dimensional representations of words 

by framing a predicting task: using context to 
predict words in a surrounding window

the black cat jumped on the table
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Word embeddings

• Transform this into a 
supervised prediction 
problem
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Word embeddings

• Can you predict the output word from a vector 
representation of the input word?



• Output: low-dimensional representation of words 
directly read off from the weight matrices.
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the black cat jumped on the table

the black dog jumped on the table

the black puppy jumped on the table

the black skunk jumped on the table

the black shoe jumped on the table

• Why this behavior? dog, cat show up in similar 
positions



• Why this behavior? dog, cat show up in similar 
positions

the black [0.4, 0.08] jumped on the table

the black [0.4, 0.07] jumped on the table

the black puppy jumped on the table

the black skunk jumped on the table

the black shoe jumped on the table

To make the same predictions, these numbers need to be close to each other.
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representations for all words are completely independent

the is a point in 2-dimensional space 
representations are now structured
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Cosine Similarity

• Euclidean distance measures the 
magnitude of distance between two 
points 

• Cosine similarity measures their 
orientation
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Analogical inference

• Mikolov et al. 2013 show that vector representations 
have some potential for analogical reasoning through 
vector arithmetic.

king - man + woman ≈ queen
apple - apples ≈ car - cars

Mikolov et al., (2013), “Linguistic Regularities in Continuous Space Word Representations” (NAACL)



Bolukbasi et al. (2016)

• Word vectors are trained on real data (web page, 
news, etc.) and reflect the inherent biases in how 
language is used

29



Code

http://mybinder.org/repo/dbamman/dds

30

code/vector_similarity

http://mybinder.org/repo/dbamman/dds


Assumptions
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Lexical Variation

• People use different words in different regions. 

• Lexical variation in social media  
Eisenstein et al. 2010; O’Connor et al. 2010; Eisenstein et al. 2011; Hong et 
al. 2012; Doyle 2014 

• Text-based geolocation  
Wing and Baldridge 2011; Roller et al. 2012; Ikawa et al. 2012



“yinz”

Normalized document frequencies from 93M geotagged tweets (1.1B words).



“bears”

Normalized document frequencies from 93M geotagged tweets (1.1B words).



“bears” (IL)

• who's all watching the bears game ? :) 

• watching bears game . no need to watch my lions . 
saw the score at the bottom of the screen . stafford 
and johnson are taking care of things . 

• @USERNAME packers fans would be screaming 
that at bears fans if it had happened to chicago , 
all while laughing . schadenfreude .



• troopers tracking brown bears on k beach 6/22/13 
troopers ask that local_residents do not call 
law_enforcement ... @URL 

• sci-tech : webcams make alaska bears accessible . 

• angel rocks trail open ; dead calf moose might have 
attracted bears : fairbanks — state parks rangers on 
thursday ... @URL

“bears” (AK)



Problem
How can we learn lexical representations that are 
sensitive to geographical variation not simply in word 
frequency, but in meaning? 

• Vector-space models of lexical semantics  
Lin 1998; Turney and Pantel 2010, Reisinger and Mooney 2010, Socher et al. 
2013, Mikolov et al. 2013, inter alia 

• Low-dimensional “embeddings” (w ∈ ℝK)  
Bengio et al. 2006, Collobert and Weston 2008, Mnih and Hinton 2008, Turian 
et al. 2010, Socher et al. 2011ff., Collobert et al. 2011, Mikolov et al. 2013; 
Levy and Goldberg 2014.



“bears”
• who's all watching the bears game ? :) 

• watching bears game . no need to watch my 
lions . saw the score at the bottom of the screen 
. stafford and johnson are taking care of things . 

• troopers tracking brown bears on k beach 
troopers ask that local_residents do not call 
law_enforcement ... @URL 

• sci-tech : webcams make alaska bears 
accessible .



“bears”
• who's all watching the bears game ? :) 

• watching bears game . no need to watch my 
lions . saw the score at the bottom of the screen 
. stafford and johnson are taking care of things . 

• troopers tracking brown bears on k beach 
6/22/13 troopers ask that local_residents do not 
call law_enforcement ... @URL 

• sci-tech : webcams make alaska bears 
accessible .
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Context + Metadata

my boy’s wicked smart MA

x = {wicked, wicked+MA}

y = smart
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Model
bears 3.76 10.4 -1.3
red 0.3 4.10 13.3
the 0.1 3.3 -1.2

zoo -10.3 -13.1 1.4
|=|

K

Word

bears -0.30 -3.1 1.04
red 4.5 0.3 -1.3
the 1.3 -1.2 0.1
zoo 5.2 7.2 1.5

|=|Word+Alabama

bears 5.6 8.3 -0.8
red 3.1 0.14 6.8
the -0.1 -0.7 1.4
zoo 6.7 2.1 -3.7

|=|Word+Alaska
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“let’s go into the city”
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city

Terms with the highest cosine similarity to city in California

• valley 
• bay 
• downtown 
• chinatown 
• south bay 
• area 
• east bay 
• neighborhood 
• peninsula



city

Terms with the highest cosine similarity to city in New York.

• suburbs 
• town 
• hamptons 
• big city 
• borough 
• neighborhood 
• downtown 
• upstate 
• big apple



wicked

Terms with the highest cosine similarity to wicked in Kansas

• evil 
• pure 
• gods 
• mystery 
• spirit 
• king 
• above 
• righteous 
• magic



wicked

Terms with the highest cosine similarity to wicked in Massachusetts

• super 
• ridiculously 
• insanely 
• extremely 
• goddamn 
• surprisingly 
• kinda 
• #sarcasm 
• sooooooo



Deeper networks
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http://neuralnetworksanddeeplearning.com/chap1.html

http://neuralnetworksanddeeplearning.com/chap1.html


Higher order features learned for image recognition  
Lee et al. 2009 (ICML)



Autoencoder
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• Unsupervised neural network, where y = x 
• Learns a low-dimensional representation of x



Feedforward networks
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Convolutional networks

• With convolution networks, the same operation is 
(i.e., the same set of parameters) is applied to 
different regions of the input
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2D Convolution

0 0 0 0 0
0 1 1 1 0
0 1 1 1 0
0 1 1 1 0
0 0 0 0 0

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/  
https://docs.gimp.org/en/plug-in-convmatrix.html

blurring

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
https://docs.gimp.org/en/plug-in-convmatrix.html
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Feedforward networks
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Recurrent networks
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Recurrent networks
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Recurrent networks
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Recurrent networks
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RNNs often have a problem with 
long-distance dependencies.

tim cook apple

ORG

loves his



LSTMs

http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Recurrent networks/LSTMs

task x y

language models words in sequence the next word in a 
sequence

part of speech tagging words in sequence part of speech

machine translation words in sequence translation



Midterm report, due Friday
• 4 pages, citing 10 relevant sources 

• Be sure to consider feedback! 

• Data collection should be completed 

• You should specify a validation strategy to be 
performed at the end 

• Present initial experimental results


