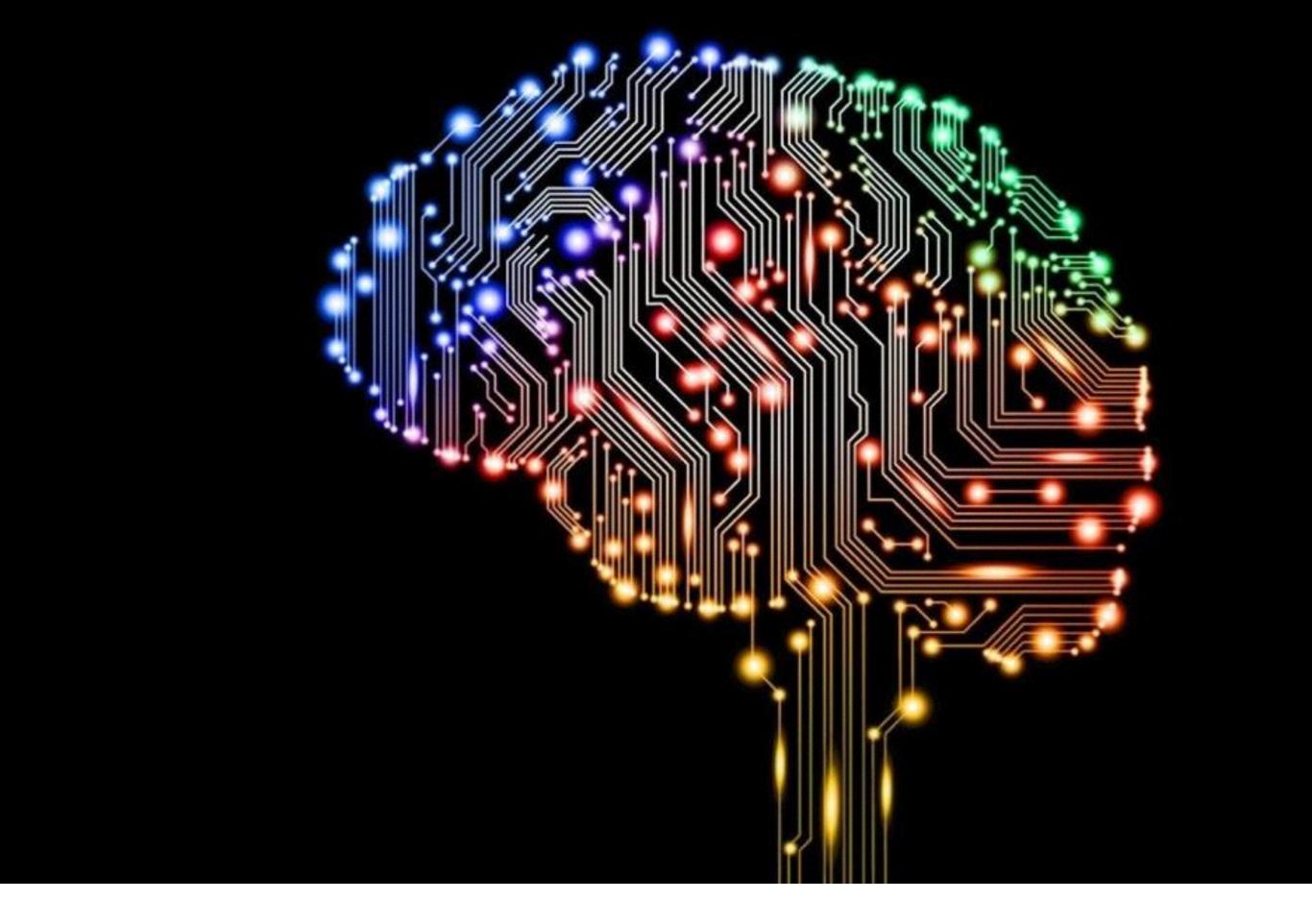
Deconstructing Data Science

David Bamman, UC Berkeley

Info 290 Lecture 16: Neural networks

Mar 16, 2017



Neural network libraries

theano

The perceptron, again

$$\hat{y}_i = \begin{cases} 1 \\ -1 \end{cases}$$

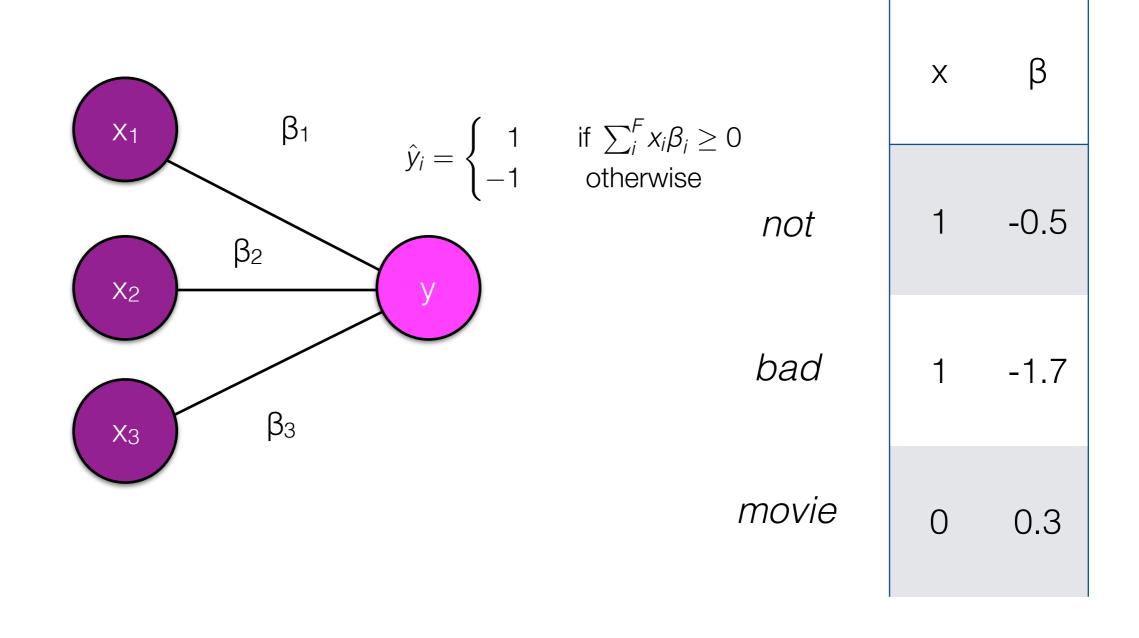
$$\hat{y}_i = \begin{cases} 1 & \text{if } \sum_{i}^{F} x_i \beta_i \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

not

bad

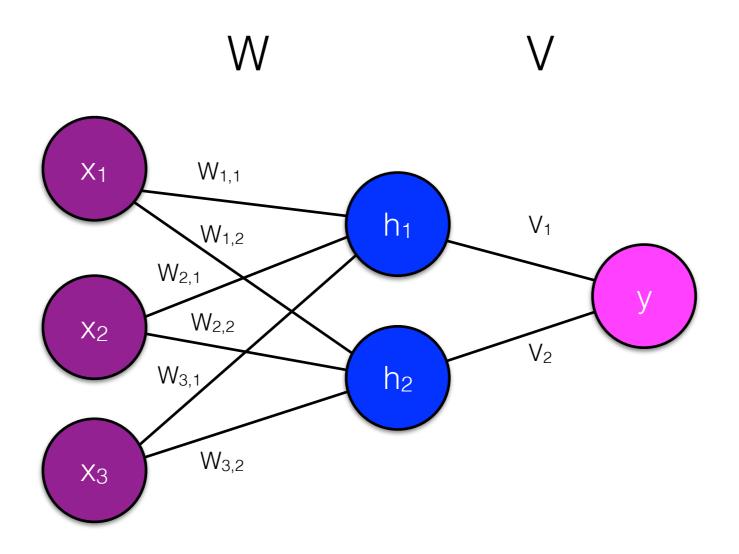
movie

The perceptron, again

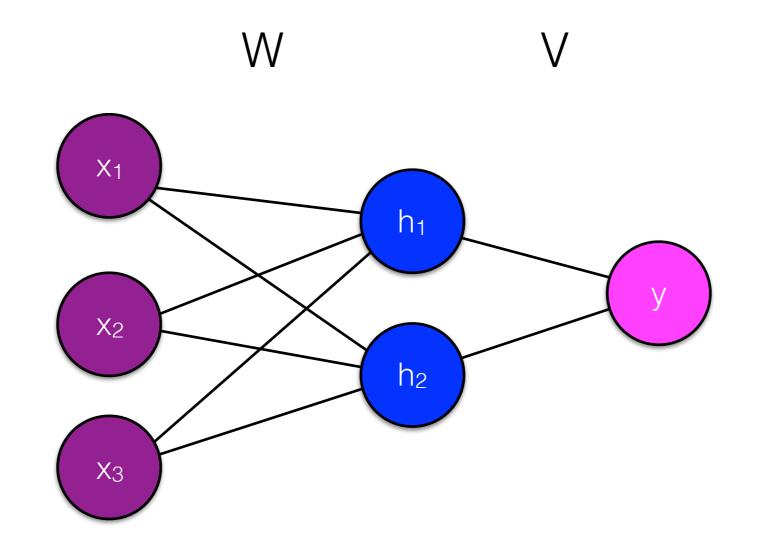


Neural networks

- Two core ideas:
 - Non-linear activation functions
 - Multiple layers



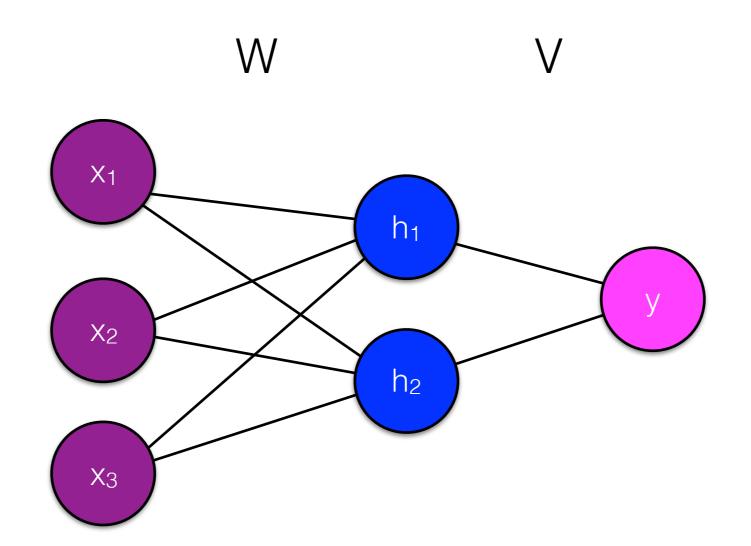
Input "Hidden" Output Layer



not bad movie 1 1 0 W
-0.5 1.3
0.4 0.08
1.7 3.1

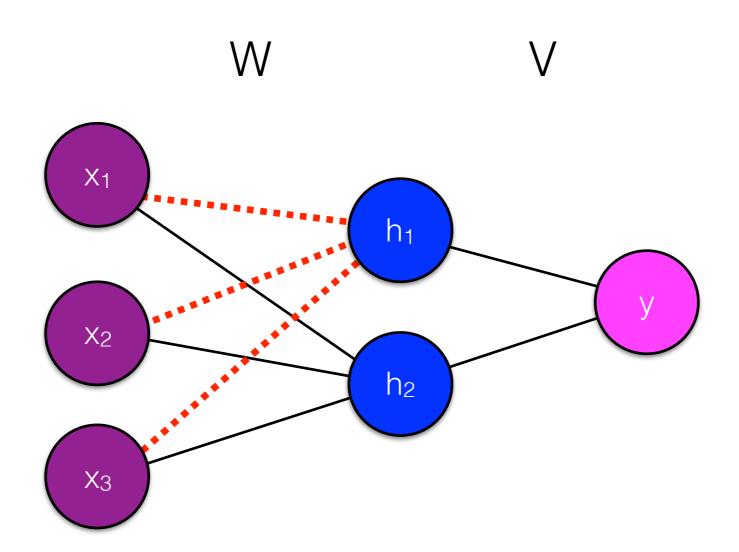
V 4.1 -0.9

у -1



$$h_j = f\left(\sum_{i=1}^F x_i W_{i,j}\right)$$

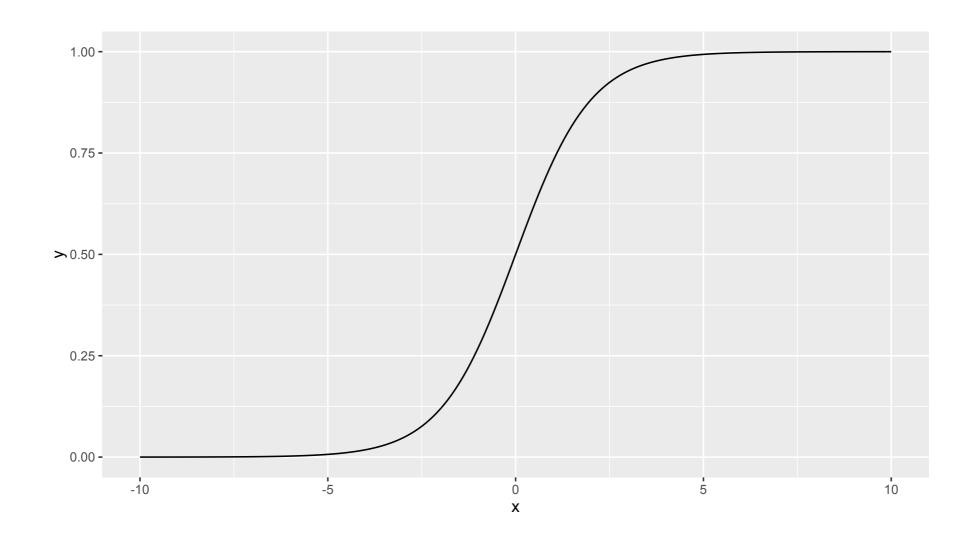
the hidden nodes are completely determined by the input and weights



$$h_1 = f\left(\sum_{i=1}^F x_i W_{i,1}\right)$$

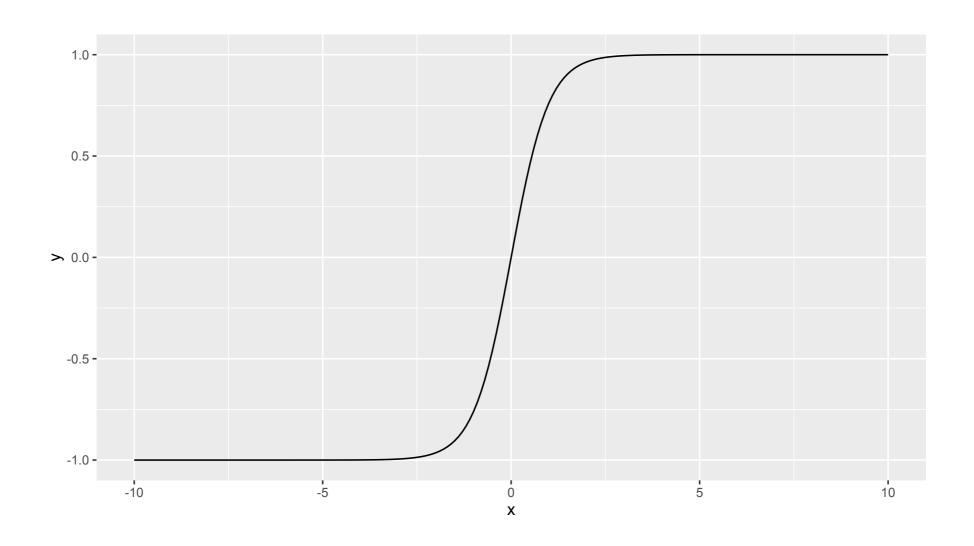
Activation functions

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$



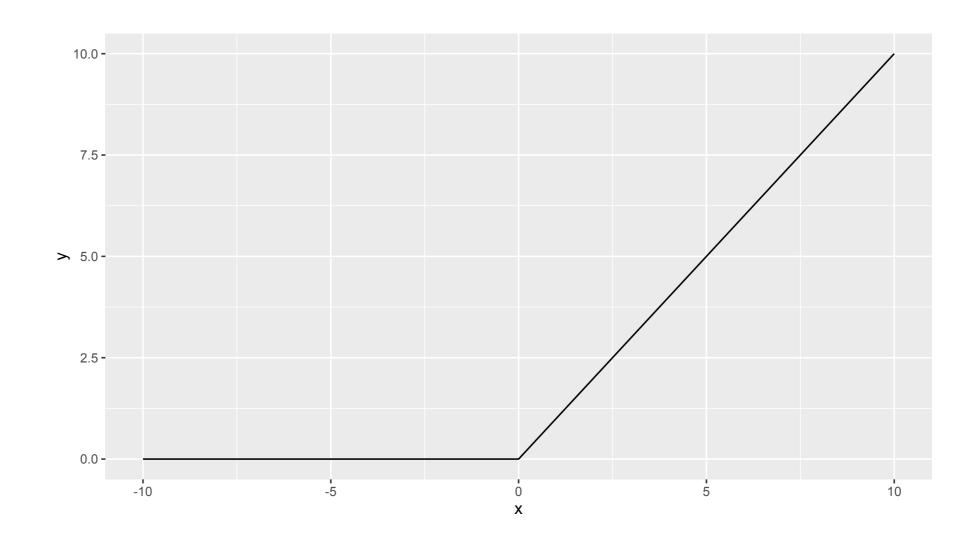
Activation functions

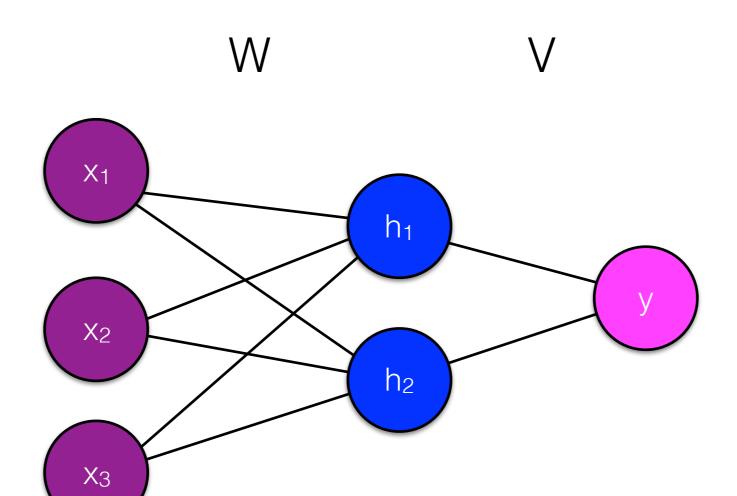
$$\tanh(z) = \frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)}$$



Activation functions

$$rectifier(z) = max(0, z)$$

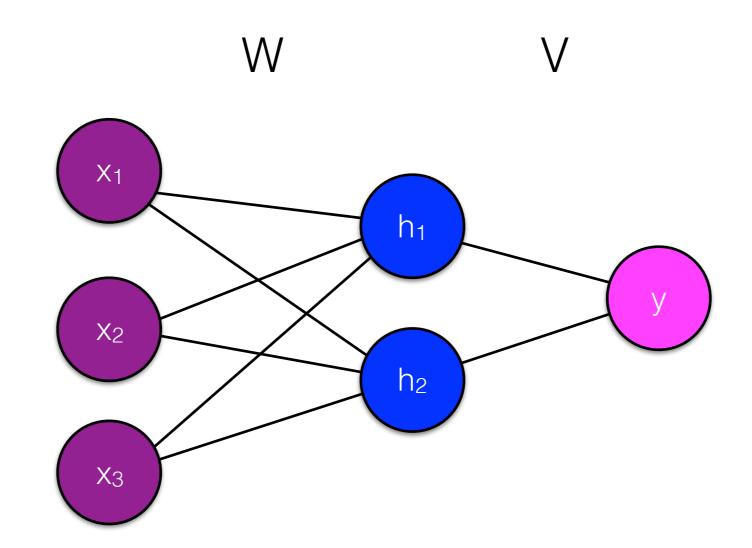




$$h_1 = \sigma \left(\sum_{i=1}^F x_i W_{i,1} \right)$$

$$h_2 = \sigma \left(\sum_{i=1}^F x_i W_{i,2} \right)$$

$$\hat{y} = V_1 h_1 + V_2 h_2$$

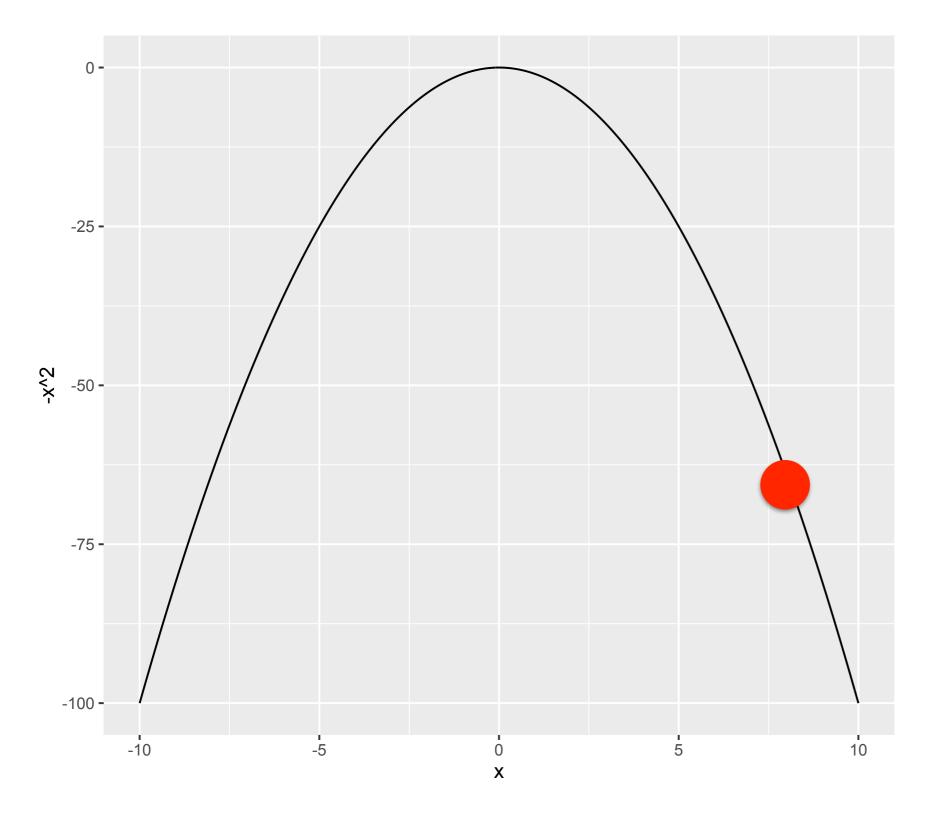


$$\hat{y} = V_1 \underbrace{\left(\sigma\left(\sum_{i=1}^F x_i W_{i,1}\right)\right)}_{h_1} + V_2 \underbrace{\left(\sigma\left(\sum_{i=1}^F x_i W_{i,2}\right)\right)}_{h_2}$$

$$\hat{y} = V_1 \underbrace{\left(\sigma\left(\sum_{i=1}^F x_i W_{i,1}\right)\right)}_{h_1} + V_2 \underbrace{\left(\sigma\left(\sum_{i=1}^F x_i W_{i,2}\right)\right)}_{h_2}$$

This is hairy, but differentiable

Backpropagation: Given training samples of <x,y> pairs, we can use stochastic gradient descent to find the values of W and V that minimize the loss.



$$x + \alpha(-2x)$$

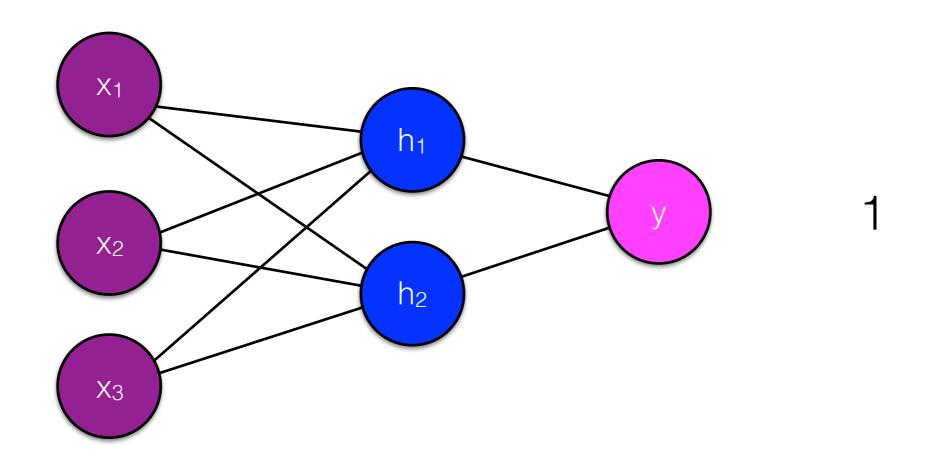
$$[\alpha = 0.1]$$

.1(-2x)
-1.60
-1.28
-1.02
-0.82
-0.66
-0.52
-0.42
-0.34
-0.27
-0.21
-0.17
-0.14

$$\frac{d}{dx} - x^2 = -2x$$

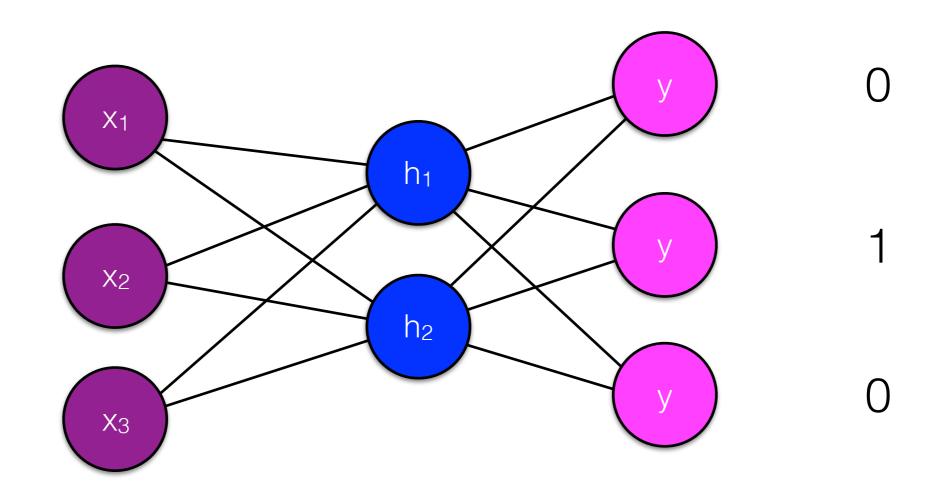
We can get to maximum value of this function by following the gradient

Neural network structures



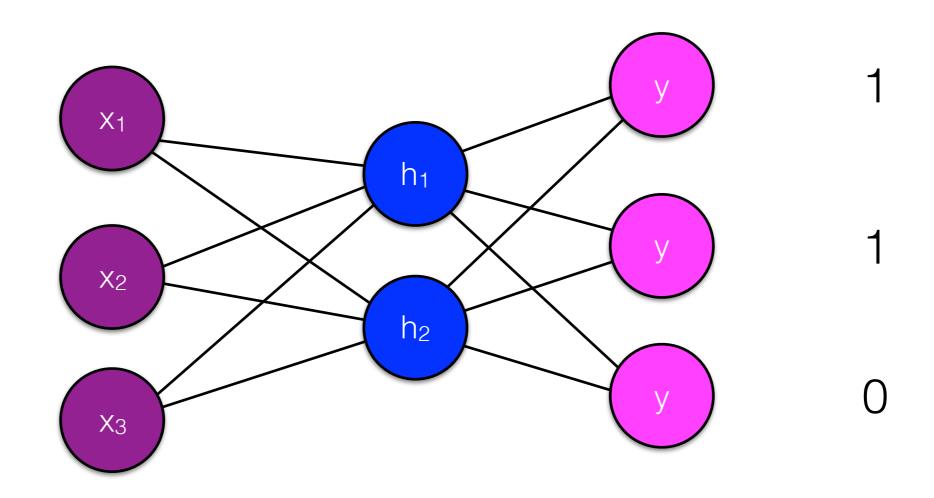
Output one real value

Neural network structures



Multiclass: output 3 values, only one = 1 in training data

Neural network structures



output 3 values, several = 1 in training data

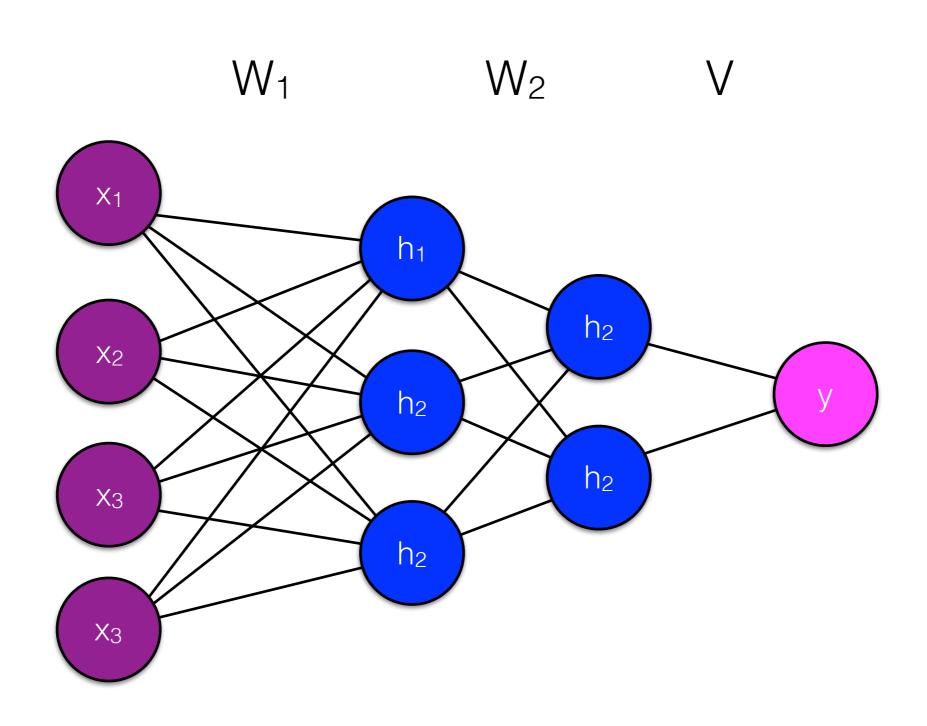
Regularization

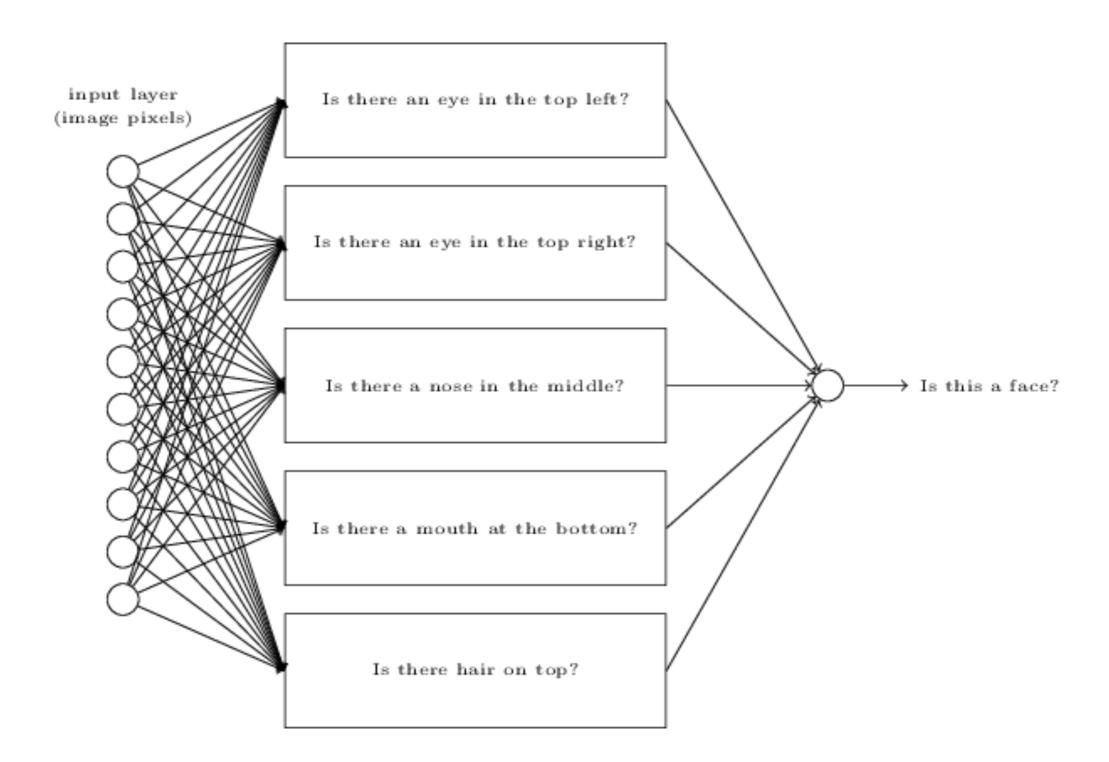
 Increasing the number of parameters = increasing the possibility for overfitting to training data

Regularization

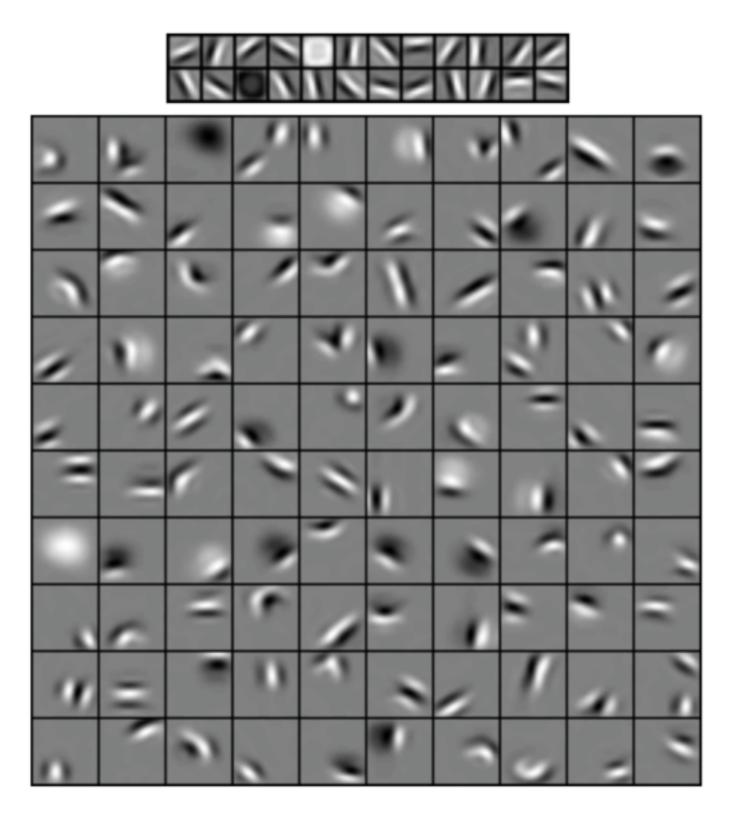
- L2 regularization: penalize W and V for being too large
- Dropout: when training on a <x,y> pair, randomly remove some node and weights.
- Early stopping: Stop backpropagation before the training error is too small.

Deeper networks





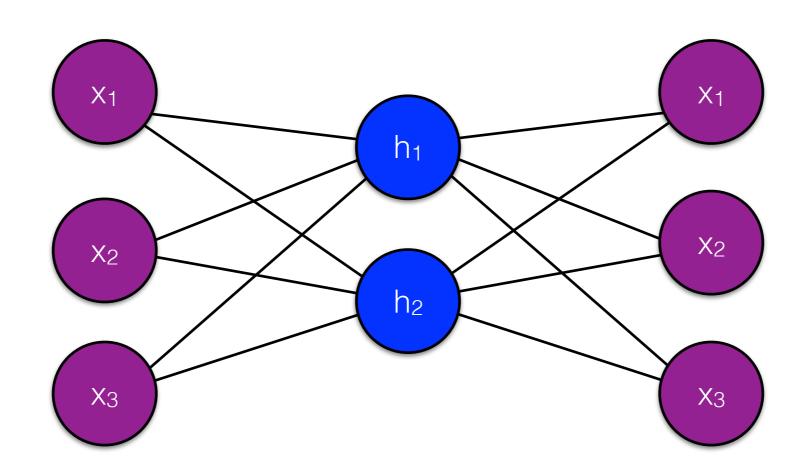
http://neuralnetworksanddeeplearning.com/chap1.html



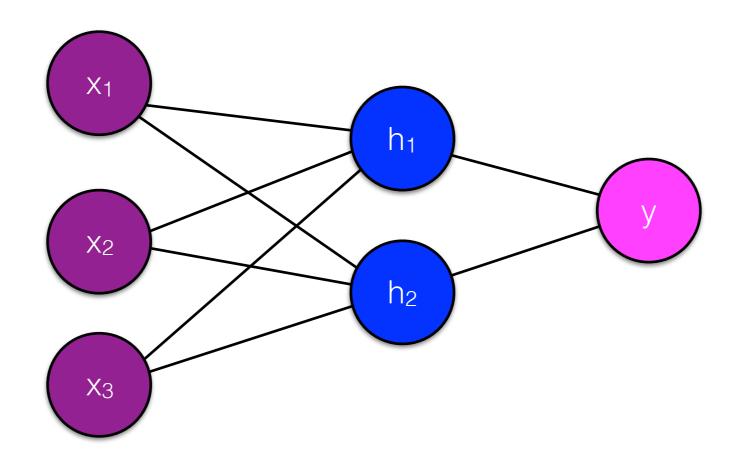
Higher order features learned for image recognition Lee et al. 2009 (ICML)

Autoencoder

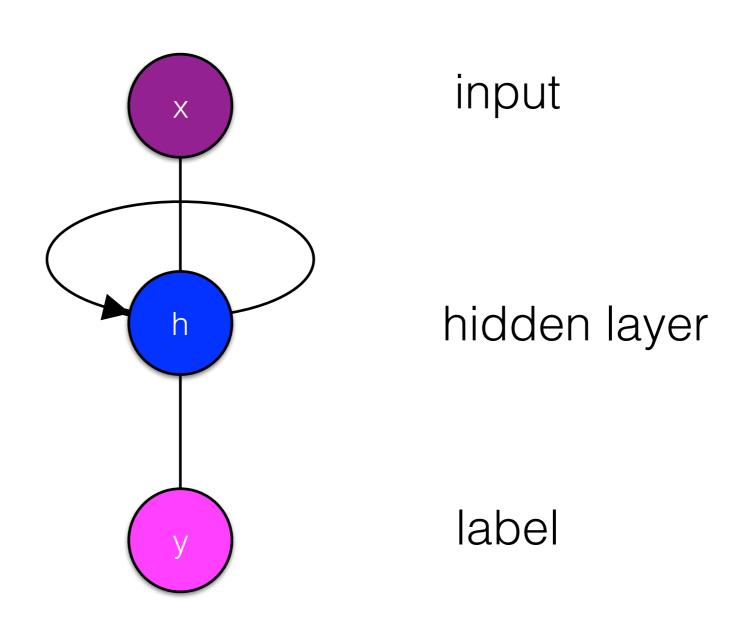
- Unsupervised neural network, where y = x
- Learns a low-dimensional representation of x



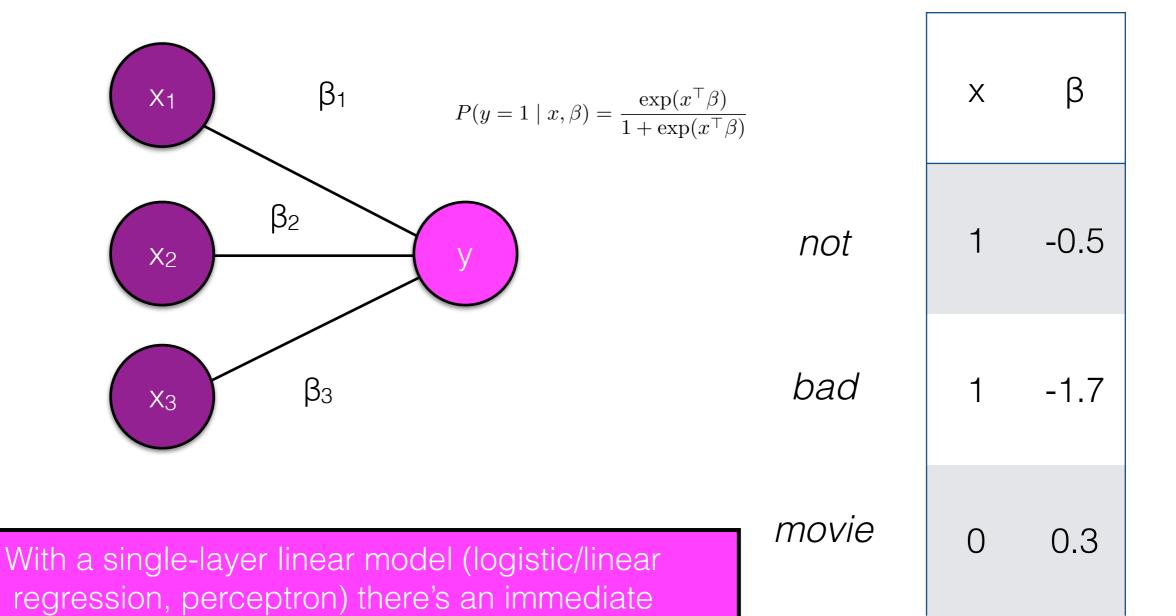
Feedforward networks



Recurrent networks

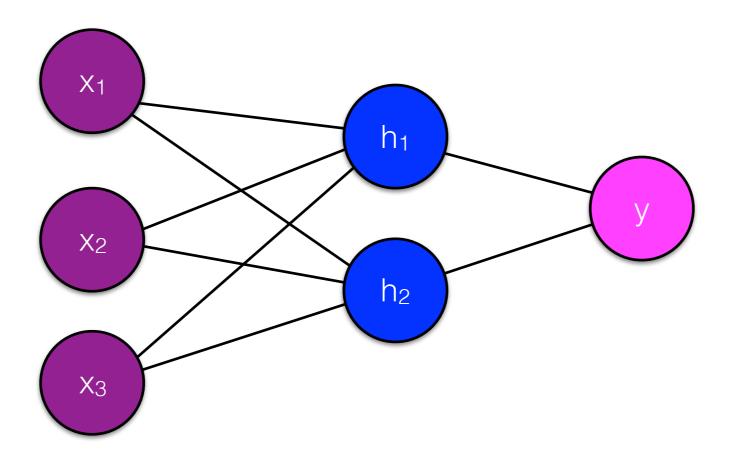


Interpretability



relationship between x and y apparent in β

Interpretability



Non-linear activation functions induce dependencies between the inputs.