Deconstructing Data Science

David Bamman, UC Berkeley

Info 290 Lecture 14: Linear regression

Mar 7, 2017

Regression

A mapping from input data x (drawn from instance space \mathcal{X}) to a point y in \mathbb{R}

 $(\mathbb{R} = \text{the set of real numbers})$

x = the empire state building y = 17444.5625"

Regression problems

task	X	Y
predicting box office revenue	movie	R

David Bamman @dbamman

Assistant Professor, School of Information, UC Berkeley. Natural language processing, machine learning, computational social science, digital humanities.

- Berkeley, CA
- S people.ischool.berkeley.edu/~dbam man/
- iii Joined October 2009

10 Photos and videos

David Bamman Retweeted

Anders Søgaard @soegaarducph · Jan 6

@stanfordnlp @brendan642 @jacobeisenstein Here goes: twitterresearch.ccs.neu.edu/language/

Enter a term to display: mountain

Green represents more uses of the selected term, relative to the national average. Red represents fewer uses.

x = feature vector

β = coefficients

Feature	Value
follow clinton	0
follow trump	0
"benghazi"	0
negative sentiment + "benghazi"	0
"illegal immigrants"	0
"republican" in profile	0
"democrat" in profile	0
self-reported location = Berkeley	1

Feature	β
follow clinton	-3.1
follow trump	6.8
"benghazi"	1.4
negative sentiment + "benghazi"	3.2
"illegal immigrants"	8.7
"republican" in profile	7.9
"democrat" in profile	-3.0
self-reported location = Berkeley	-1.7

Linear regression

$$y = \sum_{i=1}^{F} x_i \beta_i + \varepsilon$$

true value y

prediction ŷ

 $\varepsilon = y - \hat{y}$

ɛ is the difference between the prediction and true value

$$\hat{y} = \sum_{i=1}^{F} f_i(x)\beta_i$$

$$f_1(x) = \begin{cases} 1 & \text{if } x < 6 \text{ or } x > 10 \\ 0 & \text{otherwise} \end{cases}$$

Linear regression is linear in the parameters β

β = coefficients

Feature	β
follow clinton	-3.1
follow trump	6.8
"benghazi"	1.4
negative sentiment + "benghazi"	3.2
"illegal immigrants"	8.7
"republican" in profile	7.9
"democrat" in profile	-3.0
self-reported location = Berkeley	-1.7

How do we get good values for β?

Least squares

we want to minimize the errors we make

$$\beta = \min_{\beta} \sum_{i=1}^{N} \left(y - \hat{y} \right)^2$$

$$\beta = \min_{\beta} \sum_{i=1}^{N} \left(y - \sum_{j=1}^{F} x_{j} \beta_{j} \right)^{2}$$

Least squares

$$\beta = \min_{\beta} \sum_{i=1}^{N} \left(y - \sum_{j=1}^{F} x_{j} \beta_{j} \right)^{2}$$

- We can solve this in two ways:
 - Closed form (normal equations)
 - Iteratively (gradient descent)

Algorithm 3 Linear regression stochastic gradient descent

1: Data: training data $x \in \mathbb{R}^F, y \in \mathbb{R}$

2:
$$\beta = 0^F$$

3: while not converged do

4: for
$$i = 1$$
 to N do

5:
$$\beta_{t+1} = \beta_t + \alpha \left(y_i - \hat{y} \right) x_i$$

6: end for

7: end while

Algorithm 3 Linear regression stochastic gradient descent

```
1: Data: training data x \in \mathbb{R}^{F}, y \in \mathbb{R}

2: \beta = 0^{F}

3: while not converged do

4: for i = 1 to N do

5: \beta_{t+1} = \beta_t + \alpha (y_i - \hat{y}) x_i

6: end for

7: end while
```

 ${\bf Algorithm} \ {\bf 2} \ {\rm Logistic} \ {\rm regression} \ {\rm stochastic} \ {\rm gradient} \ {\rm descent}$

4: for
$$i = 1$$
 to N do

5:
$$\beta_{t+1} = \beta_t + \alpha \left(y_i - \hat{p}(x_i) \right) x_i$$

- 6: **end for**
- 7: end while

Code

β = coefficients

Feature	β
follow clinton	-3.1
follow trump + follow NFL + follow bieber	7299302
"benghazi"	1.4
negative sentiment + "benghazi"	3.2
"illegal immigrants"	8.7
"republican" in profile	7.9
"democrat" in profile	-3.0
self-reported location = Berkeley	-1.7

Many features that show up rarely may likely only appear (by chance) with one label

More generally, may appear so few times that the noise of randomness dominates

Ridge regression

We want both of these to be small!

This corresponds to a prior belief that β should be 0

Ridge regression

A.K.A.

L2 regularization Penalized least squares

low L2

med L2

high L2

Matt Gerald	\$295,619,605
Peter Mensah	\$294,475,429
Lewis Abernathy	\$188,093,808
Sam Worthington	\$186,193,754
CCH Pounder	\$184,946,303
Steve Bacic	-\$65,334,914
Jim Ward	-\$66,096,435
Karley Scott Collins	-\$66,612,154
Dee Bradley Baker	-\$73,571,884
Animals	-\$110,349,541

Computer Animation	\$68,629,803
Hugo Weaving	\$39,769,171
John Ratzenberger	\$36,342,438
Tom Cruise	\$36,137,757
Tom Hanks	\$34,757,574
Western	-\$13,223,795
World cinema	-\$13,278,965
Crime Thriller	-\$14,138,326
Anime	-\$14,750,932
Indie	-\$21,081,924

Adventure	\$6,349,781
Action	\$5,512,359
Fantasy	\$5,079,546
Family Film	\$4,024,701
Thriller	\$3,479,196
Western	-\$752,683
Black-and- white	-\$1,389,215
World cinema	-\$1,534,435
Drama	-\$2,432,272
Indie	-\$3,040,457

BIAS: \$5,913,648

BIAS: \$13,394,465

BIAS: \$45,044,525

Assumptions

Probabilistic Interpretation

 $P(y_i \mid x, \beta) = \operatorname{Norm}(y_i \mid \hat{y}_i, \sigma^2)$

"the errors are normally distributed"

Probabilistic Interpretation

 $P(y_i \mid x, \beta) = \operatorname{Norm}(y_i \mid \hat{y}_i, \sigma^2)$

Conditional likelihood

Ν

For all training data, we want $\prod P(y_i \mid x_i, \beta) \qquad \text{probability of the true value y for}$ each data point x to high

This principle gives us a way to pick the values of the parameters β that maximize the probability of the training data < x, y >

Outliers

Probabilistic Interpretation

 $P(y_i \mid x, \beta) = \operatorname{Norm}(y_i \mid \hat{y}_i, \sigma^2)$

Robust regression

- Rather than modeling the errors as normally distributed, pick some heavier-tailed distribution instead
- This will assign higher likelihood to the outliers without having to move the best fit for the coefficients.

Heavy tailed distributions

Normal vs Laplace

Homoscedasticity

Assumption that the variance in y is constant for all values of x; this data is *heteroscedastic*

Evaluation

Goodness of fit (to training data)

$$R^{2} = 1 - \frac{\sum_{i}(y_{i} - \hat{y}_{i})^{2}}{\sum_{i}(y_{i} - \bar{y})^{2}}$$

For most models, *R*² ranges from 0 (no fit) to 1 (perfect fit)

Experiment design

	training	development	testing
size	80%	10%	10%
purpose	training models	model selection	evaluation; never look at it until the very end

Metrics

 Measure difference between the prediction ŷ and the true y

Mean squared error (MSE)

 $\frac{1}{N}\sum_{i=1}^{N}(\hat{y}_i - y_i)^2$

Mean absolute error (MAE)

 $\frac{1}{N}\sum_{i=1}^{N}|\hat{y}_i - y_i|$

Interpretation

 $\hat{y} = x_0\beta_0 + x_1\beta_1$

 $x_0\beta_0 + (x_1 + 1)\beta_1$

 $x_0\beta_0 + x_1\beta_1 + \beta_1$

 $=\hat{y}+\beta_1$

β represents the degree to which y changes with a 1-unit increase in x

Let's increase the value of x₁

by 1 (e.g., from $0 \rightarrow 1$)

Independence

benedict cumberbatch stars movie good	1
terrible acting benedict cumberbatch	0
benedict cumberbatch script excellent	1
excellent script movie good	1
benedict cumberbatch good excellent	1

- benedict
- cumberbatch
- stars
- movie
- good
- acting
- script
- excellent
- terrible

Code

Independence

benedict_cumberbatch stars movie good	1
terrible acting benedict_cumberbatch	0
benedict_cumberbatch script excellent	1
excellent script movie good	1
benedict_cumberbatch good excellent	1

- benedict
 _cumberbatch
- stars
- movie
- good
- acting
- script
- excellent
- terrible

Significance

Joshi et al. (2010)

I	ngrams
П	POS ngrams
	Dependency relations

			Total		Per Screen	
	Features	Site	MAE		MAE	
			(\$M)	r	(\$K)	r
	Predict mea	ın	11.672	-	6.862	_
	Predict med	lian	10.521	-	6.642	-
meta	Best		5.983	0.722	6.540	0.272
text		_	8.013	0.743	6.509	0.222
	I	+	7.722	0.781	6.071	0.466
	see Tab. 3	В	7.627	0.793	6.060	0.411
		_	8.060	0.743	6.542	0.233
	$\mathbf{I} \cup \mathbf{II}$	+	7.420	0.761	6.240	0.398
		В	7.447	0.778	6.299	0.363
		_	8.005	0.744	6.505	0.223
	$\mathbf{I} \cup \mathbf{III}$	+	7.721	0.785	6.013	0.473
		В	7.595	0.796	[†] 6.010	0.421
meta ∪ text		_	5.921	0.819	6.509	0.222
	I	+	5.757	0.810	6.063	0.470
		В	5.750	0.819	6.052	0.414
		_	5.952	0.818	6.542	0.233
	$\mathbf{I} \cup \mathbf{II}$	+	5.752	0.800	6.230	0.400
		В	5.740	0.819	6.276	0.358
		_	5.921	0.819	6.505	0.223
	$\mathbf{I} \cup \mathbf{III}$	+	5.738	0.812	6.003	0.477
		В	5.750	0.819	[†] 5.998	0.423

Joshi et al. (2010)

	Feature	Weight (\$M)
50	pg	+0.085
atir	New York Times: adult	-0.236
G	New York Times: rate_r	-0.364
els	this_series	+13.925
onba	LA Times: the_franchise	+5.112
se	Variety: the_sequel	+4.224
le	Boston Globe: will_smith	+2.560
eop	Variety: brittany	+1.128
đ	^_producer_brian	+0.486
	Variety: testosterone	+1.945
nre	Ent. Weekly: comedy_for	+1.143
ge	Variety: a_horror	+0.595
	documentary	-0.037
	independent	-0.127
t	Boston Globe: best_parts_of	+1.462
nen	Boston Globe: smart_enough	+1.449
ttin	LA Times: a_good_thing	+1.117
sen	shame_\$	-0.098
	bogeyman	-0.689
t	Variety: torso	+9.054
plo	vehicle_in	+5.827
	superhero_\$	+2.020