Deconstructing Data Science

David Bamman, UC Berkeley

Info 290 Lecture 11: Causal inference

Feb 21, 2017

Linear/logistic regression

Logistic regression

$$P(y = 1 \mid x, \beta) = \frac{\exp\left(\sum_{i=1}^{F} x_i \beta_i\right)}{1 + \exp\left(\sum_{i=1}^{F} x_i \beta_i\right)}$$

Linear regression

$$y = \sum_{i=1}^{F} x_i \beta_i + \varepsilon$$

x = feature vector

β = coefficients

Feature	Value
follow clinton	0
follow trump	0
"benghazi"	0
negative sentiment + "benghazi"	0
"illegal immigrants"	0
"republican" in profile	0
"democrat" in profile	0
self-reported location = Berkeley	1

Feature	β
follow clinton	-3.1
follow trump	6.8
"benghazi"	1.4
negative sentiment + "benghazi"	3.2
"illegal immigrants"	8.7
"republican" in profile	7.9
"democrat" in profile	-3.0
self-reported location = Berkeley	-1.7

$$\frac{P(y \mid x, \beta)}{1 - P(y \mid x, \beta)} = \exp(x_0 \beta_0) \exp(x_1 \beta_1)$$

Let's increase the value of x by 1 (e.g., from $0 \rightarrow 1$)

 $\exp(x_0\beta_0)\exp((x_1+1)\beta_1)$ $\exp(x_0\beta_0)\exp(x_1\beta_1+\beta_1)$ $\exp(x_0\beta_0)\exp(x_1\beta_1)\exp(\beta_1)$

exp(β) represents the factor by which the **odds** change with a 1-unit increase in x

$$\frac{P(y \mid x, \beta)}{1 - P(y \mid x, \beta)} \exp{(\beta_1)}$$

Prediction vs. Understanding

- Two main uses of statistical models:
- Prediction: inferring the most likely values (+ prediction intervals) for data where you don't know the answer
- Understanding: estimating the relationship between a predictor variable and some outcome (+ quantifying uncertainty about that relationship)

Significance

- When we estimate coefficients in linear/logistic regression, we do so from a sample. Different samples can lead to variability in our estimates.
- We can assess how significant is the relationship between a predictor and its response with a hypothesis test.
- Null hypothesis: All $\beta = 0$.

Significance

Correlation vs. Causation

• We want to understand the causal relationship of a treatment *T* on some outcome *Y*

Treatment	Outcome
take a drug	cured of disease
graduate high school	earnings
cast John Goodman	box office
living in Berkeley	political preference

Terminology

- Treatment. T(0), T(1). The predictor variable whose causal relationship we're interested in.
- Potential outcomes. Y=0, Y=1. The dependent variable.
- We're interested in the causal relationship between the treatment *T* and the outcome *Y*.

Counterfactual

 John doesn't brush his teeth (T=0) and developed heart disease (Y=1). What would have happened if he did brush his teeth (T=1)?

Fundamental problem

• For any data point, we only ever get to observe one outcome. We never observe the counterfactual.

Treatment	Outcome
take a drug	cured of disease
graduate high school	earnings
cast John Goodman	box office
living in Berkeley	political preference

β = coefficients

With linear/logistic regression, we can assess the statistical significance of the effect of the features (i.e., with hypothesis test that $\beta \neq 0$)

Feature	β
follow clinton	-3.1
follow trump	6.8
"benghazi"	1.4
negative sentiment + "benghazi"	3.2
***"illegal immigrants"	8.7
***"republican" in profile	7.9
***"democrat" in profile	-3.0
*self-reported location = Berkeley	-1.7

Observational data

- A survey of the political affiliation of Berkeley residents is observational data
 - the independent variable (living in Berkeley) is not under our control
- Tweets, books, surveys, the web, the census etc.
 is all observational.

Observational data

- Hypothesis tests for observational data assess the relationship between variables but don't establish causality.
- Example: if we intervened and relocated someone to Berkeley, would they become liberal?

Experimental data

- Data that allows you to perform an intervention and determine the value of some variable
 - Clinical data: treatment vs. placebo
 - Web design: one of two homepage designs
 - Political email campaigns: one of two (differently worded) solicitations

Experimental data

- A potential confound exists if any other variable is correlated with your intervention decision:
- e.g., users volunteering to receive a drug (and not the placebo)

Randomization experiments

- Users are randomly assigned an outcome (which web page), which allows us to better establish causality
- A/B testing = significance test in randomized experiment with two outcomes

Randomization experiments

• We can run a standard regression, but now if the β_{design_A} is significant, we can interpret it causally.

	user 1	user 2
age	?	?
prior visit	1	0
gender	?	?
design A	1	0
У	\$37	\$16

Randomization experiments

• By randomly assigning the treatment, we are ensuring that its value is uncorrelated with any other variable.

	user 1	user 2
age	?	?
prior visit	1	0
gender	?	?
design A	1	0
У	\$37	\$16

Causal inference

If we can ensure that no other variables are correlated with the treatment, we can interpret its effect on an outcome causally.

Observational data

- With randomized experiments, we can perform an intervention, and set the value of a treatment for a given data point.
- With observational data, we can't intervene.
- Instead, we believe there is a randomization experiment lurking in the data; we just need to find it.

- Estimating the effect of graduating high school on future earnings [Angrist and Krueger 1991; Esarey 2015]
- Use census data (= observational)

years of school	\geq 12 years?	weekly earnings
12	1	\$158
15	1	\$151
7	0	\$197
16	1	\$217
18	1	\$177

Linear regression F $y = \sum x_i \beta_i + \epsilon$ i=1Х graduate high school log(weekly earnings) β (graduating high) 5.062 school) = .4011 5.014 = 1.5 times increase 5.283 0 in salary 5.378 5.179 1

More features

graduate	race	y.o.b.	married	metro area	\$\$\$
1	0	1927	1	1	980
1	1	1921	1	0	312
1	0	1923	0	0	77
1	0	1927	0	1	95
1	1	1928	1	1	123
0	0	1924	1	1	150

$$y = \sum_{i=1}^{F} x_i \beta_i + \epsilon$$

	β	exp(β)	\$200
graduate	0.35	1.42	\$284
race	-0.38	0.68	\$137
y.o.b.	~	~	~
married	0.31	1.36	\$272
metro area	-0.16	0.85	\$170

Causal inference

If we can ensure that no other variables are correlated with the treatment, we can interpret its effect on an outcome causally.

Balance

Balance

	balance
married	-0.081
race	0.450
metro	0.116

 $\bar{x}_t - \bar{x}_c$

 σ_t

Matching

- We'll ensure balance of the covariates by pairing each data point in the treatment with another similar data point in the control
- Ideally: every other feature is the same except the treatment value

Matching

 After matching, we need to assess balance again (since the entire point is to improve covariate balance).

Distance measurements

 Exact matching: match a treatment data point to a data point with exactly the same values for all of its features

graduate	race	y.o.b.	married	metro area
1	0	1927	1	1
1	1	1921	1	0
1	0	1923	0	0
0	0	1927	1	1
1	1	1928	1	1

Coarsened Exact Matching

- Preprocessing: "coarsen" each variable (e.g., into buckets) and define strata of variables that have exact coarsened values
- Throw out all strata that don't have at least 1 treatment and control data point
- Rebalance treatment and control within each strata so each strata has the same distribution of treatment and control units as the entire dataset.

Coarsened Exact Matching

• How do we coarsen?

graduate	city	y.o.b.	siblings	metro area	politics
1	Berkeley	1990	3	1	very liberal
1	Boise	1987	1	0	liberal

Mahalanobis Distance

- Distance metric between two points x_i and x_j that accounts for different features having different degrees of variability
- $\Sigma = covariance matrix$

$$MDM(x_i, x_j) = (x_i - x_j)\Sigma^{-1}(x_i - x_j)$$

Propensity scores

 Propensity scores generate a single summary number for all covariates: the probability of the treatment

У	
J	

Х

graduate	race	y.o.b.	married	metro area
1	0	1927	1	1
1	1	1921	1	0
1	0	1923	0	0
0	0	1927	1	1
1	1	1928	1	1

Propensity scores

 Propensity scores generate a single summary number for all covariates: the probability of the treatment

$T \perp Y \mid X$ $\Rightarrow T \perp Y \mid P(T = 1 \mid X)$

Propensity scores

- We can use any model that generates a probability as part of its decision
- The accuracy of the model does not matter as much as the covariate balance after matching

$$P(y = 1 \mid x, \beta) = \frac{\exp\left(\sum_{i=1}^{F} x_i \beta_i\right)}{1 + \exp\left(\sum_{i=1}^{F} x_i \beta_i\right)}$$

Balance

- With matching, we are identifying a subset of our original data to use for analysis
- The entire point of matching is to reduce imbalance among the covariates. We need to check that it worked.

Balance

Want post-matching balance < 0.25

$$\frac{\bar{x}_t - \bar{x}_c}{\bar{x}_t - \bar{x}_c}$$

 σ_t

	balance before matching	balance after matching
married	-0.081	-0.007
race	0.450	0.01
metro	0.116	0.005

Analysis

- Matching methods constitute a design phase for causal analysis: identifying the subset of observational data that can be thought of as a latent randomization experiment.
- Once we identify the subset, we simply apply the original analysis to it — e.g., linear/logistic regression and analyzing the coefficients for significance.

Analysis

	β	βmatching	\$200
graduate	0.35	0.34	\$281
race	-0.38	-0.36	\$140
y.o.b.	~	~	
married	0.31	0.31	\$284
metro area	-0.16	-0.14	\$174

Assumptions

- Ignorability
- Positive probability of treatment
- SUTVA

Ignorability

• The treatment *T* is independent of the potential outcomes *Y* given the observed covariates *X*.

$T \perp Y \mid X$

Positivity

• The probability of receiving a treatment is positive (i.e., non-zero) for all values of X

$P(T=1 \mid X) > 0$

SUTVA

- Stable unit treatment value assumption
- The outcome for one data point is not affected the treatment for another

 $T_i \perp Y_j$

Issues

• What about high-dimensional problems?