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Logistic regression

Linear regression

Linear/logistic regression



Feature Value

follow clinton 0

follow trump 0

“benghazi” 0

negative sentiment + 
“benghazi” 0

“illegal immigrants” 0

“republican” in profile 0

“democrat” in profile 0

self-reported location 
= Berkeley 1

x = feature vector
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Feature β

follow clinton -3.1

follow trump 6.8

“benghazi” 1.4

negative sentiment + 
“benghazi” 3.2

“illegal immigrants” 8.7

“republican” in profile 7.9

“democrat” in profile -3.0

self-reported location 
= Berkeley -1.7

β = coefficients



P(y | x, β)

1 � P(y | x, β)
= exp (x0β0) exp (x1β1)

exp(x0β0) exp(x1β1 + β1)

exp(x0β0) exp (x1β1) exp (β1)

P(y | x, β)

1 � P(y | x, β)
exp (β1)

exp(x0β0) exp((x1 + 1)β1)Let’s increase the value of x by 
1 (e.g., from 0 → 1)

exp(β) represents the factor by 
which the odds change with a 

1-unit increase in x



Prediction vs. Understanding

• Two main uses of statistical models: 

• Prediction: inferring the most likely values (+ 
prediction intervals) for data where you don’t know 
the answer 

• Understanding: estimating the relationship between 
a predictor variable and some outcome (+ 
quantifying uncertainty about that relationship)



• When we estimate coefficients in linear/logistic 
regression, we do so from a sample.  Different 
samples can lead to variability in our estimates. 

• We can assess how significant is the relationship 
between a predictor and its response with a 
hypothesis test. 

• Null hypothesis:  All β = 0.

Significance
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Correlation vs. Causation

• We want to understand the causal relationship of a 
treatment T on some outcome Y

Treatment Outcome

take a drug cured of disease

graduate high school earnings

cast John Goodman box office

living in Berkeley political preference



brush 
teeth

eat 
red meat

gum 
disease

heart 
disease

immune 
response

exercise

Shalizi 2014

healthy 
lifestyle



Terminology

• Treatment.  T(0), T(1).  The predictor variable 
whose causal relationship we’re interested in. 

• Potential outcomes.  Y=0, Y=1.  The dependent 
variable.  

• We’re interested in the causal relationship between 
the treatment T and the outcome Y.



Counterfactual

• John doesn’t brush his teeth (T=0) and developed 
heart disease (Y=1).  What would have happened if 
he did brush his teeth (T=1)?



Fundamental problem 
• For any data point, we only ever get to observe one 

outcome.  We never observe the counterfactual.

Treatment Outcome

take a drug cured of disease

graduate high school earnings

cast John Goodman box office

living in Berkeley political preference
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Feature β

follow clinton -3.1

follow trump 6.8

“benghazi” 1.4

negative sentiment + 
“benghazi” 3.2

***“illegal immigrants” 8.7

***“republican” in 
profile 7.9

***“democrat” in profile -3.0

*self-reported location 
= Berkeley -1.7

β = coefficients

With linear/logistic 
regression, we can assess 
the statistical significance 
of the effect of the features 
(i.e., with  hypothesis test 

that β≠0)



Observational data

• A survey of the political affiliation of Berkeley 
residents is observational data  

• the independent variable (living in Berkeley) is 
not under our control 

• Tweets, books, surveys, the web, the census etc. 
— is all observational.



• Hypothesis tests for observational data assess the 
relationship between variables but don’t establish 
causality. 

• Example: if we intervened and relocated someone 
to Berkeley, would they become liberal?

Observational data



Experimental data

• Data that allows you to perform an intervention and 
determine the value of some variable 

• Clinical data: treatment vs. placebo 
• Web design: one of two homepage 

designs 
• Political email campaigns: one of two 

(differently worded) solicitations



• A potential confound exists if any other variable is 
correlated with your intervention decision: 

• e.g., users volunteering to receive a drug (and not 
the placebo)

Experimental data



Randomization experiments

• Users are randomly assigned an outcome (which 
web page), which allows us to better establish 
causality 

• A/B testing = significance test in randomized 
experiment with two outcomes



Randomization experiments

user 1 user 2
age ? ?

prior visit 1 0
gender ? ?

design A 1 0
y $37 $16

• We can run a standard regression, but now if the 
βdesign_A is significant, we can interpret it causally.



Randomization experiments

user 1 user 2
age ? ?

prior visit 1 0
gender ? ?

design A 1 0
y $37 $16

• By randomly assigning the treatment, we are 
ensuring that its value is uncorrelated with any 
other variable.



Causal inference

If we can ensure that no other variables are 
correlated with the treatment, we can interpret its 

effect on an outcome causally.



• With randomized experiments, we can perform an 
intervention, and set the value of a treatment for a 
given data point. 

• With observational data, we can’t intervene. 

• Instead, we believe there is a randomization 
experiment lurking in the data; we just need to find 
it.

Observational data



• Estimating the effect of graduating high school on 
future earnings [Angrist and Krueger 1991; Esarey 2015] 

• Use census data (= observational)

years of school ≥ 12 years? weekly earnings
12 1 $158
15 1 $151
7 0 $197

16 1 $217
18 1 $177



Linear regression

graduate high school
1
1
0
1
1

log(weekly earnings)
5.062
5.014
5.283
5.378
5.179

y =
F�

i=1

xi�i + �

x y

β(graduating high 
school) = .401 

= 1.5 times increase 
in salary 



More features

graduate race y.o.b. married metro area $$$

1 0 1927 1 1 980

1 1 1921 1 0 312

1 0 1923 0 0 77

1 0 1927 0 1 95

1 1 1928 1 1 123

0 0 1924 1 1 150



β exp(β) $200
graduate 0.35 1.42 $284

race -0.38 0.68 $137
y.o.b. ~ ~ ~

married 0.31 1.36 $272
metro area -0.16 0.85 $170

y =
F�

i=1

xi�i + �



Causal inference

If we can ensure that no other variables are 
correlated with the treatment, we can interpret its 

effect on an outcome causally.
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Balance

x̄t � x̄c

�t

balance

married -0.081

race 0.450

metro 0.116



Matching

• We’ll ensure balance of the covariates by pairing 
each data point in the treatment with another 
similar data point in the control 

• Ideally: every other feature is the same except the 
treatment value



Matching

T(0)

T(1)

x1



Matching

T(0)

T(1)

x1

Remove data without 
common support



Matching

T(0)

T(1)

x1

Remove unmatched 
data



Matching

• After matching, we need to assess balance again 
(since the entire point is to improve covariate 
balance).



Distance measurements

• Exact matching: match a treatment data point to a 
data point with exactly the same values for all of its 
features

graduate race y.o.b. married metro area
1 0 1927 1 1
1 1 1921 1 0
1 0 1923 0 0
0 0 1927 1 1
1 1 1928 1 1



Matching

T(0)

T(1)

x1

If matching was 
exact, what would 
the balance be?



Coarsened Exact Matching
• Preprocessing: “coarsen” each variable (e.g., into 

buckets) and define strata of variables that have 
exact coarsened values 

• Throw out all strata that don’t have at least 1 
treatment and control data point 

• Rebalance treatment and control within each strata 
so each strata has the same distribution of 
treatment and control units as the entire dataset.



Coarsened Exact Matching

• How do we coarsen?

graduate city y.o.b. siblings metro area politics
1 Berkeley 1990 3 1 very liberal
1 Boise 1987 1 0 liberal



Mahalanobis Distance
• Distance metric between two points xi and xj that 

accounts for different features having different 
degrees of variability 

• Σ = covariance matrix

MDM(xi, xj) = (xi � xj)�
�1(xi � xj)



Propensity scores
• Propensity scores generate a single summary 

number for all covariates: the probability of the 
treatment

graduate race y.o.b. married metro area
1 0 1927 1 1
1 1 1921 1 0
1 0 1923 0 0
0 0 1927 1 1
1 1 1928 1 1

xy



Propensity scores
• Propensity scores generate a single summary 

number for all covariates: the probability of the 
treatment

T � Y | X

� T � Y | P (T = 1 | X)



• We can use any model that generates a probability 
as part of its decision 

• The accuracy of the model does not matter as 
much as the covariate balance after matching 

P(y = 1 | x, β) =
exp

��F
i=1 xiβi

�

1 + exp
��F

i=1 xiβi

�

Propensity scores



Matching

T(0)

T(1)

P(T=1)



Balance

• With matching, we are identifying a subset of our 
original data to use for analysis 

• The entire point of matching is to reduce imbalance 
among the covariates. We need to check that it 
worked.



Balance
x̄t � x̄c

�t

balance 
before matching

balance 
after matching

married -0.081 -0.007

race 0.450 0.01

metro 0.116 0.005

Want post-matching 
balance < 0.25



Matching

T(0)

T(1)

P(T=1)



Analysis
• Matching methods constitute a design phase for 

causal analysis: identifying the subset of 
observational data that can be thought of as a 
latent randomization experiment. 

• Once we identify the subset, we simply apply the 
original analysis to it — e.g., linear/logistic 
regression and analyzing the coefficients for 
significance.



β βmatching $200
graduate 0.35 0.34 $281

race -0.38 -0.36 $140
y.o.b. ~ ~

married 0.31 0.31 $284
metro area -0.16 -0.14 $174

y =
F�

i=1

xi�i + �

Analysis



Assumptions

• Ignorability 

• Positive probability of treatment 

• SUTVA



Ignorability

• The treatment T is independent of the potential 
outcomes Y given the observed covariates X.

T � Y | X



Positivity

• The probability of receiving a treatment is positive 
(i.e., non-zero) for all values of X

P (T = 1 | X) > 0



SUTVA

• Stable unit treatment value assumption 

• The outcome for one data point is not affected the 
treatment for another

Ti � Yj



Issues

• What about high-dimensional problems?


