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Generative vs. 
Discriminative models

• Generative models specify a joint distribution over the labels 
and the data.  With this you could generate new data

P(x, y) = P(y) P(x | y)

• Discriminative models specify the conditional distribution of 
the label y given the data x.  These models focus on how to 
discriminate between the classes 

P(y | x)



Generating
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P(x | y = Romeo and Juliet)



Generative models
• With generative models (e.g., Naive Bayes), we ultimately 

also care about P(y | x), but we get there by modeling more.

P(Y = y | x) =
P(Y = y)P(x | Y = y)�
y�Y P(Y = y)P(x | Y = y)

• Discriminative models focus on modeling P(y | x) — and only 
P(y | x) — directly.

prior likelihoodposterior



Remember
F�

i=1
xiβi = x1β1 + x2β2 + . . . + xFβF
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F�

i=1
xi = xi � x2 � . . . � xF

exp(x) = ex � 2.7x

log(x) = y � ey = x

exp(x + y) = exp(x) exp(y)

log(xy) = log(x) + log(y)



Classification

𝓧 = set of all skyscrapers 
𝒴 = {art deco, neo-gothic, modern}

A mapping h from input data 
x (drawn from instance 
space 𝓧) to a label (or 
labels) y from some 
enumerable output space 𝒴

x = the empire state building 
y = art deco



Feature Value

follow clinton 0

follow trump 0

“benghazi” 0

negative sentiment + 
“benghazi” 0

“illegal immigrants” 0

“republican” in profile 0

“democrat” in profile 0

self-reported location 
= Berkeley 1

x = feature vector
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Feature β

follow clinton -3.1

follow trump 6.8

“benghazi” 1.4

negative sentiment + 
“benghazi” 3.2

“illegal immigrants” 8.7

“republican” in profile 7.9

“democrat” in profile -3.0

self-reported location 
= Berkeley -1.7

β = coefficients



Logistic regression

P(y | x, β) =
exp

��F
i=1 xiβi

�

1 + exp
��F

i=1 xiβi

�

Y = {0, 1}output space



benghazi follows 
trump

follows 
clinton a=∑xiβi exp(a) exp(a)/

1+exp(a)

x1 1 1 0 1.9 6.69 87.0%
x2 0 0 1 -1.1 0.33 25.0%

x3 1 0 1 -0.4 0.67 40.1%
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benghazi follows 
trump

follows 
clinton

β 0.7 1.2 -1.1
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Feature β

follow clinton -3.1

follow trump 6.8

“benghazi” 1.4

negative sentiment + 
“benghazi” 3.2

“illegal immigrants” 8.7

“republican” in profile 7.9

“democrat” in profile -3.0

self-reported location 
= Berkeley -1.7

β = coefficients

How do we get 
good values for β?



Likelihood
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Remember the likelihood of data is its probability 
under some parameter values 

In maximum likelihood estimation, we pick the 
values of the parameters under which the data is 
most likely.
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Conditional likelihood
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N�

i
P(yi | xi, β)

For all training data, we want 
probability of the true label y for 

each data point x to high

This principle gives us a way to pick the values of 
the parameters β that maximize the probability of 

the training data <x, y>



14

The value of β that maximizes likelihood also 
maximizes the log likelihood

arg max
β

N�

i=1
P(yi | xi, β) = arg max

β
log

N�

i=1
P(yi | xi, β)

log
N�

i=1
P(yi | xi, β) =

N�

i=1
logP(yi | xi, β)

The log likelihood is an easier form to work with:



• We want to find the value of β that leads to the 
highest value of the log likelihood:

15

�(β) =
N�

i=1
logP(yi | xi, β)

• Solution: derivatives!
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We can get to maximum value of this 
function by following the gradient

x .1(-2x)
8.00 1.60
6.40 1.28
5.12 1.02
4.10 0.82
3.28 0.66
2.62 0.52
2.10 0.42
1.68 0.34
1.34 0.27
1.07 0.21
0.86 0.17
0.69 0.14

x + α(-2x) 
[α = 0.1]

d
dx � x2 = �2x
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�

<x,y=+1>

logP(1 | x, β) +
�

<x,y=0>

logP(0 | x, β)

�

�βi
�(β) =

�

<x,y>
(y � p̂(x)) xi

We want to find the values of β that make the value of this 
function the greatest



Gradient descent

18

If y is 1 and p(x) = 0.99, then this still pushes the 
weights just a little bit

If y is 1 and p(x) = 0, then this still pushes the weights a lot



Stochastic g.d.
• Batch gradient descent reasons over every training data point 

for each update of β.  This can be slow to converge. 

• Stochastic gradient descent updates β after each data point.
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Perceptron

20
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Stochastic g.d.

Logistic regression 
stochastic update

p is between 
0 and 1

Perceptron 
stochastic update

ŷ is exactly  
0 or 1βi + α (y � ŷ) xi

βi + α (y � p̂(x)) xi

The perceptron is an approximation to logistic regression



Practicalities

P(y | x, β) =
exp

��F
i=1 xiβi

�

1 + exp
��F

i=1 xiβi

�
�

�βi
�(β) =

�

<x,y>
(y � p̂(x)) xi

• When calculating the P(y | x) or in calculating the 
gradient, you don’t need to loop through all 
features — only those with nonzero values 

• (Which makes sparse, binary values useful)



�

�βi
�(β) =

�

<x,y>
(y � p̂(x)) xi

If a feature xi only shows up with one class (e.g., 
democrats), what are the possible values of its 

corresponding βi?

�

�βi
�(β) =

�

<x,y>
(1 � 0)1 �

�βi
�(β) =

�

<x,y>
(1 � 0.9999999)1

always positive
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Feature β

follow clinton -3.1

follow trump + follow 
NFL + follow bieber 7299302

“benghazi” 1.4

negative sentiment + 
“benghazi” 3.2

“illegal immigrants” 8.7

“republican” in profile 7.9

“democrat” in profile -3.0

self-reported location 
= Berkeley -1.7

β = coefficients

Many features that show up 
rarely may likely only appear (by 

chance) with one label 

More generally, may appear so 
few times that the noise of 

randomness dominates



Feature selection
• We could threshold features by minimum count but that 

also throws away information 

• We can take a probabilistic approach and encode a prior 
belief that all β should be 0 unless we have strong 
evidence otherwise

26



L2 regularization

• We can do this by changing the function we’re trying to optimize by adding 
a penalty for having values of β that are high 

• This is equivalent to saying that each β element is drawn from aNormal 
distribution centered on 0. 

• η controls how much of a penalty to pay for coefficients that are far from 0 
(optimize on development data)

27

�(β) =
N�

i=1
logP(yi | xi, β)

� �� �
we want this to be high

� η
F�

j=1
β2
j

� �� �
but we want this to be small
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33.83 Won Bin

29.91 Alexander Beyer

24.78 Bloopers

23.01 Daniel Brühl

22.11 Ha Jeong-woo

20.49 Supernatural

18.91 Kristine DeBell

18.61 Eddie Murphy

18.33 Cher

18.18 Michael Douglas

no L2 
regularization

2.17 Eddie Murphy

1.98 Tom Cruise

1.70 Tyler Perry

1.70 Michael Douglas

1.66 Robert Redford

1.66 Julia Roberts

1.64 Dance

1.63 Schwarzenegger

1.63 Lee Tergesen

1.62 Cher

some L2 
regularization

0.41 Family Film

0.41 Thriller

0.36 Fantasy

0.32 Action

0.25 Buddy film

0.24 Adventure

0.20 Comp Animation

0.19 Animation

0.18 Science Fiction

0.18 Bruce Willis

high L2 
regularization
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β

σ2

x

μ

y y � Ber

�

�
exp

��F
i=1 xiβi

�

1 + exp
��F

i=1 xiβi

�

�

�

β � Norm(μ, σ2)



L1 regularization

• L1 regularization encourages coefficients to be 
exactly 0. 

• η again controls how much of a penalty to pay for 
coefficients that are far from 0 (optimize on 
development data)
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�(β) =
N�

i=1
logP(yi | xi, β)

� �� �
we want this to be high

� η
F�

j=1
|βj|

� �� �
but we want this to be small



P(y | x, β) =
exp (x0β0 + x1β1)

1 + exp (x0β0 + x1β1)

P(y | x, β) + P(y | x, β) exp (x0β0 + x1β1) = exp (x0β0 + x1β1)

P(y | x, β)(1 + exp (x0β0 + x1β1)) = exp (x0β0 + x1β1)

What do the coefficients 
mean?



P(y | x, β)

1 � P(y | x, β)
= exp (x0β0 + x1β1)

P(y | x, β) = exp (x0β0 + x1β1)(1 � P(y | x, β))

P(y | x, β) = exp (x0β0 + x1β1) � P(y | x, β) exp (x0β0 + x1β1)

P(y | x, β) + P(y | x, β) exp (x0β0 + x1β1) = exp (x0β0 + x1β1)

This is the odds of y 
occurring



Odds
• Ratio of an event occurring to its not taking place

P(x)
1 � P(x)

0.75
0.25 =

3
1 = 3 : 1Green Bay Packers 

vs. SF 49ers

probability of 
GB winning

odds for GB 
winning



P(y | x, β)

1 � P(y | x, β)
= exp (x0β0 + x1β1)

P(y | x, β) = exp (x0β0 + x1β1)(1 � P(y | x, β))

P(y | x, β) = exp (x0β0 + x1β1) � P(y | x, β) exp (x0β0 + x1β1)

P(y | x, β) + P(y | x, β) exp (x0β0 + x1β1) = exp (x0β0 + x1β1)

P(y | x, β)

1 � P(y | x, β)
= exp (x0β0) exp (x1β1)

This is the odds of y 
occurring



P(y | x, β)

1 � P(y | x, β)
= exp (x0β0) exp (x1β1)

exp(x0β0) exp(x1β1 + β1)

exp(x0β0) exp (x1β1) exp (β1)

P(y | x, β)

1 � P(y | x, β)
exp (β1)

exp(x0β0) exp((x1 + 1)β1)Let’s increase the value of x by 
1 (e.g., from 0 → 1)

exp(β) represents the factor by 
which the odds change with a 

1-unit increase in x



Example β change in odds feature name

2.17 8.76 Eddie Murphy

1.98 7.24 Tom Cruise

1.70 5.47 Tyler Perry

1.70 5.47 Michael Douglas

1.66 5.26 Robert Redford

… … …

-0.94 0.39 Kevin Conway

-1.00 0.37 Fisher Stevens

-1.05 0.35 B-movie

-1.14 0.32 Black-and-white

-1.23 0.29 Indie

How do we interpret 
this change of odds?  

Is it causal?



Significance of coefficients
• A βi value of 0 means that feature xi has no effect 

on the prediction of y 

• How great does a βi value have to be for us to say 
that its effect probably doesn’t arise by chance? 

• People often use parametric tests (coefficients are 
drawn from a normal distribution) to assess this for 
logistic regression, but we can use it to illustrate 
another more robust test.



Hypothesis tests
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Hypothesis tests measure how (un)likely an observed 
statistic is under the null hypothesis



Hypothesis tests
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Permutation test
• Non-parametric way of creating a null distribution 

(parametric = normal etc.) for testing the difference in two 
populations A and B 

• For example, the median height of men (=A) and women 
(=B) 

• We shuffle the labels of the data under the null assumption 
that the labels don’t matter (the null is that A = B)



true 
labels perm 1 perm 2 perm 3 perm 4 perm 5

x1 62.8 woman man man woman man man

x2 66.2 woman man man man woman woman

x3 65.1 woman man man woman man man

x4 68.0 woman man woman man woman woman

x5 61.0 woman woman man man man man

x6 73.1 man woman woman man woman woman

x7 67.0 man man woman man woman man

x8 71.2 man woman woman woman man man

x9 68.4 man woman man woman man woman

x10 70.9 man woman woman woman woman woman



how many times is the difference in medians between the 
permuted groups greater than the observed difference?

true 
labels

perm 1 perm 2 perm 3 perm 4 perm 5
x1 62.8 woman man man woman man man
x2 66.2 woman man man man woman woman
… … … … … … … …
x9 68.4 man woman man woman man woman

x10 70.9 man woman woman woman woman woman

difference in medians: 4.7 5.8 1.4 2.9 3.3

observed true difference in medians: -5.5



A=100 samples from Norm(70,4) B=100 samples from Norm(65, 3.5)
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observed real difference:  
-5.5



Permutation test
The p-value is the number of times the permuted test statistic 

tp is more extreme than the observed test statistic t:

p̂ =
1
B

B�

i=1
I[abs(t) < abs(tp)]



Permutation test
• The permutation test is a robust test that can be used for 

many different kinds of test statistics, including 
coefficients in logistic regression. 

• How? 

• A = members of class 1 
• B = members of class 0 
• β are calculated as the (e.g.) the values that 

maximize the conditional probability of the class 
labels we observe; its value is determined by the 
data points that belong to A or B



• To test whether the coefficients have a statistically 
significant effect (i.e., they’re not 0), we can conduct a 
permutation test where, for B trials, we: 

1. shuffle the class labels in the training data 

2. train logistic regression on the new permuted 
dataset 

3. tally whether the absolute value of β learned on 
permuted data is greater than the absolute value of 
β learned on the true data

Permutation test



Permutation test

p̂ =
1
B

B�

i=1
I[abs(βt) < abs(βp)]

The p-value is the number of times the permuted βp is more 
extreme than the observed βt:



Rao et al. (2010)




