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Logistic regression

Ordinal regression

Linear regression

Topic models

Probabilistic graphical models

Survival models

Perceptron

Neural networks
K-means clustering

Decision trees

Random forests

elements of probability in many of these methods



Random variable
• A variable that can take values within a fixed set 

(discrete) or within some range (continuous).

X 2 {1, 2, 3, 4, 5, 6}

X 2 {the, a, dog, cat, runs, to, store}



X 2 {1, 2, 3, 4, 5, 6}

P (X = x)

Probability that the random variable X takes 
the value x (e.g., 1)

0  P (X = x)  1
X

x

P (X = x) = 1

Two conditions: 
1. Between 0 and 1: 
2. Sum of all probabilities = 1



Fair dice

X 2 {1, 2, 3, 4, 5, 6}
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X 2 {1, 2, 3, 4, 5, 6}

Weighted dice
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Inference
X 2 {1, 2, 3, 4, 5, 6}

We want to infer the probability distribution 
that generated the data we see.
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Independence
• Two random variables are independent if:

P(A,B) = P(A) � P(B)

• In general:

P(x1, . . . , xn) =
N�

i=1
P(xi)

P(A) = P(A | B)

• Information about one random variable (B) gives no 
information about the value of another (A)

P(B) = P(B | A)
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Data Likelihood

• The likelihood gives us a way of discriminating 
between possible alternative parameters, but also 
a strategy for picking a single best* parameter 
among all possibilities



X 2 {the, a, dog, cat, runs, to, store}

the a dog cat runs to store
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How do we calculate this?



In a few days Mr. Bingley returned Mr. Bennet's visit, and sat about ten minutes with him in his library. He had 
entertained hopes of being admitted to a sight of the young ladies, of whose beauty he had heard much; but he 
saw only the father. The ladies were somewhat more fortunate, for they had the advantage of ascertaining from an 
upper window that he wore a blue coat, and rode a black horse.  An invitation to dinner was soon afterwards 
dispatched; and already had Mrs. Bennet planned the courses that were to do credit to her housekeeping, when 
an answer arrived which deferred it all. Mr. Bingley was obliged to be in town the following day, and, consequently, 
unable to accept the honour of their invitation, etc. Mrs. Bennet was quite disconcerted. She could not imagine 
what business he could have in town so soon after his arrival in Hertfordshire; and she began to fear that he might 
be always flying about from one place to another, and never settled at Netherfield as he ought to be. Lady Lucas 
quieted her fears a little by starting the idea of his being gone to London only to get a large party for the ball; and a 
report soon followed that Mr. Bingley was to bring twelve ladies and seven gentlemen with him to the assembly. 
The girls grieved over such a number of ladies, but were comforted the day before the ball by hearing, that instead 
of twelve he brought only six with him from London--his five sisters and a cousin. And when the party entered the 
assembly room it consisted of only five altogether--Mr. Bingley, his two sisters, the husband of the eldest, and 
another young man.  Mr. Bingley was good-looking and gentlemanlike; he had a pleasant countenance, and easy, 
unaffected manners. His sisters were fine women, with an air of decided fashion. His brother-in-law, Mr. Hurst, 
merely looked the gentleman; but his friend Mr. Darcy soon drew the attention of the room by his fine, tall person, 
handsome features, noble mien, and the report which was in general circulation within five minutes after his 
entrance, of his having ten thousand a year. The gentlemen pronounced him to be a fine figure of a man, the ladies 
declared he was much handsomer than Mr. Bingley, and he was looked at with great admiration for about half the 
evening, till his manners gave a disgust which turned the tide of his popularity; for he was discovered to be proud; 
to be above his company, and above being pleased; and not all his large estate in Derbyshire could then save him 
from having a most forbidding, disagreeable countenance, and being unworthy to be compared with his friend.  
Mr. Bingley had soon made himself acquainted with all the principal people in the room; he was lively and 
unreserved, danced every dance, was angry that the ball closed so early, and talked of giving one himself at 
Netherfield. Such amiable qualities must speak for themselves. What a contrast between him and his friend! Mr. 
Darcy danced only once with Mrs. Hurst and once with Miss Bingley, declined being introduced to any other lady, 
and spent the rest of the evening in walking about the room, speaking occasionally to one of his own party. His 
character was decided. He was the proudest, most disagreeable man in the world, and everybody hoped that he 
would never come there again. Amongst the most violent against him was Mrs. Bennet, whose dislike of his 
general behaviour was sharpened into particular resentment by his having slighted one of her daughters. 

P(X=“the”) = 28/536 = .052



Maximum Likelihood 
Estimate

• This is a maximum likelihood estimate for P(X); the 
parameter values for which the data we observe (X) 
is most likely.
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Conditional Probability

• Probability that one random variable takes a 
particular value given the fact that a different 
variable takes another

P (X = x|Y = y)

P (Xi = dog|Xi�1 = the)



Conditional Probability
P (Xi = dog|Xi�1 = the)

the a dog cat runs to store
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entertained hopes of being admitted to a sight of the young ladies, of whose beauty he had heard much; but he 
saw only the father. The ladies were somewhat more fortunate, for they had the advantage of ascertaining from an 
upper window that he wore a blue coat, and rode a black horse.  An invitation to dinner was soon afterwards 
dispatched; and already had Mrs. Bennet planned the courses that were to do credit to her housekeeping, when 
an answer arrived which deferred it all. Mr. Bingley was obliged to be in town the following day, and, 
consequently, unable to accept the honour of their invitation, etc. Mrs. Bennet was quite disconcerted. She could 
not imagine what business he could have in town so soon after his arrival in Hertfordshire; and she began to fear 
that he might be always flying about from one place to another, and never settled at Netherfield as he ought to be. 
Lady Lucas quieted her fears a little by starting the idea of his being gone to London only to get a large party for 
the ball; and a report soon followed that Mr. Bingley was to bring twelve ladies and seven gentlemen with him to 
the assembly. The girls grieved over such a number of ladies, but were comforted the day before the ball by 
hearing, that instead of twelve he brought only six with him from London--his five sisters and a cousin. And when 
the party entered the assembly room it consisted of only five altogether--Mr. Bingley, his two sisters, the husband 
of the eldest, and another young man.  Mr. Bingley was good-looking and gentlemanlike; he had a pleasant 
countenance, and easy, unaffected manners. His sisters were fine women, with an air of decided fashion. His 
brother-in-law, Mr. Hurst, merely looked the gentleman; but his friend Mr. Darcy soon drew the attention of the 
room by his fine, tall person, handsome features, noble mien, and the report which was in general circulation 
within five minutes after his entrance, of his having ten thousand a year. The gentlemen pronounced him to be a 
fine figure of a man, the ladies declared he was much handsomer than Mr. Bingley, and he was looked at with 
great admiration for about half the evening, till his manners gave a disgust which turned the tide of his popularity; 
for he was discovered to be proud; to be above his company, and above being pleased; and not all his large 
estate in Derbyshire could then save him from having a most forbidding, disagreeable countenance, and being 
unworthy to be compared with his friend.  Mr. Bingley had soon made himself acquainted with all the principal 
people in the room; he was lively and unreserved, danced every dance, was angry that the ball closed so early, 
and talked of giving one himself at Netherfield. Such amiable qualities must speak for themselves. What a contrast 
between him and his friend! Mr. Darcy danced only once with Mrs. Hurst and once with Miss Bingley, declined 
being introduced to any other lady, and spent the rest of the evening in walking about the room, speaking 
occasionally to one of his own party. His character was decided. He was the proudest, most disagreeable man in 
the world, and everybody hoped that he would never come there again. Amongst the most violent against him was 
Mrs. Bennet, whose dislike of his general behaviour was sharpened into particular resentment by his having 

P(Xi=“room”|Xi-1=“the”) = 2/28= .071



Conditional Probability

P (X = vampire) vs. P (X = vampire|Y = horror)

P (X = manners|Y = austen) vs. P (X = whale|Y = austen)

P (X = manners|Y = austen) vs. P (X = manners|Y = dickens)

0.0000530.00036 = 6.7x times more than

00.00036



“Mr. Collins was not a sensible man”

Authorship Attribution



Independence Assumption
“Mr. Collins was not a sensible man”

x1 x2 x3 x4 x5 x6 x7

P(xi = Mr., x2 = Collins) = P(xi = Mr.) � P(x2 = Collins)

This is certainly untrue in this case, because the 
presence of Mr. makes Collins more likely  

(they are dependent)



Independence Assumption
“Mr. Collins was not a sensible man”

x1 x2 x3 x4 x5 x6 x7

P(x1, x2, x3, x4, x6, x7 | c) = P(x1 | c)P(x2 | c) . . .P(x7 | c)

P(xi...xn | c) =
N�

i=1
P(xi | c)

We will assume the features are independent:



A simple classifier
“Mr. Collins was not a sensible man”

Austen Dickens

P(X=Mr. | Y=Austen) 0.0084 P(X=Mr. | Y=Dickens) 0.00421

P(X=Collins | Y=Austen) 0.00036 P(X=Collins | Y=Dickens) 0.000016

P(X=was | Y=Austen) 0.01475 P(X=was | Y=Dickens) 0.015043

P(X=not | Y=Austen) 0.01145 P(X=not | Y=Dickens) 0.00547

P(X=a | Y=Austen) 0.01591 P(X=a | Y=Dickens) 0.02156

P(X=sensible | Y=Austen) 0.00025 P(X=sensible | Y=Dickens) 0.00005

P(X=man | Y=Austen) 0.00121 P(X=man | Y=Dickens) 0.001707



P(X = “Mr. Collins was not a sensible man” | Y = Austen) 

= P(“Mr” | Austen) × P(“Collins” | Austen) ×  
P(“was” | Austen) × P(“not” | Austen) …  
= 0.000000022507322 (≈ 2.3 × 10-8)

P(X = “Mr. Collins was not a sensible man” | Y = Dickens)

P(“Mr” | Dickens) × P(“Collins” | Dickens) ×  
P(“was” | Dickens) × P(“not” | Dickens) …  
= 0.000000002078906 (≈ 2.1 × 10-9)

“Mr. Collins was not a sensible man”

A simple classifier



• The classifier we just specified is a maximum likelihood 
classifier, where compare the likelihood of the data under 
each class and choose the class with the highest likelihood

A simple classifier

Likelihood: probability of data 
(here, under class y)

Prior probability of class y

P(X = xi . . . xn | Y = y)

P(Y = y)



Bayes’ Rule

P (Y = y|X = x) =
P (Y = y)P (X = x|Y = y)P
y P (Y = y)P (X = x|Y = y)

Posterior belief that Y=y given that X=x

Prior belief that Y = y  
(before you see any data)

Likelihood of the data  
given that Y=y



Bayes’ Rule

P (Y = y|X = x) =
P (Y = y)P (X = x|Y = y)P
y P (Y = y)P (X = x|Y = y)

Prior belief that Y = Austen  
(before you see any data)

Likelihood of “Mr. Collins 
was not a sensible man” 

given that Y= Austen

This sum ranges over  
y=Austen + y=Dickens  

(so that it sums to 1)
Posterior belief that Y=Austen given that  
X=“Mr. Collins was not a sensible man”



Likelihood: probability of data 
(here, under class y)

Prior probability of class y

Posterior belief in the probability 
of class y after seeing data P(Y = y | X = xi . . . xn)

P(X = xi . . . xn | Y = y)

P(Y = y)



Naive Bayes Classifier
P (Y = Austen)P (X = “Mr...”|Y = Austen)

P (Y = Austen)P (X = “Mr...”|Y = Austen) + P (Y = Dickens)P (X = “Mr...”|Y = Dickens)

=
0.5⇥ (2.3⇥ 10�8)

0.5⇥ (2.3⇥ 10�8) + 0.5⇥ (2.1⇥ 10�9)

Let’s say P(Y=Austen) = P(Y=Dickens) = 0.5 
(i.e., both are equally likely a priori)

P (Y = Austen|X = “Mr...”) = 91.5%

P (Y = Dickens|X = “Mr...”) = 8.5%



Taxicab Problem
“A cab was involved in a hit and run accident at night. Two cab companies, 
the Green and the Blue, operate in the city.  You are given the following 
data: 

• 85% of the cabs in the city are Green and 15% are Blue. 

• A witness identified the cab as Blue. The court tested the reliability of 
the witness under the same circumstances that existed on the night of 
the accident and concluded that the witness correctly identified each 
one of the two colors 80% of the time and failed 20% of the time. 

What is the probability that the cab involved in the accident was Blue rather 
than Green knowing that this witness identified it as Blue?” 

          (Tversky & Kahneman 1981)

“Base rate fallacy” 
Don’t ignore prior information!



Prior Belief
• Now let’s assume that Dickens published 1000 times more books 

than Austen. 

• P(Y= Austen) = 0.000999 
• P(Y = Dickens) = 0.999001

0.000999⇥ (2.3⇥ 10�8)

0.000999⇥ (2.3⇥ 10�8) + 0.999001⇥ (2.1⇥ 10�9)

P (Y = Austen|X) = 0.011

P (Y = Dickens|X) = 0.989



Priors
• Priors can be informed (reflecting expert 

knowledge) but in practice, but priors in Naive 
Bayes are often simply estimated from training data

P(Y = Austen) =
# of Austen texts

# of total texts



Smoothing
• Maximum likelihood estimates can fail miserably 

when features are never observed with a particular 
class.
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Smoothing
• One solution: add a little probability mass to every 

element.

P(xi | y) =
ni,y + α
ny + Vα

P(xi | y) =
ni,y
ny

P(xi | y) =
ni,y + αi

ny +
�V

j=1 αj

maximum likelihood 
estimate

smoothed estimates

same α for all xi

possibly different α for each xi

ni,y = count of word i in class y 
ny = number of words in y 

V = size of vocabulary



Smoothing
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Naive Bayes training

P (Y = y|X = x) =
P (Y = y)P (X = x|Y = y)P
y P (Y = y)P (X = x|Y = y)

Training a Naive Bayes classifier consists of estimating 
these two quantities from training data for all classes y

At test time, use those estimated probabilities to 
calculate the posterior probability of each class y 
and select the class with the highest probability



Naive Bayes

• We’ve just described Naive Bayes with a multinomial 
distribution, but any probability distribution can be 
modeled as well.



Probability distributions
Normal

Poisson

Binomial

Multinomial

Beta

Uniform
Dirichlet

Gamma

Bernoulli
Exponential

Geometric



Multinomial

the a dog cat runs to store

0.
0

0.
2

0.
4

the a dog cat runs to store
3 1 0 1 0 2 0

531 209 13 8 2 331 1

Discrete distribution for modeling count data (e.g., word 
counts; single parameter θ

θ =



Multinomial

the a dog cat runs to store
count n 531 209 13 8 2 331 1

θ 0.48 0.19 0.01 0.01 0.00 0.30 0.00

θ̂i =
ni
N

Maximum likelihood parameter estimate



Bernoulli
• Binary event (true or false; {0, 1}) 
• One parameter: p (probability of 

an event occurring)

Examples: 
• Probability of a particular feature being true  

(e.g., self-reported location = Berkeley)

p̂mle =
1
N

N�

i=1
xi

P(x = 1 | p) = p
P(x = 0 | p) = 1 � p



Bernoulli

x1 x2 x3 x4 x5 x6 x7 x8 pMLE

f1 1 0 0 0 1 1 0 0 0.375

f2 0 0 0 0 0 0 1 0 0.125

f3 1 1 1 1 1 0 0 1 0.750

f4 1 0 0 1 1 0 0 1 0.500

f5 0 0 0 0 0 0 0 0 0.000



Bernoulli

Republican Democrat

x1 x2 x3 x4 x5 x6 x7 x8 pMLE,R pMLE,D

f1 1 0 0 0 1 1 0 0 0.75 0.50

f2 0 0 0 0 0 0 1 0 0.00 0.25

f3 1 1 1 1 1 0 0 1 1.00 0.50

f4 1 0 0 1 1 0 0 1 0.50 0.50

f5 0 0 0 0 0 0 0 0 0.00 0.00



Normal
• continuous (-∞, ∞) 
• μ (mean) (-∞, ∞) 
• σ2 (variance) > 0 

P(x = �2 | μ = �2, σ2 = 0.5) = 0.56
P(x = �2 | μ = 0, σ2 = 1) = 0.05

Examples: 
• Age 
• Height



Normal

μ̂mle =
1
N

N�

i=1
xi

σ̂2
mle =

1
N

N�

i=1
(xi � x̄)2

Maximum likelihood parameter estimates



Normal

Republican Democrat

x1 x2 x3 x4 x5 x6 x7 x8 μMLE,R μMLE,D

f1 3.4 -2.1 5.2 7.6 11.6 9.1 9.7 10.8 3.5 10.3

f2 -0.3 8.5 5.6 11.5 5.4 6.2 3.1 12.7 6.3 6.8

f3 -0.6 3.7 1.2 5.6 3.4 -4.4 8.0 6.2 2.5 3.3

f4 2.5 6.7 0.5 2.6 13.2 6.1 13.7 7.7 3.1 10.2

f5 7.0 5.0 5.6 16.3 15.4 14.9 2.3 6.3 8.5 9.7



Poisson
• discrete (0, 1, 2, …) 
• λ > 0 
• Models the number 

of events within a 
fixed interval of time 

Examples: 
• Number of emails in 

one hour 
• Number of children 

in family 
P(x = 4|λ = 10) = 0.02

P(x = 4|λ = 4) = 0.20



Poisson

Maximum likelihood parameter estimate

λ̂ =
1
N

N�

i=1
xi



Poisson

Republican Democrat

x1 x2 x3 x4 x5 x6 x7 x8 λMLE,R λMLE,D

f1 1 2 2 1 6 10 8 9 1.5 8.25



Feature Value Distribution?

follow clinton 0

follow trump 0

age 24

word counts in profile Berkeley, liberal, 
runner

word counts in profile the, election, a, 
data, movies

population size of your city 116,000



c

age popu-
lation

follow 
clinton

follow 
trump

profile 
words

tweet 
words

μ,σ μ,σ p p θ θ

Normal Normal Bernoulli Bernoulli Multinomial Multinomial



P(X | c = Dem) =
N�

i=1
P(Xi | c = Dem)

= Norm(age | μage,dem, σ2
age,dem)

� Norm(population | μpopulation,dem, σ2
population,dem)

� Bernoulli(followClinton | pfollowClinton,dem)

� Bernoulli(followTrump | pfollowTrump,dem)

� Multinomial(wprofile | θprofile,dem)

� Multinomial(wtweets | θtweets,dem)



P(c = Dem | X) =
P(c = Dem) � P(X | c = Dem)

P(c = Dem) � P(X | c = Dem) + P(c = Rep) � P(X | c = Rep)



Authorship Attribution

Koppel et al. (2009), Computational Methods in Authorship 
Attribution (JASIST)



Representation

FW A list of 512 function words, including conjunctions, prepositions, 
pronouns, modal verbs, determiners, and numbers (purely stylistic)

POS Thirty-eight part-of-speech unigrams and 1,000 most common 
bigrams using the Brill (1992) part-of-speech tagger (purely stylistic)

SFL All 372 nodes in SFL trees for conjunctions, prepositions, pronouns, 
and modal verbs (purely stylistic)

CW The 1,000 words with highest information gain (Quinlan, 1986) in the 
training corpus among the 10,000 most common words in the corpus

CNG
The 1,000 character trigrams with highest information gain in the 
training corpus among the 10,000 most common trigrams in the 

corpus (cf. Keselj, 2003)



Models

NB WEKA’s implementation (Witten & Frank, 2000) of Naïve Bayes (Lewis, 
1998) with Laplace smoothing

J4.8 WEKA’s implementation of the J4.8 decision tree method (Quinlan, 
1986) with no pruning

RNW
Our implementation of a version of Littlestone’s (1988) Winnow 

algorithm, generalized to handle real-valued features and more than 
two classes (Schler, 2007)

BMR Genkin et al.’s (2006) implementation of Bayesian multiclass 
regression

SMO Weka’s implementation of Platt’s (1998) SMO algorithm for SVM with a 
linear kernel and default settings



Accuracy



Homework 2: Validity



HW 2, part I (everyone)
• Pick any of the academic 

papers assigned 
throughout this course (i.e., 
any text except ML and 
NCM) and discuss the 
ways in which it establishes 
(or fails to establish) the 
nine types of validity 
outlined in Krippendorff 
(2004):

• Face validity 
• Social validity 
• Sampling validity 
• Semantic validity 
• Structural validity 
• Functional validity 
• Convergence validity  
• Discriminant validity  
• Predictive validity

Deliverable: one-page paper



HW 2, part IIa 
(implementation)

• The permutation test is a robust hypothesis test that doesn’t require 
the parametric or large-sample assumptions of classical tests.  

• The GitHub repository contains a dataset mapping movies 
(featurized through their genres and major actors who performed in 
them) to a binary decision of whether or not it was among the 25% 
highest grossing movies in that set. 

• For each of the features x, consider the hypothesis “Movies with x 
are more likely to have a higher box office than those that do not.” 
Code and execute a permutation test evaluating this hypothesis. 
Can the null hypothesis (that movies featuring x are not likely to have 
a higher box office than those that do not) be rejected with p < 0.01?



HW 2, part IIb (critique)
• The nine forms of validity outlined above represent a 

detailed taxonomy of the different ways in which an 
analysis can be judged for the extend which it is valid. 
What other possible forms of validity are missing from this 
taxonomy that should be represented within it? Present an 
argument for a single form of validity—a.) why it captures 
an important dimension that should be assessed, b.) why 
you believe it’s missing from Krippendorff’s taxonomy, and 
c.) tangible ways in which an analysis could be assessed 
according to this dimension. 

• Deliverable: one-page paper (single-spaced)


