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Logistic regression

Support vector machines

Ordinal regression

Linear regression

Topic models

Probabilistic graphical models

Survival models

Networks

Perceptron

Neural networks

Deep learning

K-means clustering

Hierarchical clustering

Decision trees

Random forests



Decision trees

Random forests



20 questions
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Feature Value

follow clinton 0

follow trump 0

“benghazi” 0

negative sentiment 
+ “benghazi” 0

“illegal immigrants” 0

“republican” in 
profile 0

“democrat” in 
profile 0

self-reported 
location = Berkeley 1
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how do we find the best tree?



contains 
“the”

contains 
“a”

contains 
“he”

contains 
“they”

contains 
“she”

RD

RD

RD

yes

yes

yes

no

no

no

no

no yes

yes

how do we find the best tree?

…

contains 
“the”

contains 
“a”

contains 
“he”

contains 
“they”

contains 
“she”RD

yes

yes

no

no

no yes

contains 
“an”

contains
”are”

contains 
“our”

contains 
“them”

contains 
“him”

RD

RD

yes

yes

yes

no

no

no

no

no yes

yes

…

…

contains 
“her”

contains 
“hers”

contains 
“his”

R

RD

yes

no

yes

…

D

no

yes



Decision trees

from Flach 2014



<x, y>
training data

x1 > 10x1 ≤ 10

x2 >15

x2 ≤ 15

x2 > 5

x2 ≤ 5



Decision trees

from Flach 2014



• Homogeneous(D): the elements in D are 
homogeneous enough that they can be labeled 
with a single label 

• Label(D): the single most appropriate label for all 
elements in D

Decision trees



Decision trees

Homogeneous Label

Classification
All (or most) of the 

elements in D share 
the same label y

y

Regression The elements in D 
have low variance

the average of 
elements in D



Decision trees

from Flach 2014



Measure of uncertainty in a probability distribution

Entropy

• a great _______ 

• the oakland ______

�
�

x�X
P(x) logP(x)



deal 12196
job 2164
idea 1333
opportunity 855
weekend 585
player 556
extent 439
honor 282
pleasure 267
gift 256
humor 221
tool 184
athlete 173
disservice 108
…

Corpus of Contemporary American English

a great …

athletics 185
raiders 185

museum 92
hills 72

tribune 51
police 49

coliseum 41

the oakland …



Entropy

• High entropy means the phenomenon is less predictable 

• Entropy of 0 means it is entirely predictable.

�
�

x�X
P(x) logP(x)



Entropy
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A uniform distribution has maximum entropy

This entropy is lower because it is more predictable  
(if we always guess 2, we would be right 40% of the time)
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Conditional entropy
• Measures your level of surprise about some phenomenon 

Y if you have information about another phenomenon X

• Y = word, X = preceding bigram (“the oakland ___”) 
• Y = label (democrat, republican), X = feature (lives in 

Berkeley)



Conditional entropy
• Measures you level of surprise about some phenomenon 

Y if you have information about another phenomenon X

H(Y | X)

=
�

x
P(X = x)H(Y | X = x)

X = feature 
valueY = label

H(Y | X = x) = �
�

y�Y
p(y | x) log p(y | x)



Information gain
• aka “Mutual Information”: the reduction in entropy 

in Y as a result of knowing information about X

H(Y) � H(Y | X)

H(Y) = �
�

y�Y
p(y) log p(y)

H(Y | X) = �
�

x�X
p(x)

�

y�Y
p(y | x) log p(y | x)



1 2 3 4 5 6

x1 0 1 1 0 0 1

x2 0 0 0 1 1 1

y ⊕ ⊖ ⊖ ⊕ ⊕ ⊖

Which of these features gives you more 
information about y?



1 2 3 4 5 6

x1 0 1 1 0 0 1

x2 0 0 0 1 1 1

y ⊕ ⊖ ⊖ ⊕ ⊕ ⊖

x ∈ 𝒳 0 1

y ∈ 𝒴 3⊕ 0⊖ 0⊕ 3⊖
x1



x ∈ 𝒳 0 1

y ∈ 𝒴 3⊕ 0⊖ 0⊕ 3⊖

H(Y | X) = �
�

x�X
p(x)

�

y�Y
p(y | x) log p(y | x)

x1

P(y = + | x = 0) =
3

3 + 0 = 1

P(y = � | x = 0) =
0

3 + 0 = 0

P(y = � | x = 1) =
3

3 + 0 = 1

P(y = + | x = 1) =
0

3 + 0 = 0

P(x = 0) =
3

3 + 3 = 0.5

P(x = 1) =
3

3 + 3 = 0.5



H(Y | X) = �
�

x�X
p(x)

�

y�Y
p(y | x) log p(y | x)

x ∈ 𝒳 0 1

y ∈ 𝒴 3⊕ 0⊖ 0⊕ 3⊖
x1

�3
6 (1 log 1 + 0 log 0) � 3

6 (0 log 0 + 1 log 1) = 0



1 2 3 4 5 6

x1 0 1 1 0 0 1

x2 0 0 0 1 1 1

y ⊕ ⊖ ⊖ ⊕ ⊕ ⊖

x ∈ 𝒳 0 1

y ∈ 𝒴 1⊕ 2⊖ 2⊕ 1⊖
x2



x ∈ 𝒳 0 1

y ∈ 𝒴 1⊕ 2⊖ 2⊕ 1⊖
x2

P(y = + | x = 0) =
1

1 + 2 = 0.33

P(y = � | x = 0) =
2

1 + 2 = 0.67

P(y = � | x = 1) =
1

1 + 2 = 0.33

P(y = + | x = 1) =
2

1 + 2 = 0.67

P(x = 0) =
3

3 + 3 = 0.5

P(x = 1) =
3

3 + 3 = 0.5



H(Y | X) = �
�

x�X
p(x)

�

y�Y
p(y | x) log p(y | x)

x ∈ 𝒳 0 1

y ∈ 𝒴 1⊕ 2⊖ 2⊕ 1⊖
x2

�3
6 (0.33 log 0.33 + 0.67 log 0.67) � 3

6 (0.67 log 0.67 + 0.33 log 0.33) = 0.91



Feature H(Y | X)

follow clinton 0.91

follow trump 0.77

“benghazi” 0.45

negative sentiment 
+ “benghazi” 0.33

“illegal immigrants” 0

“republican” in 
profile 0.31

“democrat” in 
profile 0.67

self-reported 
location = Berkeley 0.80

In decision trees, the feature 
with the lowest conditional 
entropy/highest information 
gain defines the “best split”

MI = IG = H(Y) � H(Y | X)

for a given partition, H(Y) is the same for all 
features, so we can ignore it when deciding 

among them



Feature H(Y | X)

follow clinton 0.91

follow trump 0.77

“benghazi” 0.45

negative sentiment 
+ “benghazi” 0.33

“illegal immigrants” 0

“republican” in 
profile 0.31

“democrat” in 
profile 0.67

self-reported 
location = Berkeley 0.80

How could we use this in other 
models (e.g., the perceptron)?



Decision trees

BestSplit identifies the feature with the highest information gain and 
partitions the data according to values for that feature



Gini impurity
• Measure the “purity” of a partition (how diverse the labels 

are).  If we were to pick an element in D and assign a label in 
proportion to the label distribution in D, how often would we 
make a mistake?

�

y�Y
py(1 � py)

Probability of selecting an 
item with label y at random

The probability of randomly assigning it the wrong label



Gini impurity

x ∈ 𝒳 0 1

y ∈ 𝒴 3⊕ 0⊖ 0⊕ 3⊖
x1

�

y�Y
py(1 � py)

G(x1) = (
3

3 + 3 )0 + (
3

3 + 3 )0 = 0

x ∈ 𝒳 0 1

y ∈ 𝒴 1⊕ 2⊖ 2⊕ 1⊖
x2

G(0) = 0.33 � (1 � 0.33) + 0.67 � (1 � 0.67) = 0.44

G(1) = 0.67 � (1 � 0.67) + 0.33 � (1 � 0.33) = 0.44

G(x2) = (
3

3 + 3 )0.44 + (
3

3 + 3 )0.44 = 0.44

G(0) = 1 � (1 � 1) + 0 � (1 � 0) = 0

G(0) = 0 � (1 � 0) + 1 � (1 � 1) = 0



Classification

𝓧 = set of all skyscrapers 
𝒴 = {art deco, neo-gothic, modern}

A mapping h from input data 
x (drawn from instance 
space 𝓧) to a label (or 
labels) y from some 
enumerable output space 𝒴

x = the empire state building 
y = art deco
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How is this different from the perceptron?



Regression

x = the empire state building 
y = 17444.5625”

A mapping from input data x 
(drawn from instance space 
𝓧) to a point y in ℝ 

(ℝ = the set of real numbers)



Feature Value

follow clinton 0

follow trump 0

“benghazi” 0

negative sentiment 
+ “benghazi” 0

“illegal immigrants” 0

“republican” in 
profile 0

“democrat” in 
profile 0

self-reported 
location = Berkeley 1
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Decision trees

from Flach 2014



Variance
The level of “dispersion” of a set of values, how far they tend to 

fall from the average

5 5

5.1 10

4.8 3

5.3 1

4.9 9

Mean 5.0 5.0

Variance 0.025 10

0 2 4 6 8 10

0 2 4 6 8 10



Variance
The level of “dispersion” of a set of values, how far they tend to 

fall from the average

5 5

5.1 10

4.8 3

5.3 1

4.9 9

Mean 5.0 5.0

Variance 0.025 10

ȳ =
1
N

N�

i=1
yi

Var(Y) =
1
N

N�

i=1
(yi � ȳ)2



Regression trees
• Rather than using entropy/Gini as a splitting 

criterion, we’ll find the feature that results in the 
lowest variance of the data after splitting on the 
feature values.



1 2 3 4 5 6

x1 0 1 1 0 0 1

x2 0 0 0 1 1 1

y 5.0 1.7 0 10 8 2.2

x ∈ 𝒳 0 1

y ∈ 𝒴 5.0, 10, 8 1.7, 0, 2.2

Var 6.33 1.33

x1

3
66.33 +

3
61.33 = 3.83Average Variance:



1 2 3 4 5 6

x1 0 1 1 0 0 1

x2 0 0 0 1 1 1

y 5.0 1.7 0 10 8 2.2

x ∈ 𝒳 0 1

y ∈ 𝒴 5.0, 1.7, 0 10, 8, 2.2

Var 6.46 16.4

x2

Average Variance: 3
66.46 +

3
616.4 = 11.43



Regression trees
• Rather than using entropy/Gini as a splitting 

criterion, we’ll find the feature that results in the 
lowest variance of the data after splitting on the 
feature values. 

• Homogeneous(D): the elements in D are 
homogeneous enough that they can be labeled 
with a single label.  Variance < small threshold. 

• Label(D): the single most appropriate label for all 
elements in D; the average value of y among D



Overfitting
…
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With enough features, you can 
perfectly memorize the training data, 

encoding in paths within the tree

follow clinton = false  
∧ follow trump = false 
∧ “benghazi” = false 
∧ “illegal immigrants” = false 
∧ “republican” in profile = false 
∧ “democrat” in profile = false 
∧ self-reported location = 
Berkeley = true 

→ Democrat

follow clinton = true  
∧ follow trump = false 
∧ “benghazi” = false 
∧ “illegal immigrants” = false 
∧ “republican” in profile = false 
∧ “democrat” in profile = false 
∧ self-reported location = 
Berkeley = true 

→ Republican



Pruning

• One way to prevent overfitting is to grow the tree to 
an arbitrary depth, and then prune back layers 
(delete subtrees)
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Pruning

• Deeper into the tree = 
more conjunctions of 
features; a shallower 
tree contains only the 
most important (by IG) 
features



Interpretability
• Decision trees are considered a relatively 

“interpretable” model, since they can be post-
processed in a sequence of decisions 

• If self-reported location = Berkeley and “benghazi” 
= false, then y = Democrat



• Manageable for trees of 
small depth, but not 
deep trees (each layer 
= one additional rule) 

• Even in small trees, 
potentially many 
disjunctions (or for each 
terminal node)

Interpretability
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• Low bias: decision trees can perfectly match the 
training data (learning a perfect path through the 
conjunctions of features to recover the true y. 

• High variance: because of that, they’re very 
sensitive to whatever data you train on, resulting in 
very different models on different data



Solution: train many models

• Bootstrap aggregating (bagging) is a method for 
reducing the variance of a model by averaging the 
results from multiple models trained on slightly 
different data. 

• Bagging creates multiple versions of your dataset 
using the bootstrap (sampling data uniformly and 
with replacement)



Bootstrapped data
original x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 

rep 1 x3 x9 x1 x3 x10 x6 x2 x9 x8 x1

rep 2 x7 x9 x1 x1 x4 x9 x10 x7 x5 x6

rep 3 x2 x3 x5 x8 x9 x8 x10 x1 x2 x4

rep 4 x5 x1 x10 x5 x4 x2 x1 x9 x8 x10

Train one decision tree on each replicant and average the 
predictions (or take the majority vote)



De-correlating further

• Bagging is great, but the variance goes down 
when the datasets are independent of each other.  
If there’s one strong feature that’s a great predictor, 
then the predictions will be dependent because 
they all have that feature 

• Solution: for each trained decision tree, only use a 
random subset of features.



Random forest







Krippendorff (2004)



Project proposal, due 2/19
• Collaborative project (involving 2 or 3 students), where the 

methods learned in class will be used to draw inferences about 
the world and critically assess the quality of those results.  

• Proposal (2 pages): 

• outline the work you’re going to undertake 
• formulate a hypothesis to be examined 
• motivate its rationale as an interesting question worth asking 
• assess its potential to contribute new knowledge by 

situating it within related literature in the scientific 
community. (cite 5 relevant sources) 

• who is the team and what are each of your responsibilities 
(everyone gets the same grade)


