Deconstructing Data Science

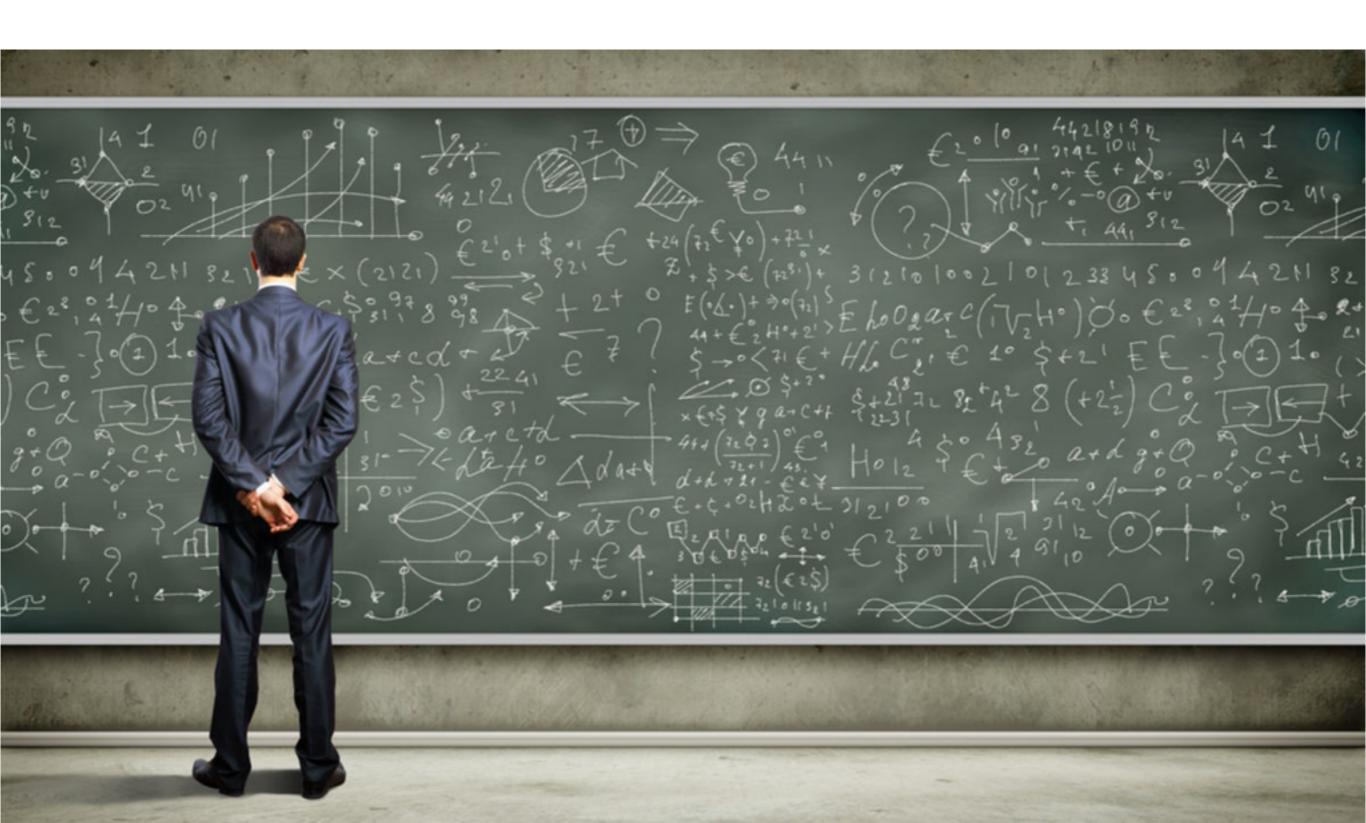
David Bamman, UC Berkeley

Info 290

Lecture 1: Introduction

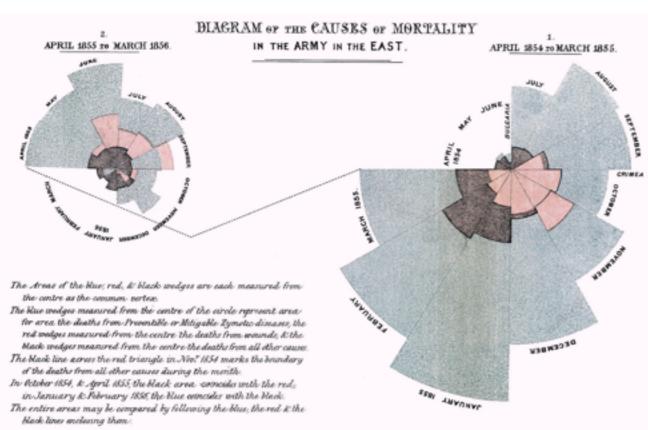
Jan 20, 2016

the "data scientist" trope

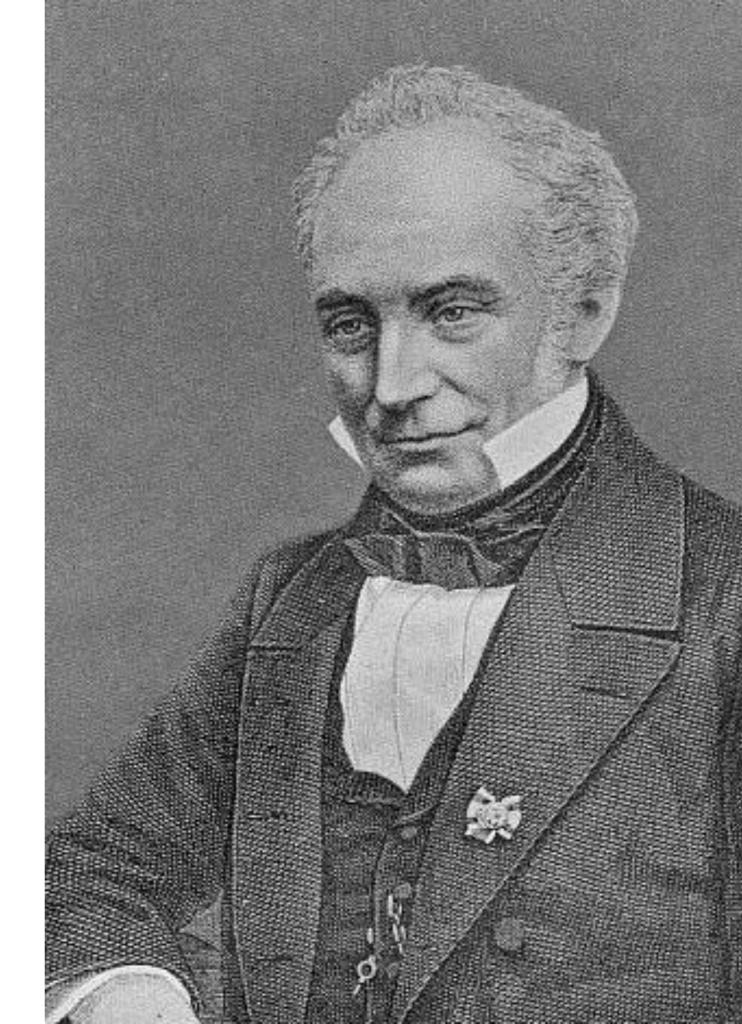


johannes kepler, data scientist

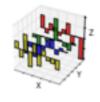
florence nightingale, data scientist



franz bopp, data scientist



Software/Libraries



theano

Data Science

critical thinking

experimental design, validation, representation

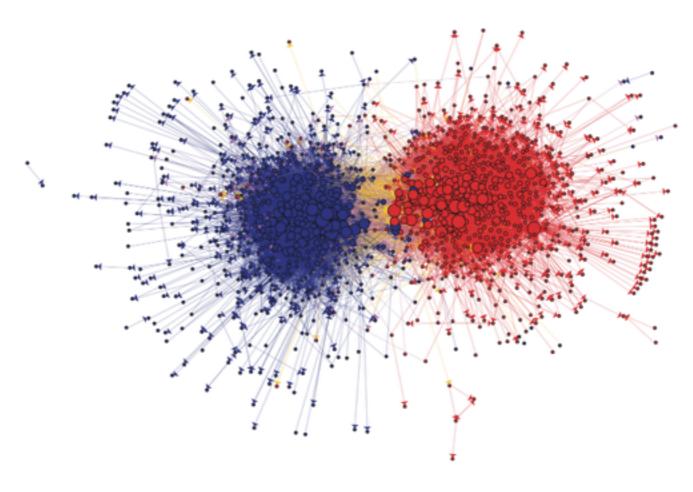
algorithms

classification, regression, clustering, network analysis, prediction, hypothesis testing,

software

Computational Social Science

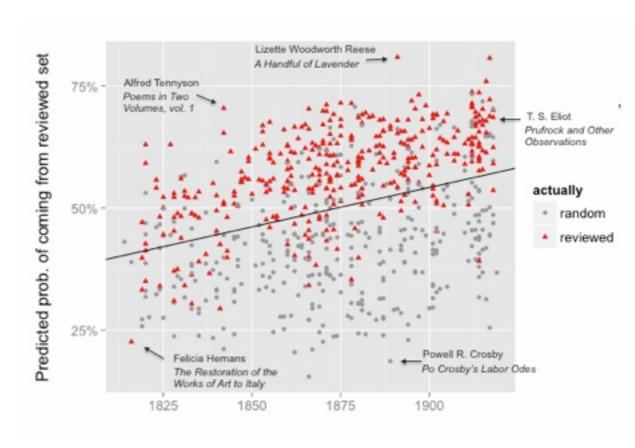
- Inferring ideal points of politicians based on voting behavior, speeches
- Detecting the triggers of censorship in blogs/ social media
- Inferring power differentials in language use



Link structure in political blogs Adamic and Glance 2005

Digital Humanities

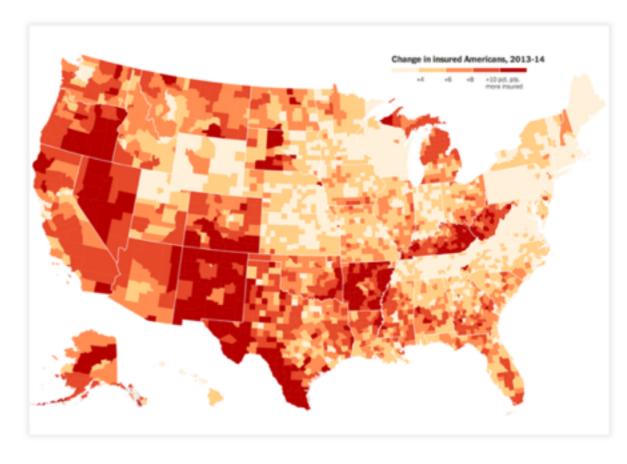
- Authorship attribution (literary texts, paintings, music)
- Genre classification (literary genre, music genre)
- Inferring plot, character types



Predicting reviewed texts Underwood and Sellers (2015)

Computational Journalism

- Exploratory data analysis for lead generation
- Information extraction from unstructured text
- Data-driven stories



Change in insured Americans under the ACA, NY Times (Oct 29, 2014)

What to expect

- Each class: learn about a technical method (e.g., random forests), and an discuss application area that makes use of it.
- As the course goes on, we'll compare methods with those we've already learned to critically assess the assumptions that they make and understand what methods are appropriate for different contexts.
- We will learn by example: Lots of reading.

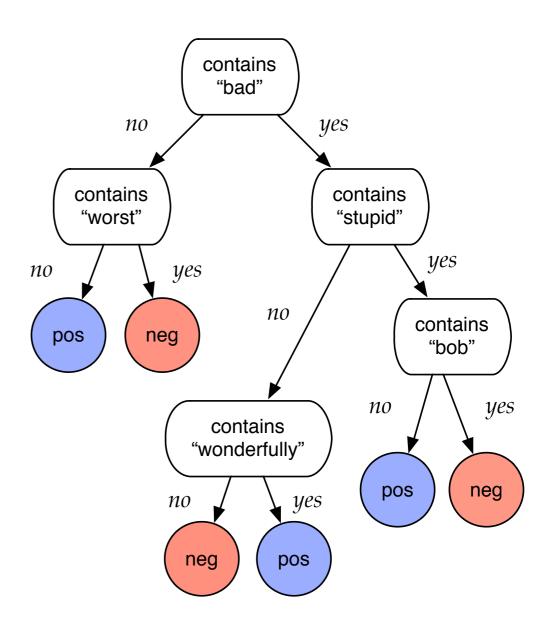
Themes

1. Validity

How do we assess that a model is valid?

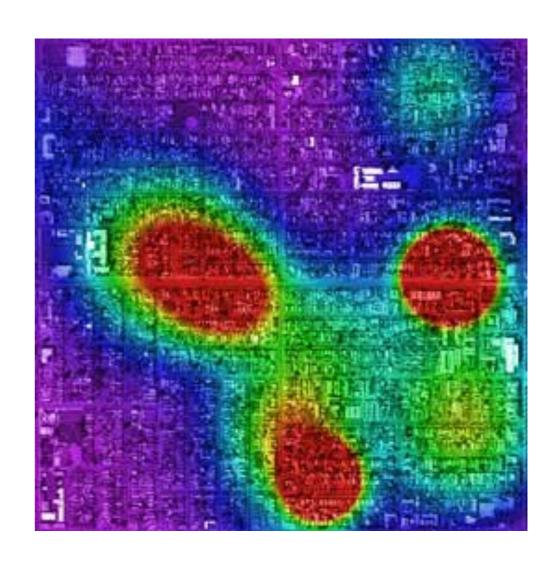
2. Transparency

How do we understand what a model is learning?



3. Fairness

To what degree does a problem translate biases in the input data into biases in its the output?



Predictive policing; heat map indicating increased risk of certain crimes http://magazine.ucla.edu/depts/quicktakes/a-weapon-to-fight-crime-try-math/

Topics

- Overview of methods (classification, regression, clustering)
- Classification: decision trees, random forests, probabilistic models (naive bayes, logistic regression), SVM, neural networks
- Clustering: latent variable models (topic models), PCA, factor analysis, K-means, hierarchical clustering
- Linear regression
- Networks (structural properties, diffusion)
- Temporal data: time series forecasting and survival analysis

Applications

- Authorship attribution
- Latent attribute prediction
- Predicting movie revenue
- Recommender systems
- Music genre classification

- Visual style classification
- Text reuse
- Genre clustering
- Predicting elections/stock market
- Predicting high school dropout rates

... in medias res

 Task: predict political preference of Twitter users.

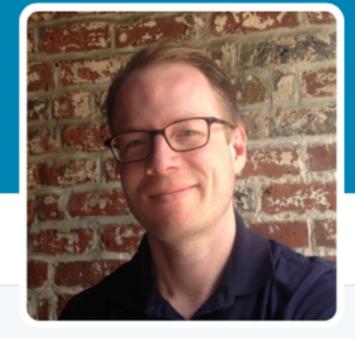
Assume access to training data
 <x, y> where:

x = set of Twitter users

y = {Democrat, Republican}

Representation

 How can you best represent a data point to enable learning?

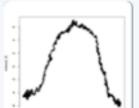


David Bamman

@dbamman

Assistant Professor, School of Information, UC Berkeley. Natural language processing, machine learning, computational social science, digital humanities.

- Perkeley, CA
- people.ischool.berkeley.edu/~dbam
 man/
- iii Joined October 2009
- 10 Photos and videos



David Bamman

@dbamman

Assistant Professor, School of Information, UC Berkeley. Natural language processing, machine learning, computational social science, digital humanities.

- Perkeley, CA
- people.ischool.berkeley.edu/~dbam
 man/
- iii Joined October 2009
- 10 Photos and videos

TWEETS 508

FOLLOWING 400

799

133

LISTS

Tweets

Tweets & replies

Photos & videos

ŁŦ

David Bamman Retweeted

Ted Underwood @Ted_Underwood · 6h

How have the differences between descriptions of men and women in fiction changed over the last 200 yrs? (ICYMI) tedunderwood.com/2016/01/09/the...

View summary

David Bamman @dbamman · Jan 6

"Figure Eights" (Max Roach/Buddy Rich, 1959) is just dazzling. Probably no video of them anywhere? open.spotify.com/track/23EssvWY...

View summary

t7

David Bamman Retweeted

Anders Søgaard @soegaarducph · Jan 6

@stanfordnlp @brendan642 @jacobeisenstein Here goes: twitter-research.ccs.neu.edu/language/

Enter a term to display: mountain

Green represents more uses of the selected term, relative to the national average. Red represents fewer uses

x = feature vector

Feature	Value
follow clinton	0
follow trump	0
"benghazi"	0
negative sentiment + "benghazi"	0
"illegal immigrants"	0
"republican" in profile	0
"democrat" in profile	0
self-reported location = Berkeley	1

$$\sum_{i=1}^{F} x_i \beta_i = x_1 \beta_1 + x_2 \beta_2 + \dots + x_F \beta_F$$

$$= x^T \beta \qquad \text{(dot product, inner product)}$$

$$\hat{y}_i = \begin{cases} 1 & \text{if } \sum_{i=1}^{F} x_i \beta_i \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

x = feature vector

β = coefficients

Feature	Value
follow clinton	0
follow trump	0
"benghazi"	0
negative sentiment + "benghazi"	0
"illegal immigrants"	0
"republican" in profile	0
"democrat" in profile	0
self-reported location = Berkeley	1

Feature	β
follow clinton	-3.1
follow trump	6.8
"benghazi"	1.4
negative sentiment + "benghazi"	3.2
"illegal immigrants"	8.7
"republican" in profile	7.9
"democrat" in profile	-3.0
self-reported location = Berkeley	-1.7

	"benghazi"	follows trump	follows clinton	Σ	prediction
β	1.4	6.8	-3.1		
/ X	1	1	0	8.2	1
X	0	0	1	-3.1	-1
X	1	0	1	-1.7	-1
	$1 \times 1.4) +$	(1×6.8)	$(3) + (0 \times $	-3.1) =	= 8.2

Learning

How do get good values for β?

Feature	β
follow clinton	-3.1
follow trump	6.8
"benghazi"	1.4
negative sentiment + "benghazi"	3.2
"illegal immigrants"	8.7
"republican" in profile	7.9
"democrat" in profile	-3.0
self-reported location = Berkeley	-1.7

Online learning

- Go through the training data <x, y> one data point at a time.
- Make a prediction \hat{y} with current estimate of β ; if it's right $(y = \hat{y})$, do nothing.
- If the prediction is wrong $(y \neq \hat{y})$, change β to make it slightly less wrong.

$$\hat{y}_i = \begin{cases} 1 & \text{if } \sum_{i}^{F} x_i \beta_i \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

"benghazi"	follows trump	follows clinton	У
1	1	0	1
0	0	1	-1
1	0	1	-1

$$\hat{y}_i = \begin{cases} 1 & \text{if } \sum_{i}^{F} x_i \beta_i \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

"benghazi"	follows trump	follows clinton	У	ŷ
1	1	0	1	1
0	0	1	-1	-1
1	1	1	1	-1

true
$$y = -1$$
 predicted $\hat{y} = 1$

$$\sum_{i}^{F} x_{i} \beta_{i}$$

$$\frac{\partial}{\partial \beta_i} \sum_{i}^{F} x_i \beta_i = x_i$$

$$\beta_{t+1} = \beta_t - x$$

We want this value (function of β) to be small

The derivative tells us the direction to go to make it bigger or smaller

Update rule

true
$$y = 1$$

predicted $\hat{y} = -1$

$$\sum_{i}^{F} x_{i} \beta_{i}$$

$$\frac{\partial}{\partial \beta_i} \sum_{i}^{F} x_i \beta_i = x_i$$

$$\beta_{t+1} = \beta_t + x$$

We want this value (function of β) to be big

The derivative tells us the direction to go to make it bigger or smaller

Update rule

if
$$\hat{y} = 1$$
 and $y = -1$
$$\beta_{t+1} = \beta_t - x$$

$$\sum x_i \beta_i$$

β	X	β
3.6	0	3.6
3.4	1	2.4
1.2	1	0.2
0.7	0	0.7
4.6		2.6
1		1

if
$$\hat{y} = -1$$
 and $y = 1$
$$\beta_{t+1} = \beta_t + x$$

$$\sum x_i \beta_i$$

β	X	β
3.6	0	3.6
-3.4	1	-2.4
1.2	1	2.2
0.7	0	0.7
-2.2		-0.2
-1		-1

if
$$\hat{y} = 1$$
 and $y = -1$

if
$$\hat{y} = -1$$
 and $y = 1$

$$\beta_{t+1} = \beta_t - x$$

$$\beta_{t+1} = \beta_t + x$$

$$\beta_{t+1} = \beta_t + yx$$

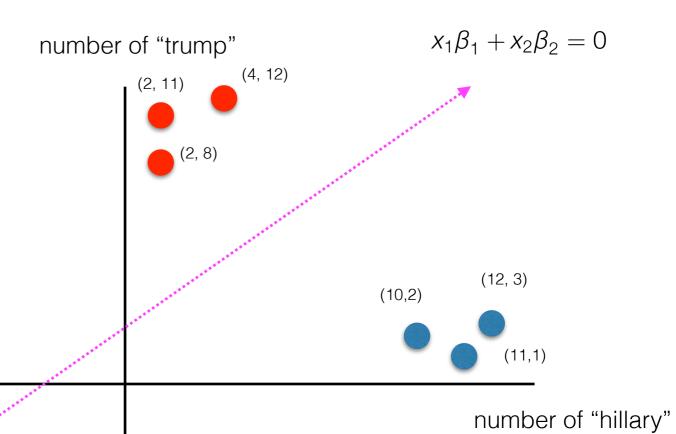
Why
$$\beta_{t+1} = \beta_t + yx$$
?

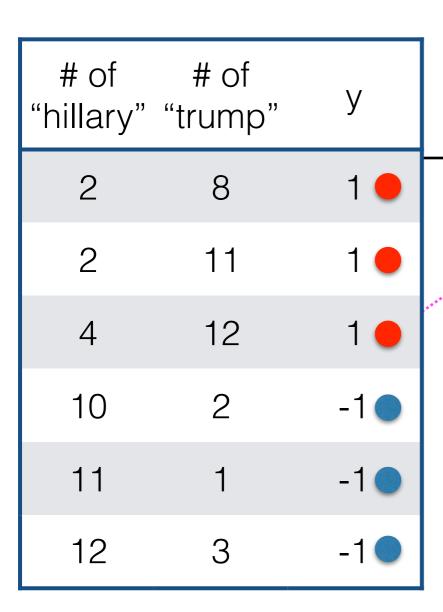
[Approximation of stochastic gradient in binary logistic regression (lecture 9)]

Perceptron

Code

decision boundary in 2 dimensions





37

Trends

- Counts later points more than earlier points (voted perceptron, averaged perceptron)
- Only linear decision boundaries
- Prone to overfitting
- Extraordinarily simple and accurate classifier

Problem assumptions

- Is this the right task (classification vs. clustering vs. regression, time series forecasting etc.)
- Is the data appropriate for the problem?

Administrivia

David Bamman
 <u>dbamman@berkeley.edu</u>

Office hours: Thursdays 10am-noon, 314 SH — or by appointment

Noura Howell, TA

Office hours: Friday 2:30-4:30, 110 South Hall

Grading

- Class participation (10%)
- Homeworks (4 x 10%)
- Project (50%)

All deliverables (homeworks, project components) have deadlines; late work not accepted

Homeworks, broadly

 Implement a quantitative method and evaluate it on a dataset

 Write an analysis/ critique of an algorithm and published work that has used it

Homework Example

Binary perceptron classifies into two classes. For inferring political preference, this corresponds to a simple {Democrat, Republican} distinction. Assume rather that the training data you have is hierarchical. Design a perceptron-style algorithm that can exploit this hierarchical structure during learning.

y1	Republican > Tea Party Republican
y2	Republican > Social Conservatives
уЗ	Republican > Neoconservative
y4	Republican > Social Conservative
у5	Democrat > Centrist Democrat
у6	Democrat > Progressive

A

Code and evaluate on test data

В

What are the comparative advantages and disadvantages of binary vs. multiclass vs. hierarchical categories? Under what circumstances should either be used? (2 pages, single-spaced)

Project

- Use methods learned in class to draw inferences about the world and critically assess the quality of the results.
- Collaborative (2-3 students). Choose wisely!
 Everyone in group will receive the same grade; you
 will be evaluated both on the empirical
 methodology and the domain questions you're
 asking

Project

- Milestones:
 - Proposal and literature review (5%). 2 pages, 5 sources.
 - Midterm report (10%). 4 pages, 10 sources.
 - Final report (20%). 10 pages.
 - Presentation (5%). 15-20 min. conference-style talk in front of peers.
- Evaluated according to standards for conference publication—clarity, originality, soundness, substance, evaluation, meaningful comparison, impact.