Deconstructing Data Science

David Bamman, UC Berkeley

Info 290 Lecture 17: Distance models

Mar 28, 2016

Jefferson Square	Oakland Square	Lafayette Square	Harrison Square	
5	12	5	12	
6	10	10	6	

"Manhattan distance"

F $\sum |x_i - y_i|$ *i*=1

(5,6) (12,10)
$$\sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2} |x_2 - y_2|$$

 $|X_1 - Y_1|$

$$a^2 + b^2 = c^2$$
$$\sqrt{a^2 + b^2} = c$$

Euclidean distance

 $\sqrt{\sum_{i=1}^{F} (x_i - y_i)^2}$

$$= \left(\sum_{i=1}^{F} (x_i - y_i)^2\right)^{1/2}$$

1-norm (Manhattan)

2-norm (Euclidean)

 $\left(\sum_{i=1}^{F} |x_i - y_i|^1\right)^{1/2}$

 $\left(\sum_{i=1}^{F}|x_i-y_i|^2\right)^{1/2}$

 $\left(\sum_{i=1}^{F}|x_i-y_i|^{p}\right)^{r}$

p-norm

0-norm (Hamming)

 $\left(\sum_{i=1}^{F} |x_i - y_i|^0\right)^{1/0} = \sum_{i=1}^{F} I[x_i \neq y_i]$

∞-norm (Chebyshev)

$$\left(\sum_{i=1}^{F} |x_i - y_i|^{\infty}\right)^{1/\infty} = \max_i |x_i - y_i|$$

Metrics

$$d(x,y) \ge 0$$
 distances are not negative

$$d(x,y) = 0 \text{ iff } x = y$$

distances are positive, except for identity

d(x,y) = d(y,x) distances are symmetric

Metrics

 $d(x,y) \le d(x,z) + d(z,y)$

triangle inequality

a detour to another point z can't shorten the "distance" between x and y

Feature	x1	x2	xЗ
follow clinton	1	0	0
follow trump	0	1	1
"benghazi"	0	0	1
negative sentiment + "benghazi"	0	1	0
"illegal immigrants"	0	1	1
"republican" in profile	0	0	0
"democrat" in profile	0	0	0
self-reported location = Berkeley	1	0	0

K-nearest neighbors

- Supervised classification/regression
- Make prediction by finding the closest k data points and
 - predicting the majority label among those k points (classification)
 - predicting their average of those k points (regression)

KNN Classification

Let $\mathcal{N}(x_i)$ be the K-nearest neighbors to x_i

$$P(Y=j \mid x) = \frac{1}{K} \sum_{x_i \in \mathcal{N}(x)} I[y_i=j]$$

(Pick the value of Y with the highest probability)

KNN Regression

Let $\mathcal{N}(x_i)$ be the K-nearest neighbors to x_i

Data

K=1

K = 100

K=12

KNN

- Properties:
 - Linear/Nonlinear?
 - Complexity of training/testing?
 - Overfitting?
 - How to choose the best K?
 - Impact of data representation

Similarity

task	method	distance	
classification/regression	KNN	euclidean, etc.	
classification/regression	SVM	kernel	
duplicate detection			
search			

Relevance (IR)

 Similarity as an end of its own is a different paradigm from what we've been considering so far (classification, regression, clustering).

task	Х	У
KNN classification/ regression	documents	genres
duplicate detection	documents	

Duplicate detection

PRESIDENT OBAMA MAKES HIS FINAL 4 PICKS; KANSAS AS CHAMPS

WASHINGTON (AP) -- President Barack Obama has made his final NCAA Tournament call in office: Rock Chalk, champions.

Obama picked Kansas, Texas A&M, North Carolina and Michigan State to all reach the Final Four in a bracket he filled out for ESPN.

AP Photo/Pablo Martinez Monsivais

President Obama Makes His Final 4 Picks abcnews.go.com/.../president-obama-makes-final-picks 2 days ago - His choice might be an unpopular one around hasn't correctly predicted the national champion since he p

President Obama picks KU basketball as on m.kusports.com/.../president-obama-picks-ku-basketball 2 days ago - His choice might be an unpopular one around hasn't correctly predicted the national champion since he p

WKTV.com | President Obama makes his www.wktv.com/.../President_Obama_makes_his_Final_ 2 days ago - His choice might be an unpopular one around hasn't correctly predicted the national champion since he p

President Obama makes his Final 4 picks; www.kswo.com/.../president-obama-makes-his-final-4-His choice might be an unpopular one around Kansas, correctly predicted the national champion since he picked

President Obama calls for Rock Chalk Cha www.wibw.com/.../President-Obama-calls-for-Rock-Cha 2 days ago - His choice might be an unpopular one around hasn't correctly predicted the national champion since he p

President Obama makes his Final 4 picks; https://www.artesianews.com/.../president-obama-mak 5 days ago - His choice might be an unpopular one around hasn't correctly predicted the national champion since he p

Duplicate document detection

- What are the data points we're comparing?
- How do we represent each one?
- How do we measure "similarity"
- Evaluation?

Computational concerns

- Two sources of complexity:
- Dimensionality of the feature space (every document in represented by a vocabulary of 1M word) [minhashing]
- Number of documents in collection to compare (4.64 billion web pages) [locality sensitive hashing]

Feature		x1	x2	xЗ
the		1	1	1
and		1	1	1
obama		1	1	0
supreme		1	0	0
court		1	0	1
kansas		0	1	1
ncaa		0	1	1
four		1	1	1

Jaccard Similarity

number of features in **both** X and Y

number of features in **either** X and Y

Text Reuse

We were many times weaker than his splendid, lacquered machine, so that I did not even attempt to outspeed him. O lente currite noctis equi! O softly run, nightmares!

Nabokov, Lolita

Text reuse detection

- What are the data points we're comparing?
- How do we represent each one?
- How do we measure "similarity"
- Evaluation?

Information retrieval

conrad heart of darkness

About 479,000 results (0.46 seconds)

Heart of Darkness - Wikipedia, the free encyclop https://en.wikipedia.org/wiki/Heart_of_Darkness - Wikipedia Heart of Darkness (1899) is a novella by Polish-British novelist Jo voyage up the Congo River into the Congo Free State, in the heart Joseph Conrad - Kurtz - Disambiguation - Léon Rom

SparkNotes: Heart of Darkness

www.sparknotes.com/lit/heart/
SparkNotes
Heart of Darkness. Joseph Conrad ... Buy the print Heart of Dark
BN.com ... Order Heart of Darkness and Selected Short Fiction a
Part 1 - Part 2 - Part 3 - Context

Heart of Darkness, by Joseph Conrad - Project www.gutenberg.org/files/219/219-h/219-h.htm
Project Gutenberg EBook of Heart of Darkness, by Joseph C for the use of anyone anywhere at no cost and with almost no rest

Heart of Darkness - Shmoop

www.shmoop.com > Literature -

We really can't say it better than Joseph Conrad himself. Heart of story of a journalist who becomes manager of a station in the (Afric

Heart of Darkness at a Glance - Cliffs Notes www.cliffsnotes.com/.../heart-of-darkness/heart-of-darkness/

Joseph Conrad's Heart of Darkness retells the story of Marlow's

Information retrieval

- What are the data points we're comparing?
- How do we represent each one?
- How do we measure "similarity"
- Evaluation?

Cosine Similarity

$$\cos(x, y) = \frac{\sum_{i=1}^{F} x_i y_i}{\sqrt{\sum_{i=1}^{F} x_i^2} \sqrt{\sum_{i=1}^{F} y_i^2}}$$

- Euclidean distance measures the magnitude of distance between two points
- Cosine similarity measures their orientation
- Often weighted by TF-IDF to discount the impact of frequent features.

Modern IR

- Modern IR accounts for much more information than document similarity
 - Prominence/reliability of document (PageRank)
 - Geographic location
 - Search query history
- This can become a supervised problem to learn how to map these more elaborate features of a query/session to the search ranking. How do we represent our data?

Meme tracking

8/1 8/8 8/15 8/22 8/29 9/5 9/12 9/19 9/26 10/3 10/10 10/17 10/24 10/31

J. Leskovec et al. (2009), "Meme-tracking and the Dynamics of the News Cycle"

Meme tracking

Meme tracking

Rank	Lag [h]	Reported	Site
1	-26.5	42	hotair.com
2	-23	33	talkingpointsmemo.com
4	-19.5	56	politicalticker.blogs.cnn.com
5	-18	73	huffingtonpost.com
6	-17	49	digg.com
7	-16	89	breitbart.com
8	-15	31	thepoliticalcarnival.blogspot.com
9	-15	32	talkleft.com
10	-14.5	34	dailykos.com
16	-14	54	blogs.abcnews.com
30	-11	32	uk.reuters.com
34	-11	72	cnn.com
40	-10.5	78	washingtonpost.com
48	-10	53	online.wsj.com
49	-10	54	ap.org

Table 1: How quickly different media sites report a phrase.

J. Leskovec et al. (2009), "Meme-tracking and the Dynamics of the News Cycle"

http://mybinder.org/repo/dbamman/dds