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Unsupervised Learning
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* Unsupervised learning finds -
structure in data. - “l"IIIIIIHI“" A ”“

* clustering data into groups e -'-'II-I'I'"
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* discovering “factors”
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Principal Component
Analysis

* Method for transtorming a set of original (possible
correlated) observations into new ( )
values.
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* Original values: latitude and longitude (
for these data points)

 Transtormed values: street address and distance
from street ( )



Dimensionality reduction

* Perhaps we only want to capture represent each
data point with a single feature (or a smaller
number of features n than the original
representation)

 We can represent each point by the first n principal
components
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Why??



Main idea

* Each principal component (1 ... F) is the axis that

exhibits them most IN the data and IS
uncorrelated ( ) with earlier PCs

* The first PC explains the most variance; the second
PC explains the most remaining variance, etc.
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S LG =X)(Yi = Y)

n— 1

cov(X,Y) =

X-mean(X) Y1-mean(Y1) Y2-mean(Y2) Y3-mean(Y3) Y4-mean(Y4)
4 4.33 -4 0 2.67
0 0.33 0 0 -5.33

-4 -4.67 4 0 2.6/



bit.ly/1LcnZH6

[http://winedarksea.org/wp-content/uploads/2015/07/mydata.csv]



http://winedarksea.org/wp-content/uploads/2015/07/mydata.csv%5D

OLS vs. PCA
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e Fach of these axes iIs a

* |t doesn't matter how long

it is — it still points in the
same direction
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Clgenvectors

* Eigenvectors are those

dXES

3 * A square matrix of

dimension has
elgenvectors

 Each eigenvector is
with the
others (orthonormal)



PCA

* By finding the eigenvectors
of the
we are finding the
dimensions along which the
greatest of the
data Is explained



PCA

. Center the data (subtract the mean from each
variable)

. Calculate the covariance matrix from that centered
data

. Find the eigenvectors for that covariance matrix



PCA

PC1 PC2 PC3 PC4 PC5

OO B~ W N

what you get out of PCA are a set of principle components
with which you can transform your original data



PCA

data point

PC1 PC2 PC3 PC4 PC5

original feature
dimension

OO &~ W N
OO B~ W N

= original data point in transformed space



PCA

data point

original feature
dimension

OO &~ W N
OO B~ W N

= data point with



Singular value decomposition

 Any nxp matrix X can be decomposed as the
oroduct of three matrices:

n X n N Xp DX P



SVD

 Any nxp matrix X can be decomposed as the
oroduct of three matrices:

- X l X

V = the eigenvectors of the

original covariance matrix




SVD for PCA

data point V

original feature
dimension
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4
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OO &~ W N =

= data point with



PCA vs SVD

* Calculating the eigenvectors of the covariance
matrix requires forming X'X = RP*P, (not feasible for
lots of features)

* Lots of fast ways of solving SVD
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item 5




|_atent semantic analysis
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“documents”

doc 1 doc 2 doc 3 doc 4 doc 5

the
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|_atent semantic analysis

V = the eigenvectors of the V = the eigenvectors of the
document x word covariance word X document covariance
matrix matrix




| atent semantic analysis

It we wanted to transform the original matrix into a new, low-
dimensional space, we could simply multiply it by V
(as betore)




| atent semantic analysis

But the individual matrices themselves also
give us a low-dimensional representation of the
features (and documents)




Wora2Vec
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Levy and Goldberg (2014)



http://mybinder.org/repo/dbamman/dds



http://mybinder.org/repo/dbamman/dds

