Deconstructing Data Science

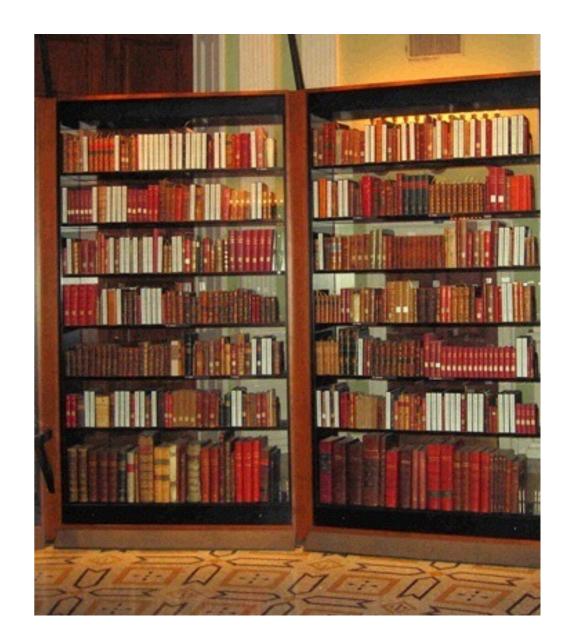
David Bamman, UC Berkeley

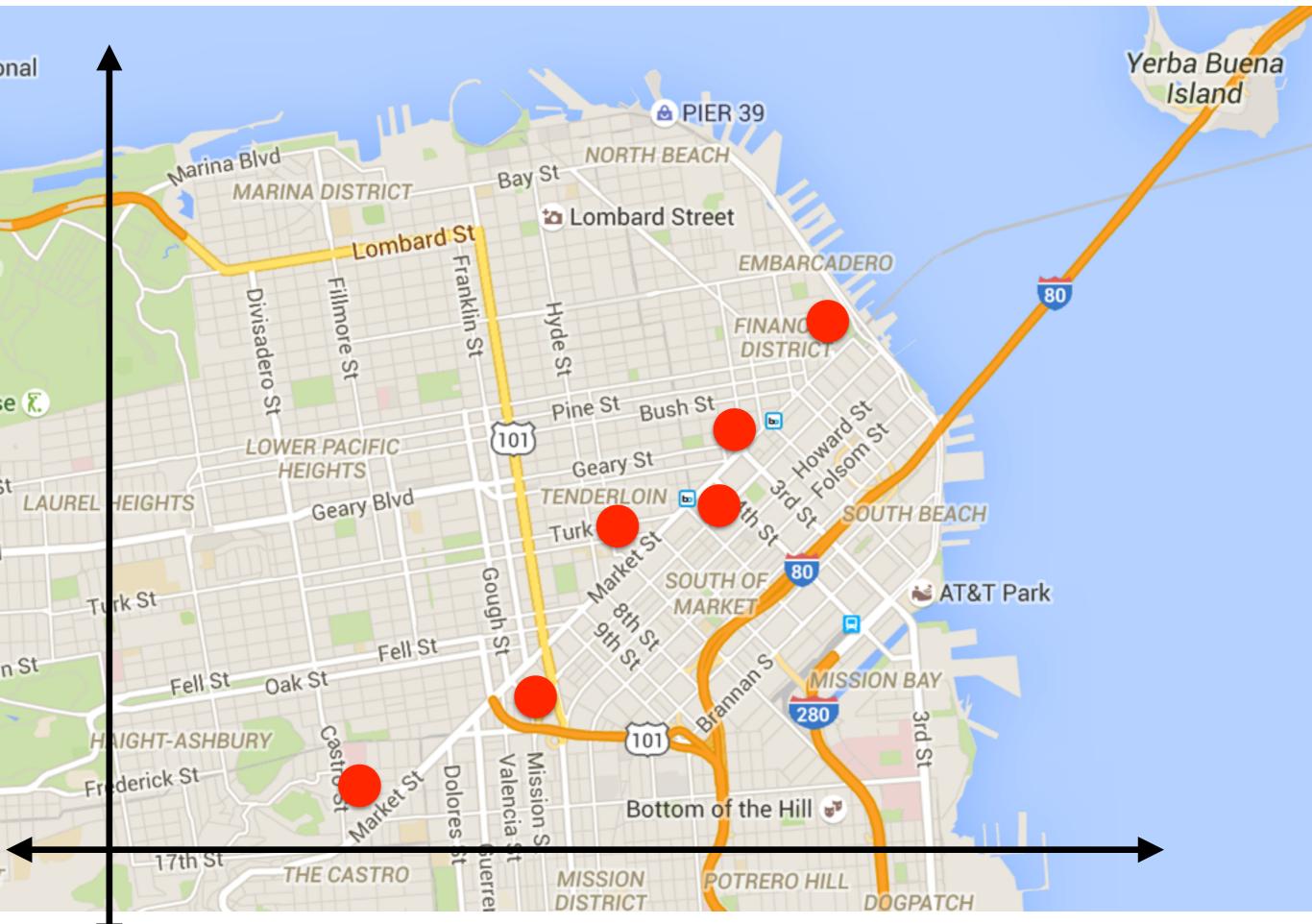
Info 290 Lecture 14: Principal Component Analysis

Mar 9, 2016

Unsupervised Learning

- Unsupervised learning finds *structure* in data.
 - clustering data into groups
 - discovering "factors"

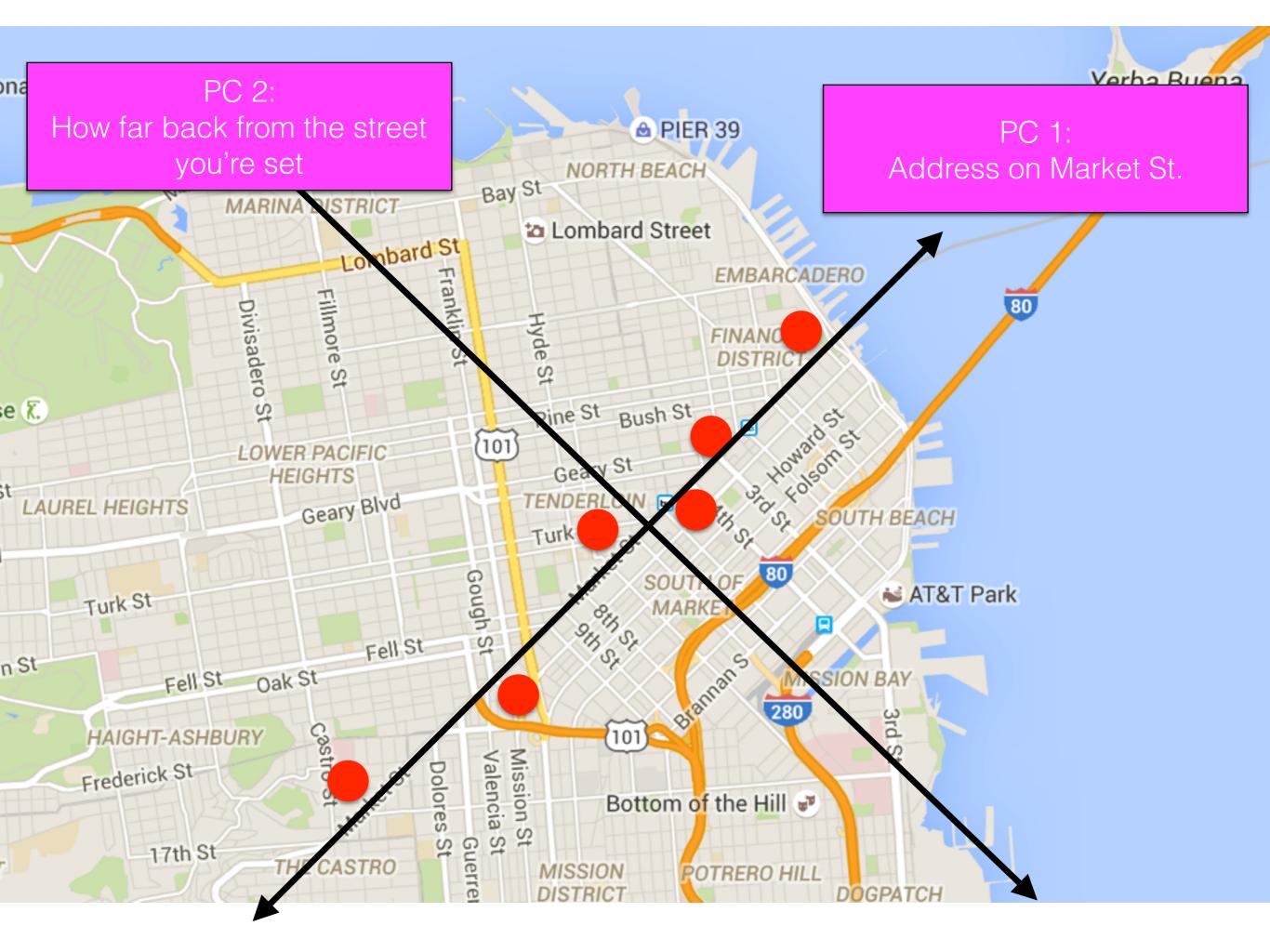




due to Domingos 2015

Principal Component Analysis

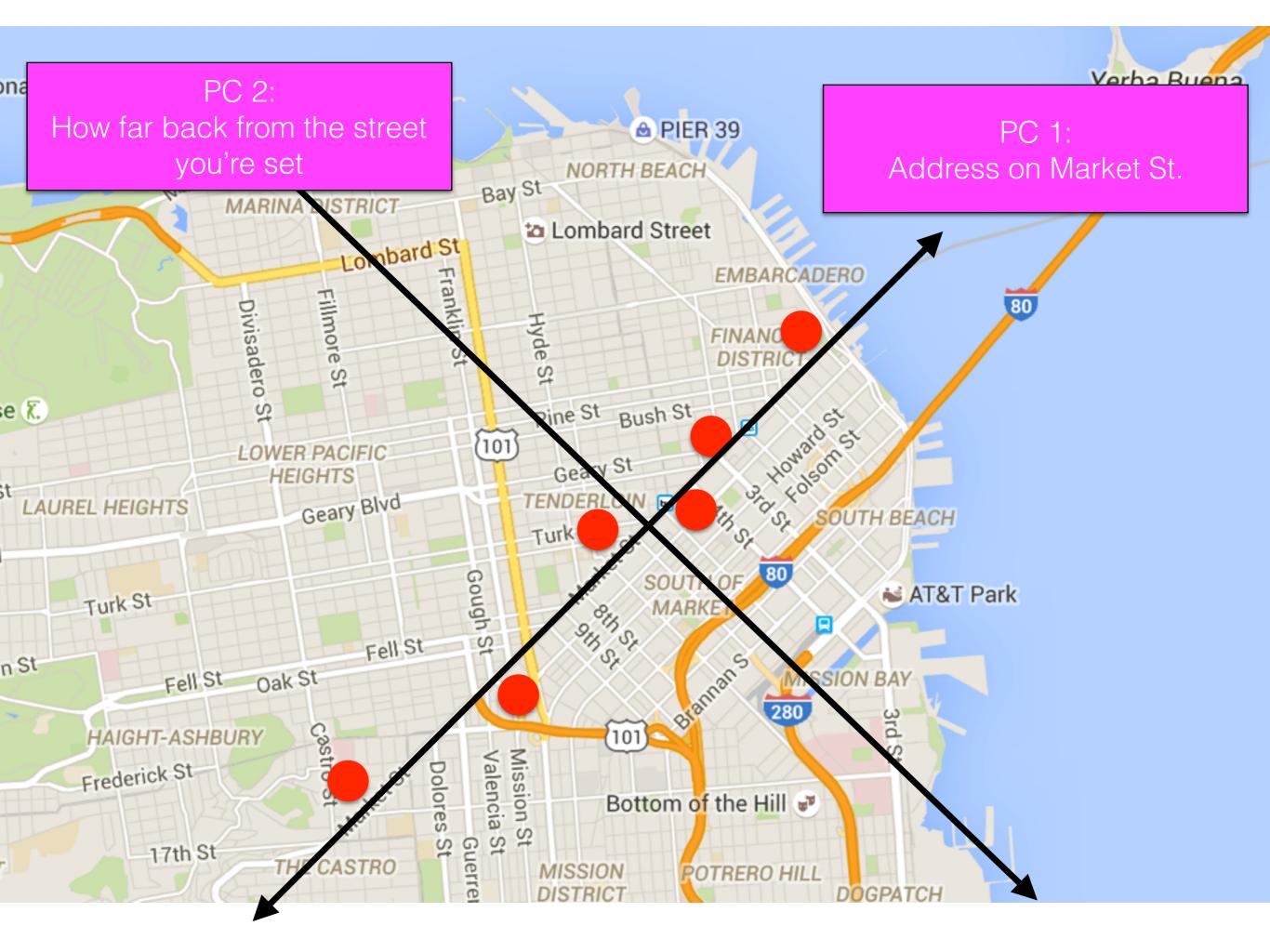
 Method for transforming a set of original (possible correlated) observations into new (uncorrelated) values.



- Original values: latitude and longitude (very strong correlation for these data points)
- Transformed values: street address and distance from street (no correlation)

Dimensionality reduction

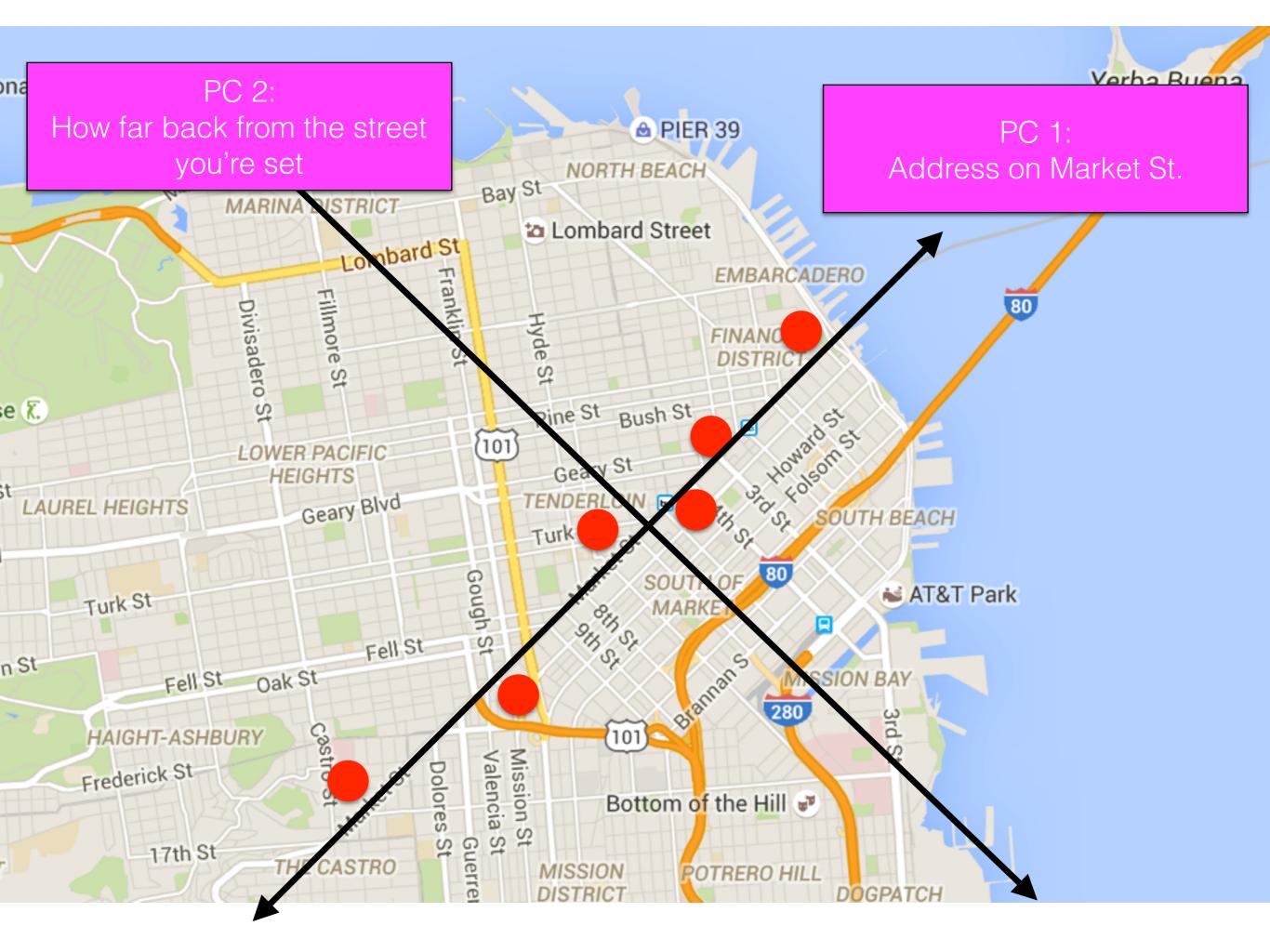
- Perhaps we only want to capture represent each data point with a single feature (or a smaller number of features n than the original representation)
- We can represent each point by the first n principal components



Why?

Main idea

- Each principal component (1 ... F) is the axis that exhibits them most variance in the data and is uncorrelated (orthogonal) with earlier PCs
- The first PC explains the most variance; the second PC explains the most remaining variance, etc.



Variance

 $var(X) = \frac{\sum_{i=1}^{N} (X_i - \bar{X})(X_i - \bar{X})}{n - 1}$

Covariance

$$COV(X, Y) = \frac{\sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})}{n - 1}$$

$$var(X) = \frac{\sum_{i=1}^{N} (X_i - \bar{X})(X_i - \bar{X})}{n - 1}$$

$$cov(X, Y) = \frac{\sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})}{n - 1}$$

$$var(X) = cov(X,X)$$

$$cov(X, Y) = \frac{\sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})}{n - 1}$$

X-mean(X) Y1-mean(Y1) Y2-mean(Y2) Y3-mean(Y3) Y4-mean(Y4) 4.33 0 2.67 4 -4 0 0 0.33 0 -5.33 -4 4 0 -4.67 2.67 18 -16 Cov(X,Y)0 0

bit.ly/1LcnZH6

[http://winedarksea.org/wp-content/uploads/2015/07/mydata.csv]

OLS vs. PCA

Vectors

- Each of these axes is a vector
- It doesn't matter how long it is — it still points in the same direction

Vectors



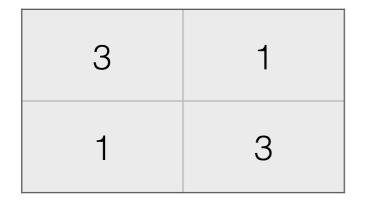
- Each of these axes is a vector
- It doesn't matter how long it is — it still points in the same direction

Eigenvectors

3	1
1	3

matrix A

- Eigenvectors are those axes
- A square matrix of n dimension has n eigenvectors
- Each eigenvector is uncorrelated with the others (orthonormal)



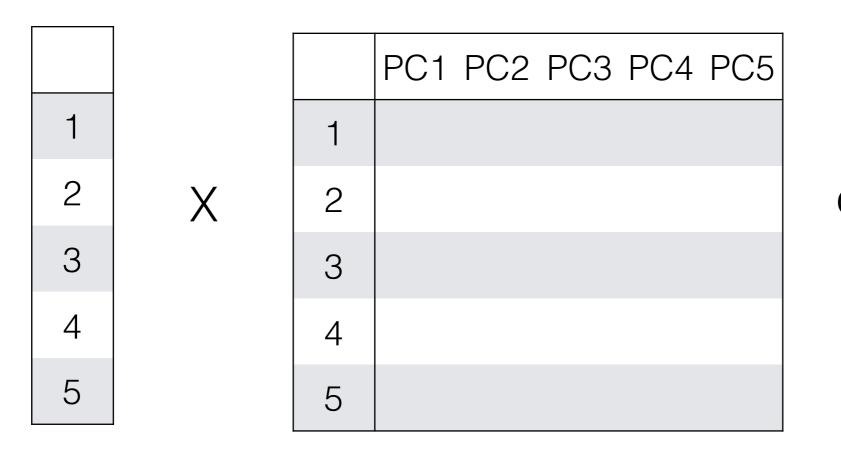
 By finding the eigenvectors of the covariance matrix, we are finding the dimensions along which the greatest variance of the data is explained

- 1. Center the data (subtract the mean from each variable)
- 2. Calculate the covariance matrix from that centered data
- 3. Find the eigenvectors for that covariance matrix

	PC1	PC2	PC3	PC4	PC5
1					
2					
3					
4					
5					

what you get out of PCA are a set of principle components with which you can transform your original data

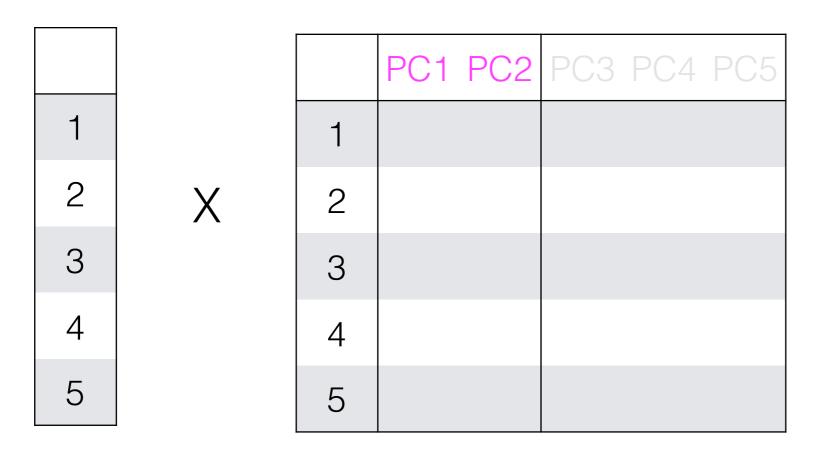
data point



original feature dimension

= original data point in transformed space

data point

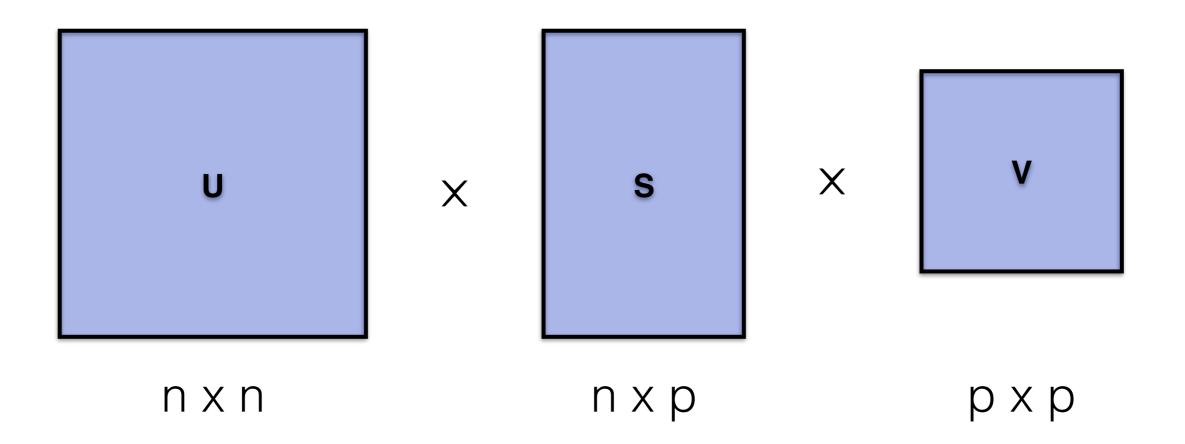


original feature dimension

= data point with fewer dimensions

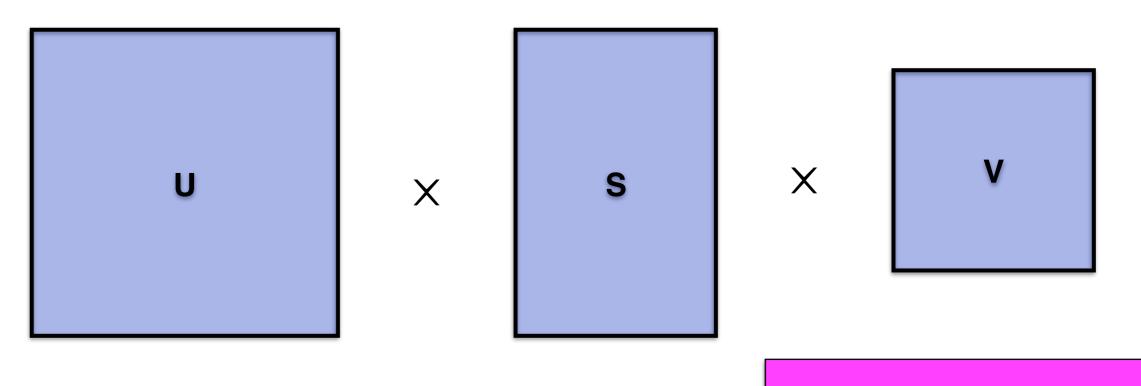
Singular value decomposition

• Any nxp matrix X can be decomposed as the product of three matrices:



SVD

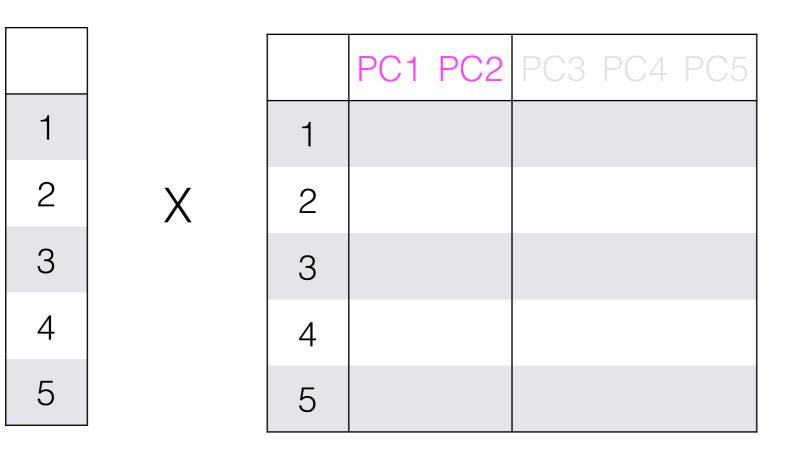
• Any nxp matrix X can be decomposed as the product of three matrices:



V = the eigenvectors of the original covariance matrix

SVD for PCA

V



original feature dimension

= data point with fewer dimensions

PCA vs SVD

- Calculating the eigenvectors of the covariance matrix requires forming X^TX = ℝ^{p×p}. (not feasible for lots of features)
- Lots of fast ways of solving SVD

	feat 1	feat 2	feat 3	feat 4	feat 5
item 1					
item 2					
item 3					
item 4					
item 5					

item-feature matrix

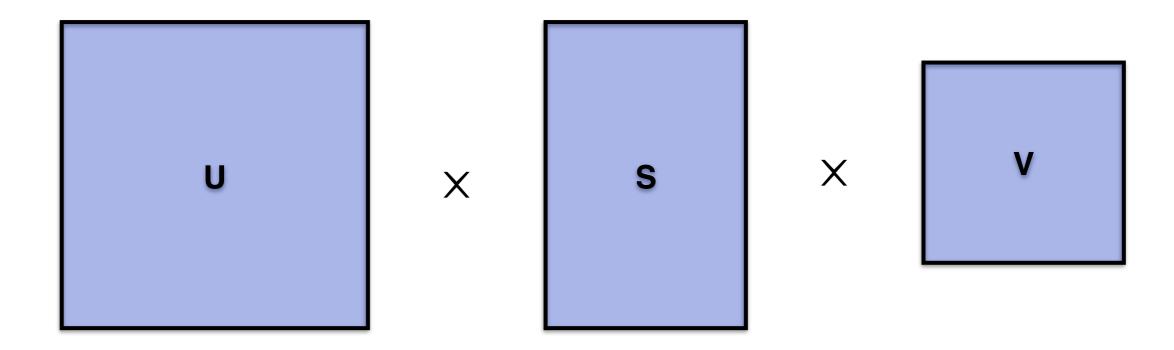
	doc 1	doc 2	doc 3	doc 4	doc 5
the					
dog					
ice					
eats					
cream					

term-document matrix (typically weighted by tf-idf)

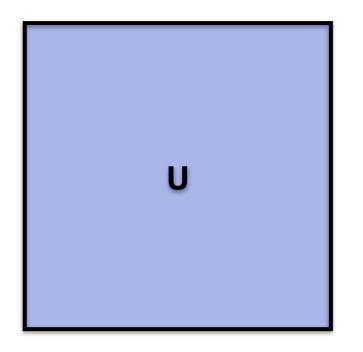
"documents"

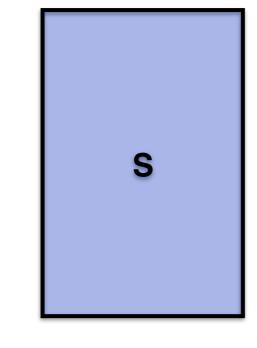
	doc 1	doc 2	doc 3	doc 4	doc 5
the					
dog					
ice					
eats					
cream					

"words"

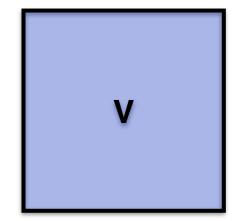


V = the eigenvectors of the document x word covariance matrix V = the eigenvectors of the word x document covariance matrix



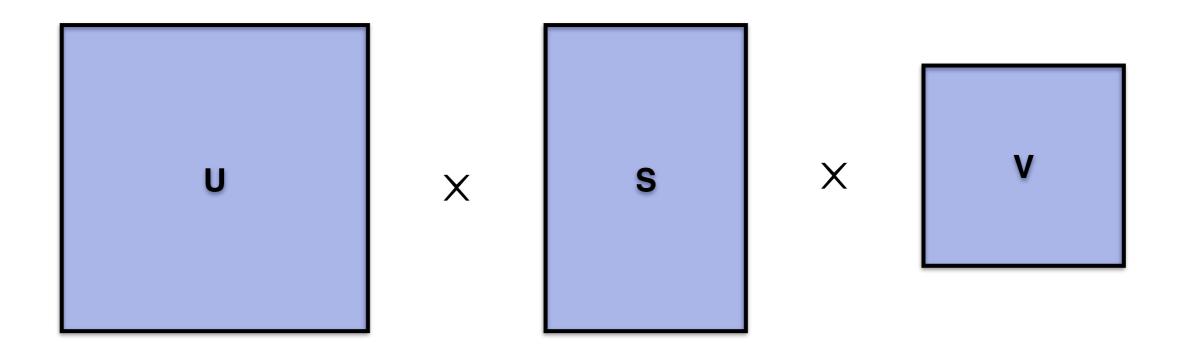


Х

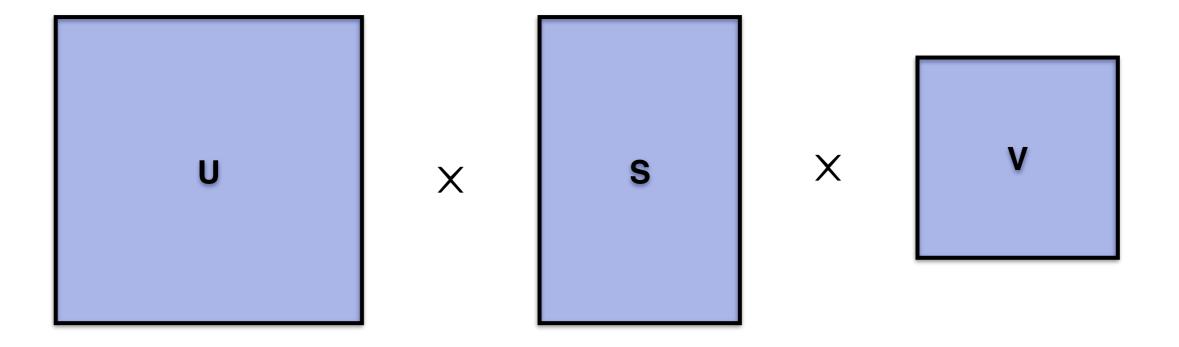


Х

If we wanted to transform the original matrix into a new, lowdimensional space, we could simply multiply it by V (as before)



But the individual matrices themselves also give us a low-dimensional representation of the features (and documents)



Word2Vec

"context"

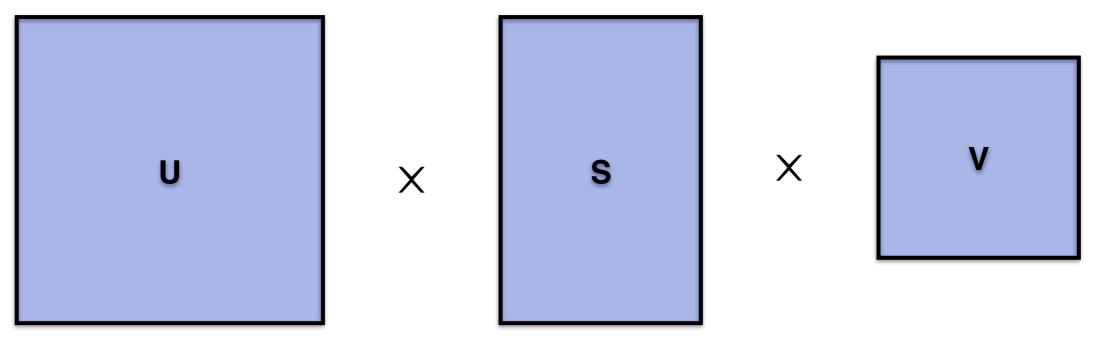
	dog	cat	hot	ice	summer
the					
dog					
ice					
eats					
cream					

word-context matrix (weighted by pointwise mutual information)

"word"

"context"

	dog	cat	hot	ice	summer
the					
dog					
ice					
eats					
cream					



"word"

Levy and Goldberg (2014)

http://mybinder.org/repo/dbamman/dds