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Unsupervised Learning

• Unsupervised learning finds 
structure in data. 

• clustering data into groups 

• discovering “factors”



due to Domingos 2015



Principal Component 
Analysis

• Method for transforming a set of original (possible 
correlated) observations into new (uncorrelated) 
values.



PC 1:  
Address on Market St.

PC 2: 
How far back from the street 

you’re set



• Original values: latitude and longitude (very strong 
correlation for these data points) 

• Transformed values: street address and distance 
from street (no correlation)



Dimensionality reduction

• Perhaps we only want to capture represent each 
data point with a single feature (or a smaller 
number of features n than the original 
representation) 

• We can represent each point by the first n principal 
components



PC 1:  
Address on Market St.

PC 2: 
How far back from the street 

you’re set



Why?



Main idea

• Each principal component (1 … F) is the axis that 
exhibits them most variance in the data and is 
uncorrelated (orthogonal) with earlier PCs 

• The first PC explains the most variance; the second 
PC explains the most remaining variance, etc.



PC 1:  
Address on Market St.

PC 2: 
How far back from the street 

you’re set



Variance

var(X) =

�N
i=1(Xi � X̄)(Xi � X̄)

n � 1



Covariance

cov(X,Y) =

�N
i=1(Xi � X̄)(Yi � Ȳ)

n � 1



var(X) =

�N
i=1(Xi � X̄)(Xi � X̄)

n � 1

cov(X,Y) =

�N
i=1(Xi � X̄)(Yi � Ȳ)

n � 1

var(X) = cov(X,X)



cov(X,Y) =

�N
i=1(Xi � X̄)(Yi � Ȳ)

n � 1

X-mean(X) Y1-mean(Y1) Y2-mean(Y2) Y3-mean(Y3) Y4-mean(Y4)

4 4.33 -4 0 2.67

0 0.33 0 0 -5.33

-4 -4.67 4 0 2.67

Cov(X,Y) 18 -16 0 0



bit.ly/1LcnZH6 
[http://winedarksea.org/wp-content/uploads/2015/07/mydata.csv]

http://winedarksea.org/wp-content/uploads/2015/07/mydata.csv%5D


OLS vs. PCA



Vectors

• Each of these axes is a 
vector 

• It doesn’t matter how long 
it is — it still points in the 
same direction



Vectors

• Each of these axes is a 
vector 

• It doesn’t matter how long 
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same direction



Eigenvectors
• Eigenvectors are those 

axes 

• A square matrix of n 
dimension has n 
eigenvectors 

• Each eigenvector is 
uncorrelated with the 
others (orthonormal)

3 1

1 3

matrix A



PCA

• By finding the eigenvectors 
of the covariance matrix, 
we are finding the 
dimensions along which the 
greatest variance of the 
data is explained

3 1

1 3



PCA

1. Center the data (subtract the mean from each 
variable) 

2. Calculate the covariance matrix from that centered 
data 

3. Find the eigenvectors for that covariance matrix



PCA

PC1 PC2 PC3 PC4 PC5

1

2

3

4

5

what you get out of PCA are a set of principle components 
with which you can transform your original data



PCA
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 = original data point in transformed space
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Singular value decomposition
• Any n⨉p matrix X  can be decomposed as the 

product of three matrices:

U

n x n

VS

n x p p x p

⨉ ⨉



SVD
• Any n⨉p matrix X can be decomposed as the 

product of three matrices:

U VS⨉ ⨉

V = the eigenvectors of the 
original covariance matrix



SVD for PCA
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PCA vs SVD

• Calculating the eigenvectors of the covariance 
matrix requires forming XTX = ℝp⨉p. (not feasible for 
lots of features) 

• Lots of fast ways of solving SVD



feat 1 feat 2 feat 3 feat 4 feat 5

item 1

item 2

item 3

item 4

item 5

item-feature matrix



Latent semantic analysis

doc 1 doc 2 doc 3 doc 4 doc 5

the

dog

ice

eats

cream

term-document matrix  
(typically weighted by tf-idf)



U VS⨉ ⨉

doc 1 doc 2 doc 3 doc 4 doc 5

the

dog

ice

eats

cream

“documents”

“words”



U VS⨉ ⨉

V = the eigenvectors of the 
word x document covariance 

matrix

V = the eigenvectors of the 
document x word covariance 

matrix

Latent semantic analysis



U VS⨉ ⨉

Latent semantic analysis
If we wanted to transform the original matrix into a new, low-

dimensional space, we could simply multiply it by V  
(as before)



U VS⨉ ⨉

Latent semantic analysis
But the individual matrices themselves also 

give us a low-dimensional representation of the 
features (and documents)



Word2Vec

dog cat hot ice summer

the

dog

ice

eats

cream

“context”

“word”

word-context matrix  
(weighted by pointwise mutual information)



U S⨉ V⨉

dog cat hot ice summer

the

dog

ice

eats

cream

“context”

“word”

Levy and Goldberg (2014)



http://mybinder.org/repo/dbamman/dds

http://mybinder.org/repo/dbamman/dds

