## Deconstructing Data Science

David Bamman, UC Berkeley

Info 290

Lecture 13: Linear regression

Mar 7, 2016



# Regression

A mapping from input data x (drawn from instance space x) to a point y in x

 $(\mathbb{R} = \text{the set of real numbers})$ 

x =the empire state building y = 17444.5625"

# Regression problems

task  $\boldsymbol{x}$   $\boldsymbol{y}$  predicting box office movie  $\mathbb{R}$ 



#### **David Bamman**

@dbamman

Assistant Professor, School of Information, UC Berkeley. Natural language processing, machine learning, computational social science, digital humanities.

- Berkeley, CA
- people.ischool.berkeley.edu/~dbam man/
- Joined October 2009
- 10 Photos and videos













**TWEETS** 508

**FOLLOWING** 400

**FOLLOWERS** 799

LIKES 133 LISTS

Tweets

Tweets & replies

Photos & videos

David Bamman Retweeted



**Ted Underwood** @Ted Underwood · 6h

How have the differences between descriptions of men and women in fiction changed over the last 200 yrs? (ICYMI) tedunderwood.com/2016/01/09/the...







View summary



David Bamman @dbamman · Jan 6

"Figure Eights" (Max Roach/Buddy Rich, 1959) is just dazzling. Probably no video of them anywhere? open.spotify.com/track/23EssvWY...







View summary

David Bamman Retweeted



Anders Søgaard @soegaarducph · Jan 6

@stanfordnlp @brendan642 @jacobeisenstein Here goes: twitterresearch.ccs.neu.edu/language/

Enter a term to display: mountain sents more uses of the selected term, relative to the national average. Red represents fewer uses

#### x = feature vector

### $\beta$ = coefficients

| Feature                              | Value |
|--------------------------------------|-------|
| follow clinton                       | 0     |
| follow trump                         | 0     |
| "benghazi"                           | 0     |
| negative sentiment + "benghazi"      | 0     |
| "illegal immigrants"                 | 0     |
| "republican" in profile              | 0     |
| "democrat" in profile                | 0     |
| self-reported location<br>= Berkeley | 1     |

| Feature                              | β    |
|--------------------------------------|------|
| follow clinton                       | -3.1 |
| follow trump                         | 6.8  |
| "benghazi"                           | 1.4  |
| negative sentiment + "benghazi"      | 3.2  |
| "illegal immigrants"                 | 8.7  |
| "republican" in profile              | 7.9  |
| "democrat" in profile                | -3.0 |
| self-reported location<br>= Berkeley | -1.7 |

# Linear regression

$$y = \sum_{i=1}^{F} x_i \beta_i + \varepsilon$$

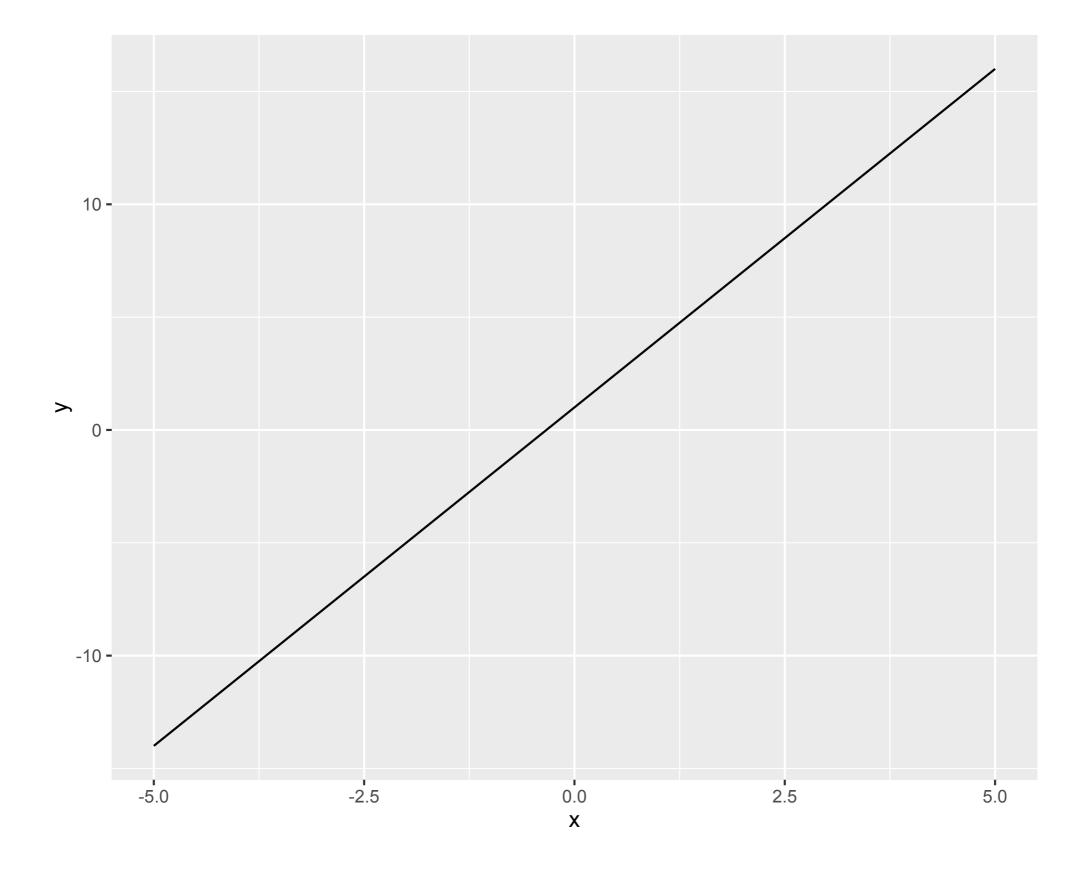
true value y

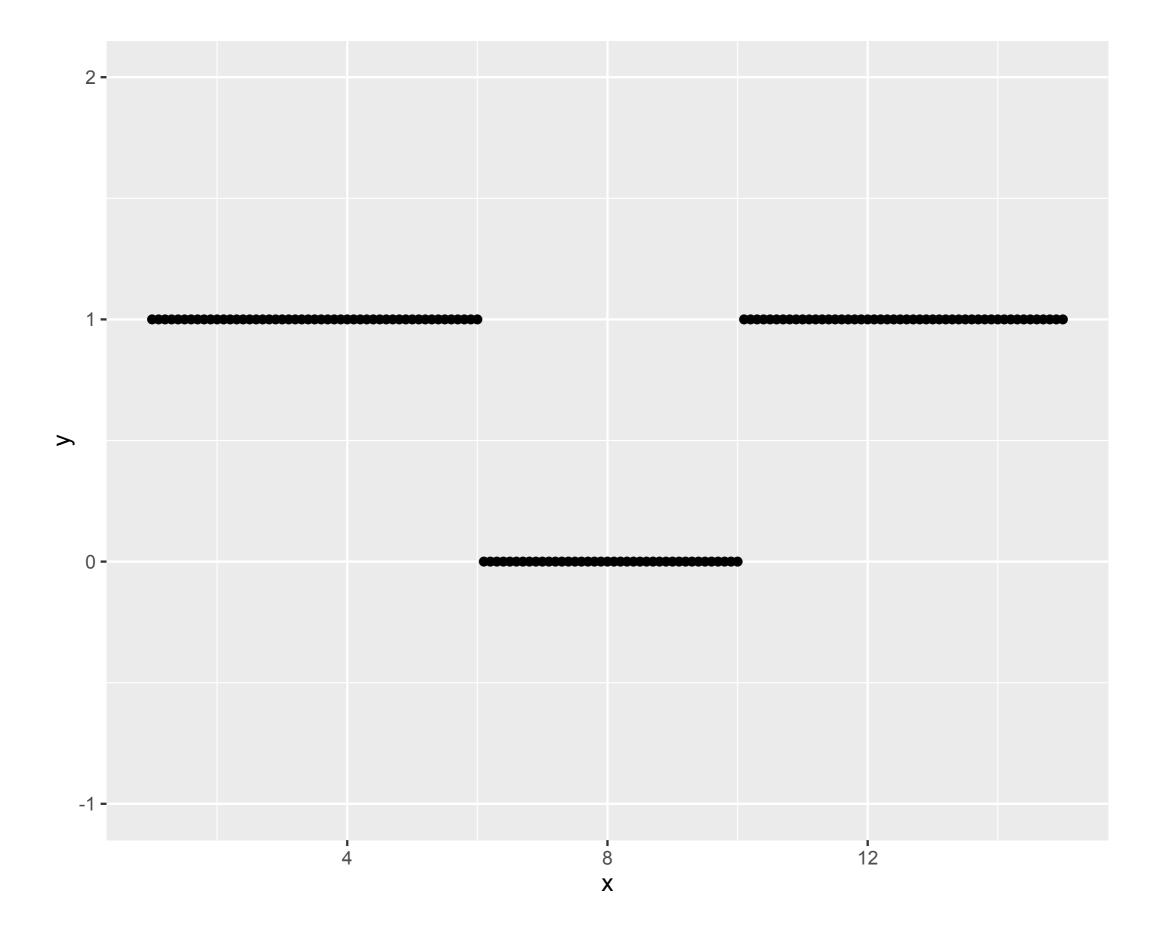
$$\hat{y} = \sum_{i=1}^{F} x_i \beta_i$$

prediction ŷ

$$\varepsilon = y - \hat{y}$$

ε is the difference between the prediction and true value





# How do we get good values for β?

#### $\beta$ = coefficients

| Feature                              | β    |
|--------------------------------------|------|
| follow clinton                       | -3.1 |
| follow trump                         | 6.8  |
| "benghazi"                           | 1.4  |
| negative sentiment + "benghazi"      | 3.2  |
| "illegal immigrants"                 | 8.7  |
| "republican" in profile              | 7.9  |
| "democrat" in profile                | -3.0 |
| self-reported location<br>= Berkeley | -1.7 |

# Least squares

$$\beta = \min_{\beta} \sum_{i=1}^{N} \varepsilon^2$$

we want to minimize the errors we make

$$\beta = \min_{\beta} \sum_{i=1}^{N} (y - \hat{y})^2$$

$$\beta = \min_{\beta} \sum_{i=1}^{N} \left( y - \sum_{j=1}^{F} x_j \beta_j \right)^2$$

# Least squares

$$\beta = \min_{\beta} \sum_{i=1}^{N} \left( y - \sum_{j=1}^{F} x_j \beta_j \right)^2$$

- We can solve this in two ways:
  - Closed form (normal equations)
  - Iteratively (gradient descent)

### Algorithm 3 Linear regression stochastic gradient descent

- 1: Data: training data  $x \in \mathbb{R}^F, y \in \mathbb{R}$
- 2:  $\beta = 0^F$
- 3: **while** not converged **do**
- 4: **for** i = 1 to N **do**
- 5:  $\beta_{t+1} = \beta_t + \alpha \left( y_i \hat{y} \right) x_i$
- 6: end for
- 7: end while

#### Algorithm 3 Linear regression stochastic gradient descent

- 1: Data: training data  $x \in \mathbb{R}^F, y \in \mathbb{R}$
- 2:  $\beta = 0^F$
- 3: while not converged do
- 4: **for** i = 1 to N **do**
- 5:  $\beta_{t+1} = \beta_t + \alpha (y_i \hat{y}) x_i$
- 6: end for
- 7: end while

#### Algorithm 2 Logistic regression stochastic gradient descent

- 1: Data: training data  $x \in \mathbb{R}^F, y \in \{0, 1\}$
- 2:  $\beta = 0^F$
- 3: **while** not converged **do**
- 4: **for** i = 1 to N **do**
- 5:  $\beta_{t+1} = \beta_t + \alpha \left( y_i \hat{p}(x_i) \right) x_i$
- 6: **end for**
- 7: end while

# Code

#### $\beta$ = coefficients

Many features that show up rarely may likely only appear (by chance) with one label

More generally, may appear so few times that the noise of randomness dominates

| Feature                                      | β       |
|----------------------------------------------|---------|
| follow clinton                               | -3.1    |
| follow trump + follow<br>NFL + follow bieber | 7299302 |
| "benghazi"                                   | 1.4     |
| negative sentiment + "benghazi"              | 3.2     |
| "illegal immigrants"                         | 8.7     |
| "republican" in profile                      | 7.9     |
| "democrat" in profile                        | -3.0    |
| self-reported location<br>= Berkeley         | -1.7    |

# Ridge regression

$$\beta = \min_{\beta} \sum_{i=1}^{N} (y - \hat{y})^2 + \eta \sum_{i=1}^{F} \beta_i^2$$
error coefficient size

We want both of these to be small!

This corresponds to a prior belief that β should be 0

# Ridge regression

$$\beta = \min_{\beta} \sum_{i=1}^{N} (y - \hat{y})^2 + \eta \sum_{i=1}^{F} \beta_i^2$$
error coefficient size

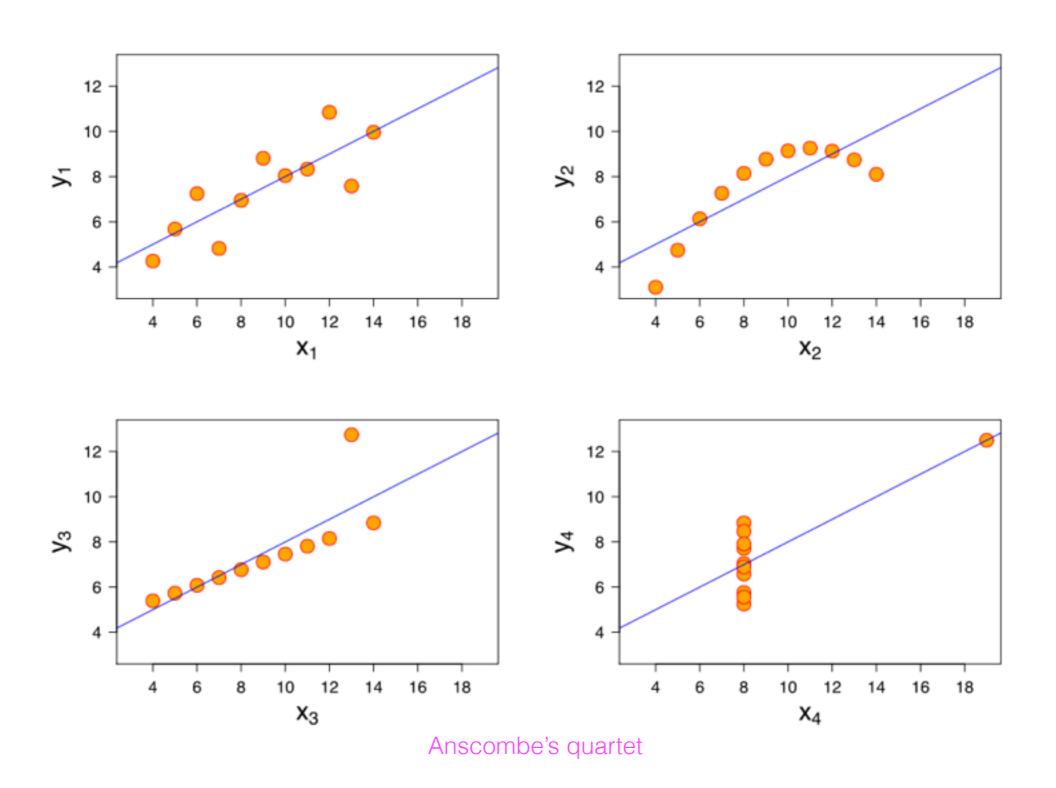
A.K.A.

L2 regularization
Penalized least squares

| Matt Gerald             | \$295,619,605  | Computer<br>Animation | \$68,629,803  | Adventure           | \$6,349,781  |
|-------------------------|----------------|-----------------------|---------------|---------------------|--------------|
| Peter<br>Mensah         | \$294,475,429  | Hugo Weaving          | \$39,769,171  | Action              | \$5,512,359  |
| Lewis<br>Abernathy      | \$188,093,808  | John<br>Ratzenberger  | \$36,342,438  | Fantasy             | \$5,079,546  |
| Sam<br>Worthington      | \$186,193,754  | Tom Cruise            | \$36,137,757  | Family Film         | \$4,024,701  |
| CCH<br>Pounder          | \$184,946,303  | Tom Hanks             | \$34,757,574  | Thriller            | \$3,479,196  |
|                         |                |                       |               |                     |              |
| Steve Bacic             | -\$65,334,914  | Western               | -\$13,223,795 | Western             | -\$752,683   |
| Jim Ward                | -\$66,096,435  | World cinema          | -\$13,278,965 | Black-and-<br>white | -\$1,389,215 |
| Karley Scott<br>Collins | -\$66,612,154  | Crime Thriller        | -\$14,138,326 | World cinema        | -\$1,534,435 |
| Dee Bradley<br>Baker    | -\$73,571,884  | Anime                 | -\$14,750,932 | Drama               | -\$2,432,272 |
| Animals                 | -\$110,349,541 | Indie                 | -\$21,081,924 | Indie               | -\$3,040,457 |

BIAS: \$5,913,648 BIAS: \$13,394,465 BIAS: \$45,044,525

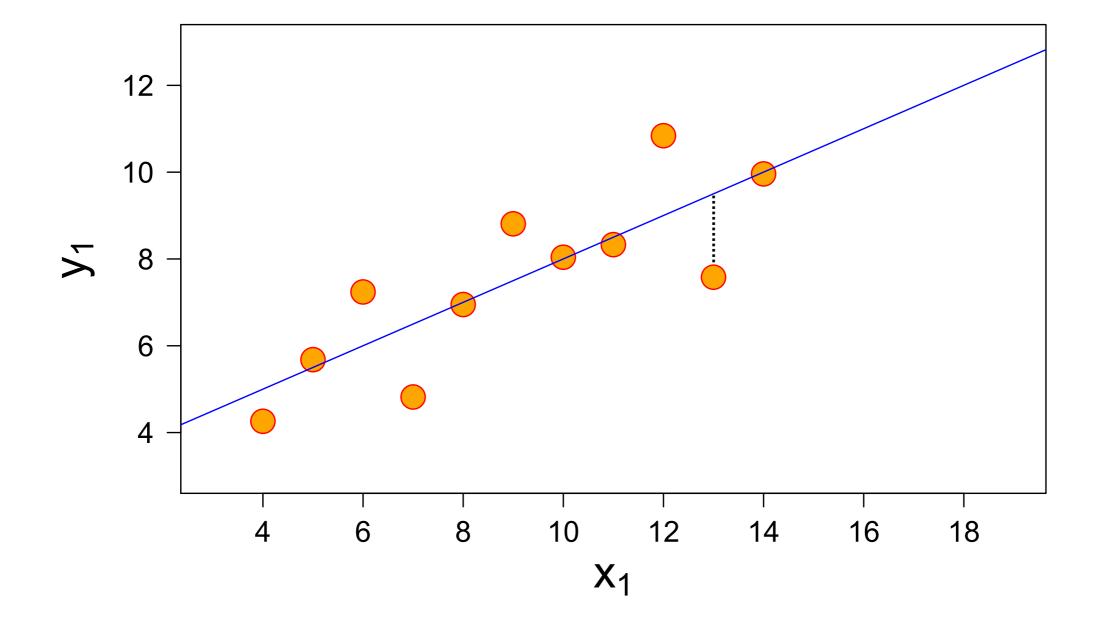
# Assumptions



## Probabilistic Interpretation

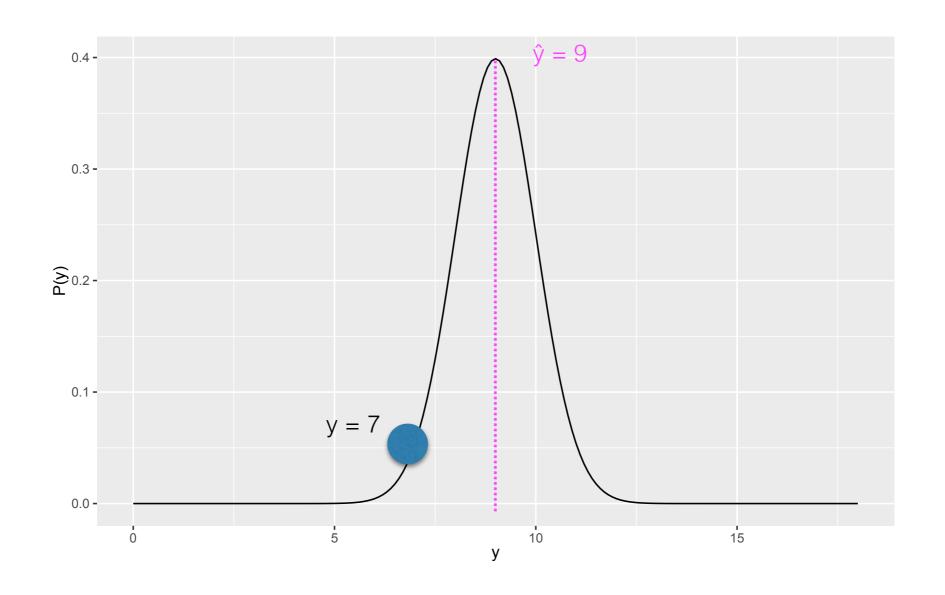
$$P(y_i \mid x, \beta) = \text{Norm}(y_i \mid \hat{y}_i, \sigma^2)$$

"the errors are normally distributed"



## Probabilistic Interpretation

$$P(y_i \mid x, \beta) = \text{Norm}(y_i \mid \hat{y}_i, \sigma^2)$$



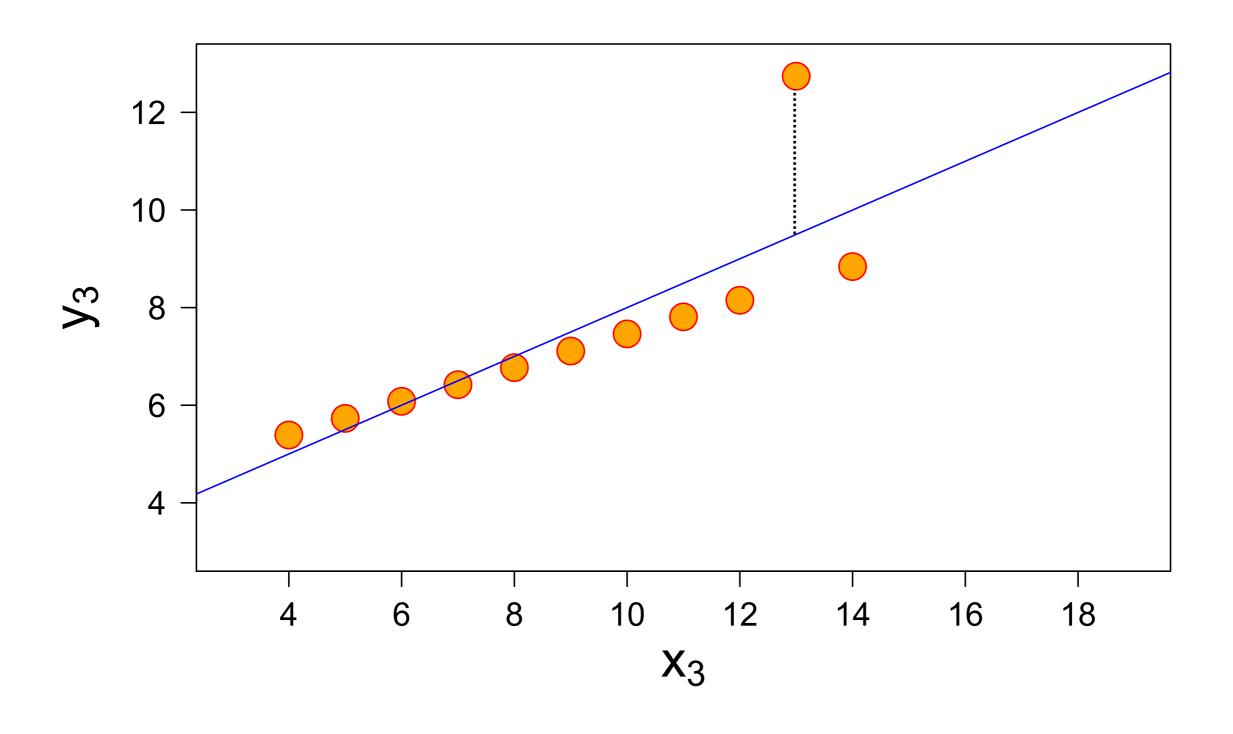
## Conditional likelihood

$$\prod_{i}^{N} P(y_i \mid x_i, \beta)$$

For all training data, we want  $\prod P(y_i \mid x_i, \beta)$  probability of the true value y for each data point x to high

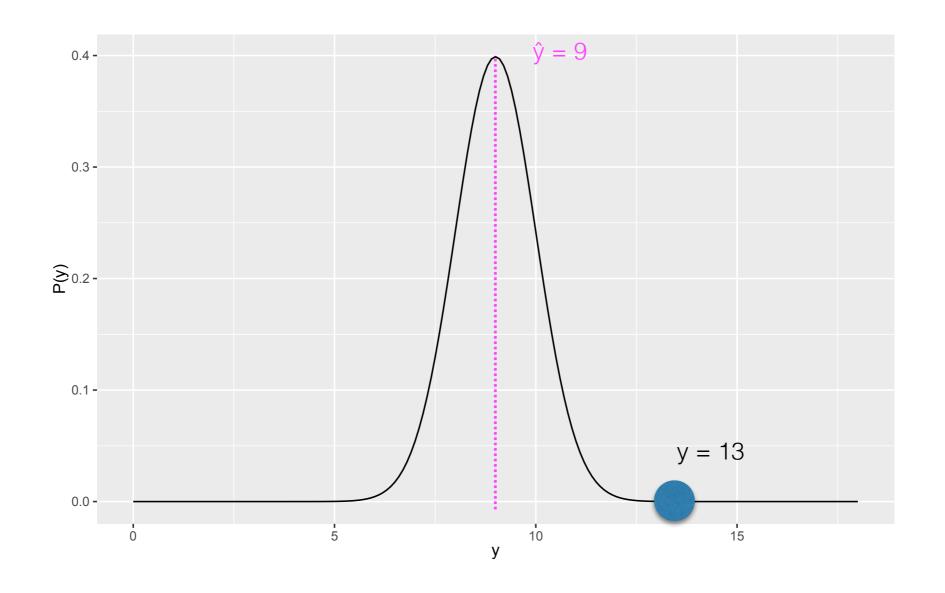
This principle gives us a way to pick the values of the parameters β that maximize the probability of the training data <x, y>

# Outliers



## Probabilistic Interpretation

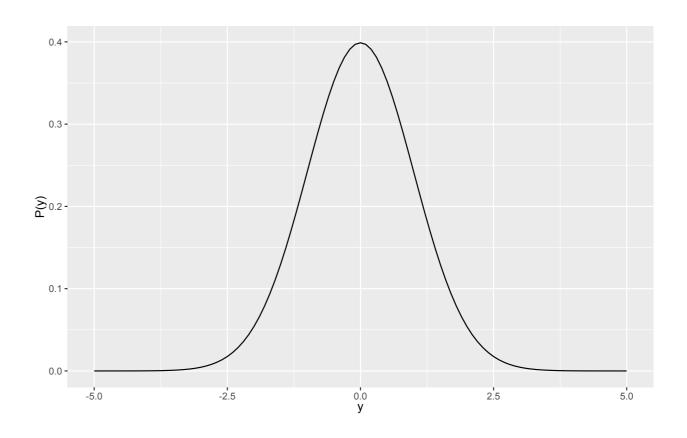
$$P(y_i \mid x, \beta) = \text{Norm}(y_i \mid \hat{y}_i, \sigma^2)$$



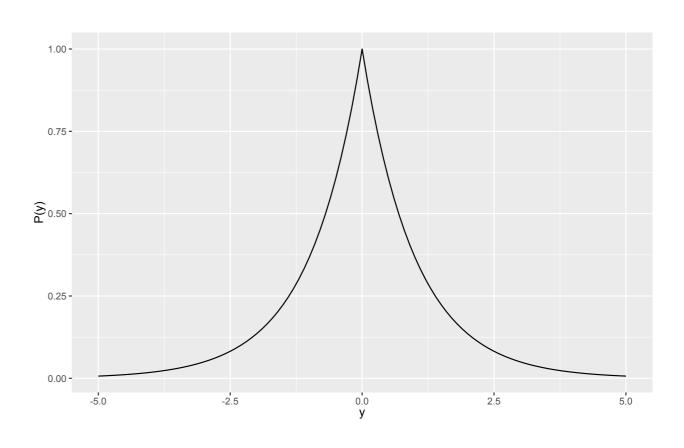
# Robust regression

- Rather than modeling the errors as normally distributed, pick some heavier-tailed distribution instead
- This will assign higher likelihood to the outliers without having to move the best fit for the coefficients.

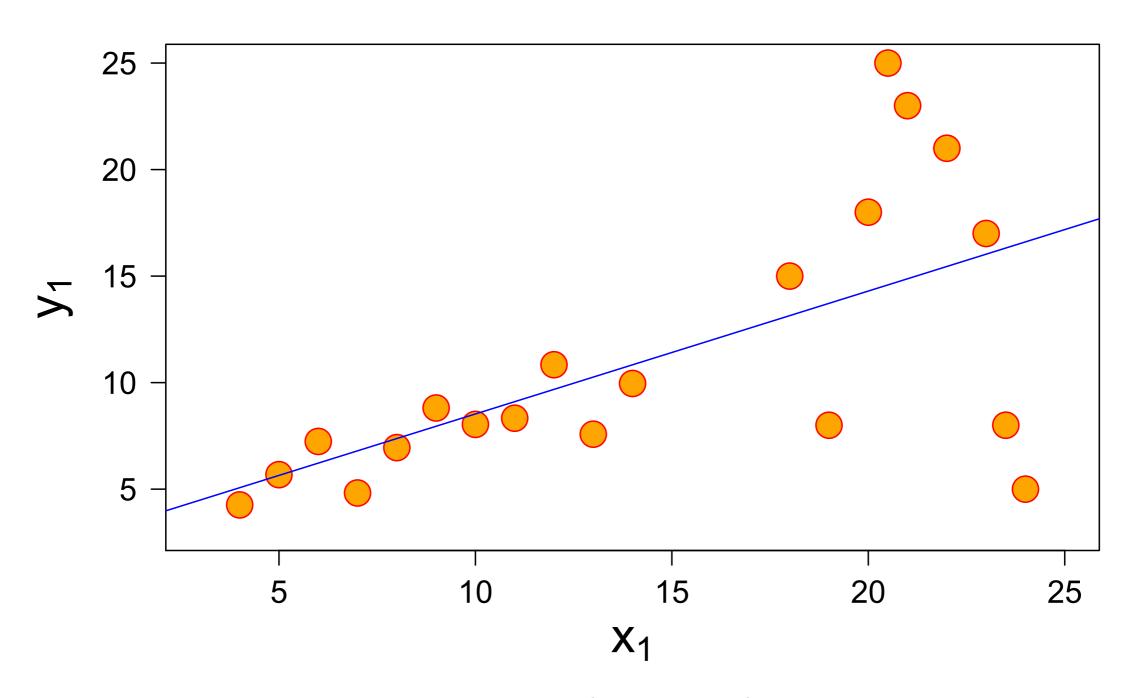
# Heavy tailed distributions



Normal vs Laplace



# Homoscedasticity



Assumption that the variance in y is constant for all values of x; this data is *heteroscedastic* 

## Evaluation

Goodness of fit (to training data)

$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

sum of square errors

total sum of squares

For most models,  $R^2$  ranges from 0 (no fit) to 1 (perfect fit)

# Experiment design

|         | training        | development     | testing                                                  |
|---------|-----------------|-----------------|----------------------------------------------------------|
| size    | 80%             | 10%             | 10%                                                      |
| purpose | training models | model selection | evaluation;<br>never look at it<br>until the very<br>end |

## Metrics

 Measure difference between the prediction ŷ and the true y

Mean squared error (MSE)

$$\frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

Mean absolute error (MAE)

$$\frac{1}{N} \sum_{i=1}^{N} |\hat{y}_i - y_i|$$

# Interpretation

$$\hat{y} = x_0 \beta_0 + x_1 \beta_1$$

$$x_0\beta_0 + (x_1 + 1)\beta_1$$

 $x_0\beta_0 + x_1\beta_1 + \beta_1$ 

$$=\hat{\mathbf{y}}+\beta_1$$

Let's increase the value of  $x_1$  by 1 (e.g., from  $0 \rightarrow 1$ )

β represents the degree to which y changes with a 1-unit increase in x

## Independence

| benedict cumberbatch stars<br>movie good | 1 |
|------------------------------------------|---|
| terrible acting benedict cumberbatch     | 0 |
| benedict cumberbatch script<br>excellent | 1 |
| excellent script movie good              | 1 |
| benedict cumberbatch good excellent      | 1 |

- benedict
- cumberbatch
- stars
- movie
- good
- acting
- script
- excellent
- terrible

# Independence

| benedict_cumberbatch stars<br>movie good | 1 |
|------------------------------------------|---|
| terrible acting<br>benedict_cumberbatch  | 0 |
| benedict_cumberbatch script<br>excellent | 1 |
| excellent script movie good              | 1 |
| benedict_cumberbatch good excellent      | 1 |

- benedict\_cumberbatch
- stars
- movie
- good
- acting
- script
- excellent
- terrible

# Significance

# Joshi et al. (2010)

ngrams

II POS ngrams

III Dependency relations

|             |                                |      | Total  |       | Per So             | creen |
|-------------|--------------------------------|------|--------|-------|--------------------|-------|
|             | Features                       | Site | MAE    |       | MAE                |       |
|             |                                |      | (\$M)  | r     | (\$K)              | r     |
|             | Predict mea                    | ın   | 11.672 | _     | 6.862              | _     |
|             | Predict med                    | lian | 10.521 | _     | 6.642              | _     |
| meta        | Best                           |      | 5.983  | 0.722 | 6.540              | 0.272 |
|             |                                | _    | 8.013  | 0.743 | 6.509              | 0.222 |
|             | I                              | +    | 7.722  | 0.781 | 6.071              | 0.466 |
|             | see Tab. 3                     | В    | 7.627  | 0.793 | 6.060              | 0.411 |
| t.          |                                | _    | 8.060  | 0.743 | 6.542              | 0.233 |
| text        | $\mathbf{I} \cup \mathbf{II}$  | +    | 7.420  | 0.761 | 6.240              | 0.398 |
|             |                                | В    | 7.447  | 0.778 | 6.299              | 0.363 |
|             |                                | _    | 8.005  | 0.744 | 6.505              | 0.223 |
|             | $\mathbf{I} \cup \mathbf{III}$ | +    | 7.721  | 0.785 | 6.013              | 0.473 |
|             |                                | В    | 7.595  | 0.796 | †6.010             | 0.421 |
|             |                                | _    | 5.921  | 0.819 | 6.509              | 0.222 |
|             | I                              | +    | 5.757  | 0.810 | 6.063              | 0.470 |
| ţ           |                                | В    | 5.750  | 0.819 | 6.052              | 0.414 |
| te          |                                | _    | 5.952  | 0.818 | 6.542              | 0.233 |
| a<br>∪      | $\mathbf{I} \cup \mathbf{II}$  | +    | 5.752  | 0.800 | 6.230              | 0.400 |
| meta ∪ text |                                | В    | 5.740  | 0.819 | 6.276              | 0.358 |
| ī           |                                | _    | 5.921  | 0.819 | 6.505              | 0.223 |
|             | $\mathbf{I} \cup \mathbf{III}$ | +    | 5.738  | 0.812 | 6.003              | 0.477 |
|             |                                | В    | 5.750  | 0.819 | <sup>†</sup> 5.998 | 0.423 |

# Joshi et al. (2010)

|           | Feature                     | Weight (\$M) |
|-----------|-----------------------------|--------------|
| g         | pg                          | +0.085       |
| rating    | New York Times: adult       | -0.236       |
|           | New York Times: rate_r      | -0.364       |
| sednels   | this_series                 | +13.925      |
| dn        | LA Times: the_franchise     | +5.112       |
|           | Variety: the_sequel         | +4.224       |
| beople    | Boston Globe: will_smith    | +2.560       |
| eop       | Variety: brittany           | +1.128       |
| Ъ         | ^_producer_brian            | +0.486       |
|           | Variety: testosterone       | +1.945       |
| genre     | Ent. Weekly: comedy_for     | +1.143       |
| ge        | Variety: a_horror           | +0.595       |
|           | documentary                 | -0.037       |
|           | independent                 | -0.127       |
| t         | Boston Globe: best_parts_of | +1.462       |
| sentiment | Boston Globe: smart_enough  | +1.449       |
| ıtin      | LA Times: a_good_thing      | +1.117       |
| ser       | shame_\$                    | -0.098       |
|           | bogeyman                    | -0.689       |
| ţ         | Variety: torso              | +9.054       |
| plot      | vehicle_in                  | +5.827       |
|           | superhero_\$                | +2.020       |