
Re-use, Re-purpose, Re-package
A General Engine Products, Inc. Case Study

John F. Terris <john.terris@vftis.spx.com>

Abstract

General Engine Products, Inc. (GEP), a wholly owned subsidiary of AM General
Corporation, produces Original Equipment Manufacture (OEM) 6.5L diesel
engines, both naturally aspirated and turbo-charged, for use in military, automot-
ive, marine, and various other industrial and commercial applications. With GM's
technical support, GEP developed a highly efficient engine assembly operation
in Franklin, Ohio, to assemble and market an improved 6.5L diesel engine to
continue to satisfy the market demand. There are three main documents used by
the Franklin plant to assemble engines: Process Control Plan (PCP), Operator
Instructions, and Product Assembly Document (PAD).

These three manufacturing documents share elements, such as torque specifica-
tions, part numbers, tool numbers, textual instructions, and assembly order.
Keeping these documents up-to-date, consistent, and accurate is very difficult
because there is very little time to update all three documents and they are
maintained by two groups, in three formats, in two locations.

GEP vision is to have a system where both manufacturing and product engineers
could develop and maintain the information they are responsible for while
reducing the duplicate effort, increasing the overall quality of the information,
and minimizing publishing latency. Once all the information has been completed,
reviewed, and approved, the system would be able to deliver all three manufac-
turing documents, each with a very different presentation and formatting style,
on paper and over the Web directly to the assembly line operator at the plant.

This paper describes the steps GEP has taken to structure and develop their data
using SGML/XML to put themselves in a position where they are very close to
realizing that vision. It will also explore different techniques that can be used
when designing systems that require:

Re-Use using the EXACT same information object (image
or text) in more than one “document”

Re-Purpose extracting and/or formatting the same piece of
information in many different ways, usually pro-
ducing a different document type targeted for a
different user and/or purpose

1

Rendered by www.RenderX.com

http://www.renderx.com

Re-Package delivering multiple document types via different
media and even to different devices

1. The Study

This paper assumes some level of knowledge in Arbortext’s Adept/Epic products and Chrystal
Software’s Astoria.

1.1. General Engine Products, Inc.

General Engine Products Inc. (GEP), a wholly owned subsidiary of AM General Corporation,
produces OEM 6.5L diesel engines, both naturally aspirated and turbo-charged, for use in mil-
itary, automotive, marine, and various other industrial and commercial applications.

GEP was born out of the need to sustain the production of the 6.5L diesel engine for military
and commercial use. General Motors (GM), opting for a higher horsepower Isuzu engine for
some of its vehicle lines, chose to support the transfer of their 6.5L production knowledge and
technology to General Engine Products, Inc. With GM technical support, GEP developed a
highly efficient engine assembly operation in Franklin, Ohio, to assemble and market an improved
6.5L diesel engine to continue to satisfy the market demand. The 6.5 diesel will continue to be
the heart of the Military HUMVEE® and the commercial HUMMER® vehicle, as well as a
part of other current OEM products.

Production at the 92,000 sq. ft. Franklin, Ohio, assembly facility began in July 2000, reaching
full production capability in March 2001.

HUMVEE® is a registered trademark of AM General Corporation

HUMMER® is a registered trademark of General Motors Corporation

1.2. The Documents

As GEP began implementing the assembly operation in Franklin, Ohio, the engineering group
reviewed the documentation requirements and noticed some potential concerns. Three main
types of documentation are used at the assembly plants: Product Assembly Document, Process
Control Plan, and Operator Instructions. Each is described in the following sections.

1.2.1. Product Assembly Document (PAD)

This document, the first to be developed, is created and maintained by the product design
engineers. It contains information such as torque specifications, tool numbers, part numbers,
assembly notes, and illustrations/visual aids that support each step in the assembly process. This
is the primary communication method between the product design engineers and the manufac-
turing engineers. This document is available to the assembly line operators. However, it is dif-
ficult to control, update, and deliver to the plant floor.

2

Rendered by www.RenderX.com

http://www.renderx.com

1.2.2. Process Control Plan (PCP)

This document is developed and maintained by manufacturing engineers and contains information
such as torque specifications, tool numbers, part numbers, quality checks, the assembly order,
and brief textual instructions. This document serves as theInternational Standards Organization
(ISO) control document, which means any changes to the manufacturing process MUST be
reflected in this document or GEP could lose their ISO certification.

1.2.3. Operator Instructions

This document, usually developed after the PCP is complete, is also created and maintained by
the manufacturing engineers. It contains detailed technical instructions for each step in the
assembly process, including torque specifications, tool numbers, and part numbers. This document
is used for the initial training of the assembly line operators. In reality, it is rarely used and
usually the last document to be updated, if it is updated at all.

1.3. Opportunities

It should be apparent that much of the information contained in these three manufacturing
documents is the same, specifically the torque specifications, part numbers, tool numbers, tex-
tual instructions, and assembly order. Keeping these three documents up-to-date, consistent,
and accurate is very difficult because

a. timing is critical in a manufacturing environment, which means there is very little time to
update all three documents, and

b. the documents are maintained by two different groups, in three different formats, and in
two different locations.

Keep in mind that it is very common during the manufacturing cycle of a product for part
numbers or tool numbers to change or new special tools to be developed to enhance a process.
Even the assembly process itself may change if the manufacturing engineers feel the changes
would increase quality and/or make the process more efficient. In addition to those opportunities,
GEP felt that the format of the PAD was a problem for two reasons:

• It was not easy to find the desired information because the PAD were organized by Universal
Product Codes (UPC), which typically means nothing to the line operators.

• Many of the assembly procedures for different engines were identical, with the exception
of part numbers and, in some cases, tools and torque specifications. Because the PAD’s
put all the variants in one document, the line operator had the extra burden of identifying
the appropriate information for the engine they were assembling.

Other factors that caused GEP to revisit the assembly documentation process were:

• Cycle Time Increase – The assembly plant is divided into three lines: base engine, fuel,
and trim. Each line is divided into stations. One or more line operators work at each station

3

Rendered by www.RenderX.com

http://www.renderx.com

and have one or more sequences or steps to perform. “Cycle Time” is defined as the duration
that the engine is at any given station. In other words, it is how long the line operators have
to do their job. Typically, cycle times in assembly plants are one or two minutes, maybe
even less. In that case, each line operator would have only a few tasks to complete, such
as “select correct seat and put it in the back of the car”. The Franklin plant was going to
run at about a 10-minute cycle time. Each station would have many tasks to remember and
to complete within those 10 minutes. Getting the appropriate assembly instructions quickly
would be imperative.

• Low Volume, High Number of Products/Variants – GEP production requirements fall into
a low volume, high variance category. Each year, GEP was planning to offer 20 or more
different engine type/variant combinations. To the line operator, this meant that he or she
might build a particular engine only once a week and work on four to five different engines
in a day. It would be very rare for the exact same engine to come down the line twice in a
row.

With all of these opportunities and factors, it was obvious to GEP that a new process of creating,
publishing, and distributing manufacturing documentation was needed.

1.4. The GEP Vision

GEP vision is to have a system where both manufacturing and product engineers could develop
and maintain the information they are responsible for while reducing the duplicate effort,
increasing the overall quality of the information, and minimizing publishing latency. Once all
the information has been completed, reviewed, and approved, the system would be able to
deliver all three manufacturing documents, each with a very different presentation and formatting
style, on paper and over the Web directly to the assembly line operator at the plant.

The paper delivery would be customized for each engine and organized to match the manufac-
turing process (engine type, line, station, and steps). The electronic delivery would work in
conjunction with the barcode on the engine manifest. As the engine entered the station, the
barcode would be scanned. Based on the engine type and the line/station where it was scanned,
the correct information would be assembled and delivered to the line operator. The delivery
platform would consist of a wireless network in the plant where each line operator would have
his or her own handheld or hands-free device to display the information.

The system would also feed the future GEP Service Information Publishing System as well as
support a “feedback” or “correction” system for documentation errors found by the end user.

This vision is certainly not revolutionary in the publishing and/or SGML/XML industry.
However, in this author’s opinion, it is not very widespread in the manufacturing industry. The
vision is certainly very revolutionary to GEP and automotive manufacturing.

4

Rendered by www.RenderX.com

http://www.renderx.com

2. GPAS

2.1. Analysis

Once GEP shared their vision with Valley Forge, we entered into a very detailed “information
analysis”. Many people in the industry call this document analysis, but I like to call it information
analysis because we do not limit the analysis to just documents or publication types. We look
at processes, uses of the data, relationships in the data, sources from which the data is developed,
and so on. It was obvious during the definition phase of the project that 80 percent of the
information elements necessary to produce the current three publication types (PCP, PAD,
Operator Instructions) existed in the PAD. For this reason, and the fact that the GEP champion
of the project was responsible for PAD, we decided to focus on the PAD and let the other pub-
lication types fall out later. During the information analysis phase, we identified all the
information elements and processes required to meet the following objectives:

• Allow the line operator to successfully perform his or her job.

• Allow all end users to locate the information.

• Allow all GEP administrators to effectively manage variants and revisions.

• Allow continuous, easy, and seamless updates during the life of a PAD.

• Allow information created once to be used many times.

• Allow all GEP PAD writers to locate graphics during development.

• Allow all GEP PAD writers to copy an existing PAD to assist in making other PAD.

2.2. System Overview

The result is a system called GPAS (General Engine Products PAD Authoring System). GPAS
was developed using customized off-the-shelf software, as shown in Figure 1

5

Rendered by www.RenderX.com

http://www.renderx.com

Figure 1. GPAS System Overview

In addition to the base authoring and development system, an entire composition (publishing)
module and Web-based viewer were created.

2.3. Authoring Environment and Infobase (Repository)

Once the Document Type Definition (DTD) was developed to support the information element
requirements, we chose to implement the authoring environment using Adept Editor/Publisher
9.0.1 on top of Astoria 3.4 (currently being upgraded to 3.6). There were two main reasons this
solution was chosen:

• Valley Forge has implemented two very successful Adept/Astoria solutions for other cus-
tomers in the past (Micro Compact Car (MCC) and Saturn)

• Many of the GPAS requirements were similar to MCC and Saturn, which allowed us to
use existing code as a base.

Adept uses Formatting Output Specification Instance (FOSI's) and Adept Command Language
(ACL) scripts to customize the authoring environment. In addition to the required DTD custom-
izations, a few “hooks” were put into the environment to integrate the repository and authoring
system a little closer. Some modifications were also made to the Adept/Astoria bridge. Below
are some of the “hooks”:

• When the writer inserts a tag that represents a relational or “re-use” object, they are auto-
matically presented with the Astoria “Select Object” dialog. This is the dialog that allows
users to make data relational (reuse objects).

• A custom ‘Save’ button prompts users to enter extra revision information and assign a
version status (Draft or Release)

• Hooks into the Section 2.4 and the Section 2.5 allow the writers to do all their work from
a central interface.

6

Rendered by www.RenderX.com

http://www.renderx.com

The system also supports three different views of the data. Each one represents a different
publication type. Writers can toggle between multiple views and publication types in the same
SGML instance and authoring session, as shown in Figure 2 and Figure 3.

Figure 2. PAD Screen FOSI View

7

Rendered by www.RenderX.com

http://www.renderx.com

Figure 3. Operator Instructions Screen FOSI View

2.4. Document Manager

The document manager is a C++/Astoria Software Development Kit (SDK) SDK application
designed to provide a simpler user interface then the Astoria Navigator. By simpler, I mean two
things. First, it exposes only the features that the users need. Second, it automates and extends
some features. Below is a list of some of the features the Document Manager provides:

• Copy/Move – Allows users to copy objects or move them to different folders in the
repository. Users can chose between three types of copies: Normal, Relational, and Unique.
(Figure 4)

• Create Child Folders – Allows users to create folders to help organize their data.

• Search/Replace – Allows users to perform global search/replace for part numbers while
at the same time assigning a new version to each object affected. The GPAS system currently
does not interface with the GEP parts database so this feature was necessary. Since tool
names and numbers are stored as separate reuse objects, the writer can update the tool
object and every place it is used will also be updated.

8

Rendered by www.RenderX.com

http://www.renderx.com

• Show reuse – Allows users to select an object and see each place that object is used. It also
marks the instance that is the original object, as shown in Figure 5.

Figure 4. Copy/Move Screen

9

Rendered by www.RenderX.com

http://www.renderx.com

Figure 5. Show Reuse Results

2.5. Graphics Manager

The graphics manager is a C++/Astoria SDK application that facilitates the submission of
graphics into the repository. One of the requirements was that the graphics, once put into the
repository, would be easy to locate. This was accomplished in three ways:

1. If the user knows which PAD used the image they are looking for, a simple view of that
PAD would indicate the name of the graphic used.

2. An “intelligent” naming schema was developed. The first two characters represent the
OEM, the third represents the illustration category, such as engine block or intake manifold,
and the remaining numbers are a sequential four-digit number.

3. Metadata is assigned to each image for searching. Figure 6 shows the sample metadata
that is captured.

10

Rendered by www.RenderX.com

http://www.renderx.com

Figure 6. Graphics Manager Metadata Input Screen

The graphics manager prompts the user to select the illustration to be submitted into the repos-
itory, ensures the filename is correct, gives the user a preview of the image, prompts the user
for the metadata, then automatically submits the illustration into the correct location in the
repository.

2.6. Publisher

The publisher or composition engine is able to produce paper or Portable Document Format
(PDF) output in three very different flavors. This is all done by a combination of FOSI's, ACL,
and C++ code.

Figure 7. Sample PAD Page

11

Rendered by www.RenderX.com

http://www.renderx.com

Figure 8. Sample Operator Instructions Page

12

Rendered by www.RenderX.com

http://www.renderx.com

Figure 9. Sample PCP Worksheet Page

2.7. Web-Based Viewer

The GPAS Web-Based viewer is built using the Valley Forge Web Application Framework
(VFWAF). Index information is stored in Oracle or SQL Server, while the content is pure XML.
Using Java Server Pages (JSP) and XSL/XSLT, desired information is delivered to the client
in Hypertext Markup Language (HTML). The viewer supports many navigation, search,
presentation and user configuration features. Figure 10 is a sample screen shot that represents
the typical tree navigation view.

13

Rendered by www.RenderX.com

http://www.renderx.com

Figure 10. GPAS Viewer Tree View

The left side is the navigation portion of the viewer and can be hidden by the user if desired.
The right side is the content portion of the viewer that displays the content that represents the
selected object in the navigation pane. The hierarchy of the PAD can be seen in Figure 10: PAD
(e.g., OHM), line (e.g., base), station (e.g., Station 10), and sequence or step (e.g., Install the
Rear Gallery Plugs). Along the bottom of the viewer, you will notice the following:

• User Name – Identifies the user who is logged into the system. Each user is allowed to
change user-specific settings such as default layout, user interface language, and content
language. User-specific notes and bookmarks are also supported.

• PAD – Identifies the current PAD represented in the content pane.

• Note and Set Bookmark – Allows users to set content-specific notes and bookmarks.

• Print – Generates a printer-friendly version using a special XSL.

• Layout – Allows the user to switch the layout or presentation style. The current layouts
supported are Inline view, similar to the PAD format; Operator Instructions view (Figure
11); Text Only, for low bandwidth (Figure 12); and Expert view, which shows only the
image and specification table (Figure 13).

14

Rendered by www.RenderX.com

http://www.renderx.com

Figure 11. Operator Instructions View

Figure 12. Text Only View

15

Rendered by www.RenderX.com

http://www.renderx.com

Figure 13. Expert View

Currently the viewer supports three types of searches. The first is a text search. Since the data
is stored in XML, users can search for specific text located in document titles only or anywhere
in the documents. The second is a part number search. This is shown in Figure 14.

Figure 14. Part Number Search

16

Rendered by www.RenderX.com

http://www.renderx.com

The results of each search are presented to the user in the navigation pane, as show in Figure
15.

Figure 15. Search Results Page

The last search type is by PAD, line, and station. This is the search mechanism that allows the
barcode reader to deliver context-specific data to the user based on the manifest.

At this time, the viewer has not been deployed to the plant floor. The final delivery system has
not been defined. However, the GEP PAD administration team has found the viewer to be very
helpful. The next section takes a look at Section 3.2, Section 3.3, and Section 3.4 in more detail
and describes some of the implementation strategies used in GPAS.

3. Re-use, Re-purpose, Re-package Under the Hood

3.1. Overview

Before we dive into these topics, we need to define what is meant by these terms. Re-use means
to use the EXACT same information object (image or text) in more than one “document”, view,
or content object. Re-purpose means to extract or format the same piece of information in many
different ways, usually producing a different document type, view, or presentation. Re-package
means to deliver each document type, view, or presentation via different media and/or delivery
systems. Figure 16 gives an overview of how these three concepts relate to GPAS.

17

Rendered by www.RenderX.com

http://www.renderx.com

Figure 16. R3 Overview in GPAS

3.2. Re-Use

Re-use has been around for many years. Re-use can be implemented simply as external image
references or in a more complex manner such as Object Oriented database repositories, where
each piece of text is stored only once. A common term used in conjunction with re-use is gran-
ularity. Granularity refers to levels in the SGML/XML hierarchy. The GPAS DTD supports the
following hierarchical structure:

<pad>
 <line>
 <station>
 <sequence>
 </sequence>
 </station>
 </line>
</pad>

This represents four levels of granularity; pad, line, station, and sequence. Assuming images
and other elements are allowed somewhere in the <sequence> level, one could say there were
five levels. The important thing to remember with re-use is the lower the level of granularity
you support for reuse, the more expensive it is in terms of support, system maintenance, repos-
itory strength, and in most cases performance. However, the more re-use you can build into
your system, the more savings you can realize in the costs of translation, content development,
content maintenance (which usually takes a much higher skilled content developer), and in
reduced content errors. The key is to find the right trade-off and not to over-engineer the
repository.

18

Rendered by www.RenderX.com

http://www.renderx.com

GPAS allows re-use at the station, sequence (step), tool, and image level. This is the reason
there are three different copy features on the document manager. Let’s assume the following
PAD exists in the repository:

<pad>YAP
 <line>base
 <station id=st1>content
 <sequence id=sq1>content
 <sequence id=sq2>content
 </station>
 <station id=st2>content
 <sequence idref=sq1>pointer to sq1
 <sequence id=sq3>content
 </station>
 </line>
</pad>

Images and tools are always re-use objects so no matter what type of copy is performed, they
will always remain re-use objects.

Table 1.
Results of a Unique Copy Results of a Relational Copy Results of a Normal Copy
<pad>YAP2
 <line>base
 <station id=st3>con-
tent
 <sequence id=sq4>con-
tent
 <sequence id=sq5>con-
tent
 </station>
 <station id=st4>con-
tent
 <sequence id=sq6>con-
tent
 <sequence id=sq7>con-
tent
 </station>
 </line>
</pad>

<pad>YAP3
 <line>base
 <station
refid=st1>pointer to st1
 </station>
 <station
idref=st2>pointer to st2
 </station>
 </line>
</pad>

<pad>YAP4
 <line>base
 <station id=st3>con-
tent
 <sequence
refid=sq1>pointer to sq1
 <sequence
refid=sq2>pointer to sq2
 </station>
 <station id=st4>con-
tent
 <sequence
refid=sq1>pointer to sq1
 <sequence
refid=sq3>pointer to sq3
 </station>
 </line>
</pad>

Remember, another form of re-use is reusing something as a template. Who out there develops
code, proposals, procedures, etc. starting with a blank page?

3.3. Re-Purpose

Re-purposing is just starting to become more then simple format changes. One of the major
benefits of SGML and XML is the separation of content and presentation/format. A few years
ago, as long as a publishing system could compose the same instance in at least two ways (e.g.
single column and two-column) we said the system supported re-purposing. Now the re-purpose
standard is higher. The challenge is to develop content management systems and standards that
enable content developers to create information for many purposes, not formats, at the same
time. The good systems and content development standards do not even know how the content

19

Rendered by www.RenderX.com

http://www.renderx.com

will be used. It might appear in a marketing brochure, a service procedure, an installation guide,
a training manual, an assembly procedure, and an owner’s manual or any combination thereof.

GPAS currently supports the following three publication types: PAD, Operator Instructions,
and Process Control Worksheets. The content development process and DTD were designed to
support the following additional publications:

• Service Manuals

• Bill of Materials (parts lists)

• Tool Handbooks

• Torque Specification Sheets

3.4. Re-Package

XML and its family of standards have really enabled this feature. Typical target media include
paper, Web Server (electronic), and CD-ROM/DVD. Platforms are becoming more diverse and,
in some cases, impact the composition engine very much. They include desktops, laptops,
PDA’s, Palm PCs, tablet computers and other handheld devices, hands-free devices, and even
phones. The way you present information on a 21-inch desktop with unlimited bandwidth is
very different from the way you present data on a phone or PDA.

The GPAS system can deliver information in paper format, PDF, and via the GPAS Web
viewer. The viewer is able to detect device-specific information, which allows it to customize
the view based on the browser version, Operating System, and display context.

3.5. Implementation Techniques

The following are a few implementation techniques that can be used to enable re-use, re-purpos-
ing, and/or re-packaging in your system. Some of these techniques were used in GPAS.

3.5.1. White Text

This technique, in its literal form, displays or prints the text using the font color that matches
the background. By doing this, the text is hidden. This works great for tests or forms. For tests
by displaying both the questions and answers in the default color, you have yourself an
instructor’s answer key. Display the questions in the default color and answers in the background
color and you have the test itself. Depending on what type of information you design into the
form, you could make a blank form, a sample form, or even a training guide from the same
instance. This technique does not work well when pagination is dependent on the existence of
text.

20

Rendered by www.RenderX.com

http://www.renderx.com

3.5.2. Profiling

In profiling, the style and even content of a displayed document is changed based on the value
of elements and/or attributes and the profile selected. This technique can be applied to both
SGML/XML elements and attributes, or to the combination of the two.

In the element implementation, the composition engine is developed to use a subset of the tags
depending on the purpose. Entire constructs or hierarchical levels may be included or excluded.
Elements that are used may also require different processing depending on the purpose.

In the attribute implementation, usually one common attribute is added to every element. The
value of the attribute determines how and when the content should be used. Profiling this way
can be used to identify the following:

• Effectivity – What specific configuration (feature set, language, market) must be satisfied
before this content applies.

• Delivery Platform – There are many things you can do in an electronic presentation that
you cannot do in paper. There are also many things you can do with computer-based dia-
gnostic equipment that you may not be able to do manually.

• Purpose – If the purposes (publication types) are finite and defined, this may be the most
effective way of denoting what content goes with what.

• User skill or knowledge level – The information you give users with 20 years of experience
may be different from what you give beginners.

3.5.3. Late-Link Binding

I have found this technique to be the single most powerful technique I have ever used. I first
implemented it in 1991 and have used it ever since. The easiest way to describe it is with a very
common example: Domain Name Server (DNS). DNS resolution is one implementation of late-
link binding. When you enter the Universal Resource Locator (URL) http://www.vftis.com,
somewhere that URL is mapped at run-time to an IP address. As long as the DNS mapping
between URL name and number are up-to-date, the IP address associated with http://www.vft-
is.com can be changed with no impact on the end user.

With late-link binding, there can be many levels of indirection. The following table illustrates
this idea.

Table 2.
Level of Indirec-
tion

1 2 3 4

IP address identi-
fies a physical
machine

URL Value in your
local host table

Query or search
on Yahoo

21

Rendered by www.RenderX.com

http://www.vftis.com
http://www.vftis.com
http://www.vftis.com
http://www.renderx.com

With each level of indirection you risk being directed to multiple destinations. In some cases
that is OK, but in the ideal world you design the system and content to resolve to exactly where
the user wants to go.

What is so special about late-link binding? With it you are able to maximize re-use and re-pur-
posing because the content does not have to be re-created just because an image is modified or
the external reference is different due to the content’s context. Lesson numbers, section numbers,
steps and items in ordered lists do not have to be rewritten just because they are first in one
context and last in another. Yes, auto-number features in your composition engines are another
form of late-link binding.

One late-link binding technique involves implementing a “smart” referencing ID schema. I
sometimes call this a “promise ID”. This technique facilitates late-link binding, and also allows
content that is dependent on other content to be developed concurrently, including the inclusion
of references to content that is not yet developed. By having the “promise” that the content you
need is at a predefined address, you can include your reference even if it has not been created
yet. Here are some tips in developing such a schema:

• Define the level of granularity to be addressed up front.

• If possible, develop a master outline that contains all possible hierarchical nodes or branches.

• Assign unique IDs to each value in the hierarchy.

• Create the referencing ID by concatenating the ID's from each level in the hierarchy.

• Find some way to separate or denote each level of the hierarchy within the schema. This
will pay big dividends later in case a referencing error handler is necessary. I will let the
reader think about that.

The ultimate late-link binding schema in my mind is one that implements HyTime addressing
schemas such as queryloc. In this implementation, instead of referencing graphic IDs, writers
encode queries based on some standard such as XPointer, XQL, or SQL, or some custom lan-
guage better suited for the writer. As with all late-link binding implementations, the late-link
binding engine interprets the addressing schema, applies current context information, and
resolves to the correct information object.

3.6. When in the Process

Re-Use, Re-Purpose, and Re-Package techniques are performed at three different points in the
delivery cycle. First there are Request-Time Transformations. These transformations are done
on the server side only and usually require some sort of XSLT, COM, Java, Perl, Omnimark,
or ASP/JSP process to be done prior to delivering content to the user. The results of the trans-
formations usually depend on one or more factors such as user preferences (skill level, knowledge
level, language, etc.), user selections, current context, and client browser. If currency of the
data is the most important factor and your system supports a very high level of reuse, repurpose,
and repackaging, your delivery system will need to implement these transformations.

22

Rendered by www.RenderX.com

http://www.renderx.com

Next there are Run-Time Transformations. These transformations are limited to presentation
styles and some late-link binding referencing resolution. They do not provide the power of the
Request-Time transformations but are much faster. The transformations can be done by server-
and/or client-side XSL, CSS, or DHTML. They can also be implemented by custom browser
extensions using ActiveX, Java, COM, etc. When people describe solution that support “style-
sheet switching”, they are typically describing these type of transformations.

Finally there are Pre-Delivery Transformations. This implementation provides the fastest solution
possible. However, it requires that all possible variants of the data be defined prior to delivery.
Because each of these variants is prepared in advance as a separate file, this method requires
more space on the server than the other methods. Most often, you implement Request-Time
transformations for a defined set of variants prior to publishing on the delivery system.

3.7. Emerging “Enabling” Technologies

As GEP vision of reuse, re-purposing, and re-packaging is developed and implemented, new
technologies also mature and can be utilized. Some of these are described below.

3.7.1. SVG

SVG brings XML to vector graphics. The fact that SVG is expressed in XML means that SVG
graphics can be just as dynamic as XML text. Also, the fact that it supports scripting increases
the flexibility.

3.7.2. XMP

XMP has been developed by Adobe Inc. to provide Adobe applications and partners with a
common, Standards-based metadata framework that standardizes the creation, processing and
interchange of document metadata. The XMP software development kit allows programmers
to integrate XML metadata packets within application files. These packets can be used in
metadata exchange and resource discovery, creating opportunities for digital rights management,
job processing, workflow automation, and other areas of production where metadata is critical.

3.8. XSL-FO

XSL-FO is an XML-based markup language that lets you specify the pagination, layout, and
styling information that will be applied to your content. XSL-FO markup is complex and verbose,
and there are currently few tools to process it effectively. For these reasons, XML-FO has been
slow to catch on. Will we ever get to the point where one “style-sheet” will really support
multiple output formats? Will XSL-FO be the technology that gets us there?

23

Rendered by www.RenderX.com

http://www.renderx.com

4. Conclusion

Analysis of GEP business needs helped define a more efficient documentation system, where
information could be written once the re-used for multiple engines, re-purposed in multiple
manual types, and re-packed for several delivery platforms. Applying a known technology,
SGML/XML, in an existing industry has been fruitful. As new technologies appear, their
applicability to the problem of document distribution can be evaluated.

GEP vision is to have a system where both manufacturing and product engineers could develop
and maintain the information they are responsible for while reducing the duplicate effort,
increasing the overall quality of the information, and minimizing publishing latency. The tech-
niques outlined in this paper are helping GEP get closer to this vision.

Acknowledgements

First of all I would like to thank Jeff Dowell for his never-ending support and confidence in
Valley Forge and me. Without that, this project would not be where it is today. I would also
like to thank my mentor Denise Feil who taught me everything I know about SGML/XML and
publishing. I would also like to thank my colleague Janet Erickson. Without her endless tech-
nical and non-technical edits, this paper would not be fit for publishing.

Finally, I want to especially thank my family for all their support and love they have given me
over the years. Tracy, Austin, and Kyleigh, I love you.

Glossary

ACL Adept Command Language

DNS Domain Name Server

DTD Document Type Definition

FOSI's Formatting Output Specification Instance

GEP General Engine Products, Inc.

GM General Motors

GPAS GEP PAD Authoring System

HTML Hypertext Markup Language

ISO International Standards Organization

JSP Java Server Pages

MCC Micro Compact Car

24

Rendered by www.RenderX.com

http://www.renderx.com

OEM Original Equipment Manufacture

PAD Product Assembly Document

PCP Process Control Plan

PDF Portable Document Format

SDK Software Development Kit

SVG Scalable Vector Graphics

UPC Universal Product Codes

URL Universal Resource Locator

VFWAF Valley Forge Web Application Framework

XMP Extensible Metadata Platform

XSL-FO XSL Formatting Objects

Biography

John F. Terris
IT Program Manager, Allen Park
Valley Forge Technical Information Services
Allen Park
U.S.A.
Email: john.terris@vftis.spx.com

John F. Terris graduated from Eastern Michigan University in 1991 with a B.S. in Computer
Science. After graduation, he was employed by Ford Motor Company and worked for the
Technical Publication Systems group. At Ford, he was involved in the development of many
DTD's, SGML conversion projects and was the Project Manager of the Ford of Europe
Technical Information System. He was also active in the J2008 DTD committee and was a
speaker at the 1994 CALS EXPO.

Terris is currently the Program Manager of Information Technologies for SPX Valley Forge
Technical Information Services in the Allen Park office, where he is able to continue his
passion for developing SGML/XML Authoring, Publishing and Delivery systems for clients
such as Ford Motor Company Technical Training, General Engine Products, Harley-
Davidson, Hyundai, and others. His proudest accomplishments are his wonderful marriage
of 10 years to his lovely wife Tracy and his two children Austin and Kyleigh.

25

Rendered by www.RenderX.com

http://www.renderx.com

	 Re-use, Re-purpose, Re-package
	1 The Study
	1.1 General Engine Products, Inc.
	1.2 The Documents
	1.2.1 Product Assembly Document (PAD)
	1.2.2 Process Control Plan (PCP)
	1.2.3 Operator Instructions

	1.3 Opportunities
	1.4 The GEP Vision

	2 GPAS
	2.1 Analysis
	2.2 System Overview
	2.3 Authoring Environment and Infobase (Repository)
	2.4 Document Manager
	2.5 Graphics Manager
	2.6 Publisher
	2.7 Web-Based Viewer

	3 Re-use, Re-purpose, Re-package Under the Hood
	3.1 Overview
	3.2 Re-Use
	3.3 Re-Purpose
	3.4 Re-Package
	3.5 Implementation Techniques
	3.5.1 White Text
	3.5.2 Profiling
	3.5.3 Late-Link Binding

	3.6 When in the Process
	3.7 Emerging “Enabling” Technologies
	3.7.1 SVG
	3.7.2 XMP

	3.8 XSL-FO

	4 Conclusion
	 Glossary

