

Introducing Enterprise Integration
Modeling

A Key Component to Integration Fitness

Contivo, Inc.
640A Clyde Court
Mountain View, CA 94043
United States of America
(650) 426-4000
http://www.contivo.com

© Copyright 2001 Contivo, Inc. All rights reserved. The information
contained herein has been obtained from sources believed to be reliable.
Contivo disclaims all warranties as to the accuracy, completeness or adequacy
of such information. Contivo has no liability for errors, omissions, or
inadequacies in this document.

EIM_whitepaper.doc
Publication Date: August 27, 2001

Introducing Enterprise Integration Modeling i

Table of Contents

1. Executive Summary...1
2. Getting Integration off the Couch...1

The Old Lady Who Lived in a Shoe2
3. XML: A Standard by Any Other Name..4
4. Case in Point: Data Transformation ..5

Enterprise Integration Modeling ...6
Applying Computer Power...6
Single Point of Control ...7
Linear Systems, Linear Effort ..7
Extracting and Encapsulating Knowledge...8

5. The Benefits of Integration Fitness ..8
Benefits to the Business ..8
Benefits to IT..9

6. Summary..9

Introducing Enterprise Integration Modeling 1

1. Executive Summary

Integration is now a competitive necessity for enterprises. Whether spanning
across internal applications or connecting with critical supply-chain partners,
integration project architects face the problem of getting business data in
disparate systems to communicate seamlessly together.

The solution today is to manually match and code the way each interface
should talk to its corresponding interface in another system. But this
approach has encountered two enormous problems: with each additional
partner or application to integrate, the number of links to create increases
exponentially. Furthermore, the moment one interface or standard changes,
the original code linking them must be rewritten. This constant “reinvention
of the wheel” is unscalable, dragging out deployment times and
simultaneously incurring enormous and recurring labor costs.

Enterprise Integration Modeling (EIM) represents a core component to
integration architecture. Rather than approach each new partner or
application as a discrete integration project with its own set of data
mappings, an enterprise can leverage the power of the computer for data
modeling. This has significant implications on the behavior of the system:

• Repetitive, labor-intensive mapping tasks and code generation shift
from manual efforts to computers

• Changes flow from a single source throughout the enterprise without
disrupting individual systems

• Additional applications or trading partners trigger incremental, rather
than Herculean, efforts

• Knowledge previously locked within individual personnel,
departments, and consultants can be extracted and reused

2. Getting Integration off the Couch

Integration is like fitness—by all expert accounts, long-term health and
survivability rely on achieving fitness. But actually getting there isn’t all that
easy. Not only do the paths to fitness vary from person to person, given
individual limitations and preferences, but implementing the plan often
involves far more effort than previously imagined. Getting up at 05:00 every
morning for a three-mile run sounds a lot easier than actually doing it.

Likewise, every company’s integration needs are different. While the high-
level business goal of integration is to make and/or save money by sharing
information—on customers, products, assets, employees, and suppliers—
the existing applications, new incoming systems, and integration philosophies
can differ considerably from company to company. However, most
integration projects do share a common problem: the actual execution of the

Introducing Enterprise Integration Modeling 2

integration plan rarely proceeds as anticipated, leading to long delays, inflated
expenditures, and short tempers.

Simon Yates of Forrester attributes this difficulty to three causes: 1) most
companies have legacy systems that were never designed to communicate
with other systems; 2) even packaged applications, such as SAP, have been
customized. As such, one-size-fits-all-SAP-customers solutions do not work;
and 3) standards, such as the various flavors of XML, have yet to gain wide
acceptance.1

Furthermore, the way information technology (IT) systems have been
developed over time increases the difficulty of functional integration. John
Bermudez of AMR Research writes, “Frequently, the [enterprise application
integration strategy] approach has been to create integration code on
demand, leaving IT with a mass of classic spaghetti code that is extremely
expensive to maintain.”2

Even though enterprises may have adopted a uniform architecture for
integration middleware, the code required to implement the process of
transforming data still suffers from the same “spaghetti code” syndrome.
As the enterprise grows, individual silos in different departments continue to
develop their own characteristics, the knowledge of which is captured only in
the minds of the individuals who developed it. Extracting this information
and configuring each silo for sharing while maintaining the functionality of
the system is much like tying shoelaces while running a six-minute mile.

As a result, integration remains an extremely resource-intensive process—
which means that it comprises large swaths of IT budgets. Purchasing the
integration software is a relatively small part of the total integration budget.
The bulk of spending goes towards consulting services—the legions of
people who plan, program, and assemble integration systems. According to a
Forrester survey, 64 percent of companies spend between 60 and 80 percent
of their integration budget on consulting services alone.3 Most of these
consulting services go towards programming the infrastructure that will
connect and carry data throughout the enterprise.

That integration is so tough is hardly a surprise. What, then, is causing such
persistent integration headaches? The answer is rooted in The Exponential
Curve.

The Old Lady Who Lived in a Shoe . . .
The sheer number of systems to integrate—from the home-grown order-
entry system to the occasional supply-chain contact—is a key obstacle to
achieving integration fitness. Yankee Group analyst Jon Derome writes, “In
other words, it is not simply about integrating applications; it has rather
become an issue of integrating the extended enterprise and in some cases

Introducing Enterprise Integration Modeling 3

large value-chain communities. This approach is a definitive change from the
previous era of integration products, which were written to allow customers
to link any two applications together.”4

Not only will enterprises continue to deal with the addition of tactically-
driven, single-purpose systems, but also with external partners, each of
whom may require a different depth of integration. As such, an integration
architect can clearly see the looming problem: if all these systems must be
connected, the addition of even one single system will result in exponentially
more connections to make.

This “exponential curve problem” is dawning on the enterprise software
market. Amy Hedrick of AMR Research describes the problem:

“Here’s an example of how the math might go:
• Two applications, one connection. Hey, maintaining one point-to-

point solution is easy.
• Three applications, three connections, That’s okay.
• 5 applications, 10 connections. Two new applications spawned

seven new connections. Are the connections coded in the same
language? How well are they documented so that we can change
them later? Do we need to add programming resources? Can we
still do this?

Alas, these connections are seldom static, for as standards processes,
applications, trading partners and programmers change so too must the
connections. IT managers who expect the connections problem to settle
down and/or go away are simply not being realistic.”5

The following two diagrams further illustrate.

Introducing Enterprise Integration Modeling 4

The lack of reusability contributes to the steepness of the exponential curve.
A META Group report notes, “A major drawback with implementations of
RosettaNet Partner Interface Processes (PIPs—and indeed with IEI [inter-
enterprise integration] solutions in general) is that process integration needs
to be implemented repeatedly for each new relationship.”6 Code is written
specifically to link two interfaces with little regard for how it can be leveraged
in subsequent, similar situations. Moreover, programmers may have their
own ways of writing code, making it difficult for another programmer to alter
or repurpose it.

Second, the exponential curve problem worsens when factoring in
maintenance. For example, when a field name changes, all existing maps
referencing that field must be manually adjusted, if indeed the code can be
understood by someone other than the original author. Or on an even
broader scale, an upgrade of a standard, for example from xCBL 2.0 to xCBL
3.0, represents significant rework of existing maps and potentially crippling
downtime.

3. XML: A Standard by Any Other Name

It was difficult for the industry to see the exponential curve two years ago.
As with any shift in IT philosophy, the theory was initially sound and
beautifully simple: adopt a message-based integration architecture, install
packaged applications, and somehow, all will be seamless. But packaged

Introducing Enterprise Integration Modeling 5

applications, such as SAP, rarely avoided customization, since the needs of a
financial services firm, for instance, differs greatly from an oil and gas firm.
This created the need to extract the information into some sort of common
format.

This “common format” arose in the form of eXtensible Markup Language
(XML), made viable by the adoption of the Internet as an enterprise-level
transport layer. With its ability to separate data from the processes that
surround it—in other words, make data meaningful within a certain
context—XML represented an incredibly flexible way to share information
across any system. As a result, XML has taken the integration industry by
storm with its promise of lower-cost implementation, adaptability, and
simplicity. Widely touted as a replacement for Electronic Data Interchange
(EDI), XML promised to revolutionize enterprise-level e-commerce.

However, the same characteristics that broaden XML’s appeal have
contributed to a proliferation of non-interchangeable XML dialects, built for
specific verticals or particular trading communities. John Edwards writes in
Line56, “Whereas a handful of EDI iterations exists, there are at least 500
XML specifications, ranging from Trading Partner Agreement Markup
Language (tpaML), for the exchange of business contracts, to XForms,
which governs how Web designers create forms that ask for your name,
credit card number, clothing measurements, and other personal
information.”7 As a result, trading partners within the same verticals may
select different versions of XML, essentially throwing the integration
problem back to square one.

4. Case in Point: Data Transformation

As long as integration remained manageable by ad hoc solutions, the
exponential curve didn’t emerge as a big problem. But with integration’s
increasingly strategic role in carrying out business imperatives, and the
growing scope attached to the definition of integration, the importance of a
scalable integration architecture intensifies.

Take data transformation, which is the process of converting the data within
one document type (e.g. a purchase order in EDI) to another data format
(e.g. ebXML). Traditionally, data transformation has been viewed as a line
item task on a system integrator’s statement of work. Because of the
variability intrinsic in disparate systems, the idea of a software solution to
data transformation never materialized.

An unglamorous task even in the best of times, direct programming costs
associated with data transformation can constitute 20 to 30 percent of the
direct implementation cost8, not including maintenance and upgrades. Add

Introducing Enterprise Integration Modeling 6

to that a dependence on human-intensive analysis, and the cost can easily
reach 50 to 70 percent of the direct implementation cost.

First, business analysts document the differences in meaning between, say, a
PIP3A4 purchase order field, “ShipToAddress” and a legacy system
“ShipAdd1.” This requires significant business knowledge of what the fields
actually meani. Business analysts enter these relationships into a spreadsheet,
such as Excel, then send the requirements to the computer programmers.
Next, programmers then manually write the code to describe how these
relationships should function in a run-time environment. This heavy
dependence on individual knowledge (in the case of the business analyst) and
custom code (in the case of the programmer) makes any sort of reusable
solution an unlikely proposition.

Enterprise Integration Modeling
In response, Contivo has introduced a new approach for integration design-
time called Enterprise Integration Modeling (EIM). EIM addresses the
exponential curve problem through the use of modeling. It forms the
foundation of a scalable data transformation and management solution,
drastically reduces implementation times, and extracts and reuses knowledge
currently confined in individual heads and systems.

A model is like a picture in that it represents something that can be expressed
in many different ways. For example, a picture of a dog can elicit the word
perro in Mexico, hund in Germany, and in China. Despite these different
expressions, the meaning of the picture remains the same and can be reused
to elicit a variety of words in different languages. Likewise, once a model of
a particular SAP IDoc has been created, it can be deployed over and over
again—as either a source or target interface—with minimal incremental
effort.

EIM leads to the creation of an enterprise vocabulary, much like a thesaurus,
which contains the definitions of significant data elements created during
modeling. When used to define integration mappings, the enterprise
vocabulary eliminates the combinational expansion in the number of maps
necessary to integrate multiple applications. This leads to several changes in
the behavior of the integration ecosystem.

Applying Computer Power
Data transformation is highly redundant. Regardless of how familiar a
programmer is with the “Invoice Number” field in an SAP IDoc, he will
have to re-write code depending on to which data type that Invoice Number
is mapping, and the rules by which that particular field is transformed. Up to

i For example, “credit” and “debit” can mean the same thing, depending on whether they appear on the Assets
or Liabilities side of a balance sheet.

Introducing Enterprise Integration Modeling 7

this point, mechanizing this process has been difficult because most
enterprises have highly varying internal systems and constantly-changing
external integration requirements: in other words, few situations could be
reapplied others.

With EIM, the situations themselves need not be replicated. In a sense, EIM
makes components of the parts that constitute documents, so that creating a
map involves simply reassembling and reusing the components. When
combined with products that automatically generate code based on this
reassembly, the error rate decreases significantly and scalability increases.

Single Point of Control
The expense of an integration projects continues well after the initial
software purchase and implementation. Maintenance has proven to be of
ongoing concern, since it directly impacts the integration environment’s total
cost of ownership.

Existing methods of dealing with standards changes or new software are
increasingly cumbersome, as the pace of change accelerates. For example, a
change in a field name, its length, or the rule associated with its
transformation results in a host of reprogramming often disproportionately
large compared to its initial cost. Likewise, when an XML “flavor” is
updated, those changes must somehow percolate through the entire system.

Using a modeling approach, changes are made within the enterprise
vocabulary, which then flow through to the affected components. Using
products such as Contivo’s, code is automatically generated, eliminating the
need for another round of hired programming help.

Linear Systems, Linear Effort
Automatic telephone switches eventually replaced live telephone operators
precisely because of the exponential curve problem: if humans had to
physically connect every telephone call made, the majority of the population
would be sitting at switchboardsii. Similarly, EIM guards against the
eventuality in which the need to match and create data links would consume
the majority of integration efforts.

The benefits of EIM run deeper than merely creating a common enterprise
vocabulary. When the complexity of the data increases—for example, an
Address field whose particular meaning depends on qualifiers—EIM proves
even more valuable. To take the address example: in EDI, the field
“Address” can have several qualifiers, including “Address>ST” for “Ship to”
and “Address>BT” for “Bill to.” When manually mapping, a rule providing
this additional meaning must be written each time the field is used. Solutions

ii Useless Trivia No. 47: The last manual telephone switch in America was retired in 1983 in Bryant Pond, Maine.

Introducing Enterprise Integration Modeling 8

incorporating EIM can model the qualifier itself, saving considerable time
not only with regards to matching individual fields, but also in the generation
of rules.

Extracting and Encapsulating Knowledge
Much energy is spent on discovery and distributing knowledge about
documents. EIM helps to extract and encapsulate this knowledge for reuse
and collaboration.

For instance, an EDI programmer with expertise in the ANSI X12 standard
may need to connect a purchase order between her company and a partner
that uses RosettaNet XML. In ANSI X12, a purchase order is known simply
as an “850”—and it has a standard structures, set of contents, and method of
communicating with other EDI systems. Even if this programmer logged
onto the RosettaNet website, she may not realize that the equivalent of an
ANSI 850 is a RosettaNet PIP3A4. Further, she may not know how to
correlate X12’s concise header level information to the PIP3A4’s verbose
content. If such information was stored in the model, deployment
accelerates and domain expertise is preserved, regardless of the individual
programmer.

5. The Benefits of Integration Fitness

What does EIM mean for “integration fitness”? It means first overcoming
the “build only when needed” IT mentality and applying a conscious design
process to integration. It means an integration architecture flexible enough
to meet changing business needs while detailed enough to allow the
development of tightly integrated business processes. It means that the
effort to add the 101st partner or application is no more difficult than the
first.

An initial investment in designing and modeling an integration architecture
generates immediate and enduring benefits.

Benefits to the Business
Faster deployments. A primary business benefit of EIM is the ability to
integrate applications, customers and trading partners more quickly and
reliably. Establishing a shared view of data is a significant portion of the
work necessary to roll out a new enterprise application or partnership. If that
data is already modeled, then the incremental effort becomes simply mapping
to the model, rather than creating a new set of maps from scratch. In a B2B
scenario, faster deployments enable marketplaces to achieve liquidity faster
and overcomes supplier reluctance to join public and private exchanges. In
an EAI situation, faster deployment enables accelerated achievement of
business interoperability and streamlined costs.

Introducing Enterprise Integration Modeling 9

Better decision-making. Improved data quality improves the results of
data-driven business decisions, both internally and externally. A “one view
of data” approach offers true real-time information to make meaningful
internal decisions. At the same time, the selective knowledge of external
partner data, such as inventory levels, optimizes trading relationships and
leverages the principles of strategic sourcing.

Better project planning. The root cause of many cost overruns is
imprecise planning. Integration architectures who use a modeled approach
can predict project timeframes more reliably and anticipate costs more
accurately.

Benefits to IT
Adaptability. EIM enables a gradual evolution of enterprise applications
from their current state to future states and beyond. With its ability to reuse
code, effort, and knowledge, a modeled approach combats the exponential
curve and maintains pace with the constant evolution of standards.

Reduced time and costs. Time and cost savings in an EIM approach
accrue from three main areas: 1) fewer number of links to make; 2) reuse of
integration code and an accompanying reduction of integration errors; and 3)
less time and cost to document information requirements for subsequent
efforts. These translate into sooner and higher return on investments (ROIs)
for integration projects.

Better inter-team coordination. An EIM approach is inherently
collaborative. Different teams, whether within or outside a company, can
easily see and affect changes to the model. This reduces communications
requirements, better coordinates project scheduling, and transforms
individual knowledge into team knowledge.

6. Summary

The race for competitive advantage is increasingly stressing the importance
of integration as the bridge between IT and business requirements. Yet,
integration remains devilishly complicated, and approaches to integration
remain fairly diverse. As Gartner notes, “Vendors do not share a common
vision of what should be included in an integration middleware project set.”9

Enterprise Integration Modeling describes an approach that relies on
modeling to stimulate reuse and flexibility. When applied to data
transformation, or any other endeavor that involves the transfer of structure
and meaning between two different systems, EIM proves to be a powerful
source of accelerated ROIs, leveraged effort, and scalable maintenance.

Introducing Enterprise Integration Modeling 10

Sources

1 Simon Yates, “Demystifying B2B Integration.” Forrester Report. September 2000, pgs. 8-9.
2 John Bermudez and Bob Parker, “Enterprise Commerce Management: Getting Started.” AMR Research
Executive View. July 2001.
3 Simon Yates, ibid.
4 Jon Derome, “Application Integration in the Brave New Internet Era.” The Yankee Group Report. January
2001, pg. 9.
5 Amy Hedrick, “The Good, the Bad, and the Ugly of Integration Implemetnation.” AMR Research Repor ton
Enabling Technologies. April 2001. p. 8.
6 META Group News Analysis, “CompTIA Study Challenges RosettaNet Hype.” 20 July 2001.
7 John Edwards, “I’m Not Dead Yet.” Line56, May 2001. p. 55.
8 AMR Research response to a research inquiry. June 22, 2001.
9 Roy Schulte, Ross Altman, “Application Integration: Success Amid Turmoil.” Gartner Group Article Top View,
August 8, 2001.

