
eAI Journal • October 2000 89

By John K. Ousterhout

By now, the high

expectations for

business-to-bus-

iness (B2B) applications

have become familiar.

Analysts have projected

trillions of dollars of B2B

transactions within a

few years. Companies

have begun to deploy

B2B integration servers, which connect to

existing back-end applications, and send and

receive Extensible Markup Language (XML) doc-

uments over the Internet to automate business

relationships. In doing so,

companies hope to

reduce costs, create new

revenue opportunities,

and improve customer

retention. A raft of start-

ups has sprouted to

exploit B2B opportunities.

Some are implementing

new Internet-based busi-

ness models such as trading exchanges and bro-

kers; others provide the infrastructure for B2B

applications, including integration servers and

professional services.

Managing
Trading Partners

But in all the excitement over B2B, a
key issue in implementing B2B applica-
tions has been largely overlooked. That
issue is trading partner management.
Costs associated with bringing new
trading partners online and managing
ongoing relationships will dominate the
total cost of implementing B2B.
Inefficient trading partner management
will be one of the most common reasons
for trading community failures over the
next few years. Anyone thinking about
building B2B applications should be
aware of the issues in trading partner
management and the techniques and
tools available to reduce the cost of
managing trading partners.

The Integration Process
Implementing a B2B application

such as supply-chain automation or
electronic bill presentment typically
proceeds in three phases: business
process modeling, back-end integration,
and partner integration. In the first
phase, the Internet-based business
process is defined. This requires you to
reach agreement with your partners on a
set of XML document types to carry
information between you and your part-
ners, along with protocols that specify
how the documents are transmitted,
relationships between documents, and
so on. Several XML-based business
processes have already been defined by
companies and standards organizations,
such as RosettaNet for supply-chain
automation and IFX for electronic bill
presentment. So, often a company can
simply select an existing standard rather
than define a new business process.

The second stage in implementing B2B
is back-end integration. This is typically
done by deploying a B2B integration serv-
er. The server contains adapters for com-
municating with existing enterprise appli-
cations, such as databases and Enterprise
Resource Planning (ERP) systems. It also
contains facilities for sending and receiv-
ing XML documents over the Internet.
The B2B integration server must be pro-
grammed with business rules that connect
a company’s particular enterprise applica-
tions with the XML-based business
process. For example, the arrival of a
price-quote-request XML document
might trigger business rules that invoke an
ERP application to compute pricing infor-
mation and then return a price-quote-
response XML document to the sender.

The third stage in implementing a B2B

application is connecting with particular
trading partners. Let’s assume the basic
parameters of the relationship have
already been worked out and all that is
needed is to implement them. In that case,
this stage involves various tasks, such as:

Configuration — Information must
be entered into the B2B integration serv-
er about how to communicate with each
partner.

Security — Information for authenti-
cation must be exchanged with each part-
ner, such as passwords or X.509 certifi-
cates; the server must be configured with
access control information, specifying
the transactions the partner can invoke.

Customization — Special facilities
may need to be implemented for particu-
lar partners. For example, a partner might
have special shipping requirements or
billing terms. A partner might use slight-
ly different names in documents, which

will require translation. Partners may
even have customized catalogs.

Testing — Once partner-specific
configuration and customization are
complete, the connection must be tested
to ensure that it’s operating correctly.
Testing is difficult because it involves
different organizations; neither side can
easily observe what’s happening in the
other organization.

Once these three stages have been
completed, business transactions can
automatically begin to flow between the
company and its partners. However,
there will be ongoing costs to manage

partners. For example, the terms of a
business relationship or the underlying
XML protocols might change, or a part-
ner may switch to a different integration
server, or a company may decide to offer
new services. All of these changes will
result in additional overhead.

Trading Partner Management
Costs

Trading partner management involves
the third implementation stage (partner
integration) and ongoing overhead.
These are likely to be the most expensive
issues over the lifetime of a B2B imple-
mentation. The first step, business
process modeling, only occurs once per
process; most companies will avoid this
cost by using standard protocols. The
second step, back-end integration, occurs
once in each company for each protocol
supported. This code can be reused for
different partners. The third step, partner
integration, must be repeated for each
partner and each protocol. Ongoing over-
head, such as adding new services, will
also be repeated for each partner.
Because of the multiple costs associated
with trading partners, they’re likely to
dominate the overall cost for any compa-
ny with more than a few partners.

Table 1 estimates the cost of partner
integration for some hypothetical exam-
ples. Even if only two person-weeks of
effort are needed to integrate each part-
ner, a large company with 10,000 part-
ners can easily spend $50 million to $100
million. Experiences with Electronic
Data Interchange (EDI) suggest that actu-
al efforts can take much longer than two
person-weeks, thus further increasing the
costs. This is the same cost range as the
most expensive ERP implementations.
Furthermore, such a B2B project is likely
to take many years, even with a large
integration team. Even for a modest-size
Internet trading community, partner inte-
gration can cost several million dollars.

The history of EDI illustrates the
issues with trading partner management.
Companies implementing EDI have typ-
ically been able to connect to only 20

90 eAI Journal • October 2000

Example # Partners Est. Person-Years Est. Cost

Large manufacturer implementing
private exchange for suppliers 10,000 415 $ 62M

New Internet trading community 500 21 $3.2M

Table 1 — Estimated partner integration costs for a large manufacturer and a new Internet trad-
ing community. The table assumes that two person-weeks of effort are required to integrate each
new partner, with a fully burdened annual cost per person of $150K. Actual costs may be much
higher, if external system integrators are used.

Select an existing

standard rather

than define a new

business process.

eAI Journal • October 2000 91

percent or fewer of their largest trading
partners. The chief reason is the incre-
mental costs for adding new connec-
tions. Some such costs are related to the
Value-Added Networks (VANs) used for
EDI; these can be eliminated in a B2B
approach based on the Internet and
XML. But other costs, such as the need
to customize protocols for each trading
partner and high testing costs, may well
recur in the Internet/XML arena. Are the
high costs and sparse coverage of EDI
destined to repeat themselves for
Internet/XML B2B? Or, can we reduce
the cost of trading partner management
to enable ubiquitous B2B automation?

Reducing Costs
There’s no single technique that will

solve all the problems of trading partner
management, but with a combination of
approaches, it should be possible to sub-
stantially reduce the costs. Solutions
tend to fall into two categories: those
that increase reusability and decrease
per-partner custom work, and those that
automate or accelerate the per-partner
work that remains. Table 2 summarizes
the suggestions described in this article.

The first and most important step is
to increase the level of standardization,
so that the same protocol is used for
many different partners. This is more
difficult than it seems. For example, in
the EDI world, the American National
Standards Institute (ANSI) X.12 pro-
vides standard formats for various busi-
ness transactions. Though most EDI
installations are based on X.12, they
almost always deviate slightly from the
standard formats. Typically, each rela-
tionship requires a few extra fields that
aren’t present in X.12. To handle these,
the partners find optional fields in the
X.12 standard that aren’t needed; these
fields are then “hijacked” for the extra
information. This is confusing and
error-prone, since it uses fields in ways
that conflict with the documented stan-
dard. It also requires different business
logic for each relationship.

Unfortunately, similar examples of
field hijacking have begun to occur for
XML-based B2B. Ironically, the extensi-
ble tag mechanism of XML makes
hijacking unnecessary. With XML, it’s
easy to extend a standard by defining new
element types for the extra fields instead
of misusing existing elements. This lets
you develop a single standard set of busi-
ness logic that handles all the fields used

by all partners; there’s no need to interpret
the same field differently for different
partners. Of course, the ultimate goal
should be a set of standards complete
enough to make extensions unnecessary.
In the interim, the XML tag mechanism

can cleanly handle extensions.
One way to encourage standardiza-

tion is to focus on trading communities
rather than point-to-point relationships.
If you consider only a single trading
partner when designing a protocol,
you’re likely to end up with a protocol
that works only for one partner. If, on
the other hand, you assume that various
companies will serve each role in the
protocol (e.g., multiple buyers and mul-
tiple sellers for the same purchasing
protocol), you’re more likely to end up
with a protocol you can reuse. Similarly,
you should design your business logic
and integration code assuming that it
will be used for many different partners.

The next step is to separate partner-
specific information from integration
code. For example, the code that sends
an XML document to a partner as part of
a business process should not include
the Internet address of the partner. If it
does, the code becomes partner-specific

and you’ll have to duplicate it with a dif-
ferent address for each partner. This
leads to extra work when adding new
partners and makes it difficult to change
the code, since each change will have to
be replicated in all copies.

Instead, you should keep an address
book separate from the integration code.
The address book should have an entry
for each partner that records all informa-
tion specific to that partner, such as
Internet address. Within your integration
code, keep track of a “current address
book entry” and refer to fields in that
entry. This approach separates partner
information from information about
business processes; it offers several
advantages. First, all that’s needed to
bring a new partner online is to create a
new address book entry since existing
integration code can be reused. Second,
the address book entry provides a clear
definition of the information you need to
bring a partner online. Third, you need
not be a programmer to create new
address book entries.

Address book entries can contain
more than just Internet addresses; they
can contain security information (such
as X.509 certificates) and other partner-
specific information (such as discount
categories or special billing terms).
Ideally, the address book should have an
extensible format that makes it easy to
add new information about partners. If
it does, you can handle many partner-
specific customizations by adding infor-
mation to the address book rather than
creating custom integration code.

The next step in reducing the cost of
trading partner management is to active-
ly participate in development of your
partners’ B2B integration. Your partners
may not have the expertise or motiva-
tion to build their own B2B applica-

Reuse protocols and integration code for all your partners.

Don’t hijack fields of standard documents for custom information: define additional
XML elements.

Design for communities rather than individual partners.

Place partner-specific information name in an address book that is separate from business
rules and integration code. Make it easy to define new partner-specific information.

Share your experience with partners and encourage them to use common approaches
for their integration.

Offer to provide integration code for partners, which you can maintain in a uniform fashion.

Use cooperative management approaches that allow each of you to observe the state of
the other’s server.

Use remote debugging to simplify testing and problem tracking.

Table 2 — A summary of techniques for reducing trading partner management costs.

Focus on trading

communities rather

than point-to-point

relationships.

tions. So. without help, they may never
complete the integration. This will be
particularly true for smaller partners
that are less automated internally. Many
of them won’t have any prior B2B inte-
gration experience. By working with
your partners, you can help them pre-
vent “beginners’ mistakes” that will cost
you both. You can also encourage uni-
form approaches among your partners,
which will reduce your costs.

There are many ways for you to help
your partners. The first is to help them
install the necessary software and hard-
ware. Most vendors of B2B integration
servers offer a special “partner” version
of their software at a substantially lower
price than the full version. The partner
version is intended for the spokes of
hub-and-spoke trading communities.
This version typically has all the func-
tionality of the full version except that it
can communicate only with a single
partner. By purchasing partner versions
in bulk for all your partners, you can
obtain a quantity discount and pass
those lower costs on to your partners.

It may even make sense for you to
purchase inexpensive server computers
and give these to your smaller partners,
along with B2B integration software.
By doing so, you ensure that all your
partners have a minimum level of func-
tionality and communicate with you in a
common fashion. The alternative is that
your customers will communicate with
you, using a much greater variety of
protocols and formats, which will drive
your costs up. Spending a little money
on hardware for your partners may save
you a lot of money that would otherwise
be spent on fixing problems later.

Another way to help your partners is
by sharing integration code with them. If
many of your partners use the same back-
end applications, the cheapest approach
may be for you to develop integration
code for those applications and distribute
it to your partners. For example, you may
find that many of your smaller partners
automate only at the level of spread-
sheets. You could provide them with inte-
gration code that moves data between
spreadsheets and XML documents, so all
they need to do is use spreadsheets with
pre-defined row and column names. This
lets you understand and control both ends
of the B2B connection.

If a single piece of integration code
won’t work for all your partners, per-
haps you can provide a base package

that they customize locally. Ideally, you
and your partners will also be using the
same B2B integration server, and the
server will support automatic uploading
of integration code from your site to
your partners. Under these conditions,
you can make changes to the business
protocol and automatically update your
partners’ servers. Of course, this
approach requires a high level of trust
between you and your partners, so it
may not be appropriate in all situations.

Finally, in some situations, it may be
possible for you to remotely help man-
age your partners’ integration servers.
Some manufacturers of B2B integra-
tion servers provide Web-based man-
agement tools that can be remotely
accessed, using secure Web connec-
tions. By giving you remote access to
their servers’ management tools, your
partners can drive down their costs and
yours, especially for initial testing and
problem tracking. Without remote man-
agement access, the only way to test a
connection is to talk to your partner via
telephone and have them describe
what’s happening on their end. This is a
clumsy and error-prone approach. It’s
difficult to convey large amounts of
information over a phone connection,
and information may be misinterpreted
(especially if you’re dealing with less-
experienced partners).

With remote management access,
you can directly observe what’s happen-
ing on both ends. You can query event
logs, for example. Similarly, you should
consider giving your partners the ability
to observe what’s happening on your
integration server; ideally, they should

be able to observe only transactions that
involve them.

Some servers offer remote debugging.
This lets you set breakpoints in integra-
tion code running on your partners’ sys-
tems and observe variable values. Even if
your partners are not comfortable giving
you long-term management access to
their servers, it may make sense for them
to provide limited access during initial
testing — or if serious problems occur.

Conclusion
There’s no simple panacea for the

challenges associated with trading part-
ner management. Even under the best
conditions, it will probably be an expen-
sive part of implementing B2B applica-
tions. To keep these costs under control,
you should carefully consider trading
partner management issues before
undertaking a B2B project, and devise a
plan for scaling to your entire partner
community. Above all, strive for
reusability and minimize customization
for each partner. This may mean using
common protocols, separating partner-
specific information from integration
code, or installing a standard hardware-
software platform for each partner. In
addition, take advantage of Internet
technology to reduce your costs,
whether that means automatically
updating your partners’ integration code
from your code, or using the Web to
remotely observe and manipulate your
partners’ servers. eAI

John K. Ousterhout
is chairman and chief
technology officer of
Ajuba Solutions. He
is well known for his
work in distributed
operating systems,
high-performance

file systems, scripting languages, and user
interfaces. Before founding Ajuba, he was pro-
fessor of computer science at U.C. Berkeley
and a distinguished engineer at Sun Micro-
systems. He received a bachelor’s degree in
physics from Yale University and a Ph.D. in
computer science from Carnegie Mellon
University. Ousterhout is a Fellow of the ACM
and has received numerous awards, including
the ACM Software System Award, and the
ACM Grace Murray Hopper Award. Voice:
650-210-0102; e-Mail: ouster@ajubasolu-
tions.com; Website: www.ajubasolutions.com.

About the Author

92 eAI Journal • October 2000

Carefully consider

trading partner

management issues

before undertaking

a B2B project.

