
INFORMATION ORGANIZATION LAB NOVEMBER 17, 2009

INFORMATION ORGANIZATION LAB

INFORMATION ORGANIZATION LAB NOVEMBER 17, 2009

PROGRAMMING PARADIGMS

Imperative Declarative

Object-Oriented

Procedural Functional

This is a breakdown given by Wikipedia—read it and you’ll known about as much as we do.
One major distinction is that in imperative paradigms you track state changes whereas in
declarative paradigms you connect inputs in outputs.

In procedural paradigms you describe step-by-step how to solve a problem. In a declarative
paradigm you describe what the program should accomplish instead of how. Regular
expressions, XSLT, and CSS are examples of declarative languages. Typical examples of
functional languages include LISP, Scheme, and Erlang.

Many modern languages mix paradigms: in Python and JavaScript you can use procedural,
object-oriented, and functional paradigms.

INFORMATION ORGANIZATION LAB NOVEMBER 17, 2009

FUNCTIONAL
PROGRAMMING

Apply a function to
every element in a

collection.

Map

Use a function to
select elements in

a collection.

Filter

Use a function to
combine all elements

in a collection.

Reduce

Someone from the CS department can give you a much better theoretical overview of
functional programming and their advantages. For our more practical purposes, functional
programming is effectively three techniques: map, filter, and reduce. We’re applying this
functional paradigm because it’s a cleaner, shorter way of accomplishing some things we
want to do in information retrieval.

Language support: JavaScript 1.6 introduced some functional methods
like .map(), .filter(), .every(), .some(). These aren’t supported in IE, but you can add them by
extending the Array prototype. Code at https://developer.mozilla.org/En/
Core_JavaScript_1.5_Reference/Objects/Array. jQuery also lets you use .map and .filter on
jQuery objects.

Python has support for functional programming using methods like map, filter, reduce and
list comprehensions.

INFORMATION ORGANIZATION LAB NOVEMBER 17, 2009

MAP FUNCTION

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Map

square

In the functional paradigm, you apply a function to elements in a collection. With a map
operation, every element in the original collection gets mapped to an element in the new
collection. The example here is a simple math operation—applying a square function to a list
of numbers—but you can apply functions to any datatype you can think of, including strings
and hashes.

Note that when you perform a map, you end up with the same number of elements that you
started with.

INFORMATION ORGANIZATION LAB NOVEMBER 17, 2009

X X X X X

FILTER FUNCTION

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Filter

even

[2, 4, 6, 8, 10]

With a filter operation you determine which elements will be in the new collection. The
filtering function returns true or false, and those elements for which the function returns true
are in the new collection.

In contrast with a map operation, there may not be the same number of elements in the
resulting collection as the starting collection. The elements themselves, however, remain
unchanged after the filter.

INFORMATION ORGANIZATION LAB NOVEMBER 17, 2009

REDUCE FUNCTION

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Reduce

sum

55

In a reduce operation, you combine all the elements in a collection one-by-one to a single
value.

INFORMATION ORGANIZATION LAB NOVEMBER 17, 2009

FUNCTIONAL JAVASCRIPT

Filter

var nums = [1,2,3,4,5];

nums.filter(function(n){
 if (n < 2 || n % 1 != 0) {
 return false;
 }
 for (var i=2; i < n; i++){
 if (n % i == 0) {
 return false;
 }
 }
 return true;
});

Map

var nums = [1,2,3,4,5];

nums.map(function(n){
 return n * n;
})

Reduce

var nums = [1,2,3,4,5];

nums.reduce(function(a,b){
 return a * b;
})

INFORMATION ORGANIZATION LAB NOVEMBER 17, 2009

FUNCTIONAL JAVASCRIPT
var pixar = [
 {name: "Up", score: "98%", rating: "PG", year: 2009},
 {name: "WALL-E", score: "96%", rating: "G", year: 2008},
 {name: "Ratatouille", score: "96%", rating: "G", year: 2007},
 {name: "Cars", score: "75%", rating: "G", year: 2006},
 {name: "Finding Nemo", score: "98%", rating: "G", year: 2003},
 {name: "The Incredibles", score: "97%", rating: "PG", year: 2004},
 {name: "Monsters, Inc.", score: "95%", rating: "G", year: 2001},
 {name: "Toy Story 2", score: "100%", rating: "G", year: 1999},
 {name: "A Bug's Life", score: "91%", rating: "G", year: 1998},
 {name: "Toy Story", score: "100%", rating: "G", year: 1995}
];

["Up", "WALL-E", "Ratatouille", "Cars", "Finding Nemo", "The Incredibles",
"Monsters, Inc.", "Toy Story 2", "A Bug's Life", "Toy Story"]

pixar.map(
 function(movie){return movie.name}
);

You can use map to extract a simple set of information from more complex objects. Here we
start with an array of objects, each with the name of a movie, its Rotten Tomatoes score,
rating, and release year. After applying a map function that returns just the name of each
movie, we have an array of strings.

INFORMATION ORGANIZATION LAB NOVEMBER 17, 2009

FUNCTIONAL JAVASCRIPT
var pixar = [
 {name: "Up", score: "98%", rating: "PG", year: 2009},
 {name: "WALL-E", score: "96%", rating: "G", year: 2008},
 {name: "Ratatouille", score: "96%", rating: "G", year: 2007},
 {name: "Cars", score: "75%", rating: "G", year: 2006},
 {name: "Finding Nemo", score: "98%", rating: "G", year: 2003},
 {name: "The Incredibles", score: "97%", rating: "PG", year: 2004},
 {name: "Monsters, Inc.", score: "95%", rating: "G", year: 2001},
 {name: "Toy Story 2", score: "100%", rating: "G", year: 1999},
 {name: "A Bug's Life", score: "91%", rating: "G", year: 1998},
 {name: "Toy Story", score: "100%", rating: "G", year: 1995}
];

pixar.filter(
 function(movie){return movie.rating == "PG"}
);

[{name: "Up", score: "98%", rating: "PG", year: 2009},
{name: "The Incredibles", score: "97%", rating: "PG", year: 2004}];

We can similarly use filter to determine which movies received a “PG” rating. In this case, what
we get back is an array of objects. These objects look the same as the objects in the original
array.

If we wanted just the names of the movies rated PG, we could combine the filter shown here
with the map shown on the previous slide.

INFORMATION ORGANIZATION LAB NOVEMBER 17, 2009

FUNCTIONAL PYTHON

Filter

def prime(x):
 if x < 2 or x % 1 != 0:
 return False
 for y in range(2, x):
 if x % y == 0:
 return False
 return True

filter(prime, range(100))

Map

def square(x):
 return x * x

map(square, range(10))

Reduce

def product(a,b):
 return a * b

reduce(product, range(1,5))

Python has map, filter, and reduce methods which work much like the similarly-named
methods in JavaScript. They accept a function and a collection to apply that function to.
See http://docs.python.org/tutorial/datastructures.html#functional-programming-tools.

You can define functions inline using the lambda syntax.
http://docs.python.org/reference/expressions.html#lambda.

INFORMATION ORGANIZATION LAB NOVEMBER 17, 2009

FUNCTIONAL PYTHON

List Comprehensions

FilterMap

[x*x for x in range(1,11) if even(x)]

More often in Python you see the functional pattern used in list comprehensions.
See http://docs.python.org/tutorial/datastructures.html#list-comprehensions for more
information.

INFORMATION ORGANIZATION LAB NOVEMBER 17, 2009

TWITTIR

This is a framework for loading a corpus of messages and applying different search
algorithms to compare their effectiveness. See demo on course website.

Together in class we implemented a simple string search and made it case-insensitive. Then
we used a JavaScript version of the Porter Stemmer to improve recall by treating different
tokens (like “learn” and “learning”) as the same.

Improvements to search algorithms include doing a term or boolean search instead of a
simple string search, devising a ranking system for results (using tf/idf), or searching using
the metadata provided for each document.

INFORMATION ORGANIZATION LAB NOVEMBER 17, 2009

80Legs is a service that provides you with access to a distributed spidering network to
process document collections. In today’s demonstration we’re going to write a program to do
the analysis on fetched pages. 80Legs takes care of most of the crawling details for you, like
throttling, obeying robots.txt, duplicate URLs, link extraction, and so forth. Also: it’s Java.

80legs requires you to work within a strict set of limitations in order to provide scaling. You
have no common state between instances of your program, and there is no way to
communicate with the file system, the internet, anything.

Our example is looking at the usage of the rel=“license” microformat on the Internet,
specifically the selection of different jurisdictions for CC licenses. See sample code on course
website.

INFORMATION ORGANIZATION LAB NOVEMBER 17, 2009

80 LEGS

$("a").map(function(){
 return processDocument(this);
}).get().join(",");

MAP/REDUCE OF THE WEB

INFORMATION ORGANIZATION LAB NOVEMBER 17, 2009

PROJECT 5

INFORMATION ORGANIZATION LAB NOVEMBER 17, 2009

•Create “drops” to collaborate where you
can chat, share files, have a conference
call, receive voicemail.

INFORMATION ORGANIZATION LAB NOVEMBER 17, 2009

FOR NEXT WEEK

•Start thinking about project ideas and
groups for project 5.

