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PREFACE 

This dissertation is the result of a long traveled road, sometimes flat and smooth while at other times with 
steep hills and a rough surface. This is not unusual, and indeed most doctoral students go through a long 
and difficult process of finishing their dissertation. However, every dissertation is different with a different 
history and a different road that has been traveled. I will briefly share with you some of the travels leading to 
this dissertation. 

The road towards my Ph.D. started back in 1992, the first time I met Bill Clancey at NYNEX Science & 
Technology. Over the next six years, under the research leadership of Bill, and the help of several scientists 
at NYNEX and the Institute for Research on Learning, we started the development of “Workframe,” a tool for 
“representing how people really work.” In 1994 I became the project leader for the project. The project grew 
to four full-time people, with a patent application in 1997 for our tool—by then called “Brahms.” It was at that 
time that I became seriously interested in pursuing my Ph.D. It became clear to me that Brahms was a new 
kind of modeling and simulation tool, different from any other tool I had seen and worked with. More and 
more, I became interested in understanding the use of the tool and the question of how to represent “how 
people really work.” Although we had developed the language and the tool, based on Bill Clancey and Dave 
Torok’s first prototype, nobody had developed a significant model with the tool, and therefore nobody really 
understood what it meant to model and simulate a work practice using Brahms. 

As often, two independent roads come together leading to the same destination. In my case, it was my 
previous work with Robert de Hoog and Bob Wielinga, in 1986, which led me to this thesis. Back in 1986 I 
worked on the PEES project (translation from Dutch: Project Experimental Expert System). The PEES 
project was a nationally funded research project between the University of Amsterdam (in particular the 
KADS-group), several commercial firms (Digital Equipment, SEMA Group), and the social security 
department of the city of Amsterdam. I participated in this project as a developer of an expert system for part 
of the Dutch social security law. This was my thesis work for finishing my Informatics degree (Hogere 
Informatica Opleiding). It was during this time that I met both Robert de Hoog and Bob Wielinga, and 
became familiar with the KADS methodology. Strangely enough, it was also the first time I read the research 
papers of Bill Clancey about meta-level issues of knowledge representation. It was then that my interest in 
knowledge modeling and representation languages started. 

In October 1996, I contacted Robert de Hoog with the question if he would consider supporting me in doing 
my doctoral dissertation at the Social Sciences and Informatics group (SWI) at the University of Amsterdam. 
During a trip to The Netherlands I met with Robert and explained my topic. Robert agreed to support me 
with the knowledge that, back in the States, Bill was supporting me. My advisors were in place, and I was 
ready to start the work. However, being a project leader for the Brahms project at NYNEX, and having a 
family, made for very little extra time to work on my thesis. In October 1997, NYNEX merged with Bell 
Atlantic and the research at NYNEX Science & Technology was stopped. Our funding ended and the 
project folded. It was then that Bill started the contact with NASA Ames Research Center. By January 1998 
Bill had moved to NASA Ames Research Center with the goal of re-establishing the Brahms project. In April 
1998, I moved to NASA Ames as well, and it was then that had the time to finish my dissertation, as well as 
developing the Brahms team. Part of the result of this move lies in front of you, and for the other part I am 
proud to say that the Brahms team currently consists of eight researchers, Brahms modelers, and Ph.D. 
students. 

It is obvious that my work is the result of guidance, collaborations, and friendships with many people. First of 
all, I am forever in debt to my friend and mentor Dr. Bill Clancey. Without his ideas for Brahms, his advise on 
becoming a proficient researcher in the United States, as well as his personal friendship that goes beyond a 
working relationship, it would have been extremely difficult to come to the end of this road. I am extremely 
thankful to have Bill as one of my main advisors. Secondly, I thank Prof. Dr. Robert de Hoog for his support 
and trust in me, while we were 9000 miles apart. I don’t think I could have done this without Robert’s 
experience as a thesis advisor, the internet, and Robert’s trust in me. This has been a remarkable 
collaboration. Robert’s positive responses on the chapters I sent him were always a source of renewed 
inspiration. I have been in the lucky circumstance to have the support of two world-renowned scientists from 
the United States and Europe. While Bill was always there to help me with the day-to-day Brahms research, 



Robert was but an e-mail away with his advice and experience on how to write a doctoral dissertation. 
Thirdly, I want to thank Prof. Dr. Bob Wielinga for his support and the creation of the KADS methodology. 
Without the original KADS work I would have never been in the position to take the initial road back in 1986. 

Besides my thesis promotors, I would like to thank my good friend and colleague Al Selvin for all our good 
discussions during our commute to and from our office in White Plains, NY, and his skepticism about 
Brahms. I am convinced that a researcher needs at least one skeptic in his circle of research friends, 
because a good skeptic will keep you on your toes, and will always question the things you are so 
convinced of. I am also grateful for the Brahms development team, in particular Ron van Hoof. Without Ron 
there would be no Brahms environment based on quality of software engineering. His capable software 
engineering skills, his knowledge of Java and all the state-of-the-art software tools on the market these days 
is truly unbelievable. Ron was always there, from 1996 till today. He listens to Bill and my needs and 
complaints about the state of Brahms, and quickly implements those features we need. I am also thankful 
for Mike Scott’s incredible graphics design mind. Without Mike’s design of the AgentViewer application that 
allows us to display the result of a multi-agent Brahms simulation in a time-line view, it would be very difficult 
to explain the outcome of a Brahms simulation. I thank Ted Shab for implementing this complex graphics 
application, in Visual Basic no less. 

Las but not least, I have to thank my family. Their support has been more than anyone can expect. I 
therefore dedicate this dissertation to Mary Ellen Sierhuis, my best friend, partner and mother of my 
children. She was willing to move our home for nine years from New York to the Bay Area in California, just 
so I could follow my dream. Her sacrifice has been unparalleled. Without her compromise and 
understanding I would have never been able to do this. This, of course, also counts for my two children, 
Nick and Megan. Their sacrifice, although they had no choice in the matter, will never be forgotten. I am 
forever grateful to all three of them. 

Before I end with this preface, I want to briefly add something about the current state of Brahms. At this 
moment Brahms is being developed at NASA Ames Research Center. Over the last three years the tool 
has been completely redesigned and implemented in the Java programming language, and ported to 
Windows, Linux, and Solaris. The Brahms simulation engine can be viewed as a virtual machine 
implemented on top of the Java virtual machine. We are continuing to develop Brahms tools making it 
easier for others to use the tool and create complex multiagent models. We are also developing Brahms as 
a multiagent programming environment, as well as a methodology to support a complete life cycle for 
developing human-centered systems. Currently, Brahms can be downloaded for free (for research 
purposes) from our web site http://www.agentisolutions.com. 

Maarten Sierhuis 
Fremont, CA, July 2001. 
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1 

1. INTRODUCTION 

In the past decade there has been a move in business management towards collaborative workplaces. 
There has been a shift from a hierarchy-based organizational culture toward a culture in which collaboration 
will be (Marshall 1995): 

• A new way of working in which people collaborate and cooperate together 

• A new work ethic that recognizes that work is accomplished by people, regardless of the simplicity 
of the work process 

There are significant benefits from the implementation of collaborative work models, including (Marshall 
1995): 

• A move toward internal collaboration with the goal of competing externally 

• A faster, higher-quality, and customer-driven decision-making model 

• A reduction in cycle time and elimination of non-value added work 

• Greatly increased return on investment 

• Reductions in internal conflicts 

After companies have spent millions of dollars and laid off thousands of people, business process 
reengineering (BPR) consultants admit "[We] forgot about the people1" (Davenport 1995). Some writers 
propose a new method for work design (Weisbord 1987). Taylorism has been replaced with involvement of 
the workers themselves in the redesign of their work. Holistic work system analysis, a combination of 
organizational design (OD) and socio-technical system (STS) techniques, lets the workers design their own 
work. It gives control back to the people who do the work and lets management manage the input to the 
work process, while the workers manage their work and make sure the output is consistent with the mission 
of the organization. 

In designing and implementing collaborative workplaces in a way that embraces these changes in 
management views, we need to understand the way people work together, and analyze workplace culture 
and ethics in order to suggest improvements and design the changes. Both the way people collaborate, as 
well as the culture of an organization is encompassed in the communities of practice of an organization—
the work practices of the people (Wenger 1997). Therefore, work practice analysis, design methods and 
tools need to be developed that allow analysts, designers, workers, and managers to understand not only 
the work process, but also the work practice of an organization. 

A work practice is defined as the collective activities of a group of people who collaborate and communicate, 
while performing these activities synchronously or asynchronously. Most often, people view work merely as 
the process of transforming input to output. For example, in an automobile manufacturing process the input 
and output of the work is well defined. Sometimes, however, it is more difficult to describe the input and 
output of the work. For example, consider a soccer match between two professional soccer teams. It is 
rather difficult to define the input and output of this type of work, although most of us would agree that 
professional soccer players are working. To describe the work of a soccer team, we quickly fall to 
descriptions about teamwork and collaboration on the field.  

I claim that the individual activities that make up the work practice not only have to do with the 
transformation of input to output, but more importantly with the collaboration between individuals in action, in 
pursuit of a goal. Imagine soccer players who collaborate their activities of kicking a soccer ball in pursuit of 
scoring a goal. Just focusing on the input and output of each individual activity of soccer players would not 

                                                      
1 ‘Next Big Thing’: Re-Engineering Gurus Take Steps to Remodel Their Stalling Vehicles, Wall Street Journal 11/26/96 



 

2 

only be very difficult, if not impossible, it would also miss the opportunity to understand what is really going 
on. However, in this century, work has been defined as the transformation of input to output, starting with 
Frederick W. Taylor’s view of work to Michael Hammer’s view of business processes (Weisbord 1987) 
(Hammer and Champy 1993). 

In this dissertation, I take a different view. I am interested in describing work as a practice, a collection of 
psychologically and socially situated collaborative activities between members of a group. I am modeling 
work practice to understand how, when, where, and why collaborative activities are performed, and to 
identify the effects of these activities, as well as to understand the reasons why these activities occur in the 
way they do. Therefore, the central theme is to find a representation for modeling work practice. I will define 
what I mean by the term work practice, and how it relates to collaboration and communication between 
people. I will also present a multiagent modeling language to represent models of work practice. These 
models can be simulated in order to show the effects of the activities of people and their communication, 
being situated in a geographical environment, and using tools and artifacts to perform their collaborative 
work. 

1.1 PROBLEM STATEMENT 

In an effort to re-design an order process at NYNEX2, the designers from the Work Systems Design group 
at NYNEX Science & Technology3 used an off-the-shelf business process simulation tool to model the old 
and the new work processes. The newly created design of this work process included a coordination role, 
the turf coordinator (TC). The function of the TC was to keep track of the incoming T1-orders from beginning 
to end, at each moment coordinating the work activities between several individuals in different 
organizations and locations throughout Manhattan. For example, when a technician in the field was ready to 
test a T1 data-line installation at a customer site, the TC would coordinate a circuit test with the responsible 
tester in the central office. It was only at these moments that the TC was actually engaged in a collaborative 
work activity that was essential to the workflow process. Most of the other work activities for this role (such 
as meetings, tracking orders, calling people) did not include activities that operated directly on the work 
product (i.e. the implementation of a high-speed data line) (Sachs 1995).  

A workflow model shows the sequential tasks through which a work product (such as an order) flows 
through the process. In each task, resources work for an amount of time on the work product—“touching the 
object.” The workflow-modeling paradigm excludes work activities in which people do not directly “touch” the 
work product (see chapter 2). In other words, critical tasks that make a work process succeed or more 
productive, but in which people are not directly working on the work product, are not be represented. 

Coordination roles are, in essence, roles that manage or coordinate other people's work activities. It is 
seldom that a TC actually “touches” the work product during the process. Consequently, it was very difficult 
to represent most of the TC's work in the workflow model. The result was that the workflow model did not 
include most of the tasks of the TC, and therefore could not be used to explain the need for this new 
coordination role in the newly designed T1-order process. The work system designers were frustrated 
because they could not explain the importance of this new role using the model, while the rationale of the 
overall design was primarily based on the introduction of this new coordination role. 

Ironically, the company adopted the design. The job-flow time and cost statistics from the simulation of the 
new workflow model showed a more than significant improvement over the statistics, from the simulation of 
the old model. Since management decided to go ahead with the new design based on the output of the 
workflow simulation model, one could argue that the model was helpful in the effort. However, although the 
management decision was at least partially based on the simulation output, the work system designers 
complained about the usefulness of the model and the simulation during and after the design phase.  

According to the work system designers, the model could not be used during the design sessions because 
the language, design formalisms and representations used to talk about the work practice and activities of 

                                                      
2 NYNEX was one of the former Bell Telephone Operating Companies. In October of 1997, the NYNEX and Bell Atlantic corporations 
merged. The resulting company was called Bell Atlantic. In 2000, the Bell Atlantic and GTE corporations merged to create Verizon. 
3 NYNEX Science & Technology was the research and development center of the former NYNEX telephone company. As a result of the 
Bell Atlantic merger, NYNEX Science & Technology was dismantled, and the Work Systems Design group ceased to exist. 
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the people in the work process were incompatible with that of the workflow paradigm. Although useful, a 
workflow model typically omits collaboration, “off-task” behaviors, multi-tasking, interrupt and resume, 
informal interaction, and geography. In other words, workflow omits work practice (Clancey et al. 1998). The 
workflow model was created as a separate activity outside the design team sessions. The person creating 
the workflow simulation model—the modeler—would interview design team members, and from this create 
the workflow model based on his interpretation of the design. There was feedback from members of the 
design team on the workflow model, but at no time did the model play a significant role in the design 
activities of the design team. 

In order to have a computer model that is convincing to management, helpful in the analysis and design 
process, helpful in the understanding of the new design, and helpful in the communication of that design, 
we4 started our effort in developing a modeling language and simulation environment that allows us to 
model the work practice of people in a work process. The Brahms language and simulation environment is 
the result of this effort.  

In this thesis, I am describing the use of Brahms as a tool for modeling and simulating work practice. I first 
develop a theory of modeling work practice. Then, by describing three case studies, I test if Brahms 
operationalizes the theory and is a valid tool for modeling and simulating work practice. 

1.2 RESEARCH QUESTIONS 

There are many approaches to understanding work processes and practices—workplace observation, role-
playing, interviewing, peripheral participation, and training. The approach that will be researched in this 
dissertation is a multiagent simulation approach for analyzing work practices. The following questions will be 
addressed: 

1. How can we model an organization’s work practice in such a way that we include people’s 
collaboration, “off-task” behaviors, multi-tasking, interrupted and resumed activities, 
informal interaction, knowledge and geography? 

To answer this question we need a modeling paradigm that allows us to describe these aspects. I describe 
a multiagent activity-based modeling language and simulation method, and present case studies that 
evaluate the modeling paradigm and associated simulation method. 

2. What is the added value of computer simulation in a model-based approach? 

To answer this question I will define what I mean by “added value”, and define operational criteria to answer 
the question based on the case studies. My hypothesis is that simulation adds significant value to the 
understanding of the work system, because without simulation, the changes over time in a complex system 
are difficult to comprehend. 

1.3 FRAMEWORK FOR MODELING AND SIMULATION 

In this section, I establish a framework for modeling and simulation. Modeling is the static formal or informal 
representation of relationships between elements of a system, while simulation is the execution of a formal 
computational model over time. A computational model describes a class of systems in terms of operations 
on entities, in which the operations are described in computational terms: 

Computational Model = Formal Representation + Operator Calculus 

Whereas research in work practice is done in real-life settings, computational modeling experiments can be 
done at lower cost, time and effort (Stasser 1988). Scenario’s can be addressed in a systematic fashion, 
and replicated as many times as necessary. A computational model is also useful in case there is 
                                                      
4 "We" are the people who were involved in the contemplation and development of Brahms. With the risk of leaving someone out, this list 
includes: Bill Clancey, Dave Torok, Ron van Hoof, Jim Euchner, Pat Sachs, Gitty Jordan, David Moore, Madeline Ritter, Peter Henschel 
and Ed Thomas, from NYNEX Science & Technology and the Institute for Research on Learning. I am grateful for having worked with all 
these individuals, without whom I would never have been able to attempt this dissertation. 
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insufficient data or where data is unobtainable, such as where the problem domain is too risky in terms of 
safety, or when designing a system that does not yet exist. Another valuable aspect of computational 
modeling is the ability to incorporate theories in the model to be tested in the real system. When including 
new propositions to be tested, unexpected novel results may occur that can lead to insights, and further 
research. 

These characteristics make computational models especially useful for studying human activity systems 
(Checkland and Scholes 1990), especially those where collaboration and teamwork are an essential part of 
the system. Computational models force analysts and designers to be specific about the relationship 
between the entities in the system; in this case the way people work together. Observations, concepts, and 
anecdotes from the real world need to be systematically formalized into computational operations. This 
enables analysts and designers to be systematic and complete in describing the behavior of a group of 
people as individuals. 

In this thesis, I describe a new conceptual and computational formalism for representing the work practice of 
a group of people in an organization. I will provide empirical evidence supporting the claim that this new 
formalism allows us to model and simulate work practice, such that this system can then be used as a tool 
for studying and/or designing work practice in real-world systems. 

1.3.1 Entities of a modeling and simulation framework 

Figure 1-1 shows that the basic entities of the framework are source system, model, and experimental 
frame. The basic relationships between these entities are the modeling and simulation relationship (Zeigler 
et al. 2000). 

The source system is the real or the virtual environment that is being modeled. The source system provides 
the source data that will be used for the development of the model. This data is captured through 
observation of the source system and is represented in the behavior database or, what I call, the conceptual 
model.  

 
Figure 1-1. Basic entities in M&S and their relationships (borrowed from (Zeigler et al. 2000)) 

The experimental frame is the specification of the conditions under which the source system is being 
observed or experimented with. As such, this is the operationalization of the objectives for the modeling and 
simulation effort. Zeigler, et al, define two equally valid views of an experimental frame. The first view is that 
it defines the type of data elements that will go into the database, and therefore the observational framework 
for the source system. The second views a frame as a system that interacts with the source system to 
obtain the data of interest, and is therefore the framework that defines how to model the source system. I 
will show an example of this in the third case study, described in chapter 8. 

A model, in a computational system, is a source system specification at a generative and structural level. 
The most common concept of a computational model is that it consists of a set of instructions, rules, 
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equations, and/or constraints for generating I/O behavior. Therefore, in computational models we write the 
model with a state transition and an output generation mechanism. The benefit of a computational model is 
that it has a sound computational foundation and therefore has a definite syntax and semantics that 
everyone can understand. 

The objective in this thesis is to define a computational modeling language and output generation 
mechanism—a simulator—for modeling and simulating work practice. This language and simulator is called 
Brahms5, and the goal is to use and validate Brahms as an environment for modeling and simulating work 
practice. 

1.4 THESIS OUTLINE 

This thesis consists of two parts. Part one is the theory part. In this part, I am developing a theory and 
model-based methodology for modeling work practice. Based on this, I am hypothesizing that Brahms is a 
tool for developing models of human work processes at the work practice level—models of work practice. 
Therefore, I describe the Brahms modeling formalism and simulation capabilities in chapter 4, after the 
presentation of the theory in chapter 3.  

However, chapter 2 first discusses existing modeling and simulation approaches for human behavior, as 
they are relevant to the research questions presented in this introduction chapter. I describe four 
approaches from different academic fields. First, I describe a business process modeling approach and tool 
from the business processes engineering community. This approach is relevant, because it was the source 
of inspiration at the start of this research. The business process modeling approach that is discussed is 
workflow modeling and simulation. There are significant shortcomings to this approach to making it useful 
for representing work practice. These shortcomings are explained and discussed.  

The second approach that is discussed is cognitive modeling. This modeling approach is developed in 
cognitive science. It is relevant to this research, because we are interested in modeling individuals and 
groups of people, and their ability to act in and reason about their social and physical work context. There 
are some concepts that can be used from this approach. However, its limitations for modeling work practice 
are also discussed.  

The third approach is that of the distributed artificial intelligence (DAI) community. Distributed AI focuses on 
multiple cognitive agents, and is thus relevant to the modeling of groups of people working together. I 
discuss a number of DAI systems that are out in the community, and describe the way they deal with 
representing the distribution of tasks amongst multiple agents, and how they deal with communication 
between agents, as well as the physical environment of the domain in which they operate.  

The last approach discussed is that of computational organization theory. This approach is mostly rooted in 
organizational theory and business economy. It is relevant, because it deals with modeling organizations 
and their behavior. However, as is discussed, the level of modeling is at a more abstract level then the work 
practice level I am interested in. 

Chapter 3 then describes my theory of modeling work practice. It starts with giving the reader a historical 
perspective of the concept of practice. I then define what I mean with work practice, and describe work 
practice at an epistemological level. Here I define the concepts and elements that are relevant for modeling 
work practice. The concepts introduced here are: community of practice, activities, collaboration, 
communication, artifacts and geography. I then describe a model-based approach for modeling work 
practice. 

Chapter 4 describes the Brahms modeling and simulation language in detail. I hypothesize (in chapter 5) 
that the Brahms language incorporates the right worldview for modeling work practice, as described in 
chapter 3. The Brahms language was developed by a group of people at IRL and NYNEX Science & 

                                                      
5 The name Brahms stands for Business Redesign Agent-based Holistic-Modeling System, an acronym that was humorously coined by 
one of the original developers, Dave Torok, for our patent application. The acronym stuck, and is now simply used as the name for the 
environment. 



 

6 

Technology, which I had the pleasure to be part of. This introduction to the Brahms language is necessary 
to understand part two of the thesis. 

Most of the work presented in this thesis was in the application of the Brahms multiagent modeling and 
simulation environment to three case studies. This is therefore the topic of part two. To test my hypothesis 
about Brahms and to proof my theory of modeling work practice, I performed three extensive case studies in 
which I used Brahms to model the work practice of real-world domains.  

Chapter 5 describes the research design. In that chapter, I present the research approach and the case 
studies, and explain the motive for choosing them. If the reader is interested in jumping ahead, and get an 
overview of the design of the research approach chosen, as well as a quick description of the case studies, 
it is good to read this chapter before moving on to any other part of the thesis. After chapter 0, the next three 
chapters each discuss the case studies in great detail. I advise the reader to at least first read chapters 3 
and 4, before starting on the case studies, because understanding the results found in the case studies 
requires a somewhat in-depth understanding of the theory, as well as of the Brahms language and 
simulation capabilities. 

Chapter 6 describes the Apollo 12 ALSEP-Offload case study. In this case study, I modeled the work of the 
Apollo 12 astronauts on the Moon, offloading the ALSEP packages from the Lunar Module. This is an 
example of a descriptive model. 

Chapter 7 describes the Apollo Heat Flow Experiment (HFE) deployment case study. In this case study, I 
modeled the work of the lunar surface astronauts deploying the HFE, in a more general way. This is an 
example of a predictive model. 

Chapter 8 describes modeling a work system design of the mission operations of a mission to the Moon 
with a semi-autonomous rover. In this case study, I used my work practice modeling approach to model a 
design of a work system that currently does not exist. This is an example of a prescriptive model. 

Last, but not least, chapter 9 presents conclusions. In this chapter I present my findings, based on the three 
case studies. I start with a reflection on the results from the case studies and how they relate to the two 
research questions presented in this chapter. I then discuss the cost-benefit of modeling work practice using 
Brahms, as well as the scaling-factor with regards to the size of Brahms models. The three case studies all 
model relatively small organizations. I briefly address the issue whether the work practice modeling and 
simulation methodology developed in this thesis, scales up to larger organizations. After that, I discuss 
some of my scientific contributions to the different scientific communities. This describes my own 
interpretation, and it should be taken into consideration that I am, obviously, biased in this regard. I end with 
a discussion of some future research that needs be conducted, in order to make the presented work 
practice modeling and simulation methodology more robust and complete. 

This ends the introduction to this thesis. Next is part one and the discussion of different approaches for 
modeling human behavior, or chapter 5 for those who want to know more about the design of the research 
approach and the case studies. 
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2. APPROACHES FOR MODELING HUMAN BEHAVIOR 

This chapter describes a number of modeling approaches. It presents a review of existing relevant research 
literature to this thesis. The common theme in all the presented approaches is that of modeling human 
behavior and organization. It starts with a section on business process modeling. This approach is very 
relevant to this research, because it models work processes as sequences of tasks or flows of products in 
organizations. In the next section, the approach that is discussed is cognitive modeling. This approach is 
developed in cognitive science. It is relevant to this research, because we are interested in modeling 
individuals and groups of people, and their ability to act in and reason about their social and physical work 
context. The third section describes a distributed artificial intelligence (DAI) approach. Distributed AI focuses 
on multiple cognitive agents, and is thus relevant to the modeling of groups of people working together. In 
the fourth section, the last approach discussed is that of computational organization theory. This approach is 
relevant, because it also deals with modeling organizations at the agent-level.  

I end this chapter with a conclusion section in which I relate all these modeling approaches to the different 
aspects of work practice mentioned in the first research question. 

2.1 BUSINESS PROCESS MODELING 

One of the most frequently used approaches to modeling human behavior in a business process is 
modeling the workflow through an organization. This modeling approach is often used in business process 
reengineering (BPR). In this chapter, I will describe workflow modeling, and some of its benefits, but more 
importantly I will discuss its weaknesses as they relate to modeling human behavior. I will use the 
SPARKS™ modeling and simulation tool as an example of workflow modeling. However, I argue that all of 
the issues related to SPARKS™ are systemic to workflow modeling in general. 

Workflow modeling is a functional modeling paradigm that models the sequential tasks through which jobs6 
flow in a business process. A workflow model typically describes the transformation of some sort of work 
product. In describing this transformation, workflow models focus on the time and cost parameters in each 
functional transformation—a task. Effectiveness is defined in terms of time and cost; that is, the number of 
jobs that can be processed in a specific time, and the overall cost of processing a job workflow modeling 
has gained significant popularity in the business world, due to the interest in business process re-
engineering to gain more efficiency and cost reduction. 

However, workflow models do not particularly focus on an individual's job performance, nor do they specify 
social and cultural behavior. Resources in workflow models are stochastic variables with specific 
characteristics, such as cost, work schedules, and other kind of parameters that can be measured. People 
are treated (modeled) as statistical resources, just like equipment and automation machines. As I will 
discuss later in this chapter, it is partly because of the limitations of such measurements that workflow 
models provide a very limited representation of how work is done in practice.  

2.1.1 Modeling in business process re-engineering 

The 1990s saw the development of many proprietary BPR methodologies. The idea for BPR was made 
popular in the business community by Hammer and Champy (Hammer and Champy 1993), and Davenport 
(Davenport 1993). The idea behind BPR is that work processes in many companies need to be evaluated, 
streamlined and automated in order to stay profitable and competitive (Scott Morton 1991). An example of a 
BPR methodology is BreakpointBPR™, developed by Coopers & Lybrand (Johansson 1992). 

                                                      
6 The term "job" is defined in section 2.1.2 



 

10 

 

Figure 2-1. Life Cycle Model of Breakpoint BPR™ (borrowed from SPARKS™ training manual) 

Figure 2-1 shows the life cycle model of the Breakpoint BPR™ methodology, and the role that a business 
process modeling and simulation tool plays in this life cycle. The Continuous Improvement Cycle in Figure 
2-1 is primarily based on developing, analyzing, and testing a work process, using a workflow simulation 
tool. As changes to the business process are validated and tested through what-if scenarios in the 
simulation, the process moves to an implementation phase. Continuous improvement happens in the next 
cycle of modeling, where the current work process becomes the process that was just implemented. 
Detailing the methodology is outside the scope of this thesis, however the point to be made is that modeling 
the (current and new) work processes plays a central role in the life cycle of the methodology. Each step of 
the way, decisions about changing the business process are based on, and simulated in, a model. Modeling 
and simulation takes center stage. Design decisions are made based on statistical analysis of the efficiency 
(time and cost) of the simulated business process. The SPARKS™ training manual states: "SPARKS™ is 
[…] a computer-based tool for modeling, simulating and analyzing current business processes, and 
redesigning and implementing alternatives." (C&L 1994). 

There are many uses of workflow modeling and simulation in a BPR project:  

• As an analysis tool for the effectiveness of a business process, and as a way to identify 
opportunities for improvements.  

• To describe the redesign of a business process, and to test and evaluate redesign alternatives. The 
argument is that, if we believe “the numbers” from the simulation are representative of how things 
work in the real world, we can use the model to choose between various alternatives.  

• To analyze the impact of new technology and automation on a business process.  

• To communicate, document, and train personnel about a business process.  

• To manage and control a business process in real time, by implementing the model with workflow 
software technology. 

2.1.2 Components of a workflow simulation model 

Figure 2-2 shows the components of a workflow simulation model. The taskflow7 model represents the 
sequential tasks in a work process. The resource model shows the resources (people and artifacts) that are 
performing the task. In the input model one specifies what is “flowing” through the work process. This is the 
work product that is being worked on. Objects are flowing through the model as components of jobs. A job 
(e.g. an order) represents one or more objects that are worked on during the work process. The term job 
does not refer to the work of a person, as in “what is his job.” Instead, a job is an abstract concept that 

                                                      
7 The concepts taskflow and workflow are used synonymously. However, I use taskflow when I speak of a static representation of a task 
sequence, and use workflow when I speak of a dynamic model that incorporates a taskflow, resource, input and timing model. 
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represents the work product being worked on. As such, it has discrete entry and exit criteria, and can be 
seen as the product of the business process. What people in the organization understand as “a job,” 
depends on their role and the tasks they perform in the organization. Some individuals in the organization 
view a job as a physical object, whereas for others it means something conceptual. For example, for people 
working on the job-floor of a manufacturing plant a job is the physical object that they are working on. 
However, for the people in the sales department, a job is a specific customer order represented by a 
customer order form. 

 
Figure 2-2. Components of a workflow model 

A static model is a model that does not change with time, whereas a dynamic model changes over time 
through a simulation. In a static model the input, timing, resource, and taskflow models are not necessarily 
connected. To create a simulation, however, the models need to be interconnected. During a simulation, the 
input model provides the taskflow model with new jobs entering a process. The resource model provides the 
taskflow model with the resource units needed for each individual task. The timing model exists as part of a 
simulation, and provides the definition of the days and schedules used for resources, the times that jobs are 
entering the simulation, and the simulation clock keeping track of the time during the simulation. The output 
model specifies the statistics that are kept during the simulation and can be displayed. 

2.1.2.1 Resource Model 

The resource model defines the individual resources and groups of individual resources. Resources 
represent people or artifacts that perform work. Example resources include a clerk, a manager, a machinist, 
a machine, a drill, a computer, et cetera. The work performed by resources is not defined at the individual 
resource-level, or at the group-level. Instead, the work performed by individual resources is implicitly 
represented by the assignment of the number of resources used in a specific task in the taskflow model. 
Groups are only used to track statistics at the aggregate group level. When all the resources in a group are 
“being consumed” by tasks during a simulation run, the group has an in-box (queue) in which the work is 
kept until resources are available.  

Individual resources in a workflow model do not exhibit individual behavior, neither task nor cognitive. 
Resources are statistical units assigned to tasks, which simply means that performing the task consumes 
the amount of resources specified at the task level. 
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2.1.2.2 Representing work as a taskflow 

In a taskflow model work is represented in functional units, called tasks, through which jobs flow. Tasks 
represent the atomic steps of a process. Tasks are functions taking resources and jobs as input and 
calculating cost output, based on the time it takes to do the task and the cost of the resources for one job. 
Tasks are chained in a sequential flow, represented from left to right in task sequences. A number of special 
task-types enable representing work as a complex directed graph. In this section, I will describe some of the 
representational issues using workflow models. 

2.1.2.2.1 Branches: Modeling different possible flows 
A branch task is used to represent a decision point in a workflow. One specifies, usually in percentages, 
how many jobs will flow up one branch and how many flow down the other branch(es). Joins bring several 
branches of a flow back together into a single flow. Branch tasks and joins allow a modeler to represent the 
different ways a job can flow based on some attribute of the job. For example, the jobs (i.e. orders) flowing 
through the workflow represented in Figure 2-3 have an associated attribute representing the type of order 
form used for the job. In the branch task, this attribute is examined. Figure 2-3 shows the use of a branch 
and a join to represent an error condition.8 

 
Figure 2-3. Modeling error conditions with a branch and a join task 

The example shows an error condition in which the wrong form for an order is used; this happens in 50 
percent of the cases. Thus, 50 percent of the jobs in the simulation will flow down through the task 
TRANSFER-INFO-ONTO-RIGHT-FORM. The two branches come together before the task FAX-FORM-
TO-T.1-CENTER. From here on the jobs will again follow the same flow. Branches are “either-or” paths, and 
a job can only flow down one of the branches. 

2.1.2.2.2 Spawns & Merges: Modeling simultaneous work performed by multiple people 
Modelers often need to represent a situation where more than one person is working on the same job at the 
same time. Sometimes, this is done in isolation; for example, two people in different organizations have to 
perform tasks on the same job independent from each other. When people are working together at the 
same time modeling becomes more complicated, because their work needs to be synchronized. In workflow 
models, these work situations are modeled with a special kind of task, called a spawn task. Figure 2-4 
shows the collaboration between the CO (central office) and the Field organization in troubleshooting and 
fixing a problem, by branching the workflow using the spawn task “co-helps-field.” The example shows the 
two separate tasks done by the two separate organizations at the same time. After the collaboration has 
been completed, the merge task “merge-shoot-trouble” recombines the spawned job. 

                                                      
8 This example, and the following examples, are from the T1 Radical Redesign model in SPARKS™, developed by Dave Torok at 
NYNEX Science & Technology, as part of the T1 Redesign project in 1992. 
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Figure 2-4. Modeling simultaneous work 

A spawn task looks like a branch task, but is semantically different, because there is no decision whether 
the job should go one way or the other. Instead, the job is split—spawned—into two jobs, as if the job is 
flowing through both branches at the same time. Each branch of the spawn is used for representing the 
tasks of a different resource. At the end of the spawn there is a merge task. A merge task merges the split 
jobs together into the job from before the spawn. In this way, the simulation can keep track of the time spent 
by all resources for both workflows. 

 

Figure 2-5. Spawn semantics 

Note that during a simulation the tasks in the spawned flow are not necessarily performed at the same time. 
For example, in Figure 2-4 we might think that the tasks “troubleshoot-and-fix-problem” and “help-shoot-
trouble” would be performed simultaneously. However, this depends on the availability of resources. Let us 
assume there are only two resources in the model. The first resource is assigned to the “troubleshoot-and-
fix-problem.” The second resource is assigned to the “help-shoot-trouble” task. Let us also assume that at 
the moment a job is entering the spawn, the second resource is assigned to a task not shown in Figure 2-4. 
The second part of the spawn-job waits at the “help-shoot-trouble” task until the second resource is 
available. The second resource becomes available after its current task is completed, and the resource can 
start working on the “help-shoot-trouble” task. Consequently, the two tasks are performed in sequence (see 
Figure 2-5). This is not what is conceptually meant with the spawned flow in Figure 2-4. Of course, 
statistically the amount of time that was worked on the two tasks is correct, because the same amount of 
resources work on the tasks. However, the overall duration time for the job will now be longer than it should 
be, because the two tasks are done in sequence instead of in parallel. Remember that conceptually, the 
model is supposed to represent collaboration between two individuals. It would be better if the simulation 
showed that if one of the two resources, needed to accomplish the troubleshooting task, is not available, the 
task does not get accomplished. However, workflow simulations in Sparks™ do not give the modeler control 
over the assignment of resources to tasks, and availability of resources during a simulation. In short, in a 
Sparks™ workflow model there it is not guaranteed that two tasks are actually performed in parallel. There 
is no control over the execution of parallel tasks. This makes it hard to represent collaborative tasks 
between resources. 

2.1.2.2.3 Modeling behavior with delays in the flow 
Sometimes work cannot proceed because of some condition that needs to be met, but cannot be met at 
that moment. For example, when a sales-representative needs to call back a customer because he or she 
needs more information, and the customer does not answer, the job has to wait until the sales 
representative can talk to the customer. In workflow models, such a situation is modeled with a delay task. 
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While in a delay task a job is held and no resources are working on it—the resources are released to work 
on other tasks—while time is continuing. Figure 2-6 shows the example of a delay task, representing a sales 
rep waiting to call back a customer. 

 
Figure 2-6. Modeling job delay 

In order to model the task more accurately, the delay "phone-tag-4" in Figure 2-6 has several delay times 
associated with it: in 30 percent of the cases the delay takes 5 minutes, in 50 percent, 1 hour, and in 20 
percent, 3 hours. Using this distribution of delay times, the model-builder intended to represent the different 
durations before the telephone call actually takes place. This representation of a phone call using delay 
tasks does not represent how phone calls happen in the real world. Phone calls are not planned tasks, but 
are situation dependent. Whether the sales-representative gets a hold of the customer depends on where 
the customer is and what the customer is doing. It will be very difficult to define a realistic distribution 
function for the time it takes for the sales-representative to get a hold of the customer, because it depends 
on the customer's situation. Also, the task of the resource being called (i.e. the customer) is not represented 
at all. It is not possible to associate the customer resource with the “call-back-customer-4” task, because 
resources are not tracked with the order, but with the task. During the simulation it is not known which 
customer resource should be associated with the callback task. This relates to the inherent problem of 
modeling collaborative tasks in a workflow model. Therefore, the model leaves out which customer is being 
called, and the time it takes for the customer to answer the phone call and talk to the representative is not 
taken into account. 

Similar representational issues arise in a number of other cases; “off-task” behaviors, such as having coffee, 
or discussing the win in last night's basketball game (Sachs 1995). How do we represent the delay of a job, 
because the manager suddenly asks the sales-rep for a report on the monthly order figures? In tasks that 
are unrelated to the flow, the resources are not working on a specific job flowing through the process. These 
“off-task” behaviors cannot be modeled explicitly by a workflow representation, because the moment of 
occurrence is not known, and because such tasks do not “touch” the jobs flowing through the model. Work 
consists of many such off-task behaviors. Being interrupted in the task you are doing and resuming it after 
some time is part of every day work practice. We can model interruptions and resumes by adding delay 
tasks, but this is not how things happen in the real world. A delay task means that after the previous task 
there is always some delay. Interruptions, such as a phone call, or going to the bathroom, are serendipitous 
and cannot be modeled by delay-tasks. Not being able to represent this aspect of work means that the 
workflow simulation can never be an accurate reflection of the work practice—what people are actually 
doing. 

2.1.2.3 Input Model 

To simulate work using the workflow paradigm there need to be jobs "flowing" through the model. The 
number of jobs and the time intervals at which these jobs "enter" the model have to be defined up front, and 
monitored by the simulation engine. In SPARKS™ this is done by a special type of task, called a start task. 
Start tasks input jobs of a particular job-type into the task flow model. They specify the type of the job, the 
time intervals the jobs are entered into the task flow (job start times), the number of jobs that will be entered 
(job volume), and the distribution of the number of jobs over the time interval. Job types are used to define 
and categorize different jobs, representing different types of objects processed by the resources in the 
model. For instance, there might be different types of jobs in a customer service department, such as X-type 
jobs representing orders from customer X, being processed by the X-group, and Y-type jobs representing 
orders from customer Y, being processed by the Y-group. By separating jobs into types, the simulation 
engine can gather statistics for each of the job type. 
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2.1.2.3.1 Jobs are conceptual 
A job is an abstract concept of “what is flowing” through the process. For example, an order form is faxed, 
after which the information is put in a database. The database information is used by the billing system, and 
is re-typed into that system. Abstracting different artifacts people are working on during the course of the 
process creates the notion of a job. The transformation from one artifact to another is what makes things 
“flow,” although it is arguable that it is not the artifacts that are “flowing,” but the information contained in the 
artifacts. Consider a piece of paper representing an order form with customer order information. This form is 
faxed to a department and there the clerk enters the information from the faxed form into the companies 
order tracking system. The form stops “flowing” through the process, but the order information, now in the 
computer system, keeps flowing through the process. In most workflow models, the artifacts that make up a 
job are not represented, and therefore, neither are the changes between artifacts, nor the flow of 
information. What is represented is a conceptual object representing the job. This limited representation of 
what constitutes a job makes it difficult to model the context of work. For example, in modeling a “hand-off” 
we would need to model what is being “handed-off”. The form of the artifact that is being handed-off plays 
an important role in how people do the work. For example, it makes a difference whether the order form is 
hand-delivered, or whether the information is sent through Lotus Notes™9. When hand-delivered, there 
could be a two-way conversation around the order. Whatever the impact of this conversation, the point is 
that this conversation is not represented. In other words, it is abstracted away from the actual work practice 
in the organization. By abstracting away the media (i.e. artifacts) of a work product, the context of the work is 
being left out, the information, or wrong information being passed down, is not represented, and neither are 
the actual work activities of the individuals in the organization. This is a severe limitation in using workflow 
models to represent how people actually work. 

2.1.2.4 Output Model 

There are two types of output from simulating a workflow model. The first is showing (using animation) jobs 
flowing through the workflow. The second, and most emphasized in workflow modeling, is the calculation of 
a wide range of statistics at various levels of granularity. There are two categories of statistics; statistics for 
the resources in the model and statistics for the workflow process itself. Most workflow simulation tools allow 
the end user to customize the output model.  

Statistics about the workflow process are used to capture information about the jobs passing through the 
model. These statistics typically include, the number of jobs passing through the model, the time spent on 
the tasks, and the cost associated with the process as it is represented. Statistics also include detailed 
information for each task, such as: the number of jobs arrived at the task, the number of jobs finished by the 
task, and the actual and average task times during the simulation run. 

Resource statistics are used to capture information about resource utilization and costs. There are statistics 
at the individual resource level, as well as at the accumulated group levels. Statistics of this kind include 
utilization of the resource, including percentages, availability of the resources throughout the simulation, and 
the work loads (i.e. backlogs) of the resources. 

2.1.2.4.1 Issues with statistics 
The statistical output of a workflow model is completely dependent on the resource and task data for the 
model. This phenomenon is known as the garbage in, garbage out phenomenon (Banks et al. 1996). 
Because a workflow model is so dependent on the data used to define the cost and time estimates for 
resources and tasks, this problem is real and almost unavoidable, as is illustrated by the statement of the 
model-builder of the T1-redesign model:  

I must put forth a CAUTION statement here! BE SURE that you release statistics to the world wisely 
and with the caveats about the meaning of specific SPARKS data. There are so many assumptions 
built into the model that affect the numbers' applicability to the real world. The best use of the numbers 
is as a relative measure between one SPARKS model of the T.1 process and another model. 
However, there is more and more pressure to use the numbers in an absolute sense, so do so wisely. 
(Torok 1992) 

                                                      
9 Lotus Notes is a trademark of IBM Corporation. 
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The modeler found this warning so important that he repeated it twice in his document about the T.1 
SPARKS™ model. 

Because of the emphasis on the dynamics of jobs in workflow models, instead of the dynamics (i.e. 
behavior) of resources, and because of the limitation in modeling the way people and groups actually work, 
most resource statistics are, therefore, inherently inaccurate. Unfortunately, most of the time there is strong 
pressure from upper levels of management to show "head count" across models, and to map any kind of 
cost savings into head count reduction (Davenport 1995). One has to be careful in basing management 
decisions on simulation model statistics. Data and model verification and validation is one of the most 
important, but at the same time most difficult aspects of simulations (Banks et al. 1996) (Zeigler et al. 2000). 
The goal of the validation process is twofold: 1) produce a model that represents the actual system close 
enough so that it can be used as a substitute, and 2) develop a credible model so that it can be used with 
confidence in decision making. 

I do not want to claim that statistics are completely useless. However, there are so many data related issues 
around the calculation of statistics that the use of a workflow simulation model in a process redesign project 
should always be looked upon with a dose of healthy skepticism. 

2.1.3 Problems with workflow 

“Work” consists of more than a functional transformation of work products by resources (Sachs 1995; 
Suchman 1987). One just has to think about the informal, circumstantial factors that influence work quality. 
Think about the effects of collaboration, types of hand-offs, geographical location of the people, the 
willingness of people, and sometimes organizations, to work or not work together (“engineering believes that 
they own the company”). All this is missing from a functional view of the work. In this section, I discuss some 
of the problems we have identified using workflow modeling and simulation in work redesign projects at the 
former NYNEX telephone company. I draw from our experiences using the SPARKS™ environment to 
model the current work process and the redesigned work process during two process redesign projects at 
the former NYNEX telephone company (the T1 re-design project (Corcoran 1992), and the BNA re-design 
project). 

2.1.3.1 Data acquisition 

It is very difficult to gather statistically significant and/or valid data for the development of a workflow model. 
This is true for the design of a future work process, but it is even true for the development of a workflow 
model of a current work process. Often, the work process organization does not keep historical data of the 
process. This means that the process analysts will have to gather the time and cost data for job-flow and 
resources. To do this correctly is not an easy task. When there is no data already available one should 
question why this is the case. Most of the time you will find that this is because it is not easy to gather this 
type of data. To do an extensive statistical data analysis of the work process might take longer than the life 
of the project itself. One approach is to do "spot observations" for jobs, tasks and resources. The data that 
one collects with this approach is, most likely, not statistically valid, meaning it is: 

1. Not collected from the correct population, 

2. Collected from incorrect or not representative observations, 

3. Collected from an unreliable source. 

 

2.1.3.2 Biases in simulation data 

When analyzing simulation data, it is important to understand the types of biases that may be incorporated 
in the data from a simulation run (Banks et al. 1996). The two biases that are apparent are the “snap shot” 
bias and the “average vs. bucket” bias.  

The snapshot bias occurs when, during the simulation, the data is examined at a "snapshot" in time. The 
bias occurs when comparing data between two measurement points in the workflow model, such as looking 
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at the difference in average elapsed time. The data is biased, because at any given time the data measured 
at the latter point in the flow does not include the data from jobs that are, at that moment, in between the first 
and the latter point, and therefore have already past the first measured point, but not the second. In other 
words, the data measured at the second point is "lighter" than the data measured at the first point. This bias 
increases when either the elapsed time between the points increases, or the number of jobs measured 
decreases. Therefore, to gain truly accurate difference measures, the simulation should be run for a large 
number of jobs. 

The average vs. bucket bias occurs when the averaged data does not represent the actual distribution at a 
given point. An excellent example of this is shown in the T.1 model for the average elapsed time at the 
completion of the “order-negotiation” process. The average elapsed time was approximately five hours. 
However, a look at the distribution of elapsed times showed 1378 of 1679 orders took under 30 minutes, 
and 301 orders took 24 hours or longer, with absolutely no orders completed between 30 minutes and 24 
hours! This type of bias can occur with any average measure (cost, time, etc.) and is highly dependent on 
the actual work practice that is modeled. This bias can also occur when mixing jobs of different types. 

2.1.3.3 Resource issues 

The workload in a workflow simulation is dependent on the resources available to do the work. For a 
workflow simulator, resources are all the same. The only use of a resource is to balance the workload; i.e. 
the more resources that can be chosen from for a particular job in a task, the more jobs can be done in 
parallel. The type of resource has no influence on the time it takes to finish a task—some tools, such as 
SPARKS™ try to model personal, social and cognitive factors of resources as numerical measures. 
However, these measures are very subjective and unscientific, and can do more harm than good (see 
2.1.3.3.3). The use of types of resources in a model is therefore mostly for the gathering of cumulative 
statistics at the group level. For example, the cost of one type of resource is higher then others. 

2.1.3.3.1 Motivation and culture 
We all know intuitively that experience levels of individuals, as well as culture and work ethics, have impact 
on the work process. In addition, we know intuitively that some groups are more adaptable to change than 
others. So, what happens to the performance of groups when their work is changed? More importantly, can 
we design a new work process with these kinds of factors in mind? These are important issues in the 
redesign of a work process. Workflow models do not include these types of factors. The business 
community starts to realize that the intellectual capital of a company consists of the people, and their work 
practices (Stewart 1997) (Nonaka and Takeuchi 1995). Modeling and simulating the work of an organization 
without taking the capabilities (cognitive, social, and cultural) of the individuals into account leads to work 
process designs that most likely fail to produce the expected results after implementation. In short, the 
change from the current to the future situation impacts the work at a deeper level that cannot be predicted 
by a model of the future work system. 

2.1.3.3.2 Resource approximations 
One dilemma in modeling the resources in a workflow model is the dilemma of how accurate to model the 
resources of an organization. The tasks modeled in a taskflow model are usually just part of the total work of 
an organization. We referred to the work not modeled in a workflow model as "off-task" behaviors. For 
example, the taskflow of the T1 model only represented a part of all the jobs that were being worked on by 
the different organizations in the model. Therefore, if the resources would be modeled very accurately (i.e. 
the number of people working, etc), there would always be enough resources to handle the job-load in the 
simulation model. So, how many resources is a realistic measure? The modeler for the T1 model 
“compressed” the resource model to an approximate number of resources needed to work “full time” on T1 
provisioning jobs. Again, these kinds of approximations make the output of a workflow simulation less valid. 

2.1.3.3.3 Modeling social, cultural and cognitive factors 
The way people work is very much defined by factors other then time and money. For one thing, people 
build relationships in the workplace that influence the way they work. (Suchman 1987) (Wenger 1997). The 
point is that work is not just the flow of jobs through the process, or the flow of information between people 
and systems. Work is about people, their habits, their norms and relationships, their physical environment, 
et cetera. A new design of a work process that is going to be a success when implemented has to consider 
these factors. Efficiency in the workflow does not necessarily come by removing some redundant tasks. 
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Sure, it might help, but maybe the tasks are there for a good reason, and taking them out might actually hurt 
the process. 

Some modeling tools try to model social, cultural and cognitive factors using quantitative measures. For 
example, in SPARKS™ we can model the “diligence” of a resource by specifying in seconds how long the 
resource will work on a task after the time model specifies that it stops working for the day. This way, a 
resource that just started a task that takes thirty minutes, at five minutes to five, and who will normally stop 
working at five o'clock and has a diligence factor of 30 minutes, will finish the task before stopping. Although 
this may sound like a good way to model the flexibility of people, it is not a very realistic way of modeling 
flexibility. It means, for instance, that if the task would take 31 minutes the resource would not be diligent 
enough and stop. How does someone know exactly, to the minute, how long a task will take? This is not 
realistic and not how people do work, even if they have to “punch the clock.” 

2.1.3.3.4 Multi-tasking: interrupt and resume 
Work consists of interruptions, switching to and from different activities; picking up a phone while checking 
the status of a job, answering someone's question while entering data in the order system, et cetera. It is 
hardly ever that we are engaged in just one task at a time. People are masters in “juggling” many tasks at 
once. However, representing the multi-tasking of individual resources in a workflow model is not possible. 
Resources cannot be controlled at an individual level. The workflow simulator schedules the resources. 
Which resource does what and when depends on the number of resources available and the workload (the 
number of jobs flowing through the simulation), and not on a model of the cognitive behavior of the 
resource. 

2.1.3.4 The Turf Coordinator problem 

The TC role was briefly mentioned in the introduction chapter, and is described in more detail in Sachs 
(Sachs 1995). The problem of representing the work associated with this new role in a workflow model was 
one of the driving forces to start our research on a new modeling paradigm for simulating work practice. In 
this section, we describe the problem in more detail. 

In the radical new design of the T1 process, the design team came up with a new concept called a “turf.” 
The city of Manhattan was divided in a number of geographical turfs. Each turf has their own field force that 
covers that specific geographical area and the central offices in that area. In the redesign model, the T1 jobs 
are assigned to a specific turf. Consequently, the field force is now dedicated to a turf. In the model, this 
meant that jobs, as well as the tasks and resources had to be duplicated, making the model more complex 
and more difficult to maintain10. The next big change in the design was the introduction of the TC role. For 
each turf, there is a TC. A TC has end-to-end responsibility for a job. The work associated with this role is 
not what a business manager would call "value added" work. The tasks of a TC are not directly related to 
the flow of jobs through the work process. His or her tasks do not transform the job, but are mostly related to 
the activity of coordinating conversations between the field and the central office. Therefore, most of the 
tasks of the TC have no place in a workflow model. This is best explained with the example of coordinating 
the testing of a T.1 circuit. 

2.1.3.4.1 Coordinating a T.1 circuit test 
One of the identified problems in the old (current) T1 work process was the coordination of testing circuits 
between the central office and the field (the customer premise). Before the concept of a turf and the TC role, 
nobody in the process was specifically assigned to a job. The Trouble Ticketing System (TTS) controlled the 
whole work process. The TTS was designed to eliminate what management felt were “off-task” 
conversations between workers. The TTS was setup with the assumption that any worker can perform a 
specific task for a job, and that the installation, testing and completion of a job did not have to be done by 
one team of workers. It was believed that it is more efficient to break the work up and have people work on 
one specific task in a job. This way, orders could be handled as they come up, and people wouldn't be 
caught in time-consuming troubleshooting. The process worked by sending and receiving “tickets.” Each 
ticket would be dispatched by a central dispatch system. Every time someone had performed a task from a 
ticket, the ticket was sent back to the central dispatch system, which would then send it to another person, 

                                                      
10 In SPARKS™ each task can only be worked on by one resource, selected from one group. Therefore, modeling seven turfs entailed 
creating seven identical process flows. Just as in computer programming, duplication of "code" creates a maintenance overhead. 
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leaving the first person to pick up a new ticket. In practice, this meant that when a worker encountered a 
problem (like not hearing a dial-tone) (s)he would send a trouble-ticket into TTS, and assume that someone 
else would pick up this trouble and fix it. The person who sent the ticket in the first place would then have 
time to pick up the next ticket and start working on a new job. From the worker's perspective, the electronic 
dispatching got in the way of being able to solve problems collaboratively. Unlike problem-solving 
conversations in which two people can discuss a problem and explore the possibilities to solve it, the TTS 
transforms a problem-solving conversation into a number of sequential tickets picked up by an array of 
workers, who do not speak to one another.  

The translation of each turn of talk into a single ticket reduced an effective network of co-workers who 
could troubleshoot together into something like a relay-race, handing-off pieces of work to the next 
runner, creating an aggregate of dissociated workers. It changed a troubleshooting conversation into a 
series of solitary commands disembodied from context. Not only was the conversation––the story line 
of the problem, if you will––lost, so was the work community. (No one knew who else was working on 
the job.) (Sachs 1995) 

Therefore, whenever the technician, installing the T1 line in the field (at the customer premise), had to run a 
test to verify the complete circuit from end to end, (s)he had to send a trouble-ticket to the central office to 
request the test. The tester who would pick-up the ticket would setup the circuit so that the test could be run. 
There was no direct contact between the tester, and the field technician. When the test would go wrong, 
(s)he would have to go through the whole process again, while the second time the ticket might be picked 
up by a different tester.  

In the new design, the TC is an experienced technician whose role is to coordinate the telephone 
communications between, up to five, field technicians installing and testing a circuit. The problems that can 
occur when installing and testing a circuit are unpredictable and of a wide range. The TC needs to know 
whom to contact, and where people are geographically located in order to coordinate getting the right 
people involved. The TC, field technicians, and turf managers meet regularly to identify recurring problems 
and solve them. 

2.1.3.4.2 Modeling the turf coordinator 
The difficulty with modeling the TC in a workflow model has to do with the fact that the work activities of a 
TC are not necessarily identifiable with specific jobs flowing through the process. True, when a TC 
coordinates communication between several people in the field due to a problem that occurred, (s)he is 
working on a job, and the task can be seen as such. However, when this happens is unpredictable and 
cannot be pre-specified in a task sequence. Furthermore, representing a three or more person phone 
conference is not easy, if not impossible, in a workflow model. Representing the coordination of such a 
conference call is so situated that it is even hard to think about pre-specifying the steps that are involved. As 
mentioned before, in a workflow model we cannot specify a specific resource working on a specific job. 
Therefore, the only way such a conference call would be possible is if there are enough resources available 
at that moment in the simulation to work on that specific job. The chances that the right resource, from the 
right location, performs the correct task in the task sequence, is next to null. Modeling a phone conference 
call as a pre-specified sequence of tasks is impossible, since it is unpredictable how such collaboration 
might play out over time.  

All this resulted in the fact that the TC's work hardly showed up in the SPARKS™ model of the radical new 
design. Because of that, it was hard for the design team to justify a full-time person playing the role of a TC. 
The resource statistics of the model did not justify a full-time person. Nonetheless, the design team knew 
that the importance of coordinating the technicians was one of the major factors in the time and cost savings 
of the new design. Although management was very impressed with the time and cost savings of the model, 
the team had a hard time convincing management of the need for a TC. 

This experience led us to start working on a modeling paradigm and modeling tool that would allow the 
representation of coordination activities, such as the TC. Work needs to be represented based on the 
activities that individuals engage in, and the flexibility of people's decisions to change the sequence of these 
activities. Collaboration cannot be pre-specified, but is emergent. The next section discusses the main 
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difference between the emergence of behavior versus the pre-specification of the sequence of tasks, 
possible error situation, and the collaboration between individuals in a work process. 

2.1.3.5 Emergent behavior vs. static taskflows11 

As I have indicated, workflow models typically describe only idealized tasks in transformation of a work 
product. In the following illustration (Figure 2-7), for example, an engineer receives an order form from a 
representative, assigns a circuit loop using a computer tool; later the representative enters more data about 
the order. Figure 2-7 presents an excerpt of a SPARKS™ model for Business Network Architecture (BNA) 
order processing12. 

T 1 - INF0 - CORRECT - UP

UPDAT E- SOP

A SSIGN- LOOP- IN- MA T E
COPY TO REP

ENTER
SOP
DATA

T IRKS:
GET SYSTEM ID (5  MIN)
BUILD CIRCUIT (25 MIN)
RELEASE WORD DOC (5  MIN)

VALIDATE CUST. DATA
FRI - A - PON
ASR & MATE COPY TO ENGR.

CLEARED- BY- TELEPHONE- CALL- UP

CORRECTIONS- NEEDED-OUT

RECEIV ES- CAL L-
FROM- CENT ER

SALES-REP

BNA-REPS

CA LL- BA CK-
RIGHT - PERSON

60 %

80%

CNR & SOP UPDATES
FACILITIES CORRECTIONS

RECEIV E-
FAXED- FORM;
V ERIFY- INFO

BNA-REPS

BNA-ENGRS

BNA-REPS
BNA-TAS

BNA-REPS

BNA-REPS

FIELD -
OUT

CENTER- OUT

 
Figure 2-7. Order processing in the business network architecture (BNA) organization, showing flow of 
orders from left to right and conditional branching (indicated by arrows hitting a vertical bar). Top section 
shows updates by representatives (BNA-reps) and engineers for customer-not-ready (CNR) and other 
revisions to orders. Lower section shows standard process for handling faxed order from sales center, 
followed by correcting 40% with missing or invalid information by calling the sales representative. After 
validating customer data (center right), orders are handled by circuit allocation process (top). Other 
acronyms (e.g., SOP) are internal databases. 

A critique of this diagram from the perspective of situated action (Suchman 1987) would inquire why order 
processing occurs this way and how it might be improved. Perhaps surprisingly, the figure leaves out what a 
problem-solving (cognitive task) model would typically focus upon. For example, what information does the 
engineer read from the order form and what deductions are required in order to assign the circuit? This 
particular model leaves out how orders are planned and assigned, multi-tasking (the fact that a rep or 
engineer works on several jobs at once before completing them) and how people interrupt and resume their 
work. A cognitive model of the same business process might consider some of these factors, but would 
leave out how people come to be synchronized in a phone conversation, how an engineer might help a 
representative do his job, and broader considerations of how a representative actually spends her day. In 
particular, because interpreting and executing orders can be problematic in unexpected ways, people need 
to improvise in ways that work system designers might not have anticipated: 

Information flow charts show "information" moving in little blocks or triangles moving along arrows to 
encounter specific transformations and directions along the diagram. In reality, it seems, all along the 
arrows as well as at the nodes, that there are people helping this block to be what it needs to be—to 
name it, to put it under the heading where it will be seen as a recognizable variant, deciding whether 
to leave it in or take it out, whom to convey it to. (Wynn 1991) 

                                                      
11 This section is adapted from Clancey, W. J., Sachs, P., Sierhuis, M., and van Hoof, R. (1998). "Brahms: Simulating practice for work 
systems design." International Journal on Human-Computer Studies, 49:831-865. 
12 The BNA project was another business process redesign project within the, by then, Bell Atlantic company. 
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Wynn’s complaint might be viewed as an issue of modeling granularity—she is asking for more details. But 
her broader issue is how people think about work and how they solve problems cannot be reduced to 
information processing tasks and reasoning. Additional concepts are required.  

To analyze the example more precisely, consider what the various branches and joins mean: 

• Proportional mix of different kinds of orders, customers, or services (e.g., the first branch indicates 
how the order comes into the organization, as an update/correction or as an initial faxed order). 

• Hand-off to the next (possibly dependent) step in a functional sequence (especially clear in the 
modeler’s use of a step notation in the top portion of Figure 2-7). 

• Condition of job being processed (e.g., incorrect information, indicated by a branch showing 60% 
correct and 40% requiring troubleshooting). 

• Events that occur during troubleshooting (e.g., receive-a-call or keep-calling-back). 

Although this abstraction is useful, notice that everything in this diagram was specified and connected by the 
modeler. The model essentially leaves out the logistics, how these conditions come to be detected and 
resolved, such that work and information actually flows. What is wanted is a model that includes aspects of 
reasoning found in an information-processing model, plus aspects of geography, agent movement, and 
physical changes to the environment found in a multiagent simulation (Tokoro 1996). The designed flow of 
Figure 2-7 assumes that people are always on the spot, picking up faxes and handing them over to others, 
reviewing the status of database entries on-line, responding to phone calls, et cetera. In reality such 
behavior is an emergent property of the situation; people come together and their work is constrained by the 
environment. A designed work and information flow diagram leaves out the accomplishment of 
synchronization and the effect of juxtaposition of materials, such as the following: 

• Parallel-dependent processing (e.g., in practice, people start a time-consuming step in processing 
order before approval/clearance for doing the work (Dourish 1996)) 

• Cognitive interpretation, social knowledge, and variability (e.g., how do people know that 
information is not correct? How are intra-group variations in how the work is done a resource for 
handling difficult situations, such as the unavailability of a computer system?) 

• Interactional logistics and daily activities (e.g., the steps marked “Receives call” and “Call-back-right 
person” in Figure 2-7 omit the activity of “making the call” in the first place and when it occurs during 
the day. Is a pager and cellular phone used or voice mail at a desk phone?) 

• Informal help and “keeping an eye” on the work (e.g., stepping outside defined roles, especially 
being concerned about the end result even after doing one’s own step in a process). 

By ignoring the movement and transformation of information through human action, especially conversation, 
a designed workflow not only fails to explain how flows actually can happen at all, but leaves out the 
emergent effects of serendipity, such as stumbling on one order while looking for another or bumping into 
someone in the hall and learning about a new organizational priority. 

2.1.4 Discussion 

In this section, I discussed workflow modeling and simulation as a tool for business process re-design 
projects. Although the purpose of a workflow model is to represent the work of people in a work process, I 
have shown the limitations of this paradigm to model and simulate work as it really happens. I discussed the 
problems surrounding the validity of the statistics generated by a workflow simulation. Furthermore, we 
discussed many of the other limitations in representing how people actually work. A workflow model focuses 
on the sequential movement of jobs through process steps; therefore, the paradigm is very limited in 
representing the work from the point of view of a worker. People are seen as statistical resources. The 
representation of the flexible behavior of humans is not possible, and makes workflow models not a realistic 
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representation of how people work. This problem was emphasized by the example of trying to model the TC 
role in the T1 re-design project at NYNEX. Although the work activities of a TC were central to the work 
process, a workflow model was not able to show the “off-task” coordination work of the TC. Therefore, the 
model was a bad representation of the new work design. A simulation of work practice should emphasize: 

• What people actually do, not just official job functions; 

• What people are doing every minute of the day, where they are, and what they are perceiving, not 
just working on one task at a time; 

• The collaboration between two or more agents, such as face-to-face conversations, telephone 
calls, etc, not just communication as a stochastic event; 

• That people have personal identity, and are not interchangeable resources. 

I conclude this review of the workflow model-based paradigm showing in Table 2-1 its limitations to 
represent people’s collaboration, “off-task” behaviors, multi-tasking, interrupted and resumed activities, 
informal interaction, knowledge and geography. 

In the next sections, I describe several agent-based modeling approaches for modeling individual intelligent 
agent behavior. If we want to model the work of a group of individuals, it is obvious that an agent-based 
approach is warranted. 
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Table 2-1. Workflow modeling limitations 

 Collabora-
tion 

Off-task 
behaviors 

Multi-
tasking 

Interrupt 
and resume 

Informal 
interactions 

Cognitive 
behavior 

Geography 
(location) 

Task 
Model 

Tasks 
cannot 
represent 
collaboration 
between 
people 

Tasks that 
do not 
directly 
"touch" jobs 
flowing 
cannot be 
represented 

Not 
supported 

Tasks 
cannot be 
interrupted 
and 
resumed 

Tasks 
cannot 
represent 
informal 
interaction 
between 
people 

Not 
supported 

Tasks are 
not 
associated 
with location 

Input 
Model 

N/A Jobs have to 
“flow 
through” 
tasks to be 
worked on 

N/A N/A N/A N/A Jobs are not 
represented 
as located 

Resource 
Model 

Resource 
interactions 
cannot be 
represented 

Resources 
cannot be 
associated 
with tasks 
outside of 
the workflow 

Resources 
cannot work 
on more 
than one 
task at the 
same time 

Resources 
cannot be 
interrupted 
when 
working on a 
task 

Resources 
cannot 
participate in 
informal 
interactions 
between 
other 
resources 

Resources 
are numeric, 
not symbolic 
entities. 
Resources 
do not have 
cognitive 
capabilities 

Resources 
are not 
located 

Timing 
Model 

Timing and 
coordination 
of tasks of 
different 
resources is 
not possible 

N/A N/A When 
started, 
tasks take a 
fixed amount 
of time, and 
cannot be 
interrupted 
and 
resumed 

N/A Resources 
have no 
notion of 
time 

There is only 
one timing 
model, and 
therefore we 
cannot 
represent 
multiple time 
zones based 
on location 
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2.2 COGNITIVE MODELING 

Ever since modern cognitive psychology took form in the 1950s and 1960s, it has focused on aspects of 
understanding human cognition. In the early 1970s, it was Allen Newell who started to work on a unified 
theory of cognition that would address all aspects of cognition. Newell felt that the only way cognitive 
psychology would ever come to a unified theory, it needed to understand from the beginning how all the 
different pieces fit together (Newell 1973b). Newell, at the same time, introduced his answer to this dilemma. 
He described his first production system theory of human cognition. It was a single system that was able to 
perform a diverse set of tasks that occupied cognitive psychology. He described production systems as 
follows (Newell 1973a, pp. 463-464): 

A production system is a scheme for specifying an information processing system. It consists of a set 
of productions, each production consisting of a condition and an action. It has also a collection of data 
structures: expressions that encode information upon which the production system works—on which 
the actions operate and on which the conditions can be determined to be true or false. 

A production system, starting with an initially given set of data structures, operates as follows. That 
production whose condition is true of the current data (assume there is only one) is executed, that is, 
the action is taken. The result is to modify the current data structures. This leads in the next instant to 
another (possibly the same) production being executed, leading to still further modifications. So it 
goes, action after action being taken to carry out an entire program of processing, each evoked by its 
conditions becoming true of the momentarily current collection of data structures. The entire process 
halts either when no condition is true (hence nothing is evoked) or when an action containing a stop 
operation occurs. 

Much remains to be specified in the above scheme to yield a definite information processing system. 
What happens (a likely occurrence) if more than one production is satisfied at once? What is the 
actual scheme for encoding information? What sort of collection of data structures constitutes the 
current state of knowledge on which the system works? What sort of tests are expressible in the 
condition of productions? What sort of primitive operations are performable on the data and what 
collections of these are expressible in the actions of productions? What sort of additional memories 
are available and how are they accessed and written into? How is the production system itself 
modified from within, or is this possible? How much time (or effort) is taken by the various components 
of the system and how do they combine to yield a total time for an entire process. 

Over the years, Newell explored a number of variations on his production system concept, concluding with 
his Soar theory of human cognition (Newell 1990). Right now, there are at least four current and active 
production system theories: Soar (Newell 1990), ACT-R (Anderson 1993), 3CAPS (Just and Carpenter 
1992), EPIC (Meyer and Kieras 1997). All these computational cognitive modeling systems are developed 
as implementations of a theory of cognition. As such, domain specific models of problem-solving tasks that 
are developed in these systems are seen as theoretically valid models of how humans perform problem 
solving. In this chapter, I briefly describe the Soar and ACT-R systems, in order to give a brief overview of 
the field of cognitive modeling. The reason for not describing all four systems, mentioned above is, a) 
because Soar and ACT-R are the best known and mostly used production systems for cognitive modeling, 
and b) to limit the space used to describe the nature of cognitive modeling. 

2.2.1 Soar 

Soar is a general cognitive architecture for developing systems that exhibit problem-solving behavior. 
Researchers all over the world, both from the fields of artificial intelligence and cognitive science, are using 
Soar for a variety of tasks. It has been in use since 1983. 

Soar attempts to approximate rational behavior, using the following guiding design principles (Laird et al. 
1999): 
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• The number of distinct architectural mechanisms should be minimized. Soar has a single 
framework for all tasks and subtasks (problem spaces), a single representation of permanent 
knowledge (productions), a single representation of temporary knowledge (objects with attributes 
and values), a single mechanism for generating goals (automatic subgoaling), and a single learning 
mechanism (chunking). 

• All decisions are made through the application of relevant knowledge at run-time. In Soar, every 
decision is based on the current interpretation of sensory data, the contents of working memory 
created by prior problem solving, and any relevant knowledge retrieved from permanent memory. 

Soar is based on the general hypothesis that all goal-oriented behavior can be viewed as the selection and 
application of operators to a state. A state represents the current problem-solving situation in memory, at a 
specific moment in the problem-solving process. The application of an operator changes the current state to 
a new state, which means that it is changing the representation of the state in memory. A goal (or subgoal) 
is seen as the desired outcome of an operator. Trying to reach its goals, Soar continually applies operators 
selected to achieve a goal. When an operator succeeds or fails, Soar selects the next operator for a subgoal 
of the current goal, or for a new goal. Reaching a goal can be seen as having the system reach a goal-state, 
i.e. the desired representation of objects, attributes, and values. 

Soar has two types of memories for storing the different representational objects of a problem-solving 
process, 

• Working memory contains descriptions of the current situation—the current state—including data 
from sensors, results of intermediate production firings, active goals and operators. Working 
memory is organized into objects. Objects are described in terms of attributes. The current state is 
the total of objects in working memory with their current attribute-values. 

• Long-term (or production) memory contains productions that define how to react to the objects and 
their attributes in working memory. The productions in long-term memory can be thought of as the 
Soar program. 

A Soar program contains the knowledge that is relevant in a particular problem-solving task (or a set of 
tasks), including the knowledge about when to select and apply operators to transform the states of working 
memory in order to achieve its goals. 

2.2.1.1 Problem solving in Soar 

Soar's long-term knowledge is organized around the functions of selecting and applying operators. These 
inherent Soar functions are performed using five distinct types of knowledge, operator proposal, operator 
comparison, operator selection, and operator application. Soar also has generic knowledge about making 
monotonic inferences about the state (i.e. state elaboration). Inferences that result in state changes in 
working memory have an indirect effect on the operator selection and application functions, because new 
state descriptions can cue new operators.  

The knowledge used in the selection and application of operators is represented in terms of production rules 
encoded in the Soar program. Production rules are declarative "if-then" statements. The if-part of the rule is 
called the condition or precondition, and the then-part is called the action or consequence. The execution of 
production rules is referred to as rule firing. A rule matches when its conditions are met based on the current 
state in working memory. At that moment, the rule fires and its actions are executed. Executing actions 
means changing working memory (see Figure 2-8). 
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Figure 2-8. The Soar production system (borrowed from (Newell 1990)) 

Thus, by continuously testing conditions of the rules in long-term memory, matching the rules, based on the 
current state, the current-state of the system changes continuously. This cycle continues until there is a kind 
of equilibrium state between long-term and working memory. This means that the current state does not 
result in firing any of the rules in long-term memory. When this happens, and a specific goal-state has not 
yet been reached (i.e. the operator has not been fully applied), Soar is unable to make further progress and 
reaches an impasse. There are three types of impasses possible: 

1. No operator can be selected, because none is proposed. 

2. No single operator can be selected, because there are multiple operators possible and there is not 
enough knowledge to distinguish between them. 

3. An operator is selected, but there is no additional knowledge to apply the operator. 

When Soar is in an impasse, the architecture creates a substate (i.e. a sub search-space) in which a new 
operator selection-apply cycle can be started, with as the subgoal to resolve the impasse. 

2.2.1.2 Learning in Soar 

Learning is an important part of a theory of cognition. There are many aspects of how learning occurs in 
human cognition that are not well understood today. However, Soar has a primitive notion of learning called 
chunking. Chunking is a form of learning from experience. It is a way to transform specific problem-solving 
scenarios into productions stored into long-term memory for future use. 

A chunk is a newly created production rule. The conditions of the chunk are parameterized working memory 
elements (WME) of a state that lead (through some chain of production firings) to a specific impasse 
resolution. The action of the chunk is the WME that actually resolved the impasse. In other words, chaining 
backwards over the specific WME's that were used to resolve a specific impasse creates the chunk. The 
first WME in this backward-chaining process is the action of the chunk being created. By parameterizing 
(replacing objects by variables) the chunk is made more generically applicable as a production rule in long-
term memory. 

2.2.2 Act-R 

ACT-R is the result of long cognitive science research at Carnegie Mellon University, started in the mid-
seventies with the introduction of the ACT production system (Anderson 1976). Like Soar, ACT-R is a 
theory of cognition trying to deal with the empirical knowledge of human cognition that has evolved in 
cognitive science. ACT-R consists of a theory of the nature of human knowledge, a theory of how this 
knowledge is deployed, and a theory of how this knowledge is acquired (Anderson 1976). ACT-R is also, 
like Soar, a computer system that implements the ACT-R theory. ACT-R can be used to develop computer 
simulations of a wide range of cognitive phenomena in memory, problem solving and skill acquisition. 

The ACT-R theory assumes that there are two types of knowledge, declarative and procedural. Declarative 
knowledge is knowledge that we are aware of and can usually communicate to others. It is sometimes 
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referred to as factual knowledge or axioms. Examples include “George W. Bush is the 43rd president-elect 
of the United States,” and “one plus two is three.” Procedural knowledge is knowledge that we are not 
conscious of, and is applied in our problem solving behavior using our declarative knowledge.  

Declarative knowledge is represented as chunks. Chunks in ACT-R are different from the notion of chunks 
in Soar. In ACT-R, chunks are WME that represent the factual statements in working memory. For example, 
the fact 1 + 2 = 3 is represented as the following chunk (Figure 2-9): 

Figure 2-9. Representation of an ACT-R chunk 

Procedural knowledge in ACT-R, just as in Soar, is represented using production rules. A production rule is 
a condition-action pair. The condition specifies what must be true for the rule to apply, and the action 
specifies a set of things to do if the rule applies. Conditions in a production rule test for the state of the 
current goal and chunks in declarative memory, whereas the actions change the goal state.  

From this brief description of the ACT-R architecture, we can infer that there are many similarities with the 
Soar architecture; ACT-R's declarative and procedural memory is synonymous with Soar's short-term and 
long-term memory, where its declarative and procedural knowledge is similar to Soar's objects in working 
memory and production rules in its long-term memory. The third comparison that holds, although should not 
be seen as a one-to-one comparison, is the similarity between goals in ACT-R, and operators in Soar. 
Goals in ACT-R are held in a separate memory structure, namely the goal-stack. In ACT-R, goal structures 
provide a higher-level organization to control the execution of production rules (relatively similar to operators 
in Soar). 

2.2.2.1 Problem solving in ACT-R 

Problem solving is organized through the current goal, which represents the focus of attention at each step 
in the problem solving procedure. ACT-R is always trying to achieve the goal that is at the top of the goal-
stack. The current goal is pushed onto the stack, and is the next goal to be achieved. When it is done 
achieving a goal it pops the goal of the stack, which means that it will start achieving the next goal on the 
stack (see Figure 2-10). Thus, the goal-stack encodes the hierarchy of intentions that guide the problem-
solving behavior.  

Fact1+2 
 isa ADDITION-FACT 
 addend1 One 
 addend2 Two 
 sum Three 
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Figure 2-10. The ACT-R production system (borrowed from (Anderson and Lebiere 1998)) 

To select a production rule to achieve the current goal, there is a conflict resolution process that chooses 
one production from among the productions that match the current goal. The selected production is 
executed and can result in a transformation of the current goal, possibly resulting in pushing subgoals on 
the goal stack, or popping the current goal of the stack. It can also result in retrieval requests to declarative 
memory, which can be returned to the current goal satisfying it, thus causing popping the current-goal. 
Soar's type of chunking (i.e. production learning) is performed through a process called production 
compilation. Last, execution of a production can result in actions to be taken in the outside world, while 
perception of facts in the outside world can independently create chunks in the declarative memory. This 
last piece is the subject of the next section. 

2.2.2.2 The total cognitive system 

Newell describes a larger system that includes perception and motor behavior as the total cognitive system, 
shown in Figure 2-11 (Newell 1990, pp. 194-195). Here is where we identify a significant difference between 
the ACT-R and Soar systems implemented in software. Although, both theories describe the need for a total 
cognitive system, only ACT-R has implemented such a total system. 

ACT-R has a number of extensions that have been created by different researchers. First, there is a visual 
interface that incorporates ideas on visual attention and perception. This extension implements in software 
the capability of accessing information from a computer screen and dealing with a keyboard and mouse, in 
a similar way human subjects do in psychological experiments. It parses “screens” as humans do and 
enters key-presses and mouse gestures. The data record that is created using this interface is 
indistinguishable from the data record that human subjects create. The visual interface is extended more 
generally to also deal with audition, speech, and other hand gestures. 
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Figure 2-11. The total cognitive system (borrowed from (Newell 1990)) 

2.2.2.3 Human performance models 

The grounding of ACT-R in real experimental data has created the ability for developing models whose 
correspondence to actual cognition can be validated with a subject performing similar experiments in the 
real world. This, in some sense, has created a level of reality in cognitive modeling. ACT-R makes 
predictions about every aspect of the empirical phenomena that are being simulated. For example, in 
simulating memory experiments the ACT-R model predicts not only the correctness of response choices 
and response latency, but also the steps involved in the problem solving process. 

The use of this is mostly relevant in the field of human factors, where the focus of research is on 
understanding the impact of a particular interface design on human performance. 

2.2.3 Discussion 

The home page of the ACT group13 at Carnegie Mellon University states: “The architecture takes the form 
of a computer simulation that is capable of performing and learning from the same tasks worked on by 
human subjects in our laboratories.” This says that ACT-R's main focus is to simulate psychological 
laboratory experiments. The reason for this is the following. Using simulation models of psychological 
experiments that can be done in a laboratory setting with human subjects, the simulation models can be 
validated by comparing the simulation output data with data from these real-life laboratory experiments.  

Thus, the sole purpose of implementing the ACT-R theory into the ACT-R computer simulation system is to 
verify and validate the theory. In other words, the ACT group's method for researching unified theories of 
cognition is through modeling and simulation. I make this point, because of two reasons; 1) I apply a similar 
research method for developing a theory of work practice, and 2) it helps me to show the limitations of ACT-
R (and Soar, for that matter) in applying it for a different research problem, namely the development of a 
theory of work practice. 

                                                      
13 http://act.psy.cmu.edu/ACT/act/actr.html 
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Table 2-2. Limitations of cognitive modeling and simulation 

 Collabora-
tion 

Off-task 
behaviors 

Multi-
tasking 

Interrupt 
and resume 

Informal 
interactions 

Cognitive 
behavior 

Geography 
(location) 

SOAR No 

There is only 
one actor 

No 

Tasks are 
performed 
through 
goal-directed 
reasoning 

No 

Only through 
complex 
goal 
switching 

No 

Goals 
cannot be 
interrupted 
and 
resumed 

No 

There is only 
one actor 

Yes No 

ACT-R No 

There is only 
one actor 

Yes 

The actor 
can react to 
perceptions 
from the 
outside 
world 

No 

Only through 
complex 
goal 
switching 

No 

Goals 
cannot be 
interrupted 
and 
resumed 

No 

There is only 
one actor 

Yes No 

The limitations of applying cognitive modeling architectures to work practice modeling and simulation are 
given in Table 2-2. However, the main reason for being skeptical about using cognitive modeling 
environments, like Soar and ACT-R, for modeling work practice has to do with the level at which cognition is 
modeled. As described in this chapter, using Soar and ACT-R as examples, cognitive models are 
represented at a level that allows the cognitive science researcher to model cognitive cycles in the human 
brain. These cycles have a length of no more than 50-100msec. Even though I have not yet defined what 
needs to be included in a model of work practice, it seems clear that work practice needs to be shown at a 
higher-level of human activity than the low-level cognitive cycles of a person. One of the reasons for 
believing this is because of the scale factor. If we want to model a work practice in an organization of, for 
example, tens of people, it seems obvious that modeling each person in this organization at the level of their 
cognitive cycles would not be useful, even if it would be possible. The objective of a work practice model 
must lie at the level of showing what the total system behavior is. It seems obvious that this should be done 
by modeling each person's activities in the physical world, based on some relatively high-level 
representation of the reasoning behavior of each individual, and the impact this has on the individual's 
action in the physical world. 

The notion of multiple actors or agents being involved in problem solving, and the research into 
organizations of multiple actors is the topic of the next sectrion, in which I will discuss the research field of 
distributed artificial intelligence. 
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2.3 DISTRIBUTED ARTIFICIAL INTELLIGENCE 

I am interested in modeling and theorizing about activities of people. People are inherently social actors and 
we, therefore, must be concerned with the social dimension of action and knowledge. Gasser states that 
classical artificial intelligence (AI) research is largely a-social, meaning that the unit of analysis is a 
computational process with a single locus of control and knowledge (Gasser 1991). Because of this, it has 
been inadequate with dealing with social human behavior. Gasser investigates how contemporary DAI 
deals (and should deal) with the social conception of knowledge, action, and interaction. In (Gasser 1991) 
he makes an argument that distributed artificial intelligence (DAI) is fundamental in the research on how 
agents coordinate their actions, use knowledge about beliefs, and reason about the beliefs and actions of 
other agents. Here, I draw a similarity between the research problems in the DAI literature and the problems 
in simulating work practice.  

The notion of “social” in DAI is in my opinion too limited. The term social in DAI is meant as “more than one.” 
That is, DAI does not concentrate on problem-solving behavior as sitting in the head of a single agent, but 
investigates problem-solving behavior as a distributed multiagent process. As such, the word “social” means 
that there is communication and coordination between multiple agents in a problem-solving task. Detail can 
be found in (Bond and Gasser 1988; Gasser and Hill 1990). However, the definition of “social” is broader, 
and relates more closely to the way the group as a whole acts and interacts in the environment. The notion 
of social conception of knowledge and action is not a new idea. Social psychologist George Mead stated 
(Mead 1934): 

We are not, in psychology, building up the behavior of the social group in terms of behavior of the 
separate individuals composing it; rather we are starting with a given social whole of complex group 
activity, into which we analyze (as elements) the behavior of each of the separate individuals 
composing it. We attempt, that is, to explain the conduct of the individual in terms of organized 
conduct of the social group, rather than to account for the organized conduct of the social group in 
terms of the conduct of the separate individuals belonging to it. For social psychology, the whole 
[society] is prior to the part [the individual], not the part to the whole; and the part is explained in terms 
of the whole, not the whole in terms of the parts. 

The traditional techniques and methods of AI do not include any fundamental social elements. The focus is 
on the individual as the object of knowledge, truth and knowing. Gasser provides a great example of this 
limitation in AI research. The example is centered on the concept of commitment, and provides an excellent 
description of how an individual’s commitment is not just based on his or her individual relativized persistent 
goal (Cohen and Levesque 1990). In contrast, an individual’s commitment is based on an agent’s overall 
participation in many settings (activities) simultaneously (Gerson 1976), exemplified by Gasser’s example 
(Gasser 1991): 

For example, imagine that a Los Angeles industrialist takes off in an airplane from Narita airport, 
bound for California, after formulating preliminary business deals in Tokyo and telephoning her 
associates in Los Angeles. While flying, she is participating in many settings simultaneously: the 
activity in the plane, the ongoing business negotiations in Tokyo and in Los Angeles (where people 
are planning for her arrival and making business judgments while considering her views, even in her 
absence). Her simultaneous involvement in interlocking courses of action in all of these situations 
provides the commitment to her arrival in California. Both she and others balance and trade off her 
involvement in joint courses of action in many different situations. Moreover, whether she makes a 
choice or not, she is committed to landing in LA because the plane is not in her control. Her 
commitments in any of these settings amount to the interaction of many activities of many agents in 
many other settings. Since this multi-setting participation occurs simultaneously in many places, it 
can’t be located simply to where she physically ‘is’. In other words, the notion of commitment is 
distributed because the agent of commitment—‘she’—is a distributed entity. 
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Although this example focuses on the notion of commitment, it is an excellent example of collaboration 
between multiple people in a work system. This example shows the importance of individual participation, 
knowledge, and location in the system as a whole. It shows that resources are not interchangeable, and that 
the work practice cannot be understood without a close investigation of the collaboration between the 
individual agents and the context in which this collaboration takes place. As Gasser states (Gasser 1991): 

[…] since continued participation is distributed and simultaneous, it isn’t based on localized, individual 
choices and goals. 

The next few sections discuss a number of agent-based systems from the field of DAI. None of these 
systems provide a complete solution for dealing with simulating work practice, however they have formed a 
basis for our Brahms multiagent system. 

2.3.1 TacAir-Soar 

In (Tambe et al. 1995) an intelligent agent simulation environment is described for simulating battlefield 
scenarios and the knowledge intensive reasoning of independent pilot-agents. This environment is called 
TacAir-Soar, a kind of virtual world that can be populated with not only humans, but also with intelligent 
automated agents (AI systems). Such synthetic environments provide a new laboratory in which intelligent 
agents can be studied. Intelligent agents can be substituted for humans, such that a large number of entities 
can be used to populate the virtual world. A benefit of such an environment is that artificial agents can 
simplify and speed-up experimentation by providing more control of behavior, repeatability of scenarios, and 
an increased rate of simulation, faster than real-time simulation. 

The goal of TacAir-Soar is the production of behavior that is close enough to that of humans, and to force 
the other entities to interact the same way as they would interact with humans. Although ambitious, they do 
not have to deal with low-level perception and robot control. There is also no verbal interaction between 
opposing entities, and cooperating agents restrict their communication to the details of the current mission. 
TacAir-Soar was to provide synthetic pilots (IFORS) for all the missions in STOW-97 (Simulated Theater of 
War), a large-scale simulation of a tactical exercise that took place in 1997, including fighters, troop 
transports, reconnaissance aircrafts, and helicopters. The set of requirements for the automated pilots 
include: 

• Goal-driven and knowledge-intensive behavior; 

• Conformance to human reaction and limitations; 

• Performance of multiple simultaneous tasks; 

• Episodic memory. 

Pilot agents in TacAir-Soar are created as individual knowledge-based systems within the Soar integrated 
architecture (Laird et al. 1987) (Newell 1990). TacAir-Soar represents a generic automated pilot. 
Specializing it with specific vehicle parameters provided to them during the briefing process creates specific 
automated pilots. These pilot agents then participate in battlefield simulations by flying simulating aircrafts 
provided by ModSAF (Calder et al. 1993), a distributed simulator that has been developed commercially for 
the military.  
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Figure 2-12. Human and Automated Pilots interact with the DIS environment using Distributed Simulators 

TacAir-Soar has been constructed from Soar through the addition of perceptual motor interfaces (in the form 
of C-code) that allow pilots to fly ModSAF planes in the DIS (Distributed Interactive Simulation) environment 
(Thorpe et al. 1989). Each automated pilot is implemented as a Soar agent, interfacing with the simulated 
plane it is flying. To do this, they implemented a cockpit abstraction on top of ModSAF that allows TacAir-
Soar to focus on behaving like a pilot, while ModSAF simulates planes, sensors, and weapons (see Figure 
2-12. 

2.3.1.1 Goal-driven task behavior 

Each automated pilot agent has specific knowledge about tactical air-combat, and is implemented as a Soar 
knowledge base, having independent reasoning behavior. Goal-oriented and knowledge intensive 
behaviors are addressed by the manner in which Soar uses its architecture and knowledge in the process of 
dynamically expanding and contracting a goal hierarchy (Laird et al. 1987). Task switching also arises from 
Soar's decision-making abilities, but then specifically applied to the selection and switching of tasks. Tasks 
(also called goals) are represented as operators in Soar, and are the main foci of its decision-making. Task 
decomposition arises from Soar's ability to automatically generate a new task context when a decision is 
problematic. Task decomposition is achieved by combining task context generation with rules that generate 
preferences about which subtasks are appropriate for parent tasks. Real-time interaction with the DIS 
environment arises from the combination of Soar's incorporation of perception and action within the inner 
loop of its decision making capabilities-thus allowing all decisions to be informed by the current situation 
(and interpretations of it, as generated by rule firings) and the use of ModSAF as the interface to the DIS 
environment.  

2.3.1.2 Conformance to human reaction and limitations 

Reactivity of the individual pilot agents is addressed through a combination of Soar’s use of productions to 
enforce context sensitivity in the representation of the knowledge, and Soar’s decision-making procedure. 
Soar can react to changes by suggesting new goal-operators be pursued at any level in the same goal 
hierarchy, generating preferences among suggested operators. The decision procedure determines what 
changes have to be made to the goal hierarchy. Reactivity is limited to changes from within the decision-
making process, and not from external available cues. 

For example, communication between agents is simulated by the transmission of radio messages via the 
ModSAF simulation substrate, through the DIS network. That is, a discrete event simulates the transmission 
of a radio message between agents. The content of the radio message is received by an agent through the 
ModSAF interface into the working memory of the agent. Agents can react to radio messages through the 
activation of rules in the current task context that can propose new operators to be evaluated. This limits the 
agent to reacting only to radio messages that are relevant in the current context. 
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As a result, one of the limitations of TacAir-Soar in its use for modeling work systems is its inability to react 
to general external cues, other than the ones built in through the ModSAF cockpit abstraction and the DIS 
network. People, on the other hand, constantly react to the state of their external environment, regardless of 
their goal context at that moment. For example, when the telephone rings, people react to it. Depending on 
the activity we are involved in at that moment, we either pick it up, or let our answering machine answer. If 
we’re not in the same location as the telephone, we do not notice the telephone ringing. When we decide to 
pick up the phone, we will most likely engage in a total different task context. This poses a problem for the 
way the Soar decision-making process works. 

2.3.1.3 Performance of multiple simultaneous tasks 

The Soar architecture is inadequate in certain requirements. One requirement that poses an inherent 
problem in modeling social human behavior is the inability of the simultaneous performance of multiple 
tasks. People inherently work on multiple tasks at once. TacAir-Soar agents need to simultaneously execute 
maneuvers to destroy the opponent, survive opponents' weapon firings, as well as interpret opponents' 
actions. The limitation of Soar is that it cannot create multiple goal hierarchies to serve multiple high-level 
tasks. The approach taken in TacAir-Soar to handle this problem is to create operators for simultaneous 
goals as needed, and to add these operators at the bottom of the active goal hierarchy. Although this may 
work, with sufficient care taken, it is not a real solution to the modeling of realistic human behavior. Soar 
interprets “lower” goal operators as being dependent on the higher-level goals, although these lower-level 
goals are supposed to be interpreted as goals for independent tasks. Jones, et al worked on changing the 
architecture to allow “forests” of goal hierarchies (Jones et al. 1994). Covrigaru approached the problem by 
being able to flush the current goal hierarchy whenever a new one needs to be established (Covregaru 
1992). However, these approaches mean a change to the Soar architecture that would allow the dynamic 
compilation of new goal hierarchies. 

2.3.1.4 Episodic memory 

Endel Tulving introduced the term episodic memory (Tulving 1969). The notion of episodic vs. semantic 
memory arises from the central learning tradition of American experimental psychology. Tulving made clear 
that learning of verbal material was tied to a specific episode, i.e. a specific time and context in which the 
learned material was memorized, and thus was associated with. Episodic memory in TacAir-Soar is used 
primarily to support explanation. It is also used to a limited extent during simulation, so that an operator’s 
current actions are interpreted based on its actions in the past. The general constraints are that episodic 
memory should add minimal processing overhead, and it should not substantially increase working memory. 
Episodic memory is a basic characteristic of human cognition, something a unified theory of cognition ought 
to provide for (Newell 1990). This brings tough issues for the Soar architecture especially. The approach 
taken in TacAir-Soar is that the sequence of events is recorded in working memory so that it can be recalled 
accurately. The states in which events occur are stored by committing state changes to long-term memory. 
Long-term memory employs chunking, which allows agents to learn new productions from episodic 
memory. 

This is a point where TacAir-Soar wins over Brahms. Currently, Brahms agents have no significant episodic 
memory. Brahms agents only have a list of “current-beliefs” which is changing constantly. A trace of past 
activities, and states is not memorized. Brahms agents have no long-term memory, nor the ability of 
chunking. This is a future research issue that is closely related to the issue of learning. Although learning is 
an important piece of modeling human behavior, it falls outside the scope of this thesis. I return to a short 
discussion of learning as a topic for future research in the conclusion chapter of this thesis. However, for 
now suffice it to say that the Brahms simulation engine does keep track of all changes to the system, and 
that these historical events are created so that the history of a simulation can be saved in a database, and 
investigated post-simulation. However, at this moment, Brahms agents cannot access these historical 
events. 

2.3.2 Phoenix: simulating fire-fighting in Yellowstone National Park 

Paul Cohen, et al (Cohen et al. 1989) developed an agent-based simulation environment for simulating how 
fires in Yellowstone National Park are fought. The research objective of the Phoenix project is to understand 
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how complex environments constrain the design of intelligent agents. In contrast to the objectives of this 
research, in which the goal is to understand how work processes are created in terms of the work practices 
of people, the aims of the Phoenix research are more of a technical AI nature: 

• Real-time adaptive planning 

• Approximate scheduling for coordination of multiple planning activities 

• Knowledge representation of plans and measuring progress towards the goals 

They describe the Phoenix environment as follows: 

We began the Phoenix project by designing a real-time, spatially distributed, multi-agent, dynamic, 
ongoing, unpredictable environment. (Cohen et al. 1989) 

Phoenix is a multi-layered system. Figure 2-13 shows the architectural layers. 

organization

agent definition

map

task coordinatorLayer 1

Layer 2

Layer 3

Layer 4

 
Figure 2-13. Phoenix layers 

Layers 1 and 2 implement the environment (i.e. the forest and forest fires), in this case a part of Yellowstone 
National Park. Layer 3 is the agent design layer, which is the layer that creates the cognitive and reflexive 
behavior of the agents. Layer 4 is a model of the organization of multiple fire fighters. 

2.3.2.1 Task coordinator layer 

The task coordinator layer is responsible for creating the illusion of simultaneity among fires, and the agent’s 
physical and internal actions. The task loops over all agents in each clock tick, changing the environment 
and the agent’s actions accordingly. The clock grain size of the Phoenix simulator is 5 minutes. This means 
that the smallest action or change in the environment takes a minimum of 5 minutes of simulated time. You 
can increase the clock grain size to make the simulation more efficient. However, increasing the clock grain 
size will make agents become discordant with the environment, and with each other. When the clock grain-
size becomes too large, it is possible for more than one action for an agent to have taken place in one 
simulation clock-tick. Communications between agents might have been missed, and changes in the 
environment might not have been recorded by the individual agents, leading to a situated-specific model 
that is not in sync with what actually happened in the simulation. 

2.3.2.2 Map layer 

The fire simulator resides in Phoenix’s map layer. A Phoenix map is a composite of a two-dimensional data 
structure in which, for each map coordinate, information is stored about the environment. The environment 
is described as a set of symbolic features found at that specific coordinate on the map. These features 
include values for type of ground cover, elevation, features such as a road, a river, houses, et cetera., and 
the state of the fire at that coordinate (fire intensity). 
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Figure 2-14. Screen display of Phoenix’s situation-specific model (here gray and white indicate forest, which is seen 
hugging a river on the left side; the fire is near the middle (darker gray dots), nearly surrounded by the bulldozers in 
the view on the left). The left pane is the view of the real world, the right pane is the view of the fire boss. 

The process of changing the map (i.e. changing the environment) during each simulation clock-tick is 
parameterized according to these defined concepts (Cohen et al. 1989): 

Fires spread in irregular shapes and at variable rates, determined by ground cover, elevation, 
moisture content, wind speed, and direction, and natural boundaries. For example, fires spread more 
quickly in brush than in mature forest, are pushed in the direction of the wind and uphill, burn dry fuel 
more readily, and so on.... Fire-fighting objects are also accurately simulated; for example, bulldozers 
move at a maximum speed of 40 km/h in transit, 5 km/h traveling cross-country, and 0.5 km/h when 
cutting a fire-line. (p. 34-35) 

The fire itself is implemented as a cellular automaton in which each cell at the boundary of the fire decides 
whether to spread to its neighboring cells. The simulator is generic in the sense that it can be used to 
simulate any type of environment involving maps and needs to simulate changes to the environment, based 
on the changes to the symbolic representation of the environment. 

As is shown in Figure 2-14, the map layer also controls the movement of the agents, such as the bulldozers 
trying to surround the fire and cutting a fire-line, based on the situation-specific description of the terrain. 

2.3.2.3 Agent Design Layer 

Agents have two independent parallel mechanisms for generating actions: a reflexive component, and a 
cognitive component. The reflexive component generates actions for quick changes of direction on the 
order of seconds. The agent's sensors trigger reflexes. For example, when a bulldozer agent is about to 
drive into a fire, a reflex stops it and further reflexes handle the fine tuning of the movement of the agent to 
keep following the road without getting into the fire. Reflexes hardly cost any CPU time, but have no 
memory. They are merely a quick action (i.e. a reflex), based on triggers from the sensors. 

The cognitive component generates and executes lazy skeletal plans, which are stored prescribed action 
sequences that, when executed, are instantiated with situation-specific data (Freed 1998). The cognitive 
component executes plans using a selection process that first decides which action to execute, next it finds 
out how much time is available to execute that action, and last it decides what execution method should be 
used for the action to execute based on the time available. An agent can execute several plans 
simultaneously; for example, when there are multiple fires to combat. The planning process goes as follows 
(Cohen et al. 1989): 

Planning is accomplished by adding a selection action to the timeline to search for a plan to address 
some conditions. Executing the selection action places an appropriate plan action or primitive action 
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on the timeline. If this new entry is a plan action, then it expands into a plan when it is executed by 
putting its subactions onto the timeline with their temporal interrelationships. If it is a primitive action, 
execution instantiates the requisite variables, selects an execution method, and executes it. In 
general, a cognitive agent interleaves actions from the several plans it is working on. (p. 43) 

Just as in TacAir-Soar, plans cannot be interrupted, because saving a state of the world and context 
switching is prohibited in the architecture. Therefore, to change an action the agent has to generate an error 
selection action “deal-with-error.” 

The only way an agent can change its activities (i.e. re-plan) is to view a change as an error condition, and 
try to fix the current plan by expanding it into a kind of error recovery plan. Activities in Phoenix are 
sequential non-interruptible actions. However, the error-conditions in Phoenix are dynamically generated. 
This architecture allows for more flexibility in simulating the work activities of individual agents then workflow 
simulation models. 

The reflexive and cognitive components interact via flags that are set by the reflexive component when 
reflexes execute. Since plans executed by the cognitive component can take several simulation hours to 
complete, the reflexive component takes over and changes the directional behavior of the agent. When the 
cognitive component notices the flag, it might react by changing its plan by calling the “deal-with-error” 
action. A Phoenix agent deals with two time scales requiring micro-actions, such as following a road, and 
cognitive processing, such as route planning. The combination of the reflexive and the cognitive 
components is designed to handle these time-scale mismatches. 

2.3.2.4 Organization Layer 

Agents in Phoenix are centrally organized in a hierarchical organization of fire-fighting agents. There is 
always one coordinating agent for each organization of fire fighters. This agent is called the fire-boss. The 
fire-boss is a purely cognitive agent that coordinates all fire-fighting agents’ activities, scheduling and 
communicating action directives. The fire-boss receives status reports from the fire-fighting agents, including 
fire sightings, position updates, and action completions. The fire-boss has a global view of the fire situation, 
while each fire-fighting agent has a limited individual view of the fire. Based on this global view and the 
updates, the fire-boss chooses global plans from its plan library. It communicates the actions in these plans 
to the agents. When an agent receives a plan, it selects a plan from its own plan library that implements the 
received action. Although the fire-fighting agents and the fire-boss communicate, there is no communication 
amongst the fire-fighting agents (i.e. there is no cross-talking). 

The organization model in Phoenix is very limited, and is not conducive to collaboration amongst the fire 
fighters. The fire-boss orchestrates the work, and is a kind of meta-agent, whose sensors and detectors are 
the fire-fighting agents. It has the overall picture, the size of the fire, weather conditions, and action that 
already have been taken. None of this information is shared across the group of agents. Although this 
seems a good model to represent the TC in the T1 model (see 2.1.3.4)—it allows us to describe the 
coordination work of the TC—it does not allow for the agents in the central office to collaborate on a test with 
the technicians in the field. 

This brings us to the next section in which we discuss the limitations of the Phoenix and TacAir-Soar 
systems in simulating the work practice of humans. 

2.3.3 Discussion 

Both TacAir Soar and Phoenix are multi-intelligent agent environments. The reason for choosing these two 
environments in my description of relevant previous work is that they are on the opposite ends of the 
spectrum, as far as simulating human behavior is concerned. TacAir Soar is based on the Soar architecture. 
Soar was developed as a theory of human cognition, stating that human cognitive processing is symbolic. 
Newell’s claim is that the Soar architecture is representative of how the human cognitive process works. As 
such, TacAir-Soar models pilots at a very fundamental cognitive level. The focus in TacAir Soar is on how 
the reasoning process of combat pilots can be simulated to the level of cognitive reaction times (i.e. human 
performance). The fact that there are multiple agents, simulating multiple pilots flying in a squadron, is to 
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allow for training of individual pilots. The focus is on the individual, and less on the collaboration between 
pilots. For example, it would be hard to simulate one pilot being attacked by an enemy aircraft, and another 
friendly pilot collaborating with this pilot to shake off the enemy aircraft. 

Phoenix, on the other side of the spectrum, simulates a group of fire fighters who together fight a fire, 
coordinated by a fire-boss. At first, it seems that the Phoenix environment simulates collaboration. However, 
when we look closer we see that the fire-fighting agents in Phoenix do not even communicate together, a 
necessary prerequisite if we want to simulate collaboration. It is self evident that real fire fighters 
communicate together to setup strategies, change plans in times of despair, et cetera. A Phoenix agent 
does not represent how a fire fighter fights fires; instead it simulates how distributed lazy skeletal planning 
can be done. It would be very difficult to have a fire-fighting agent select the appropriate plan on the fly when 
suddenly, out of nowhere, a burning tree is falling down on a colleague ten feet away from where it is 
standing. Phoenix agents perform pre-specified plans that are assigned by a coordinating fire-boss agent. 
Because the overall view of the situation by the fire-boss, plans are being selected and agents directed. The 
agents are like robots acting out what the fire-boss instructs them to do, with local reactive behavior 
dependent on the environment they encounter, but independent of the fire-boss. In this sense, fire-fighting 
agents are fighting fires in groups without being aware that they are working in collaboration with other 
agents. An agent might be aware of some other agent, but it does not know what it is doing, and even more 
so, why it is doing what it is doing and that they are actually working together to fight the fire. In comparison 
with TacAir-Soar, Phoenix agents do not simulate the way human cognitive processes happen.  

The goal of Phoenix is to design the right software-agent architecture for the needed agent behaviors and 
environmental characteristics to fight fires. Actually, the Phoenix architecture is a generic simulator for the 
central coordination of distributed agents in a natural environment. As such, the Phoenix environment 
contains all the components that are necessary to design an environment to simulate the work practices of 
individuals and groups. The problem is in the view the developers of Phoenix take in agent cognitive 
behavior. Phoenix, not surprisingly, uses a more classical AI planning approach, i.e. lazy skeletal planning. 

With Table 2-3, I conclude this section on DAI by showing the strengths and limitations of the two reviewed 
systems, TacAir-Soar and Phoenix, in particular with regards to their ability to represent people’s 
collaboration, “off-task” behaviors, multi-tasking, interrupted and resumed activities, informal interaction, 
knowledge and geography. 

Table 2-3. Limitations of Distributed Artificial Intelligence  

 Collabora-
tion 

Off-task 
behaviors 

Multi-
tasking 

Interrupt 
and resume 

Informal 
interactions 

Cognitive 
behavior 

Geography 
(location) 

TacAir-
Soar 

No 

Communica-
tions of radio 
messages. 
Agents are 
not aware of 
each other's 
tasks 

No 

Only high-
level 
goal/tasks of 
the mission 

No No 

When 
contexts are 
switched 
tasks are 
stopped 

No 

Only specific 
goal-directed 
behavior 

Yes Yes 

But, there is 
no separate 
geography 
model 

Phoenix No No Yes Yes No 

 

Varies 

Firefighter 
agents for 
the most part 
are reactive 
agents. The 
fire boss 
agent is a 
deliberative 

Yes 
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agent 

 

2.4 COMPUTATIONAL ORGANIZATION THEORY 

Organizational issues were one of the first issues researched with the help of computational modeling. In 
the fifties, it was Herb Simon and his colleagues March and Cyert, at what was than Carnegie Tech, who 
started using computational modeling to create a behavioral theory of organizations (Simon 1955). 
Computer simulation is becoming a more accepted and indispensable method for organizational research 
and theory building. The need to understand organizational behavior is moving into the realm of detailed 
computational models of people, tasks, dynamic and adaptive ecological systems. Within organization 
theory models, organizations are often too complex to be analyzed by conventional techniques that lead to 
closed-form solutions. Computational organization theory (COT) researchers view organizations as a 
computational system of multiple “distributed” agents that collectively work on organizational tasks, use 
resources, have knowledge, skills, and communication capabilities. In (Carley and Prietula 1994b) and 
(Prietula et al. 1998), different organizational multiagent simulation models are presented as simplified 
descriptions of what happens in real organizations. Although simplified, these models are still sufficiently 
complex to simulate the dynamic behavior of organizations that allows for predictions and theory 
development. There are three basic reasons for using multiagent simulation as one of the main 
technologies in COT research (Carley and Prietula 1994b): 

1. Many models contain non-linearities that cannot be eliminated. In modeling reality the non-linear 
behavior of individual agents and groups are central to the aspect that is being studied. 

2. Differential equations do not deal with the differences of the discrete items in organizations, such as 
the people, tasks, and organization. 

3. Agents in an organization act in parallel and adapt to the behavior of others. The behavior of a 
group is thus recursively defined. Controlling this fine order of agent interaction, and enabling 
agents to adapt is most effectively handled by simulation. Especially, if we are interested in 
investigating the behavior of large groups of agents, it is almost necessary to turn to simulation. 

2.4.1 ACTS theory 

Carley and Prietula, in (Carley and Prietula 1994a), describe an extended model of Bounded Rationality 
(Simon 1955). The model of bounded rationality states that agents in an organization may be rational in 
intent, but less than rational in execution because functional limits on cognition restricts their ability to 
achieve optimality in the pursuit of their goals (Simon 1976). The theory of bounded rationality was 
developed to replace the limited models of agents in theories of economics and organizations with a better 
approximation of the actual capabilities of people’s decision making. The ACTS theory extends the model of 
bounded rationality and incorporates a general process theory of organizations. In the ACTS theory 
organizations are viewed as collections of intelligent agents who are cognitively restricted, task-oriented, 
and socially situated. The ACTS theory extends the model of bounded rationality in two ways: 

1. It replaces the general principles of bounded rationality with a broader perspective of a cognitive 
agent. 

2. It replaces the general notions of environmental constraints with specific environmental 
perspectives, a) the task, and b) the organizational social situation within which the task and the 
agents are situated—situatedness. 

Within ACTS, organizations are build-up of individual intelligent agents whom together perform tasks, 
collaborate, and communicate in a social environment. The agent’s knowledge, which is constantly 
changing, mediates the effect of the task and the social situation on the individual agent (micro-level) and 
organizational behavior (macro-level). Agents and tasks are situated in the organizational environment. 
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ACTS tries to explain such individual and organizational behavior and performance by supporting the 
development of a set of computational models:  

• a cognitive model of an agent,  

• a task model,  

• a model of the social situation. 

At the micro-level, the ACTS theory focuses on how a given organizational design affects the behavior and 
performance of individual intelligent agents whom communicate and reason within a social environment and 
situation. At the macro-level, the ACTS theory focuses on the behavior and performance of groups and 
organizations, given the fact that groups and organizations are comprised of intelligent agents whom are 
socially situated and task-oriented. 

In ACTS theory the actions and decisions of intelligent agents are a function of the agent’s cognitive 
architecture and knowledge (Newell 1990). The mechanisms by which an agent processes information, 
learns and makes decisions are a function of the cognitive architecture of the agent, the (social) position of 
the agent in the organization, and the tasks in which the agent is engaged. Thus, the ACTS theory 
refocuses the attention of the researcher interested in organizations on the details through which the task 
and social environment influence the individual agent and the group performance. 

Many COT researchers use a multiagent version of the Soar system (Laird et al. 1987), because Soar is an 
implementation of a cognitive architecture that simulates the reasoning behavior of an individual. By 
integrating multiple copies of the Soar architecture in a distributed communication environment, a multiagent 
simulation environment for COT research can be created. In the next two sections, I briefly describe two of 
such environments: Plural-Soar, and Team-Soar. 

2.4.2 Plural-Soar 

Plural-Soar models a warehouse where multiple workers fill orders by retrieving items stored in stacks 
located in different places (Carley et al. 1992). In Plural-Soar, each Soar agent runs on a separate 
workstation, with the agents communicating over network connections. Plural-Soar consists of Soar 
production rules that define the agent's task knowledge. The task agents perform involves moving to a 
particular location (the order stack), and after possibly waiting in line, picking the next order from the stack, 
and then determining where the item from the order (in any of the known item stacks) may be in the 
warehouse, and last, moving to the item location to pick up the item to fill the order. Agents have a memory 
of the contents of the item stacks they have encountered. They can also broadcast requests for item 
locations to the other agents. This research focuses on the examination of how different combinations of 
cognitive constraints (such as communication and memory capability) combined with varying organizational 
structures (for example, different sizes) result in different organizational behaviors. 

In subsequent work, adding elements (social knowledge) extended Plural-Soar in order to bring social 
elements of groups to the system (Carley et al. 1993). A social agent is defined by the decreasing 
information processing ability of the agent; omniscient, rational, bounded rational, cognitive, or emotional-
cognitive, and by its knowledge of the social environment; non-social, multiple agents, interactive multiple 
agents, organizational structures, group goals, cultural history (Carley and Newell 1990). This model of a 
social agent was implemented in Plural-Soar in two ways. First, an agent has a social memory about the 
reliability of other agents. Secondly, the reliability of another agent depends on the correctness of previous 
given information by that agent. For instance, if inaccurate information was given by an agent, on the 
location of a specific item, the reliability of that agent is “down graded.”  After two unreliable pieces of 
information, an agent is determined “unreliable,” and no more information form that agent is accepted. Thus, 
while in the first version of Plural-Soar information from other agents was accepted unconditionally, in the 
extended social agent version, communication from other agents is accepted or rejected on the basis of 
“social historical knowledge” of that agent. 
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In order to test the extremes of social behavior they then varied the social characteristics of agents: honesty, 
cooperation, and benevolence. In the study, they measured concepts such as cognitive effort, physical 
effort, communication efforts, and wait time from five different organizations. Conclusions then were drawn 
about the differences in these measures from different types of agents in organizations. 

2.4.3 Team-Soar 

Team-Soar models the decision-making behavior of a team of four commanding officers (CO) from different 
units in a naval carrier group (Kang et al. 1998). The four CO’s are modeled as interconnected individual 
Soar agents. The agents are distributed in a simple authoritarian hierarchical organizational structure, which 
means that there is one leader, the CO of the aircraft carrier, and three equal subordinates, a CO of the 
coastal air defense, a CO of an AWACS air reconnaissance plane, and a CO of an Aegis cruiser. Each 
agent can communicate with all other agents, however the leader controls the team-based problem-solving 
task. The objective of the Team-Soar model is to track an aircraft by radar, and evaluate and decide in a 
team effort a course of action. To make a judgment, a Team-Soar agent first interprets the raw data in terms 
of nine attributes; speed, altitude, size, angle, direction, corridor-status, radar-type, range, and IFF, and 
evaluates them on a scale from one to three. When an agent has made the evaluations, by applying its 
knowledge in terms of Soar production rules, it makes a judgment about which of the seven possible actions 
to recommend (i.e. communicate) to the leader. Recommendations range in degree from ignore (a value of 
zero) to defend (a value of six), with intermediate states of review, monitor, warn, ready, and lock-in. When 
the leader has received the recommendations from all three subordinates, including its own, it makes a 
team decision, based on a team decision scheme, such as majority win or average win. 

Team-Soar uses two types of communication strategies; one-to-one communication and broadcasting. 
One-to-one communication is used when one agent sends a message to another agent. This happens 
when the subordinate agents communicate their decision to the team leader agent. Broadcasting is used to 
send a message to all agents simultaneously. There are four different types of information that can be 
communicated: raw data, evaluations, judgments, and decisions. The raw data are the values of the nine 
attributes. An evaluation is an interpretation of the raw data. A judgment is a team member's 
recommendation on a decision. The decision is the team's final decision made by the team leader. 

By varying the competence model for different agents in terms of domain expertise, meta-knowledge about 
the other agent’s expertise, member judgment, agent type, cooperativeness, and activity, the team 
performance model can be varied and tested. Examples of two studies of team decision-making that have 
been done with Team-Soar are:  

• To examine the relationship of a team decision scheme used and the amount of information 
available to teams with measures of team effectiveness.  

• To explore the relationship of meta-knowledge (knowledge about the knowledge of the other 
agents) and the amount of communicated information with how long it takes for the team to reach a 
decision. 

2.4.4 Discussion 

COT research studies theories of organizational behavior by creating simplified models of real-life 
organizational systems. The objective of such models is not to create a representation of how people really 
perform the work or task; instead the objective is to create a controlled experiment to test a theory. Ironically, 
the researchers that are using a distributed multiagent version of Soar (such as Plural-Soar, and Team-
Soar) argue that they use Soar because it claims to be a computational architecture for human cognition. A 
multiagent Soar architecture provides an implementation of the ACTS theory of distributed human problem 
solving, which allows the experimentation of subsequent theories on human distributed problem solving 
applied to human organizations.  

When we look at the problem domains that are being studied, we can see that these studies involve either a 
very simplified version of a real-life organization (e.g. order fulfillment), or an organization, like the military, 
that works according to very stringent and pre-defined procedures. In contrast, the objective of the research 
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described in this thesis is to create a computational architecture to study the way people work in real-life 
organizations. The focus of the research is on the work practices that exist in a workplace, and not so much 
on the cognitive problem-solving behavior of individual agents, or on the study of optimal organizational 
structures given certain constraints. The computational models that we are after are models that, at the 
micro-level, can describe a person’s daily activities and interactions with his or her environment and others, 
and at the macro-level show an organizational behavior that can be interpreted as the work practice existing 
in that organization. Our models are not meant as an experiment of organizational theory, but instead, as a 
laboratory to study work practices of people in real-life organizations. 

Just as in the previous two chapters, I conclude here as well with a table showing the limitation of COT (see 
Table 2-4). 

Table 2-4. Limitations of Computational Organization Theory  

 Collabora-
tion 

Off-task 
behaviors 

Multi-
tasking 

Interrupt 
and resume 

Informal 
interactions 

Cognitive 
behavior 

Geography 
(location) 

Plural-
Soar 

Yes 

Represented 
as the 
communica-
tion between 
agents to 
help in 
picking items 
from the 
warehouse  

No 

Only high-
level 
goal/tasks of 
picking 
orders 

No No 

When 
contexts are 
switched 
tasks are 
quit 

No 

Agents only 
interact with 
other agents 
about task 
related 
issues 

Yes Yes 

But, no 
geographical 
reasoning 

Team-
Soar 

Yes 

But, only 
represented 
as 
communica-
tion of 
specific 
attributes 
using the 
hierarchical 
organization 
of the CO's 

No 

finding 
values for 
the eight 
variables. 
Agents do 
not decide 
themselves 
what to work 
on 

No 

 

No 

 

No 

 

Yes 

 

No 

Only values 
of the 
variables 
related to the 
location of 
the incoming 
missile 
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2.5 CONCLUSION 

I conclude my description of related work with some general observations about the different modeling and 
simulation tools used in the different research fields. My objective here is to take this back to the research 
topic of this thesis and relate these tools to the requirements for modeling work practice. To do this, I 
generalize the data from Table 2-1, Table 2-2, Table 2-3, and Table 2-4 and give you an overview of the 
analysis. 

Collaboration 

The tools and models described, either do not represent the collaboration between people, or have a limited 
representation. Some of the agent-based models allow for some indirect representation of collaboration 
through hard-wired communication channels and/or communication message content. But, only the 
workflow modeling tool (Sparks) has an explicit form of showing two tasks (using a spawn) being performed 
in parallel. However, due to the actual semantics, this type of parallelism turns out to not always perform 
tasks in parallel. 

In modeling how tasks are performed in real-life organizations, being able to represent collaboration 
between people is a necessity. However, what is meant with collaboration is not immediately clear. What is 
clear is that this is a topic that has not been well defined yet in any of the research fields mentioned here. In 
the theory chapter (chapter 3) I will return to the question of what is meant with collaboration. 

Off-task behaviors 

None of the tools and models that were described represent off-task behaviors. The workflow paradigm has 
a representational limitation in not being able to allow for representing off-task behavior. This is because of 
the constraint on representing only those tasks where work-products are being touched. The other tools and 
models all take a goal-driven approach, and therefore do not allow for tasks outside of the domain goal/task 
hierarchies. ACT-R is the only tool that would allow for the representation of off-task behaviors, by using its 
ability to allow for reactive agent-behavior through input from the outside world. In general, the field of 
cognitive science does not focus on the influence of off-task behavior on the problem-solving capability of 
humans. 

The one observation that can be made from this is that in these research fields there is no explicit focus on 
how people behave in real-life tasks being performed in real-life organizations. If this would be the case, we 
would see a lot more interest in representing the influence of off-task behaviors in the performance of tasks. 
If we want to model how people really work we do need to include the effect of off-task behavior in the 
model, since it is very obvious that people are constantly interrupted by the need to perform tasks that are 
not part of the explicit work. For example, just think about the influence of getting a phone call, while 
performing a task, or the scheduling of group meetings in organizations, and how this impacts the “rhythm” 
of our work. 

Multi-tasking 

By allowing interruption and resuming of tasks we can approximate multi-tasking. Only the Phoenix system 
(chapter 2.3.2) allows for such interleaving of multiple tasks. Only Sparks allows for the execution of actual 
parallel tasks. However, the question is what the meaning is of performing tasks in parallel. In Sparks the 
purpose is for showing percentage of resources being associated with parallel tasks. If we want to represent 
one resource performing two tasks in parallel—driving a car, while being on the phone—we can use a 
spawn of the flow. However, in Sparks it is not possible to associate specific resources with a task. 
Resources are picked from a resource pool. Only if there is one resource in the pool can we be sure that the 
parallel tasks are actually performed by the same resource in parallel. 

Although people can do multiple things in parallel, and we do need to be able to show this, the actual way 
people perform most parallel tasks is by switching between them in very short time intervals. A lazy skeletal 
planning approach, in which the commitment of what task to work on next is delayed as long as possible is 
one approach to allow for this form of multi-tasking. Task-priorities is a way to decide what task to work on 
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next. Most parallel activities can actually be seen as hierarchical. With this I mean that showing someone 
doing two things at once can be represented hierarchically, in the sense that the person is in activity A1.1, 
while also being in activity A1. The on-phone-while-driving example could be thought of as such a 
hierarchical multi-tasking event. 

Interrupt and resume 

As pointed out above, only the Phoenix system allows for interruptions and resuming of tasks through a lazy 
skeletal planning approach. This is an essential part of work practice. We, humans, are constantly 
interrupted in what we are doing. When an interruption happens we do not stop a task we are working on to 
start another unrelated task and restart the original task when we come back to it. We interrupt tasks to 
come back to them where we left off when possible or wanted. This type of reactive, and unplanned 
interrupt and resume behavior is natural, and is part of the reason why we humans are not brittle in our task 
performances. Therefore, if we want to model work practice, the ability to represent interrupted and 
resumed activities is a must. 

Informal interaction 

In none of the tools and models are there representations of informal interaction between agents. Every tool 
and model described represents only the formal organization and tasks. Resources and agents only interact 
when the task being modeled asks for it. In real-life organizations there is an abundance of informal 
interactions between colleagues. For example, having lunch at work with a group of people is an informal 
activity (i.e. no formal work-task is being performed). However, during lunch there could be a lot of work 
related communication going on. Therefore, in modeling work practice it is essential to allow for the 
representation of informal tasks and communications and informal group behavior.  

Cognitive behavior 

There is a sharp distinction between models and tools that do or do not include cognitive behavior. The 
interesting observation to make is that there seems to be an either-or approach to this. I mean, either the 
models are totally reliant on deep cognitive problem-solving behavior, to the point that every cognitive-cycle 
is being represented, or the models are at a level where the cognitive ability of the individual agent is not 
represented at all. 

The question in representing work practice is, what level of cognitive behavior representation is important. It 
seems that the low-level problem-solving behavior of Soar and ACT-R are not necessary relevant in 
showing the relationship between people's activities in a work process. On the other hand, it seems 
important to represent each agent in the process, and the agent's knowledge of when and how to perform 
tasks. 

Geography 

There is a range in the representation of geography in the models and tools described. The range is from no 
representation (in Sparks and Soar) to a simple abstraction (in Phoenix). None of the tools and/or models 
have a very detailed explicit representation of locations and spaces. The only system that has a separate 
geography model (i.e. the map-layer) is the Phoenix system (see chapter 2.3.2.2). In the other models 
and/or tools in which an agent's location is somehow represented, it is done through an indirect 
representation of the agent knowing about location. However, there is no explicit objective representation of 
location and space. 

People's environment impacts their work. In modeling work practice, it is important that we have an explicit 
representation of the location of people and their artifacts. In ACT-R there is an explicit representation of the 
outside world, but this representation is domain specific and is not a part of the ACT-R modeling language. 
If we want a language for work practice modeling we need to have, at minimum, the capability of 
representing the outside world inside the model. 

I end with a comparison between the tools and models in the four research fields. Table 2-5 lists the domain 
dependency, technology, environment, communication-, problem-solving and group interaction model for 
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each human behavior tool and model described. One last interesting observation is that in workflow and 
cognitive modeling research there is a tendency to develop generic modeling tools, while the DAI and COT 
research fields have a tendency to use the tools from the other two fields for developing their models. In 
doing so, the tools are being applied in ways they were not specifically designed for. This leads to 
interesting extensions and changes. What this shows is the benefit of a multi-disciplinary approach to 
science, as well as some of its shortcomings by the mere fact that we can never include or re-use all of the 
theories from other academic fields. 

Table 2-5. Human behavior model comparison 

 Domain 
Dependency 

Technology 
Used 

Environment 
Model 

Communica-
tion Model 

Problem-
Solving 
Model 

Group 
Interaction 
Model 

WFM Sparks General Monte-Carlo 
discrete event 
simulation 

None  None None Fixed (using 
spawns-tasks 
to show 
interaction 
between 
resources) 

Soar General Production 
System 

None None Soar theory of 
cognition 

None CM 

ACT-R General Production 
System 

Fixed  
(using P/M 
interfaces) 

None ACT-R theory 
of cognition 

None 

TacAir-
Soar 

Dependent Multiple Soar 
production 
systems 

Fixed 
(representa-
tion of cockpit 
model using 
ModSAF) 

Fixed agent 
content 
messages 
(through DIS 
network) 

Soar theory of 
cognition 

Fixed (agents 
interface 
though 
simulated 
cockpit in 
ModSAF) 

DAI 

Phoenix Dependent Reactive 
planning (i.e. 
lazy skeletal 
planning) 

Cellular 
automaton 
representation 
layer with low-
level reactive 
behavior to 
environment 

Fixed 
hierarchical 
agent content 
messages 

None No interaction 
between 
agents at the 
same level 

Plural-
Soar 

Dependent Multiple Soar 
production 
systems 

Fixed 
representation 
of the stack 
locations 

Fixed 
communica-
tions of item 
locations 

Soar theory of 
cognition, 
combined w/ 
ACTS theory 

Varied based 
on social 
knowledge 
about other 
agents 

COT 

Team-
Soar 

Totally 
dependent 

Multiple Soar 
production 
systems 

Fixed 
attributes 
representing 
radar 
information for 
aircrafts 

Fixed 
hierarchical 
agent content 
messages 

Soar theory of 
cognition, 
combined w/ 
ACTS theory 

Fixed 
attribute-level 
interaction 
with radar for 
tracking 
aircrafts 
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3. THEORY OF MODELING WORK PRACTICE 

This chapter describes the theory of modeling work practice. I start out, in the first section, with given 
credence to practice as a valid concept of human behavior, separate from cognitive problem-solving 
behavior. I discuss a number of views on practice from the research literature. This will give the reader 
some background for the next section, in which I define the elements of work practice at an epistemological 
level. These elements are what becomes the driving force in finding a modeling language to represent work 
practice. In the section before the conclusions, I describe a model-based approach to work practice 
modeling and the operationalization of a model into a computational form (Sierhuis and Clancey 1997). 

3.1 HISTORY OF PRACTICE 

In this thesis I take a strong stance by fully adhering to practice as a valid form of knowledge that drives the 
behavior and actions of people. I, therefore, am of the opinion that we can objectify this knowledge in a 
knowledge-level representation of practice, much in the same way as AI researchers have created an 
epistemology of problem-solving knowledge. Ironically, the principle of rationality14 in AI comes from the 
Technical Rationality model, and it is this model that I denounce as the only model for defining knowledge 
(Newell 1982) (Newell and Simon 1972) (Simon 1976). It is this view that has the field of AI ignore the value 
of practical knowledge. 

In this section, I attempt to show that practice is a valid level of knowledge that can be represented, not 
independent, but complementary to the problem-solving knowledge of humans in organizations. 

3.1.1 Practical knowledge as knowing-in-action 

Donald Schön offers an approach to an epistemology of practice, based on close examination of what 
practitioners actually do (Schön 1982). When people talk about practice, they often mean the practice of 
professions that have great social importance, such as medical doctors, lawyers, engineers, architects, et 
cetera. We even go as far as calling the business of a medical doctor his “practice.” When people talk about 
the practice of such professionals, they mean the exercise of professional activity. People believe that the 
schools in which these professionals have been taught give them a level of practical knowledge and 
experience that can be applied to solve daily problems. This view of practice is embedded within the model 
of Technical Rationality. 

According to the model of Technical Rationality, professional activity consists of the application of scientific 
theory and techniques in problem solving. The knowledge base of a profession is thought to have four 
essential properties: it is specialized, firmly bounded, scientific, and standardized. This view of professional 
knowledge forces people, still today, to view practical knowledge—what is known in practice—as the 
application of professional knowledge, while practice is viewed as minor knowledge. Practice is said to be 
the application of scientific theory. It is said that applied science “rests on the foundation of basic science, 
and the more basic and general the knowledge, the higher the status of its producer.” (Schön 1982) 

Why is the application of scientific theory and techniques to problems in practice the dominant view of 
professional knowledge? Why do we not put practical knowledge at the same level as professional 
knowledge? Paraphrasing Schön, the answer lies in the history of Western ideas about knowledge over the 
last three hundred years. Technical Rationality is the heritage of Positivism15, and the Positivist’s 
epistemology of practice. In the history of Positivism, practice is an anomaly. Practical knowledge exists, but 
cannot be seen as a descriptive knowledge of the world, and therefore is not seen as knowledge 
whatsoever. By viewing practical knowledge as the knowledge of the relationship of means to an end, the 
question “How ought I to act?” became a scientific one and the best means could be selected by the use of 

                                                      
14 Principle of rationality: If an agent has knowledge that one of its actions will lead to one of its goals, then the agent will select that 
action. 
15 Positivism is the philosophical doctrine that developed in the nineteenth century. It was a social movement aimed at applying the 
achievements of science and technology to the well being of mankind. 
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scientific-based techniques. From the perspective of Technical Rationality, professional practice is, 
therefore, a process of problem solving. 

With this focus on problem solving, the problem of setting and situation—in AI this is referred to as context—
is ignored. Nevertheless, problems do not present themselves to the practitioner as givens. As Schön writes 
(Schön 1982): 

[Problems] must be constructed from the materials of problematic situations which are puzzling, 
troubling, and uncertain. In order to convert a problematic situation to a problem, a practitioner must 
do a certain kind of work. […] It is this […] that professionals are coming increasingly to see as central 
to their practice. 

Thus, the model of Technical Rationality leaves out the context of work. The practical knowledge used in 
performing the work constraint by the context, in which it occurs, is not seen as knowledge. The definition of 
knowledge in the model of Technical Rationality is incomplete in the fact that it does not view practice as a 
real category of competence. As Schön says it profoundly (Schön 1982): 

If the model of Technical Rationality is incomplete, in that it fails to account for practical competence in 
“divergent” situations, so much the worse for the model. Let us search, instead, for an epistemology of 
practice implicit in artistic, intuitive processes which some practitioners do bring to situations of 
uncertainty, instability, uniqueness, and value conflict. 

If we are able to put the Technical Rationality model aside, we come to the realization that practical 
knowledge is a kind of knowing inherent in intelligent action. Common sense admits that the category of 
know-how is in the action. Meaning that the know-how of workers is revealed in the way they act in 
problematic situations. It is this know-how that constitutes the practice. 

3.1.2 Hermeneutics and work practice 

Here I touch upon Heidegger and Gadamer’s philosophy of being and understanding, as it relates to work 
practice. The main source has been the groundbreaking work of Winograd, and Flores (Winograd and 
Flores 1986). I do not claim to have a full and complete understanding of either Heidegger’s or Gadamer’s 
philosophy (Heidegger 1962) (Gadamer 1976), and want to stress that I mainly touch upon their work as it 
relates to my ideas of what constitutes work practice. Most, if not all, of the credit has to be given to 
Winograd and Flores, since they explained the importance of hermeneutics16 for artificial intelligence, and 
more broadly for system design. It is their thinking that made us, who initially worked on Brahms, realize that 
if we want to understand the way people work we need to understand how people interact with and interpret 
the world. Therefore, we need to go beyond a description of individual cognition to a more holistic and social 
view of cognition as it relates to the way people work. 

As Winograd and Flores explain, it was Heidegger and Gadamer who placed the hermeneutic idea of 
interpretation as the foundation of human cognition. Just as we can ask how interpretation plays a role in 
understanding text, we can ask how it plays a role in understanding the world as a whole. Winograd and 
Flores put forward four assumptions that, simply put, explain the way humans interpret the world (Winograd 
and Flores 1986, p. 30-31). Here I relate this, more narrowly, to the way people work, and I postulate the 
following four worldviews: 

1. We are the inhabitants of a ‘real world’ made up of objects bearing properties. Our actions take 
place in the world. 

                                                      
16 The science and methodology of interpretation of texts, particularly mythical and sacred texts, such as the bible. 
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This means that the way people work is constrained by the location in which this work takes place. 
Therefore, if we want to model work practice we need to model the “real world,” its locations and the objects 
it is made up of. 

2. There are ‘objective facts’ about that world that do not depend on the interpretation (or even 
presence) of any person. 

This means that we cannot model a world by just modeling the individual interpretation of that world. We 
need to separate the different individual interpretations from the “objective facts.” Here is where we get 
confronted with solipsism17, i.e. the modeler of the “objective facts” is also an individual in the world, and 
hence also interprets the facts of the world according to his or her subjectivity. However, it is important to 
make a distinction between modeling the interpretation of an individual in a world, and the interpretation of 
facts in the world. Both are subjective, but both are necessary if we want to take a holistic view of the way 
people work. However, we should never forget that this means that our model of work practice is our 
interpretation, and not reality. 

3. Perception is a process by which facts about the world are (sometimes inaccurately) registered in 
our thoughts and feelings. 

This seems a trivial point after having made the point that every interpretation is a subjective one. However, 
the important issue that needs to be emphasized is that people make inaccurate interpretations of what they 
perceive, and that they will act according to (inaccurate) interpretations. It is therefore important to not only 
model the facts about the world, but also each individual’s perception of those facts, since it is their 
perceptions that make people act independently from each other. 

4. Thoughts and intentions about action can somehow cause physical (hence real-world) motion of 
our bodies. 

This means that if we want to model work practice, we need to model physical motion of individuals. We can 
satisfy this assumption by simply modeling the causal relation between thoughts about action and physical 
motion, and we do not need to model how this happens in the human body (i.e. the neurophysiology). 

These four worldviews are my starting point for talking about work practice as a knowledge-level concept. 
By defining what this level is about, we will be able to represent our practical knowledge in a computational 
model in a similar way as we are able to model our problem-solving knowledge at a knowledge-level 
(Newell 1982). 

3.1.3 Understanding context 

A broad range of work in psychology and anthropology has shown that to fully understand how people work 
we need to study context in order to understand the relation between individuals, artifacts and social groups 
(Leont'ev 1978) (Vygotsky 1978) (Suchman 1987) (Lave and Wenger 1991) (Rogoff and Lave 1984). This 
chapter describes three approaches to study context—situated action models, activity theory and distributed 
cognition—that have been fundamental in the development of my theory for modeling work practice. All 
these three approaches use the notion of activity as the central point in the way they analyze the context in 
looking at human behavior. 

3.1.3.1 Situated action models 

Situated action models emphasize the emergence of activities within the situation. The focus is therefore on 
situated action or, what I call practice, as opposed to problem solving, which means that it is an inquiry into 
the everyday activity of persons acting in a particular setting. The analysis of situated action is a moment-by-
moment analysis of the interaction between people, and between people and the artifacts used in a 
particular situation (Suchman 1987). Lave identifies the basic unit of analysis for situated action as the 

                                                      
17 The theory or view that the self is the only reality (definition in the American Heritage Dictionary, 2nd college edition). Kant called it “a 
scandal of philosophy and of human reason in general” that no philosopher had been able to provide a sound argument against 
solipsism. 
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activity of people as it relates to the setting in which this activity takes place and is constructed at the same 
time; “The setting both is generated out of [the] activity and at the same time generates the activity” (Lave et 
al. 1984). A setting is the relation between acting people and the arena in which they act, almost like a 
theatrical play. The arena is the physical place, i.e. the geographical space, as well as the institution with its 
social, political and economical background, like the stage within the theatre. 

An important aspect of the focus on the activity of persons acting within an arena is that it forces the analyst 
to pay attention to the flux of the ongoing activity, the minute-by-minute understanding of a real activity in a 
real setting (Nardi 1996). One of the interesting notions coming out of situated action studies, put forward by 
Suchman, is that plans are not the mechanism to action, but that plans are resources for action; a 
“retrospective reconstruction” of situated action (Suchman 1987). In that sense, I postulate that goals are 
generated within the activity, as an individual's rationalization of what the intention of the activity is; they are 
not the conditions of when activities are to take place. 

3.1.3.2 Activity theory 

Activity theory goes back to the 1920s, and developmental psychology work done in the former Soviet 
Union. The main developers of activity theory are Vygotsky and Leont'ev (Vygotsky 1978). In activity theory 
the unit of analysis is an activity. An activity is composed of a subject, the object, its actions and operations. 
A subject is the person or group of persons that is engaged in the activity. This makes the analysis of 
activities focus our attention on one or more people.  

An object is the objective of the activity as it is held by the subject(s) and motivates them in the engagement. 
Actions are processes that must be undertaken to fulfill the object. Subjects are conscious about the actions 
to take to accomplish the object of an activity. Actions are more or less synonymous with tasks in cognitive 
science. The notion of an activity can span multiple actors being engaged together in coordinated actions. 
The actors engaged together might actually have different, even conflicting objects (Kuutti 1996). This is an 
important concept for the understanding of what collaboration between individuals is about.  

Operations are routinized and unconscious actions. For example, when learning to drive a car with a 
standard gear, the shifting of the gear is at first a conscious action with an explicit goal. Later on, when we 
are well versed in driving with a stick shift, shifting gears becomes operational and is not a specific goal-
driven process anymore. The difference of actions and operations reminds me strongly of the difference 
between explicit and tacit knowledge (Polanyi 1983). The important take away point from this is that it 
seems that activities are decomposed into actions, when the activity is not yet “automatic,” while an activity 
that is already operationalized is not decomposed into lower-level actions, but can be seen as a primitive 
action. 

Another key notion in activity theory is the notion of mediation by artifacts (Kuutti 1996). Artifacts include 
instruments, machines, etc, that mediate activity and are created or used by people to control their behavior. 
In this sense an activity constitutes the context itself. An activity creates a context through its enactment of 
actions and operations of the people engaged in the activity, and using artifacts to control their engagement. 
As such, we can see practice as the engagement in activities over a period of time. 

3.1.3.3 Distributed cognition 

Distributed cognition is a branch of cognitive science that studies the representation of knowledge both 
inside the heads of the people, as well as within the artifacts and systems they use. The cognitive system 
can be seen as an activity in activity theory. For example, Hutchins, in his study of the activity of “flying a 
plane,” describes the cognitive system as the total setting of the cockpit (Hutchins 1995). He takes the 
cockpit system as the unit of analysis and observes the many representations that are inside the cockpit 
system, yet outside the head of the pilots. By taking this social-technical systems approach he can describe 
the “cognitive” properties of the system, meaning giving an account of the system's behavioral properties in 
terms of its internal representations, without saying anything about the processes that operated inside the 
heads of the individuals within the system. 

Thus, distributed cognition moves the unit of analysis to the system as a whole, and analyzes the 
functioning of the system as a “functional unit," instead of as a cognitive system. In doing this, the emphasis 
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is on understanding the coordination among the individuals and the artifacts in the system. However, this 
understanding is created by focusing on the available information in the system, as represented in the 
artifacts and the heads of the individual. There is less of a focus on the activity and situated-actions as a 
whole, but more on how the lack of information creates a breakdown in the execution of plans and tasks by 
the individuals in the system.  

One of the limitations of this approach is the necessity of drawing a boundary on the system to be analyzed 
at the start of an analysis. As opposed to letting the analysis of the setting be the driver in setting the 
boundary of the system. For example, Hutchins, in his study of the cockpit system, does not take into 
account the interaction and coordination between the pilots in the cockpit and the other crew and the 
passengers in the airplane (Hutchins 1995). Neither does he consider the interaction with the control tower 
and their view of the cockpit system. However, the interesting part of distributed cognitive analysis for getting 
an understanding of the work practice of pilots is the focus on the “memory” of the system as driving the 
activities of the pilots. This emphasizes the importance of a total systems view in the understanding of 
practical knowledge. 

3.1.4 Work practice 

Many researchers in the social sciences use the word practice as if it is a well-defined concept that 
everyone knows. However, it is difficult to describe what a practice is. People notice when something is not 
a practice, and can often describe why. It can be said that a group of people has developed a practice, but 
when asked to describe what it consists of, we find it difficult to describe in words. As such, practice is part 
of our tacit knowledge (Polanyi 1983). 

An ad hoc definition of the word practice is:  

Definition 1 (practice) The (collaborative) performance of collective situated activities of a group of people 
who collaborate and communicate, while performing these activities synchronously or asynchronously, by 
making use of knowledge previously gained through experience in performing similar activities.  

In short, practice is doing in action (Suchman 1987). Scientists have described how a practice develops, like 
Wenger, who defines the creation of a practice as follows (Wenger 1997): 

Being alive as human beings means that we are constantly engaged in the pursuit of enterprises of all 
kinds, from ensuring our physical survival to seeking the most lofty pleasures. As we define these 
enterprises and engage in their pursuit together, we interact with each other and with the world and 
we tune our relations with each other and with the world accordingly. In other words, we learn. Over 
time, this collective learning results in practices, which reflect both the pursuit of our enterprises and 
the attendant social relations. These practices are thus the property of a kind of community created 
over time by the sustained pursuit of a shared enterprise.  

Everybody knows what Wenger means when he says, “this collective learning results in practices”, but what 
is it that results? Can it be described? Can it be modeled? To do this we need to be able to describe 
practice at an epistemological level. 

3.1.5 How modeling practice is like Aaron’s drawing 

Can there be a model of practice? Is a description of practice equal to practice itself? This is similar to the 
question; is a description of knowledge equal to knowledge itself? This is a debate in AI that has been going 
on for many years. Clancey makes an argument that allows us to get away from the arguments for or 
against this issue (Clancey 1997a). Clancey’s way of describing “the representation problem” allows us to 
ask the question differently, namely;  
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How can we create an internal representation of work practice, such that the observer 
interprets the external presentation of a simulation of a model of this work practice, as a 
reasonable description of the actual work practice? 

Clancey describes Aaron, a robot built by Harold Cohen that creates original drawings. The question asked 
is; is Aaron an artist, or is Aaron a mere mechanical apparatus that can create drawings in a prescribed 
mechanical fashion? As Clancey states it: 

[…] Cohen’s dilemma is to understand the relation between internal descriptions, which he formulates 
and builds into the program, and outside behaviors, which observers will abstract and interpret in 
Aaron’s drawings. (Clancey 1997a, p. 15) 

In a private conversation with Clancey, Cohen revealed that his goal is not to create a robot artist, but to 
create a minimum representational configuration of drawings that will, when put on paper, be interpreted as 
an artistic image (Clancey 1997a, p. 16): 

In this way, the product (what observers perceive) and the mechanism (what is inside the robot) are 
distinct. 

Similarly, in this thesis the goal is not to create a mechanism for developing work practice, but to develop a 
representational language and simulation program that produces a model of work practice that is interpreted 
as such. 

 

Figure 3-1. Relation of a model of work to a description of the work practice 

The modeler in Figure 3-1 develops a model of the work using the representational power of the Brahms 
language. Model creation is an elaborate process of data collection and work description that leads to a 
static model of the situated activities of the individuals involved. Using the Brahms simulation program, the 
model is simulated and a dynamic behavioral model of the work (i.e. a model of the practice) is generation. 
The observer of the simulation model can observe the model during and after the simulation, interpreting the 
work practice model. 

In the next chapters I define what should be represented in a model of work practice. 

3.2 ON THE EPISTEMOLOGICAL LEVEL OF WORK PRACTICE 

In the model of Technical Rationality, the notion of a practice is automatically associated with the application 
of scientific knowledge in “major” professions. Not only am I claiming that practical knowledge is an 
important category of knowledge, but the concept of work practice allows us to view practical knowledge 
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within the scope of all kinds of practitioners (not only within those of “major” professions). Here, I focus on 
creating a framework that allows us to investigate, collect data about, and model the work practices of any 
group of individuals from any type of profession. Even more so, I focus the attention on work situations 
where multiple individuals from different professional backgrounds are collaborating. In contrast with 
Schön’s epistemological model of reflection-in-action in a specific profession, I focus the attention not on the 
application problem-solving knowledge of an individual, but on the collaboration of activities between 
individuals. 

Work practices is constituted by the way people act and interact in their daily tasks as part of their job, 
socially and psychologically situated within their environment. It is situated action described in terms of 
activities and their context. It is how people act and interact in order to accomplish what they have to do. In 
the next sections, I give definitions of the important elements: community of practice, activity, collaboration, 
communication, artifacts, and geographical environment. 

3.2.1 Community of practice 

People who are engaged in a work practice together belong to a community that has an identity (Wenger 
1997). Together this group of people is engaged in choreographed activities, acting either together or on 
their own. For example, consider the interplay of activities of people working and dining in a restaurant. 
There are different roles that are played, the waiters, the chef, the dishwashers, the maître d’homme, et 
cetera. Even the dinner guests are part of the practice. They all engage in interplay, a kind of theatrical 
improvisation in real-time. An unwritten play, so to speak, unrehearsed, but still they never forget their lines. 
They seem to know what the play is about, reacting to each other, never stepping out of character. They all 
seem to know their parts. They react to and communicate with each other. They have all played their parts 
before they have ever met each other, because their actions are based on similar previous experiences 
working and eating in restaurants. This is what the activity of working in a restaurant, and going to eat in a 
restaurant is all about. It is a conceptual choreography. Everyone knows their roles, because they have 
done it so many times before. They are part of a community of practice that exists inside and outside the 
restaurant. This type of community of practice focuses on a group of people who produce something 
together. 

Definition 2a (community of practice) A community of practice is a group of individuals, each with 
different individual skills and knowledge, performing complementary activities while producing something 
together, that collectively can be seen as a unity within a practice. 

I define a second type of community of practice (see definition 2b). The distinction between the first 
definition and the second is the type of people that belong to a community. The first definition (2a) includes 
individuals playing different roles and performing different activities. The second definition of community of 
practice includes people with similar skills and knowledge, playing the same role and performing similar 
activities. This type of community of practice includes the professional communities, such as the Java 
programmers at company X, the architects at company Y, or the group of waiters at a restaurant, et cetera. 
However, it does not by definition have to be a professional community. For example, we could also talk 
about the practice of the group of people meeting each other regularly at the water cooler. Such 
communities are more informal or social, and do not have to include people from the same professional 
background. The point is that this definition of community of practice focuses on people that play similar 
roles and perform similar activities. 

Definition 2b (community of practice) A community of practice is a group of individuals playing similar 
roles, each with similar skills and knowledge that allow them to perform the same activities, that collectively 
can be seen as a unity within a practice. 

Both definitions are useful and hold true at the same time. The reason for making a distinction is for the 
purpose of identifying these types of communities of practice, and the ability to talk about their practice as a 
whole. For purpose of modeling, it is useful to make a distinction in the practice of a community in terms of 
different groups of people performing different activities, or in terms of a group of people performing similar 
activities. By describing a community of practice as a group to which individuals belong, we can represent 
people's practice in terms of the sum of the communities (groups) they belong to. 
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3.2.2 Activities 

I now turn the attention to how the behavior of people can be represented as activities. In a knowledge-
based system approach, the descriptive modeler’s perspective of people’s behavior is focused on a narrow 
description of what people do in terms of tasks and goals. Knowledge modelers start by choosing to model 
one task and the predefined goals that are to be pursued. With such a design approach, human activity 
appears to be a relation between goals, data, and decisions. For example in the PEES project, in modeling 
the “front-door sharing rule” in the Dutch social security law, I choose the interview with the client as the 
activity of the social security officer (van Dijck et al. 1987). I even focused more narrowly on the client’s data 
specific for making a decision on how much his or her social security check was to be cut, ignoring the 
actual interview and the setting in which this takes place (Sierhuis 1986). Nevertheless, the social security 
officer is in the activity of “interviewing the client,” as well as at the same time in the broader activity of 
“working in the social security office.” I ignored the context of clients coming and going, colleagues asking 
for information about cases, people looking for the right forms to be filled out, clients asking for help. In 
designing the expert system for the “front-door sharing rule,” I left out the “work life” of the social security 
officer. I ignored meetings, discussions in the hallways, the search throughout the building for the correct 
stamp needed. When I analyzed the task of determining the amount of social security a client would receive, 
I ignored most of the activity of the people in a social security office.  

3.2.2.1 Activities versus tasks and goals 

Imagine yourself going through a day. There is one response function when you get yourself out of 
bed, one when you reach for your clothes, one when you face yourself in the mirror, another when you 
go to breakfast and talk to your spouse, another when you get in your car and drive to work. Each of 
those situations is radically different and each calls for a quite different function about how to respond 
to the environment. One involves beds, floors, and covers; another involves mirrors and faucets, 
another yet something entirely different […] Describing behavior as multiple response functions 
implies some sort of decomposition within the organism […] How then should we describe systems? 
How should we describe their response functions? (Newell 1990, p. 43-44, emphasis added) 

These are questions Newell asks in order to describe the foundations of cognitive science. He is interested 
in describing the workings of the individual information processing system (IPS). In other words, the way the 
individual comes to behave a certain way, or as he says it, “the working of the response functions.” This is 
the individual IPS view he developed with Herb Simon, focusing his theory on individual problem solving as 
the way to describe individual behavior (Newell and Simon 1972). 

The theory of humans as an IPS defines problem solving in terms of pursuing pre-specified goals in order to 
accomplish pieces of work that need to be done (i.e. tasks). The specification of a goal is a way to make a 
stated problem actionable, i.e. solvable by means of well-defined decisions. Problem solving is the 
systematic search over the problem space describing how one can attain a goal. Such an approach is in 
contrast to a theory for describing how people actually work within the constraints of their environment, and 
how the environment determines their actions and the interactions with other people and artifacts in that 
environment. Describing the behavior in terms of what actually happens in the world does not lead to a 
description of the individual’s problem-solving behavior. Rather, it leads to a description of the emergent 
total system behavior in terms of the individual interactions, responses to the other elements in the system 
(people and artifacts), as well as the emergent sequence of individual activity (i.e. the state of being active), 
something Newell calls “microepics.” 

As is evident in my attempt to make this subtle, but important distinction, the focus in modeling work practice 
is on the IPS being the total system, including the environment, its people, artifacts, places, and time (see 
chapter 3.1.3). The emphasis of behavior lays at a broader level, namely at a level of interaction between 
discrete entities in the system, each being an IPS in its own right, but influenced by the other elements 
(IPS’s) in the system. Problem solving happens at the individual level, while conceptual construction of 
activity (i.e. practice) happens at the system level. By describing the individual activity and interactions of 
elements in the system we can understand the behavior of the total system, as a result of the problem-
solving behavior at the individual level. In other words, goals and tasks are being executed within activities, 
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or better, activities at the meso-level are our social conception of goals and tasks at the micro problem-
solving level. 

In this view of system behavior, activities are socially constructed engagements situated in the real world, 
taking time, effort and application of knowledge. Activities have a well-defined beginning and end, but do not 
have goals in the sense of problem-solving models. Instead, the goals are conceptual constructs created 
and articulated within activities of individual IPS’s. Viewing work as activities of individuals allows us to 
understand why a person is working on a particular task at a particular time, why certain tools are being 
used or not, and why others are participating or not. This contextual perspective helps us explain the quality 
of a task-oriented performance.  

Task

Activity

Goal

 

Figure 3-2. Dimensions of behavior 

In this sense, as is shown in Figure 3-2, activities are orthogonal to tasks and goals. While engaged in an 
activity, people might articulate the task that they are working on, and the goal that they want to accomplish, 
but these are constructed within the activity. An example of an activity is pursuing a research career. A goal 
within this activity might be to get a research paper accepted for a conference. A task to reach that goal 
might be to gather all the relevant literature for the paper. The task and goal are created within the activity, 
but they are not determined by the activity (Clancey 1997b), meaning that they could similarly arise outside 
of that particular activity in another. Conceptually we can view activities as the “what we are doing at each 
moment in time”. Goals can be viewed as the “why we are doing what we are doing,” while tasks can be 
viewed as the "how we are doing what we are doing." 

To understand activities we must first understand that human action is inherently social. The key is that 
"action" is meant in the broad sense of an "activity," and not in the narrow sense of altering the state of the 
world. Instead of viewing "social activity" as something that people do together, such as "socializing at a 
party" or "the social chat before the meeting," I take a social behaviorist’s view. Describing human activities 
as social means that the tools and materials we use, and how we conceive of what we are doing, are 
culturally constructed. Although an individual may be alone, as when reading a book, there is always some 
larger social activity in which he or she is engaged. For instance, the individual is reading the book in his 
hotel, as relaxation, while on a business trip. Engaging in the activity of "being on a business trip," there is 
an even larger social activity that is being engaged in, namely "working for the company," and so on. The 
point is that we are always engaged in a social activity, which is to say that our activity, as human beings, is 
always shaped, constrained, and given meaning by our ongoing interactions within a business, family, and 
community. An activity is therefore not just something we do, but a manner of interacting. Viewing activities 
as a form of engagement emphasizes that the conception of activity constitutes a means of coordinating 
action, a means of deciding what task to do next, what goal to pursue, in other words, a manner of being 
engaged with other people and things in the environment. The idea of activity has been appropriately 
characterized in cognitive science as intentional, a mode of being. The social perspective adds the 
emphasis of time, rhythm, place, and a well-defined beginning and end. 

As represented in Figure 3-3, we can be in more than one activity at the same time. While performing one 
particular activity, we are also engaged in a larger, broader activity. For example, while in the broader 
activity of working on my dissertation, I am in the middle of the activity of writing the section on activities 
when my sister-in-law comes in the room to say good-bye. At that moment I suspend the activity of writing 
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the section, get up and go downstairs to say good-bye, which is the activity that I then engage in for a 
couple of minutes. 

Figure 3-3. Activity subsumption 

After my good-bye’s I go back upstairs and continue my suspended activity of writing the section of my 
thesis. While saying my good-bye’s I am still in the broader activity of working on my dissertation, otherwise 
there would be no reason for me to go back upstairs and continue writing. This is situated action, an activity 
that is not fully planned in detail, and can be interrupted and resumed (Suchman 1987); think about putting 
on your pants in the morning, and the phone rings. While there is not a control program that runs and 
controls our activities, a situation that suddenly comes up has to be dealt with, without articulated task 
knowledge. While switching context, the higher-level activity is still being engaged in. Therefore, it is such 
higher-level activities that constrain us from switching context from one lower-level activity to another lower-
level activity and back. 

The idea is that humans can control their own behavior—not ‘from the inside’, on the basis of 
biological urges, but ‘from the outside’, using and creating artifacts. (Engeström 1991, p.12) 

People choose which activity they engage in, but cannot choose this for others. Therefore, when people 
suddenly enter our space to interact, we juggle the activities we engage in. We suspend the current activity, 
start a new one, stop a third one never to come back to it again, et cetera. We act in the situation and react 
to our environment. This is how the work practice of an organization is formed, and work happens or does 
not happen. If we are interrupted all the time during our work activities, we start acting a certain way, 
conscious or unconscious. We might hide, so that interruptions are minimized, or we might just do those 
activities that do not require a lot of time, or can be interrupted at any moment. In short, the situation and the 
environment determine our activities, which in turn form our work practice. 

Definition 3 (activity) An activity is a collection of actions performed by one individual, socially constructed, 
situated in the physical world, taking time, effort, and application of knowledge. An activity has a well-defined 
beginning and end, but can be interrupted. 

3.2.3 Collaboration 

One of the fundamental elements of work practice is the collaboration between individuals. An individual 
rarely works in isolation. Even if we would focus on the practice of one of the major professions, like a 
medical doctor, an architect or an engineer, we have to realize that they are acting in a context that includes 
more than just themselves. For instance, the doctor serves patients, and is paid for his services by an HMO. 
In the office there are physician assistants, nurses, secretaries, et cetera. They are all part of the picture; 
they collaborate with each other and with each patient that walks through the door. Even when there are no 
patients there are collaborative activities that take place, such as doing laboratory tests, entering results of 
tests into the patient’s records, calling the pharmacy about prescriptions, and doctors mentoring the 
physician assistant. In short, the people in the doctor’s practice collaborate (Wenger 1997). 

Working on my dissertation 

Writing my dissertation Saying goodbye to 
my sister in-law 

Go downstairs 

Go upstairs 

Say my good-bye’s 

Writing the section 
on activities 
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Collaboration is a conceptual phenomenon that happens during the collection of activities being performed 
by the collaborators. Most individuals speak of having “a collaboration” when they feel that the activities 
engaged in with others is helpful to whatever the objective of the collaboration is. Mead calls it a social act, 
in his point of view of social behaviorism. 

A social act may be defined as one in which the occasion or stimulus which sets free an impulse is 
found in the character or conduct of a living form that belongs to the proper environment of the living 
form whose impulse it is. I wish, however, to restrict the social act to the class of acts which involve 
the co-operation of more than one individual, and whose object as defined by the act, in the sense of 
Bergson, is a social object. I mean by a social object one that answers to all the parts of the complex 
act, though these parts are found in the conduct of different individuals. The objective of the acts is 
then found in the life-process of the group, not in those of the separate individuals alone. (Mead 1934, 
p. 7, footnote 7) 

Collaboration can happen when two or more people work together at the same or at different times, being 
either in the same place or at different places.  

The social act is not explained by building it up out of stimulus plus response; it must be taken as a 
dynamic whole—as something going on—no part of which can be considered or understood by 
itself—a complex organic process implied by each individual stimulus and response in it. (Mead 1934, 
p. 7) 

In addition, collaboration can happen without people being conscious about it.  

The mechanism of the social act can be traced out without introducing into it the conception of 
consciousness as a separable element within that act; hence, the social act, in its more elementary 
stages or forms, is possible without, or apart from, some form of consciousness. (Mead 1934, p. 18) 

Especially for these forms of collaboration a work practice model could be useful in showing them, making 
the phenomenon visible and thus explicit. For example, my work practice has changed since I have moved 
from New York to California. My colleague in New York and I now use e-mail to discuss our research, 
whereas before we were mostly collaborating face to face, during our daily commute. Our form of 
collaboration has changed from same-time/same place to different time/different place. It is interesting to 
observe that we changed our communication tools as well (see paragraph 3.2.4). All this would be difficult to 
show in a workflow model, but in a model of work practice we include the different geographical places, as 
well as the different times we are each in our separate activities of reading and replying to our e-mails. The 
model would also show our new tool for communication (i.e. using e-mail), as well as the information (the 
stuff we are writing) we are communicating through our e-mails.  

Collaboration is a conceptual creation, a state of mental awareness by the individuals collaborating. This 
mental awareness does not necessarily have to exist at the same time, in the same place, and in the same 
way for every individual in the collaboration. Such awareness is created at the moment we are in our 
individual activities, making us feel we are collaborating. Collaboration integrates the activities of the 
individuals in the group, thus establishing a community of practice. 

Definition 4a (collaboration) A collaboration is a collection of activities of two or more individuals, all of 
them with the mental awareness (being conscious) of working together, either at the same time or at a 
different time, and either being in the same place or in a different place. 

However, this definition does not capture the fact that people can collaborate even when they are not aware 
that they are collaborating, i.e. the mental awareness does not exist for them (see the above quote of 
Mead). I call this indirect collaboration. For example, when telephone company sales representatives add 
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order information to the order databases, this information is used to provision the telephone circuit by the 
trunk assignor at a different time and in a different office. The two individuals are not aware that they are 
collaborating when they are in their respective activities. Nevertheless, they are indirectly collaborating by 
the communication of the order information through the order database. Indirect collaboration is sometimes 
an external observer’s conception, however, most of the time the people who engage in such indirect 
collaboration know that this takes place. It is especially in the breakdown of such collaboration—as when 
the information in the database is incorrect—that they realize this indirect collaboration they are engaged in. 

Definition 4b (indirect collaboration) An indirect collaboration is a collection of activities of two or more 
individuals, whom together, without mental awareness (not conscious) of the collaboration, but satisfying 
their individual goals, using an indirect form of (i.e. asynchronous) communication, either at the same time 
or at a different time, and either being in the same place or in a different place. 

3.2.4 Communication 

Having defined collaboration as a collection of activities, direct or indirect between people, I now turn to how 
people coordinate their collaboration. The short answer is, through communication. In order for two or more 
people to collaborate they need to communicate. In the Speech Act theory by Searle, the meaning and 
intent of speech acts are formalized (Searle 1969). Searle describes people’s action in terms of sending and 
receiving speech acts triggering response actions. A speech act has at least four distinct types of acts that 
are all part of the act at the same time (Searle 1969, p. 24-25): 

1. Uttering words is performing an utterance act. 

2. Referring and predicating is performing a propositional act. 

3. Stating, questioning, commanding, promising, et cetera. is performing an illocutionary act. 

4. The consequence or effect on actions, thoughts, and beliefs of the hearers is the perlocutionary act. 

Searle went as far as defining a taxonomy of types of speech acts in which he classified all types as 
embodying one of five illocutionary points: assertives, directives, commissives, expressives, and 
declarations (Searle 1975). Speech Act theory analyzes communication in terms of its illocutionary point, -
force and propositional content. Using this type of communication analysis, we can model the sequence of 
communications in a collaboration activity between sender and receiver, as well as the intention and 
meaning of the speech act. However, in analyzing the way collaboration occurs in practice, we also need to 
analyze communication in terms of how it actually happens in the real world, thereby modeling collaboration 
as it really occurs. Speech Act theory abstracts communication in terms of patterns of commitment entered 
into by the speaker and the hearer. While this is important, in modeling communication as it happens in 
practice we also need to take into account if a communication activity between two people actually happens, 
or does not happen. We need to include the communication tools used in the speech act, because the type 
of tool has an impact on when and how the hearer receives the speech act.  

Today, communication is more and more efficient and certain communication tools are used globally. 
Phones, voice mail, e-mail, and fax are communication tools that are more and more taken for granted in 
the way that we use them. However, it should not be taken for granted that we all have created our own 
practice around the use of these tools in certain situations. For example, when I work at home I am not 
checking my office voice mail as often as I should. Without justifying this, it is simply not part of my work 
practice. Therefore, if someone is trying to contact me, by calling me at my office phone and leaving a voice 
mail, I might not respond to it for a couple of days. It is not an efficient way of getting a hold of me. Sending 
e-mail is a better way, since I am constantly checking my e-mail at home. This emphasizes the point that 
collaboration is very much defined by our practice surrounding our communication tools, and that we, 
therefore, need to include the use of communication tools in modeling how people actually coordinate their 
collaboration in the real world. We need to include a model of the workings of communication tools, and how 
they are used in practice. 
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3.2.4.1 Content and Information transfer 

Speech acts are abstractions of the content of a communication activity between speaker and hearer. For 
instance, directive speech acts attempt to get the hearer to do something. What is left out is how this 
collaboration actually takes place. The speaker is in a communication activity, communicating some 
question or command. The hearer, when receiving the communication, reacts to this communication—
based on the illocutionary point—and will perform some activity that ends in a communication activity that 
communicates the hearer’s response to the speaker—the perlocutionary act. In reality, this speech act is a 
collaboration between two people, and they are using a communication tool, such as a phone, e-mail, or 
even a face-to-face conversation. The time it takes for this collaboration to complete, and be successful, 
depends on when the hearer receives the initial communication, and is able to communicate his or her 
response back to the sender. If the phone rings and the hearer is not in the location of the phone, the 
communication will not succeed and the speech act will not be completed. If a voice mail is left, the hearer 
might check it latter on and, depending on the message, will either do what is being commanded or will first 
need to call the speaker back to ask for clarification. This sequence of activities, constrained by the 
communication tool used, is part of the collaboration between the speaker and hearer, and needs to be 
taken into account in a model of work practice. 

Definition 5 (communication) A communication is the activity (speech act) of directional transferring of 
information (in the form of beliefs), held by one individual called the sender, to one or more individuals called 
the receiver(s), using a specific communication tool (face-to-face, telephone, e-mail, fax, document, etc). 
After the transfer activity is complete, and successful, the receiver(s) will hold the same information (belief) 
as the sender of the information, and can now react to it. 

3.2.4.2 Communication tools and their impact on work practice 

There are different tools for communication dependent on the location and time spans of the collaborating 
individuals, having a major impact on the work practice of the group. In one of our investigations, we found 
that two different groups of workers would use different communication tools for accomplishing the same 
task. The first group, a group of technicians and a manager, communicated “the assignment of the day’s 
jobs” in a morning coffee meeting. The technicians all come in to work around eight o’clock in the morning. 
The manager who comes in at seven, will have scheduled the jobs for the day, and will sit with the “force” to 
have a coffee meeting. During this social gathering, the manager would hand out the job assignments for 
the day. The second group, consisting of all the same level workers, with one having an acting role as a 
manager, does not engage in the assigning of the day’s jobs during a coffee meeting. Rather, the acting 
manager assigns the jobs through the job scheduling system. As the workers come in to work, they check 
their work assignment through the computer. This example shows the difference in the communication 
activities—consequently the communication tools used—in the practice of assigning jobs for the day. The 
social interaction and work practice in these two groups is different, which is clearly impacted by the mode 
(tools) of communication. 

It is worthwhile to emphasize that this example shows that the type of communication tools used is an 
important element in the communication mode, and is one of the defining factors in work practice. Thus, it is 
important to model the communication tools and its uses in activities, as they define the mode of 
communication and have an impact on the work practice. 

3.2.4.3 Communication effectiveness and efficiency 

A communication activity can be seen as simply an information transfer that constrains future actions for the 
receiver of the information. Either the information is received or not, in which case there is a communication 
breakdown. A communication activity can be qualified in terms of its efficiency and its effectiveness. In a 
communication breakdown its effectiveness is zero. Receiving information means that the information was 
transferred from the sender to the receiver with an effectiveness of one. Thus, effectiveness of 
communication is a measurement about whether the information is received or not. 

Efficiency is a measurement of how many intermediate communication-activities are needed to receive the 
information. For instance, when the sender uses a telephone as communication tool and the receiver is not 
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there to answer the phone, the sender can leave a voice mail. When the receiver listens to the voice mail, 
and the message simply gives the receiver the intended information, the efficiency of the original 
communication activity was two. This means it took two communication activities for the transfer of the 
information from the sender to the receiver. If, on the other hand, the voice mail message states for the 
receiver to call back the sender, and the receiver calls back after which the information transfer takes place, 
the efficiency of the original communication activity is three, meaning it took a total of three communication 
activities to transfer the original information. 

Using these measurements we can measure the effectiveness and efficiency of a speech act between 
people, or between people and artifacts (such as a computer system or robot). 

3.2.4.4 Same-location communication 

When collaborators are in the same location there are a number of communication modes they can choose 
from. If collaborating with just one individual, face-to-face communication is used. In face-to-face 
communication, two individuals are communicating synchronously and instantaneously. For communication 
with more than one individual, at the same time, a broadcasting communication mode is used. The 
distinction between these two modes is that in a face-to-face communication other individuals around are 
ignored. In a face-to-face communication people act and react only to the person they are communicating 
with. When broadcasting, people open the collaborative activity to everyone in the same location, as if 
speaking to everyone at the same time. The social coffee meeting described above is an example where a 
broadcasting mode allows the individuals in the group to not only get the information about their own jobs for 
the day, but also hear what jobs are assigned to the others in the group. Such a communication interaction 
facilitates learning, because suddenly the job assignment task becomes a social interaction of the group. 
The individuals in the group can exchange additional information; such as telling a colleague, who was just 
assigned a job at a location, about the problems at the location. 

At the same time, individuals, who are in a location with a collaborating group and are not part of that 
collaboration, can ignore a broadcasting communication. This means that we, as individuals, can selectively 
react to communication. People are in control of their own actions; this is part of the meaning of 
collaboration. 

Definition 7a (same-location communication) Same-location communication is a communication form 
where the sender and receiver(s) are in the same geographical location. There are two modes of same-
location communication, face-to-face communication, and broadcast communication. Face-to-face 
communication consists of one sender and one receiver. A broadcast communication consists of one 
sender and multiple receivers 

3.2.4.5 Communication over distance 

Communication over distance happens when the communicators are not in the same geographical location. 
This form of communication can happen in different modes, same-time communication (synchronous 
communication over distance), or different-time communication (asynchronous communication over 
distance). Depending on these two modes, different types of communication technology can be used. 

One of the oldest forms of different-time communication over distance is using a messenger who plays the 
role of a communication device. A more efficient form is mailing or faxing a written document. Alternatively, 
the use of workflow systems, e-mail or voice mail is becoming increasingly standard. Of course, the 
telephone is one of the most frequently used forms of same-time communication over distance. As 
technology is becoming more advanced, different types of communication devices will allow us to 
collaborate over larger and larger distances, more and more synchronously. As these technologies are 
being used in the daily work activities, they become a part of the practice. 

Definition 7b (communication over distance) Communication over distance is a communication form 
where the sender and the receiver(s) are in different geographical locations. In communication over 
distance, there is a communication device used to communicate. The sender sends the beliefs to the 
device. The receiver(s) receives the beliefs from the device. There are two modes of communication over 
distance, same-time communication over distance and different-time communication over distance. In 
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same-time communication over distance (direct communication over distance), the sender and receiver 
communicate instantly or with some short transmit delay, using a communication device. In different-time 
communication over distance (indirect communication over distance), there is a time span between the 
sender’s communication with the communication device, and the receiver’s communication with the 
communication device 

3.2.4.6 Taxonomy of communication types in work practice 

From the above description and definitions of communication a taxonomy is presented. The taxonomy also 
includes possible communication tools that can be used for each type of communication: 

Communication 
The directional transfer of information from sender to receiver 
 Synchronous Communication 
 Same-time communication between sender and receiver 
  Same-Place Communication 
  Same-time communication where sender and receiver are in the same location 
   Face-to-face 
   Broadcast 
  Communication over distance 
  Same-time communication where the sender and receiver are in different locations 
   Phone-call 
   Voice-loop 
 Asynchronous Communication 
 Different-time communication with a delay between sending and receiving 
  Same-Place Communication 
  Different-time communication where the sender and receiver are in the same location 
   Using Artifacts 
    Documents 
   Using Electronic forums 

   E-mail 
   Database (or electronic document) 

  Communication over distance 
  Different-time communication where the sender and receiver are in different locations 
   Using Artifacts 
    Fax 
    Mailed documents 
   Using Electronic forums 
    Voice-mail 

   E-mail 
   Database (or electronic document) 

3.2.5 Artifacts 

People live and act within a physical world. People use and create artifacts in almost all activities that they 
engage in. When in the activity of hammering a nail, we use a hammer and a nail, and we end up with a nail 
in whatever artifact we have hammered it in. If we try to understand this activity in context of performing it in 
the real world, we cannot leave out the artifacts. The artifacts constrain the way we perform activities. It is 
part of our context, and we have no choice but to interact with the physical world in order to act. We need to 
include these artifacts into our model of work practice. Leaving them out would miss the opportunity to 
understand the reason for performing activities. In other words, the artifacts are as important in the work 
practice as the people are. 

Definition 8 (artifact) An artifact is a physical object in the world. 

George Mead’s social-behaviorist notion of instances of the universal, as well as Heidegger’s notion of 
break down and readiness-at-hand, explains the role of physical objects—artifacts—in an activity. Mead, as 
well as Heidegger, uses the hammer and the activity of hammering as the example in which the hammer is 
the object that turns into a tool—as an extension of the hand. Mead’s idea is that the concept “hammer” is 
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the universal and the object used in the specific activity is the instance of the universal. Therefore, for Mead, 
the role of the hammer is socially bound to the activity, and is not a property of the object itself. If the person 
who is hammering uses a piece of wood to hammer in the nail, that piece of wood becomes the instance of 
the universal during its use in the activity, and thus plays the role of a hammer. In other words, the object is 
transformed into the tool used to hammer in the nail. Heidegger, in essence, says the same. Only he 
speaks to it through the understanding that objects and their properties are not inherent in the world, but 
arise only in an event of break down in which the object becomes present-at-hand. To the person 
hammering, the hammer as such does not exist. It is part of the readiness-to-hand that is taken for granted 
in the activity, without the user’s identification as an object. It is only in the break down, for example when 
the person cannot find the hammer when he wants to hammer in the nail, that the object is present for the 
user. Whichever notion speaks to you, the issue that is important in modeling work practice is how the 
artifact is used and conceptually understood within the activity. Figure 3-4 shows this relationship. 

 

Figure 3-4. Mediated relationship of artifacts in activities 

It is the use of the artifact in the activity—its role—that transforms the artifact into a tool or a product of the 
activity, used or created by the subject. Outside the activity the artifact is just an object in the world. To the 
observer the object is necessary for the activity to be performed. 

Definition 9 (tool) When an artifact is being used in an activity, it becomes a tool in the performance of the 
activity. 

Definition 10 (product) When an artifact is created or changed in an activity, it becomes a product of the 
activity. 

3.2.6 Geographical environment 

Work is performed within a three-dimensional geographical environment. The restaurant we have dinner at, 
the office that we work in, and the moon crater the astronauts explore, are all examples of places, spaces, 
and environments which constraint the way we do our work. The artifacts we use in our work, such as 
communication- and information tools, are also located in a three-dimensional space. We are constrained to 
our three-dimensional world, and it defines very much how we can perform our work. For example, when 
the phone rings, we cannot hear it if we are not in the same room as the telephone. We also cannot observe 
specific changes in a location when we are not there. For example, if someone turns off the light in a room, 
and you are not there, you will not observe this and therefore will not be aware of the fact that the light in this 
room is now off. To show the effect of the environment on the practice, we need to include a model of the 
geographical environment in a model of work practice. 
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3.2.6.1 Important aspects of modeling the environment 

Modeling geographical spaces is an intricate subject in and of it self. The question we need to ask is; how 
much and how detailed do we need to model the geographical environment if we want to show its 
importance to the work practice? The answer is that it depends on the work practice and the geographical 
space we are trying to model. If we are interested in office work, we need to model the office space in terms 
of where artifacts are located, such as where the offices of the people are, their telephones, fax machines, 
computer terminals, meeting rooms, et cetera. When we are modeling astronauts on an extravehicular 
activity on the Moon, we want to model the traverses, such as which craters they go to, how long it takes to 
go from one point of interest to another, which rocks are they looking at, and even which soil samples are 
they taking back with them. We are also interested in how they are traversing, and how long it takes to go 
from point A to point B. Are they walking or using a moon rover to travel. Are they aimlessly wandering 
around or are they following a pre-selected route? All these aspects are specified and constraint by the 
environment and the geographical space in which the work takes place. To give a concrete example of how 
the geography plays an important part in the way work happens, think about the things that might go wrong 
during a moon traverse, and how the environment constrains how long you can stay outside on the 
traverse. How much consumable oxygen do we have to get back to the spacecraft? This is a question that 
was constantly in the back of the minds of the people at mission control. It defined whether the next activity 
was to be done or was to be skipped. Dealing with the environmental constraints shapes the work practice. 

Definition 11 (geography) Geography is the description of the physical environment in which the people 
and artifacts are located when performing their activities. 

3.3 MODEL-BASED APPROACH 

In this section I investigate how to operationalize a model of work practice. I use the term operationalization 
to refer to the implementation of a model of work practice that can be executed, i.e. a computational model 
of work practice. In this section of the thesis, I have described a framework for modeling work practice at an 
epistemological level. Here I investigate how we can implement such a model of work practice. This is the 
operationalization problem (Schreiber 1992). Generally, the term operationalization is used to denote the 
process of designing and implementing a system. In the context of computational modeling, the 
operationalization problem includes the ability to execute the model. 

In the last decade, model-based development approaches have become the prevailing paradigm in 
knowledge-based system (KBS) development, as well as in more traditional system development. In KBS 
development, model-based refers to a development approach in which problem-solving expertise is 
described (represented) at the knowledge-level (Newell 1982) (Clancey 1985). One of the more well known 
model-based KBS design methodology is the CommonKADS methodology (Schreiber et al. 2000) 
(Schreiber et al. 1993). The CommonKADS methodology defines a number of design models that allow us 
to describe problem-solving behavior at Newell’s knowledge-level. Much research has been done about 
how to operationalize KADS models of expertise (Angele et al. 1991) (van Harmelen and Balder 1992) 
(Karbach et al. 1991) (Linster and Musen 1992). In software engineering, model-based refers to a system 
design approach in which the system is described in terms of a number of well-defined design models 
(Yourdon 1989), using an object-oriented representation of the system that is being designed (Jacobson 
1994). In this chapter I describe what is meant with a model-based approach for modeling work-practice. 

We make observations from within our field of reality. A model is a description of that what we observe to 
exist in the real world. We create models all the time, mental or external, formal or informal. Mental models 
exist in our minds, and are our interpretation—description—of the world as we experience it. External 
models are models we create based on our mental models, and therefore, are manifestation of our mental 
models. In the context of this thesis, all external models are system models in the sense that they describe 
the world in components—objects—having properties, mirroring the properties of objects existing in the real 
world. When we create models that are not physically or geometrically identical with the world we are 
studying, we have to define system objects with properties that, for the purpose of our study, are similar to 
the real world objects. Secondly, the relations between the system objects have to be similar to the 
corresponding real world relations. In algebraic terms, the system objects and their relations have to be 
isomorphic with the real world objects and their relations in the real world. 
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3.3.1 Formal and informal system models 

When we create non-physical, non-geometrical external models, we have a choice of creating these models 
with a formal representation or, as is often the case, with an informal representation. A formal model uses a 
description formalism that is predefined having a formal syntax and semantics. One of the benefits of a 
formal model is that the meaning of the model can be formally derived, and there can be no argument about 
this meaning. However, due to the formality of such models, creating and understanding formal models is 
often not a simple matter. On the other side of the spectrum, there are informal models. Informal models are 
models that do not have a well-defined meaning. Often the meaning of such models is in the eye of the 
beholder. Even though the meaning of informal models is not well defined, they can be useful in the 
understanding of a system. We all know the saying “a picture tells a thousand words.” This also holds for 
informal models. As such, I feel that the value of informal models is often similar to that of a picture of a 
scene. It gives context, an external description of reality that can be referred to and shared with others.  

One of the benefits of creating external models is their use in analysis and design. External models can be 
used for explanation of relations and properties of a system that either already exists in the world or is to be 
developed; in which case the model is the only manifestation of the system. 

3.3.2 Computational models 

Despite some of the benefits, there are problems with informal models. Informal models cannot be used as 
a theoretical description of the real world. Therefore, we cannot use informal models to deduce new 
theorems—propositions about properties of the model. If we cannot do that, we cannot use the model to 
test hypothesis about properties of the world being modeled.  

I distinguish two formal aspects of a system, namely a structural aspect of the system and a behavioral 
aspect of the system. Computational models are models that show the behavioral aspects of a system, by 
simulating the behavior of the system over time. This is in contrast with static models, which only show the 
structural aspects (i.e. the system elements and their relations at one moment in time). As the complexity of 
a system increases, understanding how the system changes over time—its behavior—becomes 
increasingly difficult. This is especially true for non-linear systems. A computational model allows us to 
observe the result of changes in the system as time moves forward.  

A second problem with informal models is that they cannot be made computational, in the sense that they 
cannot be executed. Static models can only describe a system at a particular moment in time. They are a 
static representation of the interpretation of the modeler at the moment the world was interpreted. It depicts 
the model at a specific time slice. If a model is static it cannot be used to describe the changes over time of 
the world being modeled. In the case of modeling the work practice of a human activity system (Checkland 
and Scholes 1990) this is problematic. A static model could describe static properties of a system, but it fails 
to describe how dynamic properties change over time. Many elements of work practice contain dynamic 
relations between system objects, such as activities being performed by people, communications between 
people, changes in the environment, et cetera, et cetera. In other words, time is an important independent 
variable on which a lot of other variables depend. Therefore, if we want to model the work practice of a 
human activity system, we need to be able to create a dynamic model that can show how the system 
changes over time. In this case, we cannot use an informal description of work practice. 

Figure 3-5 shows how our epistemology of work practice (described in this chapter), formalized in our 
Brahms modeling language and operationalized in the Brahms simulator (described in chapter 4), relates to 
a simulation of the work practice in a real world human activity system.  
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Figure 3-5. Describing real world work practice with computational modeling 

3.3.2.1 The empirical relational system 

The work practice in a real-world human activity system is an empirical relational system (ERS). It is 
empirical in the sense that it is the source system in which we can observe the objects and relations. The 
ERS refers to a group of people doing work in the real world, observed for the purpose of understanding the 
work practices of this group of people. 

3.3.2.2 The epistemology of work practice 

We observe the ERS by using the epistemological elements of work practice, described in chapter 3.2, as a 
sort of theoretical filter through which we view the empirical relations between the objects in the ERS. The 
elements of work practice we use in our filter are, again, community of practice, activities, collaboration, 
communication, artifacts, and geography. 

3.3.2.3 The formal relational system 

The elements of work practice, based on the epistemology, can be encoded into a computational Brahms 
model using the formal Brahms language (described in chapter 4). A Brahms model is a formal relational 
system with objects and relations isomorphic to real-world objects and relations in the ERS. The 
computational modeling language defines the formal relational system (FRS). In the FRS we describe the 
aspects of the work practice observed in the ERS. For each epistemological element observed in the ERS, 
there are formal Brahms language objects and relations that describe our observations. 

3.3.2.4 The Brahms model simulator 

From a computational Brahms model of the work practice a dynamic simulation model is generated, by 
executing the Brahms model using the Brahms simulation program (also described in chapter 4). This is the 
step in which the dynamic behavioral model of the work practice is generated. 

3.3.2.5 The dynamic behavioral model 

The behavioral model is a dynamic model in that it includes temporal activity-relations, and how they 
change over time. 
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The epistemological concepts of work practice define the theoretical basis of how to observe, capture and 
talk about work practice. The Brahms language operationalizes these epistemological concepts by defining 
a computational modeling language and a simulation program, allowing us to model and simulate a work 
practice from observations in the real world. Next, I describe how we develop a model of work practice. 

3.3.3 Work practice models 

This section describes the (sub)models of a work practice model, based on the epistemological work 
practice level described in section 3.2. I divide the work practice elements into related models that can be 
viewed independently. Dividing a model of work practice in this way helps the modeler with the 
decomposition of the domain, and makes the modeling effort easier. 

3.3.3.1 Agent model 

People are represented as agents. Just as people, agents do work. We can describe the work of people 
performing the same work, by describing the work of a group. Each member of the group is an agent, and is 
able to perform the work defined for the group. People can belong to multiple groups, and as such an agent 
can be a member of multiple groups. We represent the people in a community of practice as agents 
belonging to their respective groups. This way we can model any human activity system as communities of 
practice. 

3.3.3.2 Activity model 

The work that people do is described in terms of activities. Activities are defined at either the individual agent 
level, or the group level, in which case each member (agent) of the group can execute the activity. An 
activity represents the behavior of a person for a period of time. There are two types of activities, a primitive 
activity and a composite activity. A primitive activity is primitive, because it is not further decomposed, and 
takes some amount of time. The time element represents how long the agent is working within the activity. 
Thus, a primitive activity describes what the agent is doing and how long the agent is doing that. A 
composite activity is a higher-level activity. We can say, it is a more abstract representation of what the 
agent is doing. An activity can be decomposed in sub-activities, which can be primitive sub-activities, or 
again, composite sub-activities. Using primitive and composite activities we can describe what people are 
doing at any level of detail. 

Work is the execution of activities under certain constraints. Agents’ constraints for performing activities are 
matched against the beliefs they hold. We represent the constraints when agents can perform activities in 
an activity rule, called a workframe. A workframe defines the conditions under which the agent can execute 
the activity. 

3.3.3.3 Communication model 

We represent communication between people as an activity in which people engage when communicating 
with someone or something else. When communicating, people send or receive information. In our FRS, 
communication is represented as a type of primitive activity, called a communication activity. A 
communication activity is primitive, in that it takes a certain amount of time and is not decomposed into more 
primitive activities. In a communication activity we can specify what information the agent can communicate 
or receive, and with whom the agent is communicating when in the activity. Conditions in the workframes for 
communication activities specify under what circumstances an agent communicates. 

3.3.3.4 Object model 

People use and create artifacts in performing their activities. Artifacts are represented as objects. Types of 
artifacts, such as telephones, hammers, etc, are modeled as classes. New objects can be created as 
instances of a class. With these constructs we can model any type of artifact used within the work practice. 
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Some artifacts can perform activities, such as computer systems, telephones, microwaves, et cetera. 
Artifact behavior is represented similarly as the behavior in agents, meaning that the behavior in objects is 
also represented as activities and workframes. 

3.3.3.5 Geography model 

A human activity system is always located in some geographical space in which activities are performed. 
People and artifacts cannot be without location. Location also constrain when activities can be performed. 
For example, we cannot pick up the telephone if we’re not located in the same geographical space as the 
telephone. We describe the location of where the agent and object’s activities are performed in geographical 
areas. 

Depending on the human activity system we can define types of areas with area-definitions, for example, 
buildings. A geographical area is an instance of an area-definition. 

An agent and object performs its activities within only one geographical area. Moving from geographical 
area to area is represented as a move activity. A move activity is a primitive activity that takes time, and 
moves the agent from its current location to its new location. Using move activities we can formally describe 
the movements of people, during their activities. 

3.3.4 Developing a model of work practice 

Figure 3-6 describes an operational methodology for developing a formal computational model and a 
dynamic simulation model of a work practice, for an observable human activity system. A work practice is 
not simply the summation of the activities of all elements in the system, but it is the emergent behavior of the 
system as a whole, based on the interaction and collaboration between the elements in the system. 
Because a human activity system is about humans, we can observe the way the humans are performing 
their activities. In other words, we can observe the work practice of the system. The goal of the observation 
of the people in a human activity system is to create informal static models of the people, artifacts, the 
activities of those people and artifacts as they are being performed over time, as well as the geographical 
environment in which these activities take place. 
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Figure 3-6. Modeling process 
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The empirical relational system is the human activity system being observed. The purpose of the 
methodology is to operationalize the modeling of the ERS, and create a Brahms model that can be 
executed by the Brahms simulator to create a simulation of the activities of agents and objects. 

3.3.4.1 Method M1 – observing work practice 

The purpose of method M1 is to observe the ERS and create an informal static description of an 
observation of the work practice of a human activity system. The goal of the observation is to create useful 
data to create static informal models, which will be used in M2 to develop formal models of work practice. 
There are different ways of observing a human activity system, and create data. I only mention two ways we 
can observe work practice in a human activity system, as examples. The first one is by analyzing video 
recordings of the actual work, and the second one is by using participant observation. 

3.3.4.2 Method M2 – formal model of the work practice  

The purpose of method M2 is to formalize the static informal models created during the application of M1, 
creating the FRS. In Brahms terms, this is where the Brahms model is developed. The formal system 
modelers need to be able to translate the informal models into formal models using a specialized kind of 
formal modeling knowledge. The formal modelers and the informal modelers do not necessarily have to be 
the same, and in fact, the skill set for these two types of modelers are very different. The informal modelers 
should be system analyists, knowledge engineers and anthropologists. The formal Brahms modelers should 
be people that understand the concept of agent-based modeling, and often have experience in developing 
rule-based systems. 

3.3.4.3 Method M3 - simulation 

The purpose of method M3 is to construct a simulation of the formal model, by running the simulator with 
the formal model as input and the work practice simulation as the output. The M3 method can be seen as 
the model, compile, simulate, and debug cycle. 

3.3.4.4 Method M4 – observing the simulation 

The purpose of method M4 is to observe and investigate the work practice simulation output, and compare 
it with the actual human activity system. It is during this cycle that the actual objective of the work practice 
simulation project is being accomplished. The result might be suggested changes to the formal model, in 
order to perform a what-if scenario. Thus, there is a modeling and simulation cycle between M1, M2, M3 
and M4, which means that these methods have to be closely integrated if we want to make this cycle be as 
efficient as possible. 

3.4 CONCLUSION 

In this chapter, I discussed what I mean with “work practice.” In work practice modeling we focus on the 
collaborative activities of a community of individuals who collaborate together to accomplish a goal. I defined 
an epistemological framework for describing a work process at the work-practice level, using concepts such 
as collaboration, community of practice, communication, activity, and geography.  

Having an informal model of a work process at the work-practice level18 could help us tremendously with our 
understanding of what is really happening within a work process. However, what has become clear from the 
framework is that practice is an emergent phenomenon that only shows its relationships and influences over 
time. Therefore, it is important not to leave out time. If we could simulate a model, we can observe how the 
work practice in an organization emerges. To allow for dynamics in a model, we need to make it 
computational. A model that is computational needs to be formal, so that it has a context-free grammar and 
a defined semantics. In the next chapter, I describe the formal Brahms language for modeling and 
simulating work practice. 

                                                      
18 From now on I will simply call this “modeling work practice." 



 

69 

4. MODELING FORMALISM 

In this chapter I describe the modeling formalism of Brahms19. Brahms models are written in an Agent-
Oriented Language (AOL) that has a well-defined syntax and semantics. The Brahms language is a parsed 
language. A Brahms program is parsed by a LR(1) top-down parser. The parser generates an internal 
object representation for the run-time component. Using this language, a Brahms modeler can create 
Brahms models. The run-time component—the simulation engine—can execute a Brahms model; also 
referred to as a simulation.  

Bellow is a paragraph from the abstract of the “official Brahms paper”, published in 1998 in the International 
Journal of Human Computer Studies (Clancey et al. 1998): 

Brahms is a multiagent simulation tool for modeling the activities of groups in different locations and 
the physical environment consisting of objects and documents, including especially computer 
systems. A Brahms model of work practice reveals circumstantial, interactional influences on how 
work actually gets done, especially how people involve each other in their work. In particular, a model 
of practice reveals how people accomplish a collaboration through multiple and alternative means of 
communication, such as meetings, computer tools, and written documents. Choices of what and how 
to communicate are dependent upon social beliefs and behaviors—what people know about each 
other’s activities, intentions, and capabilities and their understanding of the norms of the group. As a 
result, Brahms models can help human-computer system designers to understand how tasks and 
information actually flow between people and machines, what work is required to synchronize 
individual contributions, and how tools hinder or help this process. In particular, workflow diagrams 
generated by Brahms are the emergent product of local interactions between agents and 
representational artifacts, not pre-ordained, end-to-end paths built in by a modeler. We developed 
Brahms as a tool to support the design of work by illuminating how formal flow descriptions relate to 
the social systems of work; we accomplish this by incorporating multiple views—relating people, 
information, systems, and geography—in one tool. Applications of Brahms could also include system 
requirements analysis, instruction, implementing software agents, and a workbench for relating 
cognitive and social theories of human behavior. 

The Brahms language has its roots in other agent-based languages, such as AGENT-0 (Torrance 1991), 
and PLACA (Thomas 1993). The Brahms language is based on the formal logic of computational multiagent 
systems, as described by Wooldridge in his 1992 Ph.D. thesis (Wooldridge 1992). However, Wooldridge 
says that his theory was not intended as a model of human social systems. In this thesis I am describing a 
theory of human social systems. The theory focuses on meso human social systems—as a mid-level theory 
that links a micro-level mechanisms to macro-level phenomena, namely the physical and social to the 
individual cognitive (Carley and Prietula 1994a)—meaning that I describe a specific type of system, namely 
that of a human activity system (Checkland and Scholes 1990). As such we need to extend Wooldridge’s 
formal logic with provisions for modeling human-actors (social agents), including their activities, 
collaboration, their environment, and the fact that they are situated in the real world, acting and observing, 
reacting to and interacting with other agents, objects, and artifacts.  

Brahms models may be thought of as statements in a new formal language developed for describing work 
practice. Appendix A shows the conventional notation and constructs used to express the syntax for the 
modeling language (BNF). The language is domain-general in the sense that it refers to no specific kind of 
social situation, workplace, or work practice; however, it does embody assumptions about how to describe 
social situations, workplaces and work practice. 

The next chapters describe all the major parts of the Brahms language. Every major Brahms concept is 
described in a separate section: 

1. Agents and Groups 

                                                      
19 Part of this chapter is taken from the Brahms US patent Simulating Work Behavior 
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2. Objects and Classes 
3. Beliefs and Facts 
4. Activities and Workframes 
5. Geography 
6. Simulation 

The Brahms language is continuously evolving. Therefore, the description in this section is only a correct 
description for a short period of time. Just recently the Brahms development team released the new 
simulation engine, completely re-written in the Java language (the previous engine was in written in a tool 
called G220). The new Java simulation engine resulted in an increased simulation speed of more that 
hundred times that of the old G2 engine. 

For an always up-to-date description of the Brahms environment (language and engine), I refer to the 
Brahms web-site at URL http://www.agentisolutions.com. 

4.1 AGENTS AND GROUPS 

This section describes two important Brahms concepts for modeling individuals and groups of individuals. 
Agents and groups are central to Brahms. Defining the group/agent hierarchy for a model is one of central 
structures that need to be designed for any Brahms model. 

4.1.1 Agents 

The notion of an agent is central to the study of AI. In recent years a sub-field of AI has developed, called 
distributed artificial intelligence (DAI) (see Chapter 2.3). In DAI computer-based components appear as, 
more or less, independent agents (Gasser 1991). In the literature, there are two general usages of the term 
agent, a weak notion, and a strong notion (Wooldridge 1992). 

4.1.1.1 Weak agency 

Researchers concerned with weak agency focus on a shallow understanding of agents, meaning that they 
do not focus on human-like behavior. These researchers view agents as self-contained, concurrent software 
processes that encapsulate an internal state, and are able to communicate this internal state to other agents 
via a message passing protocol. In (Wooldridge and Jennings 1995), weak agency is described in the 
following general terms: A hardware or software-based computer system that employs the following 
properties: 

• autonomy: agents operate independent from other agents and/or outside intervention, and have 
some control over their actions and internal state (Castelfranchi 1995); 

• social ability: agents interact with other agents and/or users of the system, using some kind of 
communication language (Genesereth and Nilsson 1994); 

• reactivity: agents have a way to perceive their environment, and can respond to changes in their 
environment. The environment may be the physical world, interaction with an end-user through 
some graphical user interface, the internet, and/or other agents; 

• pro-activeness: agents do not just act in response to their environment. They are able to take 
initiative, through goal-directed behavior, in their actions. 

Systems that fall into this camp are systems that behave as independent agents within a larger 
computational system, but do not possess human-like intelligent reasoning and behavior. Examples are 
web search-engine agents (also called “spiders”), software auction agents, web monitoring agents, et 
cetera. 

                                                      
20 G2 is developed by Gensym Corporation. 
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4.1.1.2 Strong agency 

Strong agency is used when the term agent includes the above properties, but also behaves more human-
like. Researchers interested in strong agency belong mostly to the AI community. As is the norm in AI, an 
agent has cognitive behaviors, such as belief, desire and intention (BDI) systems (Shoham 1993). In other 
words, strong agency focuses on intelligent agents. In the ACTS theory, actions and decisions of intelligent 
agents are a function of the agent’s cognitive architecture and knowledge (Carley and Prietula 1994a) 
(Newell 1990). The mechanisms by which an agent processes information, learns and makes decisions are 
a function of the cognitive architecture of the agent, the (social) position of the agent in the organization, and 
the tasks in which the agent is engaged. Thus, the ACTS theory refocuses the attention of the researcher 
interested in organizations on the details through which the task and social environment influence the 
individual agent and the group adaptation and performance.  

Other attributes that are often discussed in the context of strong agency are, for example: 

• mobility: agents “live” in an environment in which they can move around, be it in an electronic 
network (like the internet) or a closed environment, like a simulated world environment (Goodwin 
1993). 

• bounded rationality: it is assumed that agents act rational, but will act only in accordance with 
achieving their goals, and will not act in such a way as to prevent their goals from being achieved. 
In this sense agents act bounded to their ability to achieve their goals, and act according to their 
bounded cognitive ability. (Simon 1955) (Simon 1956). 

In Brahms we use the notion of strong agency. The reason for this is obvious; Brahms agents model human 
behavior. In the next sections I describe how the Brahms modeling language implements, in some way, all 
of the attributes discussed in context of weak and strong agency, i.e. autonomy, social ability, reactivity, pro-
activeness, mobility, and bounded rationality. 

People and artifacts (both physical and conceptual) are represented as “objects”, generally having 
properties, such as geographical location, which may change over time depending on their interactions. The 
term “agent” is generally used to refer specifically to an object that represents a person or, more inclusively, 
that represents an interactive system that has behavior interacting with the world that we want to represent 
as having the capabilities of awareness, reasoning and a mental state—intentionality. 

An agent is a construct that generally represents a person within a workplace, or other setting being 
modeled. Agents have a name and a location. To specify what an agent does, the modeler defines activities 
and workframes for the agent. The key properties of agents are group membership, beliefs, workframes, 
thoughtframes, and location. 

4.1.2 Groups 

We could model the daily activities of actual individuals in an organization. For example, we can model the 
daily activities of agent “Maarten”. The activities will then be defined local to the agent, and will be agent-
specific (i.e. not inherited by other agents). 

Most Brahms models will not go into as much detail as to define the activities of individual agents, but rather 
describe the behavior of abstracted groups of agents in entities called groups. In describing the activities of 
groups, a specific member agent will inherit the activities of the group. In this way we can describe the daily 
activities of a group (i.e. non-individual specific). 

A group can represent one or more agents, either as direct members or as members of subgroups. 
Typically, a modeler would associate descriptions of activities with groups, so that a group represents a 
collection of agents that perform similar work. A group may have only one member and roles may be highly 
differentiated. Depending on the purpose of the model, agents in a model may represent particular people, 
types of people, or pastiches. The modeler may define groups to represent anything, such as “service 
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technicians”, “people who like sushi”, or “people who wear spacesuits”. Each agent and group can be a 
member of any number of groups, providing that no cyclic membership results. 

Groups and agents are the most central elements in a Brahms model. An agent represents an individual, 
whereas a group represents a group of individuals playing a particular role in an organization. The 
simulation engine schedules the constrained activities of individual agents, not for groups. However, being a 
member of a group, the group's constrained activities are scheduled as they pertain to the individual agent. 
A Brahms model is always about the activities of individual agents in a work process. Agents in Brahms are 
socially situated in the context of work, the organization, and its culture. However, the Brahms language is a 
multi-purpose AOL, which means that there is nothing inherently in the Brahms language that constrains the 
programmer to use agents for other purposes. 

4.1.3 Elements of agents and groups 

Brahms agents and groups21 have the following elements. 

Name: The name of an agent is its unique identifier. Normally we give agents fictitious names to identify 
specific individuals in an organization without identifying them. 

Display: The display name of an agent is a textual description of the agent's name. The display name can 
have spaces. It is not used as the unique identifier for the agent. 

Group-membership: An agent can be a member of one or more groups. When an agent is a member of a 
group, the agent will inherit all elements from that group. An agent can be seen as an instance of a group in 
terms of object oriented practices. In case the same constructs are encountered in the inheritance path 
always the most specific construct will be used. For example, an activity defined for the agent has 
precedence over an activity with the same name defined in one of the groups of which the agent is a 
member. 

Cost and time: The cost per unit (“Cost/unit”), and the unit time for which the cost is entered (“Unit 
(seconds)”). For example, if the cost attribute is 10.0 and the time attribute equals 3600 seconds it means 
that the cost of an agent is 10 BB’s (Brahms Bucks) per minute. Using these attributes the simulation engine 
can calculate cost statistics of a work process, based on a calculation of the summation of an agent’s 
activity time. 

Location: An agent has an initial location within the geography (see chapter 4.5). 

Attributes: Represent a property of an agent or object in the world. Attributes can have values. Currently 
only single-valued attributes are allowed. The value of an attribute is specified through facts and/or beliefs 
(see chapter 4.3). 

Relations: Represent a relation between two concepts. A concept can be either an agent or and object. The 
first (left hand side) concept is always the concept for which the relation is defined; the second concept (right 
hand side) can be any other concept. Relations are specified through facts and/or beliefs (see chapter 4.3). 

Initial-beliefs: A belief is a first-order predicate statement about the world (Konolige 1982) (Konolige 1986) 
(see chapter 4.3.3). Beliefs are always local to an agent, i.e. only the agent can access its beliefs, and no 
other agent can. This allows us to represent how a specific agent “views” the state of the world (Hintikka 
1962). Agents act based on their beliefs. Beliefs are the “triggers” of agent’s actions (see chapter 4.4.2). 
Initial beliefs define the initial state for an agent. Initial beliefs are turned into actual beliefs for the agent 
when the model is initialized at simulation start time. 

Initial-facts: Facts represent the state of the world. A fact is a first-order predicate statement about the world 
(see chapter 4.3.4). Facts are, in contrast to beliefs, global. Any agent can detect a fact in the world and turn 
it into a belief and act on it. Initial facts define the initial state of the world. Initial facts are turned into facts in 
the world when the model is initialized for a simulation run. There is a fundamental difference between the 
                                                      
21 In the rest of this section I only refer to agents, however, this should be read as “agents and objects.” 
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“ownership” of a belief and a fact. A belief is “owned” by a specific agent during the execution of the model. 
No other entity in the model can access that belief without some interaction with the agent (direct or 
indirect). However, although initial-facts are defined with an agent or object, at execution time a fact is not 
“owned” by that agent or object. A fact is global, and can be acted on (in the case of objects) or detected (in 
the case of agents). 

Activities: In this element the activities an agent can be engaged in are defined. Activities in Brahms take a 
certain amount of time, either derived or defined (see chapter 4.4.1). There are a number of types of 
activities that are defined for the Brahms language. Activities defined are executed by workframes. 

Workframes: In this element the activity rules, called “workframes”, are defined. Workframes describe the 
constraints of executing activities. Workframes are situation-action rules (see chapter 4.4.2). 

Thoughtframes: In this element the agent’s inference rules, called “thoughtframes”, are defined. 
Thoughtframes are inherently different from workframes, as they do not execute any activities and thus do 
not take any time during execution (see chapter 4.4.4). 

For the syntax for agents see section 3 of appendix A.  

For the syntax for groups see section 4 of appendix A. 

4.2 OBJECTS AND CLASSES 

Objects and classes are another important set of concepts in the Brahms language. Objects and classes 
can have similar behavior as agents and groups, except that objects should represent (non-) behavioral 
inanimate artifacts. 

4.2.1 Objects 

Brahms is different from other AOLs in that we make a definitial difference between animate—intentional—
objects (which we refer to as agents) and inanimate—unintentional—objects (which we refer to as objects). 
In all other agent-languages there is only one type of object, namely an intentional agent. Shoham, 
Wooldridge, Castelfranchi all define their agent-languages as having intentional agents (Shoham 1993) 
(Wooldridge 1992) (Castelfranchi 1995). Dennett states that an intentional agent is an agent that “harbors 
beliefs and desires and other mental states that exhibit intentionality or aboutness, and whose actions can 
be explained (or predicted) on the basis of content of these states” (Dennett 1991) (Dennett 1987). In 
Brahms, our agents are intentional. However we also want to be able to describe artifacts in the real world 
as action-oriented systems, but unintentional at the same time. We describe such an artifact as an object. 
An example of an object in Brahms is a fax machine. If we want to describe the behavior of a fax machine, 
we could argue that we could describe a fax machine as an intentional agent. However, in the real world we 
would never ascribe intention to the actions of a fax machine. A fax machine mainly reacts to facts in the 
world; such as a person pushing the start button on the fax machine that makes the fax machine start faxing 
the document. Since in Brahms we are interested in describing the world with its animate and inanimate 
objects, we want the capability to make a difference between an intentional object (an agent), like a human, 
and an unintentional object (an object) like a fax machine. 

An obvious question is whether it is useful to attribute beliefs and rationality, et cetera to inanimate objects. 
McCarthy, among others, has argued that there are occasions when the intentional stance is appropriate 
(McCarthy 1978): 

To ascribe beliefs, free will, intentions, consciousness, abilities, or wants to a machine is legitimate 
when such an ascription expresses the same information about the machine that it expresses about a 
person. It is useful when the ascription helps us understand the structure of the machine, its past or 
future behavior, or how to repair or improve it. It is perhaps never logically required even for humans, 
but expressing reasonably briefly what is actually known about the state of the machine in a particular 
situation may require mental qualities or qualities isomorphic to them. Theories of belief, knowledge 
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and wanting can be constructed for machines in a simpler setting than for humans, and later applied 
to humans. Ascription of mental qualities is most straightforward for machines of known structure such 
as thermostats and computer operating systems, but is most useful when applied to entities whose 
structure is incompletely known.  

When this is the case, we might decide to represent a machine as an agent. For example, when we want to 
model human-robot collaboration, it might be useful to represent both the human and the robot as an agent. 

An object, in Brahms, is a construct that generally represents an artifact. The key properties of objects are 
facts, workframes, and activities, which together represent the state and causal behaviors of objects. Some 
objects may have internal states, such as information in a computer, that are modeled as beliefs22. Other 
artifact states––such as the fact that a phone is off hook––are facts about the world.  

4.2.2 Classes 

Classes in Brahms represent an abstraction of one or more object instances. The concept of a class in 
Brahms is similar to the concept of a template or class in object-oriented programming (Rumbaugh et al. 
1998). It defines the activities and workframes, initial-facts and initial-beliefs for instances of that class 
(objects). Brahms allows for multiple inheritance for objects. Classes are used to define inanimate artifacts, 
such as phones, faxes, computer systems, pieces of paper, et cetera. 

4.2.3 Elements of objects and classes 

A Brahms object has all of the elements that an agent has, plus two additional elements; conceptual object 
membership and resource. Furthermore, instead of having a group membership relation with groups, an 
object can have class-inheritance relationships with classes. 

A Brahms object has the following extra elements: 

Class-inheritance: An object can be an instance of one or more classes. In case constructs with the same 
name are encountered in the inheritance path, always the most specific construct will be used. For example, 
an activity defined for the object has precedence over a workframe with the same name defined in one of 
the classes of which the object is an instance. 

Conceptual-object membership: An object can be part of one or more conceptual objects by defining the 
conceptual-object-membership for the object. This allows for later grouping of statistical results and 
workflow. 

Resource: The resource attribute defines whether or not the object is considered to be a resource when 
used in an activity (resource attribute is set to true), or whether the object is considered something that “is 
worked on” (resource attribute is set to false). The resource attribute is used in relation with the touched-
objects definition for activities (see chapter 4.4.7.1 about primitive activities). 

For the syntax for classes see section 5 of appendix A. 

For the syntax for objects see section 6 of appendix A. 

4.3 BELIEFS AND FACTS 

One of the attributes of strong agency is bounded rationality. Bounded rationality states that an agent acts 
according to their bounded cognitive ability. In Brahms an agent acts according to its beliefs and its ability to 
deduce new beliefs from its current beliefs. 

                                                      
22 Brahms represents information stored in an object as beliefs. I am fully aware of this seemingly awkward naming, however the reason 
for this is to keep a minimal language specification. 
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In this section we describe the intentional notions of Brahms agents, and how intentional notions fit into a 
logical framework that has been researched by many (Konolige 1982) (Konolige 1986) (Genesereth and 
Nilsson 1987) (Hintikka 1962). We then describe how in Brahms agent and object intentions are described. 

The state of the world and that of agents in Brahms is stored in informational units called “facts” and 
“beliefs”. A fact is meant to represent some physical state of the world or an attribute of some object or 
agent. Facts are global: with the appropriate workframe any agent can detect a fact (see chapter 4.4.9). 
Objects, on the other hand, only react to facts. 

A belief is knowing about some fact by a particular object, typically an agent. Beliefs are always local to an 
agent or object; that is, only the agent or object itself can examine or search (i.e. reason with) its own 
beliefs, and no other agent or object can do so. The current value of a belief held by an agent may differ 
from the value of the corresponding fact. Beliefs can be declared as initial beliefs at the class, object, group, 
or agent level. An agent can also create beliefs while performing an activity or an inference in a Brahms 
simulation, A belief can be thought of as an object-attribute-value triplet. 

The modeler can add initial facts at the class, object, group, or agent level, or created by the agent or object 
during simulation. Facts have the same components as beliefs. 

The representation of beliefs and reasoning implements a conventional first-order predicate logic on beliefs. 
The modeler has available the full range of representation of, and reasoning on beliefs, conventionally found 
in rule-based systems such as EMYCIN (Van Melle 1979). However, because the logic is first-order, agents 
are not modeled as having second-order beliefs (beliefs about other agents’ beliefs). 

4.3.1 Intentional systems 

The philosopher Daniel Dennett has defined the term intentional systems as entities whose behavior can be 
predicted by the method of attributing belief, desires, and rational acumen (Dennett 1987, p.49). Dennett 
described multiple “grades” of intentional systems; first-, second-, third-, fourth-order, et cetera (Dennett 
1987, p.243). 

A first-order intentional system has beliefs and desires (etc.) but no beliefs and desires about beliefs 
and desires. 

(1) x believes that p 

A second-order intentional system […] has beliefs and desires […] about beliefs and desires […] both 
those of others and its own. For instance 

(2) x believes y expects x to jump left 

A third-order intentional system is one that is capable of such states as 

(3) x wants y to believe that x believes he is alone 

Dennett asks his reader how high human beings can go. “In principle, forever, no doubt […].” The question 
is: How high do our Brahms agents need to go in order to allow for realistic human behavior being simulated 
by our agents? It is clear that our agents need to be at least first-order intentional systems; since, if we want 
our agents to act independent from other agents they need to be able to act on their own beliefs about 
states of the world. Now then, do our agents need to be higher-order intentional systems? In exploring these 
multi-order phenomena, Cargile explains that humans can keep track of about five or six orders (Cargile 
1970). 

To be able to model social knowledge of humans we believe that our agents need to be at least second-
order intentional systems. Brahms agents should be able to act on their beliefs about their beliefs, and also 
be able to act on beliefs about beliefs of other agents. Second-order beliefs allow us to model, for instance, 
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that a worker does a certain activity, because (s)he knows that another worker, whom is supposed to do the 
activity, beliefs that the activity is not necessary for the situation at hand. This allows for a level of 
intentionality that is very common in human behavior. The ability to reason with second-order beliefs would 
allow us to model agents such as tutoring agents. Tutoring agents need the ability to create a model of the 
agent it is tutoring. Such a model would include many beliefs about the beliefs the agent being tutored has. 

Although it is necessary to be able to model second-order beliefs for intentional agents, up to this point we 
have found no real need to model second-order beliefs in our models of work practice. Using first-order 
predicates, we are able to create a second-order type of beliefs about others. For example, if Jerry has a 
belief that Joe believes that John is not trustworthy, we can represent this with the first-order predicate 
Believes-Is-Not-Trustworthy. The belief that Jerry has could then be specified with the first-order belief 
Believes-Is-Not-Trustworthy(Joe, John). 

4.3.2 Logical framework for intentional notion 

Let’s suppose we want to use first-order logic to represent the following belief: 

(1) Mary believes Jupiter is the president of Immortals 

If we would try to translate this into a well-formed formula (WFF) in first-order logic we might get something 
like: 

(2) Believe(Mary, President(Jupiter, Immortals)) 

This, unfortunately, is not a correct WFF. First, the second argument of the predicate Believe is another 
formula, and is therefore not a term as is syntactically needed. Secondly, there exists the problem of, what 
logicians call, referential opaqueness. The standard substitution rules of first-order logic do not hold this 
problem. For instance, in (2) the term Jupiter could be substituted for Zeus, since they both denote the same 
deity: 

(3) (Jupiter = Zeus) 

Following the standard rules of first-order logic, and (2) and (3) we could derive (4): 

(4) Believe(Mary, President(Zeus, Immortals)) 

However, intuitively we know that believing (2) and (4) is not the same, since it might be that Mary does not 
know (3). In short, substituting equivalents into an opaque context does not preserve the same meaning.  

The second problem with first-order logic is that it is truth functional. This means that the truth-value of a 
proposition is solely dependent on the values of its sub-expressions; for instance, the value of the 
proposition p ∨ q is solely dependent on the truth-value of p and q. It is thus said that the operators of 
classical logic are truth functional. However, intentional operators, such as Believe are not truth functional. 
To understand this, think of the fact that a person might believe a proposition that is not true. For instance, 
John might believe the following proposition: 

(5) President(Bill Clinton, Immortals) 

John his belief is thus not dependent on the truth-value of this sentence, since this sentence is obviously 
false. Because of these two fundamental logical problems, classical first-order logic is not enough to 
represent intentional notions, and we have to define another formalism. The best-known syntactic formalism 
that might be used is a modal language that contains non-truth functional modal operators. 

However, a third problem needs to be addressed. This problem is a well-known semantic one, and is 
referred to as the logical omniscience problem. Logical omniscience implies that an agent is a perfect 
reasoner. This means that, an agent that reasons corresponding a logical theory, will deduce all beliefs that 
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can be logically deduced from its rules (this is referred to as closed under logical consequence). This is the 
problem with using Hintikka’s possible worlds model for the logic of knowledge and belief (Hintikka 1962). 

The most common approach for solving these three problems, and an alternative to the possible worlds 
model, is to use an interpreted symbolic structure approach. This approach, proposed by Konolige, is called 
Konolige’s deduction model of belief (Konolige 1986). Konolige his approach is based on modeling 
resource-bounded believers. This fits with our need to model bounded rationality, and addresses the logical 
omniscience problem. In the deduction model of belief, an agent’s beliefs are represented as logical 
propositions in a data structure associated with the agent. An agent then believes φ if φ is present in its belief 
data structure. Using an inference mechanism an agent will use the inference rules whenever possible to 
obtain deductive closure of its base beliefs. In other words; an agent has a set of beliefs represented as 
logical propositions within its database. Using an inference mechanism, it will always deduce new beliefs 
based on production rules that have been defined in the agent’s knowledge base23. We have used this 
approach in Brahms. 

4.3.3 Beliefs 

Agents and objects in Brahms have beliefs represented as first-order propositions. For instance, suppose 
agent A1 beliefs that he is writing his dissertation, and that it will be finished on time. A1 would then have the 
belief set: 

{ BEL(Is-Writing (A1, Dissertation)), BEL(Will-Finish-On-Time(A1, Dissertation)) } 

An agent will always start out with an initial-belief set that is defined at the agent’s local-level, and the groups 
of which the agent is a member. Initial-beliefs are assigned in the initialization phase of a simulation. These 
initial-beliefs define the initial state for the agent. An agent without an initial state could be seen as initially 
“dumb”, or an agent that has not experienced anything yet. As the simulation time moves forward agents will 
infer, detect and receive new beliefs, either based on their actions in the world or deducing new beliefs, 
using an inference rule. 

To conclude, this model of human beliefs is arguably too simplistic to represent all intricacies of human 
beliefs. However, it should be noted that it is adequate for representing an agent’s beliefs for the purpose of 
AI systems, and I assume therefore that it is also adequate for modeling work practice. 

For the syntax of beliefs, see section 11 in appendix A. 

4.3.4 Facts 

Facts, in Brahms, are factual states of the world. They represent, what we call, a “birds-eye view” of the 
world. Facts are global to the world, meaning that they can be “seen” by every agent and object in the world. 

Konolige (Konolige 1982) defines the knowledge of an agent. This definition goes as follows: 

(6) ∀a,f KNOW(a, f)  ≡  BEL(a, f) ∧ TRUE(f), where a is an agent and f is a wff. 

This means that knowledge of an agent is a belief that actually holds in the world. In Brahms we do not 
distinguish between beliefs and knowledge of an agent. By definition all beliefs an agent has constitutes its 
knowledge. However, different from Konolige’s first-order formalization of knowledge, in Brahms we want to 
be able to represent facts that actually hold in the world, but are not believed by an agent, and vice versa. 
This means that we can represent the facts in the world separate from the knowledge of agents. For 
instance, although the fact is that the color of my car is red, I believe that the color of my car is green, 
because I might be colorblind. In representing the context of the agent as facts in the world, we are able to 
have multiple agents react on the same facts in different ways, dependent on their beliefs about these facts. 

                                                      
23 The point should be made that the agent only applies rules when they are available to be applied, i.e. when they are a) in the activity 
scope, and b) their preconditions match the agent’s beliefs. Only then the agent deduces the new beliefs. This is a function of the 
subsumption-like architecture in agent’s activity-trees. This architecture is discussed in more detail in 4.4.7.2. 
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Konolige defines a common fact, CF, as a fact that is known by all agents. This is different from facts in 
Brahms. In Brahms, it is not necessary that any agent has any knowledge about a fact. Specifically, facts 
are independent from the knowledge of agents (see Figure 4-1). 

World Facts
Beliefs of Agt A

Beliefs of Agt B

Beliefs of Agt C

Beliefs of Agt D

 

Figure 4-1. Beliefs and facts Venn diagram 

For the syntax for facts, see section 12 of appendix A. 

4.4 ACTIVITIES AND WORKFRAMES 

The notion of activities is not strictly new. Shoham proposes that action is an intuitive concept, and has 
importance in common sense reasoning (Shoham 1989). For example, given the initial state in which the 
light is off, the action of “flipping the switch” creates a new state in which the light is on. This notion of action 
defines a timing-relation between two states of the world. This same notion captures our intuition that agents 
make choices about their actions, and intuitively we know that there is a connection between action and 
choice making. 

Another property of action has to do with the level of knowledge the observer has about the observed 
action. This is closely related to Dennett’s argument that “free-will is in the mind of the beholder” (Dennett 
1984). We do not ascribe free will to an agent if we can always predict the behavior of that agent. Shoham 
suggests that the same can be said for action. If we have detail knowledge, as an observer, about the 
actions taken by an agent, we might describe this observation as a fixed function performed by an agentless 
process. Shoham gives the example of our reasoning about a light switch and a dog (Shoham 1989). We 
understand the workings of a light switch completely, and would view it as described by a fixed transitional 
function, and not as an agent who receives our request and decides to act upon it by transferring current, et 
cetera. On the other hand, if we consider a dog, we are much more ignorant about its behavior. The dog’s 
behavior is too complex to view it as a transitional function, and some would ascertain that the dog does not 
have such a function, but has free will. In these situations, we make very much use of the abstract notion of 
action. In the case of modeling human beings and their work activities, it is clear that we are dealing with the 
latter situation. Human action-behavior over time is too complex to describe as a transitional function, and 
we are left to describe it in terms of decision-based actions. 

4.4.1 Activities versus tasks 

The issue discussed in this section is the difference between task and activity. Most of us who come out of 
the field of knowledge engineering (KE) and AI have been taught to describe the reasoning-behavior of 
humans in terms of goal-satisfaction and tasks (Newell 1990) (Schreiber et al. 1993). To understand the 
difference we start with two definitions: 

1. A task is an abstraction of a reasoning process that accomplishes a predefined goal 
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This means that describing the reasoning behavior in terms of goals, sub-goals, and branch decision-points 
of the rational agent, describes an agent performing a task. In that case we are not concerned with time, just 
with the causal relationships that exist between the goals and the decision points. 

2. An activity is an abstraction of real-life actions that help accomplish a task. 

A model of an agent’s activities describes what the agent actually does over time (i.e. its behavior) based on 
decision-points that are described based on the causal relationship between the decision to perform an 
action and the past and present state of its beliefs. 

The premise in DAI is that activities24 themselves do not consume any time. That is, activities are 
instantaneous. In describing people’s real-life activities this presents a problem, since from our experiences 
we know that each activity in the real world takes time, no matter how short. A person is always within an 
activity. One cannot be not within an activity. The main difference between the two concepts of task and 
activity is the notion of time. Activities are associated with intervals on a time line. Activities by definition take 
time, because they represent a person’s action in the real world. In the real world, we cannot ignore time, 
and thus, if we want to describe what people actually do we need a temporal logic that allows us to model 
this. 

Wooldridge describes activities as being of only two instantaneous types, communicative and cognitive, that 
do not take time, although they are related in a temporal fashion on a time line (Wooldridge 1992). In 
Brahms we change this view of an instantaneous activity, and we represent activities to take time.  

The following key points can be made about activities: 

1. Reasoning is seen as an activity taking time, and not just an inference or deduction. Thus logical 
inferences happen within an activity.  

2. Activities might not involve tasks. For example, answering the phone is an activity that might not be 
part of any specific task that is being accomplished. In fact, it might be an activity that is interrupting 
the task being worked on.  

3. Modeling behavior involves more than logical inferencing, namely the representation of 
chronological activities that agents do. 

Activities are constrained on their activation by preconditions that are associated with the workframe it is part 
of. For example, activities may have preferential start times, as expressed in the preconditions, which may 
refer to the time in hours, minutes, seconds, day of the year, and/or day of the week. Brahms recognizes a 
variety of temporal constraints, such as always after a particular time, always before leaving, and usually in 
the morning. Thus, an activity may be interrupted by a scheduled activity, such as going to lunch at noon. 
Time may change the priorities of behaviors and different people might do the same activities at different 
times. 

4.4.2 Workframes 

An agent cannot always apply all its available activities, given the agent’s cognitive state and the location or 
place it is in. Each activity is therefore associated with a conditional statement or constraint, representing a 
condition/activity pair, most of the time referred to as a rule (Wooldridge 1992) (Shoham 1993) (Konolige 
1982). If the conditions of a rule are believed, then the associated activities are performed. In Brahms, such 
rules are called workframes. Workframes are situated-action rules. Worframes are derived from rules in 
expert systems, but they are different in that they execute activities, and thus take time (see Figure 4-2). 

A workframe defines an activity (or activities) that an agent or object may perform. Worframes have 
conditions, called preconditions, that constrain when to carry out the activity. A workframe precondition tests 
a belief held by the agent executing the workframe (see chapter 4.4.5). A workframe can also contain a 
detectable. Detectables describe circumstances (in the form of fact-conditions about the world) an agent 
                                                      
24 In the DAI literature an activity is called an action. I prefer the word activity, but it can be used interchangeably. 
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might observe while executing the workframe. Detectables could, for instance, create an impasse to 
completing the activity (see chapter 4.4.9).  

Figure 4-2. Taxonomy for groups, agents, beliefs, activities, and workframes 

Having two or more agents with different workframes, performing the same activity, can represent individual 
differences. Individual differences can be modeled by giving different agents the same workframes but 
different beliefs about the world. 

A workframe is a larger unit than the simple precondition-activity-consequence design might suggest, 
because a workframe may model relationships involving location, object resources such as tools and 
documents, required information, other agents the agent is working with, and the state of previous or 
ongoing work. Active workframes may establish a context of activities for the agent and thereby model the 
agent’s intentions, e.g., calling person X to give or get information, or going to the fax machine to look for 
document Y. In this way, behavior may be modeled as continuous across time, and not merely reactive. 

Workframes can also be associated with objects. In this case workframes satisfy their preconditions with 
facts rather than with beliefs. Workframes for objects are inherited from object classes as workframes for 
agents are inherited from groups. 

For the syntax for workframes, see section 13 of appendix A. 

4.4.3 Consequences 

Consequences are statements that are inside a workframe's body. They can be situated before or after 
activities. Consequences are facts or beliefs, or both, that may be asserted when a workframe is executed. 
They exist so a modeler may model the results of the activities in a workframe. A consequence is formally 
like a condition and defines the fact or belief that will be created or changed, when executed. The property 
fact-certainty is the probability that the fact will be changed or created; the default value is 100%. The 
property belief-certainty is the probability (with also a default value of 100%) that the belief will be changed 
or created, conditional on the fact being true. That is, if the fact-certainty and the belief-certainty are each 
50%, then 1 in 2 times the fact will be created and 1 in 4 times the belief will be created. If the fact-certainty 
is zero, then no fact will be created but the belief-certainty determines how often a belief is created.  

For the syntax for consequences, see section 22 of appendix A. 

4.4.4 Thoughtframes 

Thoughtframes define deductions, mostly referred to as production rules. Thoughtframes are similar to 
workframes, but are taken to be inferences an agent (or object) makes without doing any activities. 
Thoughtframes have the same type of preconditions and consequences as workframes. Thoughtframes 
have no activities, consume no time, and cannot be interrupted. Once the preconditions of a thought frame 
match the beliefs of the agent or object, its consequences are immediately executed, similar to forward-
chaining rules (Charniak and McDermott 1986). An important point is that the preconditions in 
thoughtframes for objects always only match with the beliefs of the object. Another important point is that the 

GROUPS are composed of  
 AGENTS having 
  BELIEFS and doing 
  ACTIVITIES executed by 
   WORKFRAMES defined by 
    PRECONDITIONS, matching agent’s beliefs 
    PRIMITIVE ACTIVITIES 
    COMPOSITE ACTIVITIES, decomposing the activity 
    DETECTABLES, including INTERUPT, IMPASSES 
    CONSEQUENCES, creating new beliefs and/or facts 



 

81 

consequences in a thoughtframe can only create new beliefs for the agent or object, and cannot create new 
facts in the world. 

For the syntax for thoughtframes, see section 14 of appendix A. 

4.4.5 Preconditions 

A precondition is a conditional statement that guards a frame (i.e. workframe or thoughtframe). All 
preconditions must evaluate to true before the frame will become available to be performed by an agent or 
object. Preconditions of workframes in objects are satisfied when facts match, whether or not the object has 
beliefs about those facts. In other words, objects do not react based on their beliefs, but on the facts in the 
world. 

Brahms has three truth-values for beliefs and facts: true, false, and unknown. If a particular fact-value or 
belief-value is not present, then it is said to be unknown rather than being false. This allows agents to have 
preconditions of the form “If I do not know the due-date of order-3 then . . .”. In the deduction model of belief, 
Konolige describes beliefs as having the following meaning; Suppose di is the deduction structure of agent i, 
then belief is given the following meaning (Konolige 1986): 

(7) φ ∈ close(di)  ⇔  i believes φ 

In Brahms this is represented as: known-value(φ) or known(φ) 

(8) φ ∉ close(di)  ⇔  i does not believe φ 

In Brahms this is represented as: not(φ) 

(9) ¬φ ∈ close(di)  ⇔  i believes ¬φ 

In Brahms this is represented as: knownvalue(φ is false) 

(10) ¬φ ∉ close(di)  ⇔  i does not believe ¬φ  

In Brahms this is represented as: not(φ is false) 

It should be noted that it might be possible that an agent’s belief system satisfies both the conditions (8) and 
(10). In other words the belief set of agent A1 may satisfy the following conditions at some point: 

(11) φ ∉ close(di)  ∧  ¬φ ∉ close(di)  ⇔  i does not believe φ and i does not believe ¬φ 

As Konolige proposes, this is equivalent to having no opinion about belief φ. 

In Brahms this is represented as: unknown(φ), which is equivalent to not(φ)  ∧  not(φ is false)  

In Brahms, we can model conditions (7) through (11) with one of three modifiers: known, known-value, or 
unknown as preconditions. The semantic meaning of the modifiers is described in section 21 of appendix A. 

For the syntax for preconditions, see also section 21 of appendix A. 

4.4.6 Variables 

Variables in a frame make the frame a template for activities (workframe) or reasoning (thoughtframe) that 
agents and objects may perform. Variables may have quantifiers, as will be described below. The scope of 
a variable is bound to the frame it is declared in. Variables are inherited from the workframe in which they 
are declared, by any composite activities and workframes within. 
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Brahms supports three quantifiers for variables: foreach, forone, and collectall. Variables can be used in 
preconditions, consequences, detectables, and as parameters for activities. The quantifier affects the way a 
variable is bound to a specific instance of the defined type (group or class) of the variable. 

4.4.6.1 For-each 

A for-each variable is bound to only one instance, but for each instance that can be bound to the variable, a 
separate workframe instantiation is created. Consider, for example, a precondition and workframe 
indicating:  

workframe Do-Work { 
variables: 

foreach(Order) order; 
when (knownval(order is-assigned-to Allen))  
do { 

work-on(order); 
} 

} 
 

If three Orders are assigned to agent Allen and agent Allen has beliefs for all three of the orders matching 
the precondition, Brahms creates three workframe instantiations (wfi’s) for agent Allen, and in each wfi the 
for-each variable is bound to one of the three orders. This means that Allen works on all three the orders, 
one order at a time. The order in which Allen works on the three orders is underfined. 

4.4.6.2 Collect-all 

A collect-all variable can be bound to more then one instance. The variable is bound to all matching belief-
instances, and only one wfi is created. Consider the previous example with a different variable declaration: 

variables: 
collectall(Order) order; 
 

In this situation the simulation engine creates one wfi and binds the collectall variable to a list of all three 
orders. This means that Allen works on all three orders at the same time, cutting the actual activity duration 
in three. 

4.4.6.3 For-one 

A for-one variable can be bound to only one belief-instance, and only one wfi is created. A for-one variable 
binds to the first belief-instance found and ignores other possible matches. As far as the modeler is 
concerned, the selection is random, meaning in the case of multiple matches it is undefined which order is 
selected. In the previous example workframe, the variable declaration would look like: 

variables: 
forone(Order) order; 
 

In this situation, one wfi gets created, and only one of the three orders gets bound. This means that Allen 
randomly works on just one of the orders, making the activity for one order take the same time as for all 
three orders together. 

4.4.6.4 Unassigned variables 

A variable may be declared as assigned or unassigned. An unassigned variable is unbound (that is, it does 
not get a value) when a frame instantiation is created; an unassigned variable gets a value through a 
communicated belief or object creation activity, which binds the variable to a newly created object. 

For the syntax for variables see section 28 of appendix A. 
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4.4.7 Primitive and composite activities 

The activities in a workframe are one or more primitive activities, one or more composite activities or both. A 
composite activity includes one or more workframes, any of which may trigger other composite activities, 
each with its own workframes (Figure 4-3). Other than a few predefined atomic activities that have 
semantics, activities are differentiated solely by the modeler’s description and use of them (see sections 
4.4.7.1 and 4.4.7.2 on primitive activities and composite activities). 

4.4.7.1 Primitive activities 

Primitive activities take time, which may be specified by the modeler as a definite quantity or a random 
quantity within a range. However, because workframes can be interrupted and never resumed, when an 
activity will finish cannot be predicted from its start time. Primitive activities are atomic behaviors that are not 
decomposed (see Figure 4-3). Whether something is modeled as a primitive activity is a decision made by 
the modeler. A primitive activity also has a priority that is used for determining the priority of workframes. 

For the syntax for primitive activities see section 16 of appendix A. 
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Activity A1.1
(primitive)
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(composite)
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(primitive)
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(composite)

...... Activity A1.2.n.1
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Workframe W1.2.1.1.1

Activity A1.2.1.1.1.1
(primitive)

Current Activity

Current Activity

Current Activity

Current WorkframeInstantiation

 

Figure 4-3. Workframe-Activity hierarchy 

4.4.7.2 Composite activities 

A composite activity expresses an activity that may require several workframes to be accomplished. Since 
activities are called within the do-part of a workframe, each is performed at a certain time within the 
workframe. The body of a workframe has a top-down, left-to-right execution sequence. Preference or 
relative priority of workframes can be modeled by grouping them into ordered composite activities. The 
workframes within a composite activity, however, can be performed in any order, depending on when their 
preconditions are satisfied. In this way, workframes can explicitly control executions of composite activities 
and, execution of workframes depends not on their order, but on the satisfiability of their preconditions and 
the priorities of their activities (see Figure 4-3). 
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A composite activity can terminate in the following four ways. First, a composite activity terminates 
whenever the workframe in which it is executed terminates, due to a workframe detectable of type complete 
or abort. Second, a composite activity terminates whenever a detectable of type complete or abort is 
detected within the composite activity. Third, a composite activity terminates immediately whenever an end 
condition declared within the composite activity is activated. And fourth, a composite activity terminates 
when the modeler has defined it to be ended “when there is no more work available” and no more 
workframes in the composite activity are available or being worked on. During the execution of a composite 
activity, the engine continuously checks whether the agent has received a belief that matches any end-
conditions.  

For the syntax for composite activities, see section 15 of appendix A. 

4.4.8 Built-in primitive activities with semantics 

As mentioned before, primitive activities are atomic actions, and a small number of primitive activities are 
defined to have built-in semantics that is implemented in the Brahms engine. These predefined primitive 
activities exist to communicate beliefs, create runtime objects, and travel to a location. 

4.4.8.1 Create-object activity 

Primitive create-object activities allow the modeler to create new objects at runtime or to make copies of 
existing objects dynamically. The modeler can specify when the actual creation or copying takes place 
during the performance of the activity, by setting the when-value to either start or end. Create-object 
activities can be used, for example, to model a fax machine creating a new instance of a fax, or a customer 
creating an order. In addition, in a create-object activity, an object can automatically be connected to a 
conceptual object or placed at a location. 

For the syntax for create-object activities, see section 17 of appendix A. 

4.4.8.2 Move activity 

Primitive move activities trigger an agent or object to move to a location, if not yet located there. For this 
activity type the modeler defines the goal-location, such as the name of an area in the geography model, or 
a variable referring to the name of an area (see chapter 4.5).  

In moving, an agent or object may act as a container for another agent or object that is carried along. For 
example, a car-object may carry an agent, and then move to a new location. To effect this, the modeler links 
the carrier and the carried with the built-in contains relation, before the move activity is executed. This is 
done with a consequence that asserts the relation, and then negates the relation with another consequence 
when the trip is completed, and the carrier “drops” the carried object or agent in the new location. 

When a primitive move activity is executed, and the goal-location is different from the agent’s or object’s 
current location, the agent or object will start moving to the goal location. The simulation engine finds a path 
between the locations and gets or computes the distance. It is possible, however, to define the duration of 
the activity and thus avoid the need to define a geography model with travel paths. The engine calculates 
the duration of the trip and uses it to set the duration of the primitive move activity. When the agent or object 
reaches the new location, a new fact in the world and belief for the agent are created stating that it is there. 
The agents currently at the new location detect the agent or object and will therefore also get a belief about 
its location. A newly arrived agent will also detect the other agents and objects in the new location. The 
agent or object then continues with the workframe. 

Brahms can handle interruptions that cause the location of an agent to change. Work that has to be done at 
a specific location may be interrupted and the agent may then move to another location to do work of a 
higher priority. When the higher-priority work is completed, before the agent resumes the interrupted work, 
the agent returns to the location where the agent has to do the work. 

For the syntax for move activities, see section 18 of appendix A. 
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4.4.8.3 Communication activity 

The predefined primitive communication activity transfers beliefs to/from agents or objects. An agent can 
give (send) and request (receive) beliefs. One can think of the agent-to-agent and agent-from-agent 
communication primitives as modeling a simple conversation. Agent A can ask agent B to tell him anything 
B knows about subjects X (From B), and likewise, can tell agent B anything that A knows about subjects Y 
(To B). In either case, beliefs must be specified in so-called transfer-definitions. In the first case, it specifies 
what beliefs will be transferred from the “From” agent or object. In the second case, it transfers the beliefs to 
the “To” agent or object. Only the agent or object's beliefs that match the specified beliefs in the transfer-
definition are transferred. 

A belief specified in a communication activity is deemed to match another belief under the same conditions 
that a workframe known-type precondition is deemed to match a belief. The specified beliefs are transmitted 
only if they are actually held by the agent or object. In other words, an agent or object has to have the belief 
before it can communicate (i.e. tell) the belief to another agent or object. The transmitted beliefs overwrite 
any beliefs the recipient might have about the same object-attribute or object-relation.  

Beliefs transferred to or from an object, model information stored in or on the object. For example, a 
modeler can use a communication activity to model the reading of information from, or the writing of 
information to, for example, a fax, paper, bulletin-board, or a computer system. If transmitted beliefs contain 
variables that remain unbound in the recipient-initiator’s workframe, then those variables are bound from 
matching beliefs supplied by the sender-responder. 

For the syntax for communication activities, see section 19 of appendix A. 

4.4.8.4 Broadcast activity 

Primitive broadcast activities work like communication activities. Here, however, the acting agent is 
broadcasting the matching beliefs to all other agents in the same location as the acting agent. One can think 
of the broadcast activity as modeling an agent shouting information to other agents in the same location. 

When an agent broadcasts, the agent transmits beliefs to all other agents in the same geographical area 
(location) if the agent has a location, or to all other agents if the agent has no location. If an object 
broadcasts, the object most likely transmits a belief about itself (e.g., a phone ringing), which will be received 
by the agents in the same location if the object has a location, or by all agents if the object does not have a 
location. 

For the syntax for broadcast activities, see section 20 of appendix A. 

4.4.9 Detectables 

A detectable is a mechanism by which, whenever a particular fact occurs in the world, an agent or object 
may notice it. The noticing of the fact may cause the agent or object to stop or to finish the workframe. A 
detectable is defined in a workframe (a continue-, abort-, complete-, or impasse detectable), or in a 
composite activity (an end-activity detectable) 

Two things occur in a detectable. First, the agent or object detects the fact and the fact becomes a belief of 
the agent or object. Second, only in the case of an agent, the beliefs of the agent are matched with the 
condition used in the detectable, and if there is a match the then-part of the detectable is executed, which 
may abort or interrupt the workframe. For objects, there is only the second step, in which facts in the world 
are matched with the detectable condition. If there is a match the then-part is executed. For agents, step 
one and two are independent: Whether or not the fact is present in the world, the condition in the second 
step is tested against the belief of the agent. For example, if “the color of the telephone-1 is blue” is a fact, 
and a workframe contains the following detectable condition, “the color of the telephone-1 is red”, in the first 
step an agent will obtain the belief “the color of telephone-1 is blue”. In the second step, “red” would be 
compared with “blue” and the condition will fail, so the then-part of the detectable would not be executed. 
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The action or then-part of a detectable defines the detectable type and is one of five keywords: continue, 
abort, complete, impasse, and end-activity. Continue is the default: the agent or object detects conditions, 
but the workframe proceeds unaffected. With abort, a condition causes the agent or object to stop executing 
the workframe. With complete, a condition allows the agent or object to only perform the remaining 
consequences of the workframe, without doing the rest of the workframe’s activities. With impasse, the 
condition prevents the continuation of the workframe until the condition is removed. In this case, the 
workframe goes into the interrupted-with-impasse state (see chapter 4.6.2.2). End-activity is only meaningful 
when the detectable is in a composite activity: It causes the activity to be terminated immediately, based on 
matching the beliefs of the agent or object to the detectable condition. This allows an agent or object to 
abort working on composite-activities. 

It is worth emphasizing that the detectable mechanism is operative for all workframes on the execution path 
of the agent or object’s workframe-activity hierarchy (see Figure 4-3). For example, if there would be a 
detectable in workframe W1 in Figure 4-3, then this detectable is operative during the performance of any of 
the workframes and activities underneath it in the hierarchy. This even holds for detectables in workframes 
and activities that are in an interrupted or impasse state, so that a “detect whenever” detectable can detect a 
fact at any time. 

Detectables can also be used to model impasses. A common example of an impasse is the case of 
inaccurate or missing information. Workframes may be written to handle impasses. For example, if a 
supervisor wants to call a technician but does not know the technician’s telephone number, the current 
workframe can be impassed—with an impasse detectable—and another workframe may lead the 
supervisor to look up the number. 

With a detectable, an agent may notice passive observables, as when someone shouts, a fax machine 
beeps, or an agent is present vying for attention. Passive observables fall into two general classes: sounds 
and visual states. Objects that cause a sound––fax or phone––create the fact that represent the sound, 
which can then be detected. Sounds may persist over many simulation clock-ticks. Propagation into the 
surrounding space will recur as long as the object is making a sound. Propagation may be affected by 
geography. 

For the syntax for detectables see section 23 of appendix A. 

4.5 GEOGRAPHY 

We live in a three-dimensional geographical space. Social interaction, collaboration, and people’s activities 
are very much dependent on the geographical environment in which it takes place. According to Latané’s 
Theory of Social Impact, (Latané 1981), the distance between two individuals determines how much impact 
they exert on each other. Spatial relations provide a major constraint on work practice (Nowak and Latané 
1994). Work is done in a 3-dimensional space, and it is therefore that we need to include a representation of 
the spatial relations between agents and artifacts in the environment. 

In most DAI systems and agent theories spatial relation is left out. In the ACTS theory (Carley and Prietula 
1994a) there is no social axiom that states that an agent has a location in space, nor that actions are 
performed within a geographical environment. In DAI the focus is on coordination. DAI is concerned with 
optimizing communication and with task- and resource allocation among intelligent cooperative agents, and 
less concerned with the spatial relationships within the environment. Both Brooks and Clancey describe 
new models of intelligence based on the fact that agents are situated in the world (Brooks 1991) (Clancey 
1997a). 

In Brahms, we deal with the emergent behavior of agents in the real world. In Brahms models, agents and 
objects are situated in a description of the physical world. We therefore need to be able to represent this 
physical world independent of the reasoning capability of agents about space. In the next sections, I 
describe the Brahms language capabilities of representing a geographical space. The geography design is 



 

87 

described in more detail in (Steenvoorden 1995)25. The design of the geography model is much inspired by 
the computer game SimCity26.  

The current Brahms system includes only a partial implementation of this design, due to time constraints 
and resource limitations. However, I include a description of the design for completeness. As we continue to 
develop Brahms, we will run into modeling situations where a more complete implementation is needed. 

4.5.1 Geographical objects 

Geographical primitives allow the modeler to model locations in the physical world, as well as the 
relationships between locations. The scope of the geography is limited to an area. Connectivity between 
areas is established and displayed through connectivity relationships, rather than graphically. 

Graphically, an area has an area map-grid. Level-1 objects are those that can be placed in the area map-
grid. A level-2 object is one that can be placed on or in a level-1 object. A level-3 object is one that can be 
placed on or in a level-2 object, and so on. A level can be looked upon as a view in a geographical space. 
When a user zooms in on a level-3 object, the user sees the level-4 objects that are placed on or in the 
level-3 object. 

An area map is a 3-dimensional grid (X, Y, Z). The grid has a scaling factor, so distance and travel time can 
be indicated. Travel time depends on distance and means of transportation and may also be affected by the 
elevation angles of road, train tracks, and other paths. 

Geographical objects generally fall in one or more of the following groups: areas, transportation-related 
elements, general elements, and artifacts. An area is a super-class for buildings and pseudo-buildings. An 
area can have zero or more instances of “exit-entrance”. An exit-entrance leads to a path-part, such as part 
of a street, railroad track, or river. 

4.5.1.1 Level-1 objects 

For example, buildings are level-1 objects. They are composed of floors and do not have grids. By default a 
building has one floor. Buildings are placed alongside paths, such as roads, waterways, and train tracks. 
The exit or entrance of a building has a relation with one of the path-parts that are positioned alongside the 
building. A pseudo-building is a level-1 object, but does not have floors or rooms. These could be parks, 
parking lots, et cetera. 

4.5.1.2 Level-2 objects 

Floors in buildings are level-2 objects that are composed of rooms and have a 2-dimensional grid. A floor 
has a minimum of one default floor-room.  

4.5.1.3 Level-3 objects 

Rooms on floors are level-3 objects. A room has a 3-dimensional grid. To allow modeling a window that 
does not reach from the ceiling to the ground, or an artifact like a white board hanging on a wall, the Z-
coordinate of a room has a minimum value of 2. 

4.5.1.4 Level-4 and 5 objects 

An artifact inside a room is a level-4 or level-5 object that can be placed anywhere, subject to restrictions 
related to the nature of the artifact. If an artifact has a grid, another artifact can be placed on top of it. 

                                                      
25 Edgar Steenvoorden, Maarten Sierhuis, Ron van Hoof, Dave Torok and Bill Clancey designed the geography.  
26 SimCity is developed by Maxis. 
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4.5.1.5 Transportation 

Transportation-related elements can roughly be divided into the following categories: vehicles, 
transportation-related buildings, and transportation paths. A transportation path is a level-1 object that is a 
route or surface on which agents and objects can move. It has at least one connecting path-part and can be 
one of the following types: aerial route, waterway, rail, pedestrian path, road (for automotive vehicles), and 
don’t-care. A modeler not interested in simulating transportation can use don’t-care paths, which are direct 
connections. 

Transportation-related buildings can be used as a space or connection to move from one transportation 
path to another. A transportation-related building connects two or more path-parts not necessarily belonging 
to the same (kind of) path, without a direct physical connection. Transportation-related buildings include 
airports, train stations, subway stations, harbors, and tram or bus stops. 

Vehicles are level-2 objects. Vehicles are container artifacts that can contain agents and objects, but 
vehicles can have limited cargo capacity. Vehicles can be divided into the following groups: automotive, 
water, air, rail-based, and don’t-care vehicles.  

General geographical elements are level-1 objects that enable a modeler to create a geographical 
landscape that resembles an actual landscape. Such elements may include bodies of water, which can 
function as paths or as decorative obstacles; hills, which can influence the speed with which certain vehicles 
can travel; and obstacles such as trees and bushes.  

4.5.1.6 Movement 

Agents and objects can move through the entire geography. An agent or object has the functionality of a 
container artifact and can carry other objects. The number of artifacts an agent is able to carry depends on 
the artifacts’ weight and the nature of the artifacts. An agent can also be placed inside an artifact, such as a 
car. 

Whenever an agent or object enters a geographical location, such as a room, the simulation engine does 
the following: it generates a fact that the agent or object is in that location, it generates a belief for that 
specific agent that it is in that location, and it generates that same belief for all other agents in that location. 
The geography may be implemented to limit the generation of beliefs to other agents in the immediate 
environment of the specific agent. 

When an agent or artifact moves from one location to another location the simulation engine calculates the 
shortest route between the two locations. When in route, an agent can detect other agents and objects that 
it passes. In this way an agent can stop on his way to a location and talk to another agent if necessary. 

4.5.2 Implementation in Brahms 

The implementation of the geography design is limited in the current Brahms language and simulation 
engine, however it is such that the modeler can represent any type of geography model, from cities to 
rooms, and from spacecrafts to craters on the Moon. 

An areadefinition is used for defining area instances used for representing geographical information in a 
model. Area definitions are similar to classes in their use. Examples of area definitions are “Building”, and 
“City”.  

An area represents a geographical location and is used to create a geographical representation for use in 
the model. An example is the area ’NewYorkCity’. An area is an instance of an area definition. Areas can be 
decomposed into sub-areas. For example, a building can be decomposed into one or more floors. A floor 
can be decomposed into offices. The decomposition can be modeled using the part-of relationship. Using 
this relationship areas can be defines as level-1, 2, and 3 objects (as described in the previous sections). In 
other words, areas can be part-of other areas. 
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A path connects two areas and represents a route that can be taken by an agent or object to travel from one 
area to another. The modeler may specify distance as the time it takes to move from area1 to area2, over 
the path. The automatic generation of location facts and beliefs for agents and objects moving from one 
area to another is also implemented. However, moving agents and objects do not notice other agents or 
objects on their path, and cannot stop to communicate when moving. This limitation of the current 
implementation means that we cannot model agents communicating while moving. 

For the syntax for areadefinition see section 24 of appendix A. 

For the syntax for area see section 25 of appendix A. 

For the syntax for path see section 26 of appendix A. 

4.6 SIMULATION 

In this section I present the model of execution for a Brahms model. The model of execution defines how a 
Brahms model is executed, and thus describes a simulation of a model of work practice. As a multiagent 
system, a Brahms model consists of a number of agents and objects that operate independently, but 
interact with each other. Wooldridge (Wooldridge 1992) describes two possible execution models for 
multiagent systems, synchronous execution, and interleaved execution. In both cases the execution of a 
multiagent system is defined by a state σt of the system at time t, and a state σt+1 of the system at time t+1 
caused by a state-transition τt at time t. Keeping track of the state changes of the system over time the 
history of an executing system can be considered a sequence of state and state-transitions. 

4.6.1.1 Synchronous execution 

In a synchronous execution system each agent and object27 has an initial state defined as its initial belief 
set, closed under its workframes and thoughtframes. This amounts to an initial state of the system as a 
collection of initial belief sets for each agent. 

Agents are able to change their state by performing a move. A move is defined as a tuple of actions. A 
transition is a collection of moves, specifically, one for each agent. In other words, a move is a state-
transition for an individual agent, whereas a transition is the global state-transition for the whole system (i.e. 
all the agents and objects and facts). The operation of a synchronous execution system as defined by 
Wooldridge goes as follows (Wooldridge 1992, p.60): 

A system has a defined initial state (call it σ0). From this state, each agent picks a (legal) move, which 
combines with those of others to form a transition, τ1. As a result of this transition, an new state σ1 
results. The whole process then begins again, with agents choosing moves that form transition τ2, and 
so on. The result is a sequence of states. 

Next, there is the concept of a simulation run, and of the history of a simulation run—referred to simply as 
the history. The collection of the states and transitions that caused the state is called a world. A simulation 
run is now defined as a sequence of worlds. To capture the history the system needs to capture more than 
the changes of the belief sets of the agents. It also needs to capture the reason for the changes in the belief 
sets. This is accomplished by capturing all agent and object activities, as well as the changes in the belief 
sets.  

The operationalization of this within Brahms is as follows: Each agent has a set of beliefs that can be 
changed over time through consecutive moves. Every execution step (i.e. a simulation clock-tick) all the 
moves of all agents and objects create a transition in the total simulation model. Each moment of a 
transition is called a world, and also includes the state of all facts in the world. A simulation run is then a 
sequence of worlds that are created every clock-tick. Saving the creation of worlds over time, Brahms 
creates a simulation history. This history can be inspected after the simulation. 

                                                      
27 In the rest of this chapter, wherever I say “agent” you should read this as “agent and object”, unless otherwise specified. 
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4.6.1.2 Interleaved execution 

In a distributed multiagent system there is no global clock that synchronizes all the agents. This type of 
execution is used in what I call a real-time multiagent system. As Agha points out in (Agha 1986, p.9): 

The concept of a unique global clock is not meaningful in the context of a distributed system of self-
contained parallel agents. 

In real-time multiagent systems it is not possible to meaningfully have all agents' transition to their next state 
at the same clock time. The biggest difference between a synchronous and an interleaved execution model 
is that in the interleaved model only one agent may act in a transition at any one time. This brings with it an 
extra difficulty in synchronizing the messages being sent and received between agents. This introduces the 
necessity to keep track of all those messages that have not yet been received. This is done through a 
message queue. Thus, an interleaved execution model has an added complexity of controlling the 
synchronization between agents and their states. 

4.6.2 Multiagent simulation in Brahms 

In this section I define how the execution model of Brahms works. In Brahms we use the synchronous 
execution model. The reason for this is simply the fact that we simulating and not running in real-time. In our 
simulation model our agents and objects need to be synchronized according to a unique global clock28,29.  

A world is the situation-specific model (SSM) of the simulation, at a specific moment in the execution of the 
system (Clancey 1992). A state is defined as the belief-set of an individual agent, at a specific moment in 
the execution of the system. And, a situation-specific model for an agent is defined by all the existing global 
facts, and all the agent’s beliefs at the moment of inquiry, as well as the current-, available-, and interrupted 
workframe and thoughtframe instantiations, and the current activities. 

A state-transition occurs when an agent, performing a work- or thoughtframe, executes a consequence that 
creates a new belief or fact. A state-transition can also occur when an agent receives a new belief as a 
result of a) a communication, b) the detection of a fact, c) a move to a new location. During the state-
transition the simulation engine determines the effects of the transition on the agent’s internal state, which 
can result in more transitions. 

4.6.2.1 Frame execution 

An order of testing and execution must be imposed in any simulation tool on conditions and operations that 
in principle apply or occur simultaneously. The following paragraphs describe the order in which the parts of 
a workframe are evaluated and executed in Brahms. 

For each agent the preconditions are the first things checked in a frame (workframes and thoughtframes). 
They are checked in the order in which they are declared within the frame. When all of its preconditions 
match (i.e., are satisfied), a frame becomes available. When a frame becomes available frame instantiations 
are created for each set of variable bindings from the precondition matching. If a frame has multiple 
variables that can be bound, there will be a frame instantiation created for each valid combination of 
variable-bindings. Each frame instantiation is executed in sequence (i.e. one after another). There can only 

                                                      
28 The issue of a distributed event-driven architecture for agents and objects is an implementation issue. Although it has impact on the 
efficiency and applicability of an AOL, it is not of concern in this thesis, and will therefore not be discussed. It should be noted that the old 
G2 implementation of the Brahms simulation engine is not distributed and is clock-based. The new Java Brahms simulation engine 
implementation is a discrete event-driven system. This re-implementation resulted in at least a 100x speed increase for a simulation run. 
This is due to the speed of Java in relation to G2, but more importantly because of the move from a clock-based approach to a discrete-
event approach. 
29 The new Java engine also implements an interleaved execution mode. In this mode there is no central simulation clock, and each 
agent runs as fast as possible. This mode is used for implementing real-time agent systems with Brahms. However, this is not the topic of 
this thesis, and will therefore not be further discussed. 
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be one frame instantiation executed at a time (in one clock-tick). The order of the sequence is 
undetermined. 

After the preconditions match and a workframe30 is selected it will start to work (one frame instantiation for 
each set of valid variable-bindings). The working time will be specified in the workframe; or, if the workframe 
contains any composite activities, the working time will be the cumulative time of the executed composite 
activities. At any time during this working time, a variety of things may happen. Consequences may be 
asserted, facts may be detected, and communications may occur, depending on their ordering in the do-
part—the body—of the workframe. If the body includes one or more move activities, the agent will go to the 
specified locations as the moves are executed. 

Within a detectable, the modeler can specify when the agent or object can detect a fact. When a workframe 
contains a composite activity, the modeler must specify the time to be "whenever", because the engine 
cannot calculate the total working time for the frame in advance. 

When multiple detectables are declared within a workframe, they are checked in the order in which they are 
declared. When two detectables are specified to be executed at the same time, and the first states that the 
frame should be interrupted and the second states that the frame should be aborted, the frame will be 
interrupted. 

The body of a frame is ordered, and the simulation engine evaluates the body components in the order in 
which they appear from top-to-bottom and left-to-right. The body may include activities and composite 
activities for workframes, and consequences that will be asserted as beliefs and/or facts for workframes and 
thoughtframes. 

4.6.2.2 Frame states and transitions 

As described above, frames are stateless and serve as declarative definitions, whereas frame instantiations 
are dynamically created, associated with a particular agent or object, have state, and have a related context. 

The possible states of a frame instantiation are set forth in Table 4-1. 

Table 4-1. Frame instantiation states 

 
 

not-available 

No instantiation exists for a given (frame, agent or object, 
context) set. Either the preconditions of the frame have no 
matches, or previously active instantiations have all 
completed and been reset with no matches. This is more 
or less the start-state of every frame instantiation. 

 
 

available 

The preconditions of the frame have been satisfied for 
some context and agent or object, but the frame 
instantiation has not yet been started by the agent or 
object. 

 
working 

The agent or object is performing this frame instantiation 
for the current clock-tick. 

 
 

interrupted 

The workframe instantiation has already had at least one 
clock-tick worked on it, but the agent or object is 
performing some other workframe instantiation during the 
current clock-tick. 

Thoughtframe instantiations cannot be in this state. 

 A detectable has caused the agent or object to have an 

                                                      
30 The next parts are limited to workframes, because thoughtframes do not take time, and do not have activities and detectables in them. 
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interrupted-with-impasse 

impasse with the workframe instantiation. The workframe 
instantiation cannot continue until the condition causing 
the impasse is resolved. 

Thoughtframe instantiations cannot be in this state. 

 
 
 

done 

The agent or object has completed all the activities in the 
frame instantiation. If the reset-when-done attribute of the 
associated frame is false, then the frame instantiation will 
exist in the done state.  Otherwise, the preconditions will 
be evaluated and the frame instantiation will become 
either available or not-available (i.e., deleted). 

Given these possible frame states, there are a number of different allowable state-transitions for frame 
instantiations. These are shown in Figure 4-4. 

NOT-AVAILABLE

AVAILABLE

INTERRUPTED WORKING

INTERRUPTED-WITH-
IMPASSE

DONE

 
Figure 4-4. State-transition diagram for frame instantiations 

The allowable state transitions, shown in Figure 4-4, are listed in Table 4-2, with their causes and 
implications. 

Table 4-2. Frame state-transitions 

 
 

not-available ⇒ available 

When the preconditions of a frame are satisfied for a 
particular agent or object and context, then a frame 
instantiation is created and put in the state available. 
This frame instantiation can then be worked on by the 
agent or object. 

 
 

available ⇒ not-available 

If an available frame instantiation has not been started, 
and the preconditions (which were previously satisfied) 
become unsatisfied, then the frame instantiation is 
deleted, and thus becomes not-available. 
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available ⇒ working 

If the frame instantiation becomes the current-work of 
an agent or object, then the frame instantiation has 
state working. 

 
 

working ⇒ interrupted 

Whenever a different workframe instantiation becomes 
the current-work of an agent or object, the (previous) 
working frame instantiation becomes interrupted. Note 
that the agent can choose from the union of the sets 
(available, working, interrupted) for the current-work for 
the next clock-tick. This resolution mechanism works on 
the basis of priorities of the workframe instantiations. 

 
 
 
 

working ⇒  
interrupted-with-impasse 

This state change happens when the following 
conditions are all met: (1) an agent detects a fact, (2) 
the current working workframe instantiation contains a 
detectable that references that fact, (3) that detectable 
is satisfied, and (4) the type of the detectable is 
impasse. The agent cannot continue working on the 
workframe instantiation until the impasse is resolved, 
i.e. the detectable condition becomes false due to a 
change in the beliefs of the agent or facts for an object. 
The workframe instantiation is set to interrupted-with-
impasse state. 

 
 
 

working ⇒ done 

When all activities of the frame instantiation are 
completed after the current clock-tick, then the frame 
instantiation becomes done, iff the reset-when-done 
attribute of the associated frame is false. Otherwise, the 
transitions working⇒available, depending on whether 
the preconditions are still being satisfied. However, this 
is accomplished by creating a new frame instantiation. 
When done, the frame instantiation is deleted. 

 
 

interrupted ⇒ working 

When the agent or object picks an interrupted 
workframe instantiation to become the current-work for 
the next clock-tick, the frame instantiation becomes 
working again. 

 
 
 
 

interrupted-with-impasse 
⇒ interrupted 

When a belief of an agent or fact for an object causes 
the detectable, that caused an impasse, to be no longer 
satisfied, the impasse is removed—the belief causes 
the detectable-condition to no longer match the current 
beliefs of the agent or fact in case of an object. The 
frame instantiation can be worked on once again, so 
the state is changed from interrupted-with-impasse to 
interrupted, after which, in the next clock-tick the frame 
instantiation could transition to a working state. 

4.6.3 Deciding what to work on next 

To decide for each agent what to work on next, the simulation engine executes a number of steps. At each 
clock tick, the simulation engine determines which workframe should be selected to work on next. This 
selection is based on the priorities of available, current and interrupted workframe instantiations. A current 
workframe instantiation is selected in preference to interrupted or available workframe instantiations of equal 
priority, so that an agent tends to continue doing what it was doing.  
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The selected workframe is then executed, leading the agent to possibly detect things in the world (through 
detectables) and begin an activity. When a workframe instantiation is interrupted, it is reexamined on 
subsequent clock-ticks to see whether it should be considered for selection. When a composite activity is 
terminated, because its end-condition is satisfied, the workframe instantiations below it are also terminated. 
When an activity is interrupted, Brahms saves the workframe/activity-hierarchy so the context can be 
reestablished after an interruption. 

The questions remain; 1) How does a workframe get selected to become instantiated, and 2) When multiple 
workframes are instantiated, how does the engine determine the priority of a workframe instantiation? 

The answer to the first question is that at every clock-tick the simulation engine checks if any of the 
preconditions of the agent's frames are satisfied (i.e. match with beliefs in the agent's belief-set)31. When all 
preconditions in a frame match, the frame is instantiated and each frame instantiation is set to the available 
state. At that moment, the engine includes the frame instantiation in its decision to determine what frame 
instantiation to work on next. 

The answer to the second question defines what workframe instantiation to work on next. Each workframe 
instantiation has a priority. The priority of each workframe instantiation is set based on the priorities of the 
primitive activities in the workframe. The priority of a workframe is the priority of its highest priority primitive 
activity.  

Thus, all in all, the emergent behavior of agents during a simulation depends on two independent variables. 
First, it depends on when preconditions of frames match on the belief-set of the agent. Of course, the belief-
set of an agent depends on many factors during a simulation, such as detection of facts, moving to 
locations, communication with others, as well as reasoning. This means that the behavior of an agent is first 
and foremost dependent on the behavior of other agents and objects in its environment, as well as the state 
of the environment itself. Secondly, the behavior of an agent depends on which frames are instantiated 
together at any moment in time. This is because each instantiated frame has a specific priority, and it will 
depend on the priority of the other frame instantiations whether a frame instantiation is picked as the next 
work to be done. 

4.6.4 Multi-tasking agents 

In a Brahms simulation, an agent may engage in multiple activities at any given time, but only one activity in 
one workframe is active at any one time. At each clock-tick the simulation engine determines which 
workframe should be selected, based on the priorities of available, current and interrupted work (see 
previous section). The state of an interrupted or impassed workframe is saved, so that the agent will 
continue an interrupted workframe with the activity that it was performing at the moment it got interrupted. 

An important consequence and benefit of this paradigm is that all of the workframes of a model are 
simultaneously competing and active, and the selection of a workframe to execute is made without 
reference to a stack or tree of workframe execution history. This subsumption architecture (Brooks 1991) is 
an important difference between Brahms and most other goal-oriented problem-solving systems, such as 
Soar (see section 2.2.1). In Soar, an agent has one goal-stack. Switching to another goal-tree means 
popping goals of the stack, and pushing new ones on it. Consequently, the agent cannot automatically 
return to the execution of a previous goal-tree that was popped on the goal-stack. This is a serious limitation 
of the Soar architecture in simulating multi-tasking using goal (or activity) context switching. In Brahms, 
activity-context switching is inherent in the subsumption architecture. 

                                                      
31 The speed at which this is done is heavily dependent on the implementation. In the old G2 engine this was done using a loop-structure, 
where for every agent and object, all preconditions for all frames are checked at every clock-tick. In the new Java engine, we have 
invented a multiagent version of a Rete-like algorithm. We call this a Reasoning State Network (RSN). This allows the engine to only 
check those preconditions in frames that can potentially match with beliefs that just changed in the agents' belief-set. 
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Figure 4-5. Multi-tasking in Brahms 

An illustration of this is given in Figure 4-5. An agent (not shown) in a running model may have multiple 
competing general activities in process: Activities 1, 3, and 4. Activity1 has led the agent (through workframe 
WF1) to begin a subactivity, Activity 2, which has led (through workframe WF2) to a primitive activity Action 
X. When Activity 2 is complete, WF1 will lead the agent to do other activities. Meanwhile, other workframes 
are competing for attention in Activity 1. Activity 2 similarly has competing workframes. Priority or preference 
rankings led this agent to follow the path to Action X, but interruptions or reevaluations may occur at any 
time. Activity 3 has a workframe that is potentially active, but the agent is not doing anything with respect to 
this activity at this time. The agent is doing Activity 4, but reached an impasse in workframe WF4 and has 
begun an alternative approach (or step) in workframe WF5. This produced a subactivity, Activity 6, which 
has several potentially active workframes, all having less priority at this time than WF2. 

The Brahms subsumption architecture allows two forms of multi-tasking. The first form is inherent in the 
activity-base paradigm; Brahms can simulate the reactive situated behavior of humans. An agent’s context 
forces it to be active in only one low-level activity. However, at any moment an agent can change focus and 
start working on another competing activity, while queuing others. In Brahms having the simulation engine 
switch between current and interrupted work for each agent, simulates this type of multi-tasking behavior. 
The second form is subtler. People can be working concurrently on many high- and medium-level activities 
in a workframe-activity hierarchy. While an agent can only execute one primitive activity in the hierarchy at a 
time, the agent is concurrently within all the higher–level activities in the workframe-activitiy hierarchy. For 
example, the agent (not shown) in Figure 4-5 is concurrently within Activity 1, Activity 2, and primitive activity 
Action X. It should be noted that while a workframe, and its associated activities are interrupted or 
impassed, the agent is still considered to be in the activity. The activity duration time is still accumulating 
when interrupted or impassed. Therefore, the agent is conceptually within all current, interrupted and 
impassed activities. 

This concludes the description of the Brahms language, as well as Part 1 of the thesis. In Part 2 of the thesis 
I will describe three case studies in which I show the use of the Brahms language and simulation engine. 
The more formal description of elements and features of the Brahms language and simulation engine in this 
chapter will be explained with examples from the case studies in Part 2. 
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5. RESEARCH DESIGN 

In this chapter, I describe my research design. A good research design is a step-wise plan to answer the 
research question. I first describe the research methodology and then describe ways of using computational 
modeling as an analysis and design method for systems. Then, I am able to introduce the cycles in my 
research process. Based on the research cycles, I define the case studies that are the foundation of each of 
the cycles, and are examples of the use of Brahms as a computational modeling and simulation 
environment for work practice. 

5.1 SCIENTIFIC METHODOLOGY 

There are many variations on the specifics of a scientific methodology, but they all share the common 
theme of scientific understanding of the world. In pursuing a scientific understanding of a problem, the 
outcome of the research must make sense and correspond with observations. While scientific methodology 
may vary across disciplines, most include the following characteristics (Zimmerman and Muraski 1995): 

• Understanding of the problem 

• Stating the problem 

• Collecting data 

• Analyzing data 

• Interpreting data 

• Drawing conclusions 

5.1.1 Understanding the problem 

In the introduction chapter I stated the problem I am addressing in this thesis. I restate the problem in the 
next section and operationalize it further. Understanding the problem, as Zimmerman describes, is key to 
being able to state the problem correctly, and is one of the most important components of research 
(Zimmerman and Muraski 1995). It may take years of disciplined study of a particular domain before an 
adequate understanding has been accomplished. It is obvious that the understanding of the problem will 
change as time goes on. A deeper understanding of the problem will most likely change the way the 
researcher states the problem. Research uses a cyclical process as its modus operandi for scientific 
understanding (Figure 5-1). 

Stating
Problem

Collecting
Analyzing

Interpreting
Data

Drawing
Conclusions

Understanding
Problem

time

 
Figure 5-1. Research Process 
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5.1.2 Restating the problem 

As stated in the introduction chapter, the main drive for starting this research was because of our 
experience in trying to model the work practice of an organization using a workflow-modeling paradigm. A 
workflow model is a particular view of the work. It is an abstracted functional view of how conceptual objects 
flow through a sequence of tasks in an organization. After a long effort we came to understand that, 
although useful, a workflow model typically omits people’s collaboration, “off-task” behaviors, multi-tasking, 
interrupted and resumed activities, informal interaction, knowledge, and the environment, i.e. the 
geographical location and placements of people and artifacts. I am seeking to understand how to model and 
simulate work practice in such a way that we can include these aspects.  

The deeper understanding I am interested in is the question of how work really gets done and how to make 
a formal representation of this, in the form of a computational model. The creation of a formal representation 
of a system results in deep understanding of the system. Making a computational model allows us to test 
and refine this understanding by comparing the results of a simulation with reality. In this sense, simulation 
is a research method for understanding the system. 

In order to use simulation as the method for understanding the work practice of an organization, we need a 
scheme to represent work practice, and a computational paradigm to simulate a model developed using the 
representational scheme. The research problem is: 

How can we model an organization’s work process in such a way that we include people’s work 
practice? 

This leads to the main subsidiary question (restated from chapter 1): 

1. How can we model an organization’s work practice in such a way that we include people’s 
collaboration, “off-task” behaviors, multi-tasking, interrupted and resumed activities, informal 
interaction, knowledge and geography? 

One answer to this question is to develop a modeling language and simulation program in which we can 
represent the way an individual or group of individuals work—i.e. their practice. This leads to further related 
questions: 

a. What is meant by the concepts in the question stated above? 

Ethnographic fieldwork in the workplace (Sachs 1995) has shown that in looking at the way people work in 
practice we see a number of important aspects: 

(1) People collaborate with each other to accomplish what they have to do. 

(2) People often work on seemingly non-task related things, called “off-task” 
behaviors. 

(3) People often work on more than one task at the same time, called multi-tasking. 

(4) People are often interrupted in their activities, and will resume what they were working on, 
after the interruption is over. 

(5) People have many interactions with others that were not planned before hand, and/or not 
part of the task at hand, called informal interactions. 

(6) People use their domain knowledge, as well as their social knowledge about the 
organization and the culture to perform their daily work activities. 
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(7) The environment is for most part a given. People are always situated in a three-
dimensional space. Most of the time, people cannot change the work environment, and 
they can never ignore the constraints that the environment places on their activities. 

Next, we need to operationalize these concepts. That is, to put them into a form in which they can be 
subject to testing by experiment (Preece 1994, p. 188). This leads to the following operational questions: 

b. What interpretation should be placed on these aspects of work practice? 

In other words: How can we model them? 

c. How can these aspects be included in a computational modeling language? 

In other words: What formal language can we create that makes it possible to simulate? 

To reiterate what the presented work is, and maybe more importantly what it is not, the following note 
should be taken into account while reading the next sections; This research is about finding a modeling and 
simulation paradigm. It is not about researching a work practice of a specific organization. My hypothesis is 
that Brahms implements such a paradigm. Therefore, the research method used to test Brahms is not to 
use the Brahms simulation environment to get a deeper understanding of a particular work practice domain. 
Instead, the research goal is: 

Test if Brahms is a suitable modeling language and simulation environment for modeling 
and simulating work practice. 

However, to do this I need to show the use of Brahms in real world domains. It turns out, not surprisingly, 
that in the process one cannot avoid getting a deep understanding of the chosen domain. 

5.1.3 Scientific method and data collection 

There are a variety of research methods and data collection techniques. As a valid research method for 
testing qualitative modeling approaches, I test Brahms by performing a number of case studies. We can 
accept the hypothesis if it can be shown in a reasonable number of real world examples that we can 
simulate work practice with Brahms. Therefore, the research method I use is a qualitative analysis of a 
number of empirical case studies showing different uses of Brahms. The question “how many case studies 
is a reasonable number?” is the discussion in the next section. 

5.2 USE OF COMPUTATIONAL MODELS IN SIMULATION 

We can classify the use of computational models for solving problems in one of three ways (Table 5-1). 
Descriptive models are behavioral models of an existing system. The purpose of descriptive models is to 
describe the system in a way that makes us better understand the complexity of the system. Descriptive 
models are useful to analyze complex dynamic environments. Predictive models are models that predict the 
way an existing system behaves in the future. The purpose of predictive models is to be able to know 
beforehand how the system will behave in the future. Such models are useful in tasks in which we need to 
make decisions based on future data from a complex dynamic environment. Prescriptive models are 
models of future—not yet existing—systems. The purpose of prescriptive models is to prescribe what a 
future system should look like. Such models are useful to design complex dynamic environments. 

Table 5-1. Use of Computational Models 

Type of computational model Use in problem domains 

Descriptive model Describe an existing system in order to 
understand it. 

Predictive model Predict the future of an existing system. 
Prescriptive model Prescribe a future system that does not exist yet. 
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Models help us understand systems. According to Klir there are four basic levels of knowledge about a 
system (Klir 1985). At each level we know some important things about the system we did not know at lower 
levels (Table 5-2). The lowest level, the source level, identifies what part of the real world system we want to 
model, and the means by which we are going to observe it. It identifies the variables to measure and how to 
observe them. The next level, the data level, is the database of observations in terms of measurements of 
the variables from the source system. At the third level, the generative level, we have a model that can 
generate the data from the previous level. This is the level of system knowledge most people refer to as a 
model the system. At the fourth and highest level, the structure level, we have a description of the total 
system by coupling all generative components from the lower level together into a generative system for 
simulation. 

Table 5-2. Kir’s levels of system knowledge 

Level Name System Knowledge 

3 Structure Components (at lower levels) coupled together to form 
a generative system, i.e. a simulation 

2 Generative Means to generate data in a data system 
1 Data Data collected from source system 
0 Source What variables to measure and how to observe them 

Zeigler, et al, (2000) define three basic ways to deal with system problems, based on Klir's levels of system 
knowledge; system analysis, system inference and system design. They allow us to move from one level of 
system knowledge to another. In System analysis, we try to understand the behavior of an existing or 
hypothetical system based on its known structure. System Inference is performed when we do not know the 
structure of the system before hand. In system inference we try to guess the structure from observations, 
allowing us to use this to predict future data. Finally, in system design we are investigating the alternative 
structures for a completely new system or the redesign of an existing system. 

The important notion in Klir's levels of system knowledge is that in system analysis we are not generating 
new knowledge, as we move from a higher-level to a lower-level description of the system. In system 
analysis we are only making explicit what is implicit in the higher-level description. Klir does not consider this 
kind of subjective (modeler-dependent) understanding to be an increase in knowledge about the system. I 
disagree, and argue that making something explicit that was implicit before will lead to more insight and a 
deeper understanding, which is a form of new knowledge. Even though in Klir's sense system analysis 
might not generate new knowledge, interesting properties of the system will come to light of which we were 
not aware before the analysis.  

In both system inference and system design we move from lower levels to higher levels of system 
knowledge. Therefore, in these activities we are creating new knowledge that did not exist before, according 
to Klir's definition. 

In Table 5-3, I relate Zeigler's fundamental system problems first to the transitions in terms of Klir's levels, 
and secondly to the types of computational models that we are developing at the generative level. When we 
are in a system analysis activity we are developing a descriptive model of the system. The development of a 
descriptive computational model leads to an increased understanding of how the system works. In system 
inference we are trying to create a predictive model. Predictive in the sense that once we have created a 
computational model that can explain the generation of observed data, we can now use this model to 
predict future behavior data of the system not yet observed. In system design we are developing a 
prescriptive model, in the sense that the model prescribes a future system. 
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Table 5-3. System problems related to model use and types 

System problems Model use Transition between 
Klir's levels 

Type of 
computational model 

System Analysis The system exists, and 
we try to understand its 
behavior. 

Moving from a higher to 
a lower level of 
description, e.g. using 
information at the 
generative level to 
generate the source 
data at the data level. 

Descriptive model 

System Inference The system exists, and 
we try to infer how it 
works from 
observations of its 
behavior. 

Moving from a lower to 
a higher level, e.g. 
having data and trying 
to find a means to 
generate it. Then using 
the generative system 
to infer future behavior. 

Predictive model 

System Design The system does not 
yet exist in the form 
we're contemplating, 
and we try to come up 
with a good design for 
it. 

Moving from a lower to 
a higher level, e.g. 
having a means to 
generate data based a 
design at the 
generative level. 

Prescriptive model 

 

5.3 THE CASE STUDIES 

To show that Brahms is a modeling and simulation environment for work practice, it needs to be shown that 
we can use Brahms to develop valid models for the three model uses described in the previous section. 

To relate the types of uses of computational models (from Table 5-3) back to the research process shown in 
Figure 5-1, I instantiate three cycles in the research process used in this thesis. At the end of each cycle I 
will have an increased understanding of the research problem, and will be able to draw on the knowledge 
gained in that cycle to start the next. The sequence of the three cycles follows the sequence of system 
problem description in Table 5-3. The reason for this is that the complexity of system problem increases in 
that order, and thus the learning from a case study performed in a cycle can be used in the next. 

The domain for the three case studies is a non-traditional work system of scientific fieldwork on the Moon. 
The reasons for choosing this domain are the following: 

1. Working for NASA, while finishing this thesis, means that the research performed should be 
beneficial to NASA in some form. Understanding how astronauts worked on the Moon, and how 
people and robots could collaborate in future missions to planets, is an important research topic. 

2. Scientific fieldwork on the Moon is work, even though we might not view astronauts “hopping” 
around on the Moon, or robots driving on the Moon as working. However, if we consider what is 
being accomplished on such missions, and the amount of collaboration that takes place, both on 
the Moon and on Earth, it is less of a stretch to view NASA missions as complex work systems. 

3. The nature of the technology that was developed during the Apollo era, and the technology that is 
being developed for future NASA missions, is so important in the performance of the work during 
these missions that it is a perfect domain for studying how technology needs to be integrated with 
practice. This becomes especially important when, in the future, humans will need to collaborate 
with robots to build factories on the Moon or on Mars. 
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Therefore, the three case studies I present in the next three chapters are not about a more traditional 
workplace on Earth, but about people and robots working on the Moon. Table 5-4 gives a short description 
of the three case studies and their objectives. First, I will show the use of Brahms to describe a work 
practice from the Apollo days. Next, I will show the use of Brahms to predict future behavior of astronauts, 
based on a model of one of the Apollo missions. Last but not least, I will show the use of Brahms to design a 
work system for a future robotic mission to the Moon. 

Table 5-4. Case study descriptions 

Case Study Objective Type of Brahms Use 

1. Apollo 12 ALSEP Offload Model and simulate the ALSEP 
Offload activity during the Apollo 
12 mission. 

Descriptive modeling 

2. Apollo Heat Flow Experiment 
Deployment 

Model and simulate the Heat 
Flow Experiment deployment, 
based on Apollo 15 and 16, and 
predict activity and 
communication behavior in error 
situations. 

Predictive modeling 

3. Victoria Robotic Mission Model and simulate missions 
operations of the proposed 
Victoria mission, performing 
scientific exploration with a semi-
autonomous rover. 

Prescriptive modeling 
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6. CASE STUDY 1: APOLLO 12 ALSEP-OFFLOAD 

In this chapter, I report on the results of the descriptive modeling case study (Sierhuis 2000) (Sierhuis et al. 
2000a) (Sierhuis et al. 2000c) (Sierhuis et al. 2000d). A descriptive model is an abstraction of an existing or 
historical system, and preserving the relations between system states—system morphism. I describe the 
development of a Brahms model and simulation of the ALSEP Offload activity that was part of the ALSEP 
instrument deployment during the Apollo 12 Lunar mission.  

This chapter is divided into a number of sections that could be read or skipped independent of the other 
sections. Section 6.1 gives a short introductory description of the ALSEP Offload task that the astronauts 
performed during the Apollo 12 mission. Sections 6.2, 6.3, and 6.4 should be read together. They describe 
the design of the agent-, object-, and geographical models of the Brahms model. Section 6.5 describes the 
design of the activity model. Section 6.6 describes the behavioral model. This section describes how the 
workframes of an agent are executed, and explains the relationship between time, beliefs, workframes, 
activities and detectables during the simulation of the model. Section 6.7 describes how the communication 
between the lunar surface astronauts, as well as the lunar surface astronauts and the Capcom agent in 
mission control is simulated. Included in the communication model is the simulation of the communication 
time delay between the Moon and the Earth. Section 6.8 describes in more detail how we can model the 
interaction between people and artifacts. I describe this by explaining how we can model the interaction with 
a photo camera, while performing the activity of taking a photograph. Section 6.9 describes the process of 
verifying and validating the Apollo 12 ALSEP Offload model. In this section I describe how the Brahms 
model and simulation is verified and validated against the available historical Apollo 12 data. Last, section 
6.10 describes my conclusions for this case study. 

Goals and Objectives 

The goal of this experiment was to investigate the use of the Brahms-language in order to describe an 
existing work practice. The challenge I faced in this experiment was to investigate if the theory of modeling 
work practice, implemented in the Brahms language (Chapter 4), is sufficient to describe the work practice 
in the chosen domain. The objectives of this first experiment were: 

1. Being able to represent the people, things, and places relevant to the domain. 

2. Represent the actual behavior of the people, second by second, over time. 

3. Show which of the tools and artifacts are used when, and by whom to perform activities. 

4. Include the communication between co-located and distributed people, as well as the communication 
tools used, and the effects of these communication tools on the practice. 

The domain I chose for this experiment is the work practice of the Apollo 12 astronauts in the deployment of 
the Apollo Lunar Surface Experiments Package (ALSEP) on the Moon. The reasons for choosing this 
domain are the following: 

1. The work performed by the astronauts requires unique and highly skilled individuals. The complexity of 
the work to be described is high enough to argue that if we can model this type of work practice within 
Brahms, we can model most other work practices as well. 

2. The ALSEP deployment process is performed by a relatively small number of people. This has a 
positive impact on the modeling and simulation effort, in terms of the time it takes to develop the model, 
as well as the time it takes to simulate the model. 

3. The ALSEP deployment work is distributed over the people involved, and is collaborative in nature. 
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4. There is no work product “flowing” through the work process. This means that this type of work is not 
easily represented in a workflow model. Being able to model this type of work in Brahms supports the 
argument for developing Brahms. 

5. In order to develop a descriptive model of an existing work practice, we need to have access to a 
significant amount of data about the actual work. This often means a long observational and/or 
ethnographical study of the participants. This takes an enormous amount of effort and is a grounded 
research process in and of it self. However, the Apollo project has been well documented by NASA and 
numerous institutions, and writers (Compton 1989) (Wilhelms 1993) (Chaikin 1994) (Godwin 1999). 
Specifically, there is a significant library of video and audiotapes taken during the actual missions 
(NASA 1972)]. This allows us to develop, verify and validate our models using independent data from 
the real events. 

6. Although a Human Mission to Mars is not an official NASA supported activity at this point in time, more 
and more researchers in and outside of NASA are informally studying what it would take to have 
humans go to Mars and do scientific work for an extended period of time. We know very little about how 
people can or should work on Mars. The only reference point we have about humans working on extra-
terrestrial planets is the work that humans did on the Moon during the Apollo project. Developing 
models of the work practices on the Moon might allow us to extrapolate these models and investigate 
people working on Mars, before we can physically go there. 

7. There is, to certain extent, a real possibility that before we will go to Mars we will first go back to the 
Moon. The reasons to do this might be of a scientific or a commercial nature. Regardless of the reason 
to go back to the Moon, a model that describes the existing, but mostly forgotten work practices for 
deploying instruments on the Moon is self-evident. 

6.1 APOLLO 12 AND THE ALSEP OFFLOAD 

One of the biggest objectives of the Apollo 12 mission was to deploy the Apollo Lunar Surface Experiments 
Package (ALSEP). It would be the first time to deploy the ALSEP on the moon. The earlier Apollo 11 
mission only deployed a preliminary version, called the EASEP (Early Apollo Surface Experiment Package). 
The ALSEP consisted of a number of independent scientific instruments that were to be deployed on the 
moon. The instruments were data collection devices for different scientific experiments about the moon’s 
internal and external environment. By deploying similar ALSEP instruments over multiple Apollo missions 
(A12, 14, 15, 16 and 17), the ALSEP deployments created an array of data gathering instruments at 
different locations on the lunar surface. Table 6-1 shows a list of deployed instruments by mission. 

Table 6-1. ALSEP experiments for Apollo missions 

 A 12 A 13 A 14 A 15 A 16 A 17 
Passive Seismic Experiment (PSE) X (X)32 X X X  
Active Seismic Experiment (ASE)   X  X  
Suprathermal Ion Detector Experiment (SIDE) X  X X   
Solar-Wind Spectrometer X   X   
Lunar Surface Magnetometer (LSM) X   X X  
Cold Cathode Gage (CCG) X (X) X X   
Charged Particle Lunar Environment Experiment (CPLEE)  (X) X    
Solar Wind Spectrometer (SWS)    X   
Heat Flow Experiment (HFE)  (X)  X (X) X 
Lunar Ejecta and Meteorites Experiment (LEAM)      X 
Lunar Seismic Profiling Experiment (LSPE)      X 
Gravimeter, Lunar Surface (LSG)      X 
Lunar Atmosphere Composition Experiment (LACE)      X 

To deploy the ALSEP on the lunar surface, the astronauts had to accomplish three high-level tasks. First, 
they had to offload the ALSEP from the Lunar Module (LM). Second, they had to traverse with the ALSEP 
packages to the deployment area, away from the LM. Third, they had to deploy each ALSEP instrument 
onto the surface. In this chapter, I discuss the development of a work practice model for the first task, the 
ALSEP Offload. 
                                                      
32 The round brackets mean that these were planned experiments that failed to be deployed properly. 
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Figure 6-1. SEQ Bay and RTG Cask located on the side of the LM 

All the ALSEP instruments and tools, used for deployment, were stored on two sub-pallets (“packages”) in 
the Scientific Equipment Bay (SEQ Bay) during flight. Figure 6-1 shows the SEQ Bay located on the LM, on 
the opposite side of the ladder from which the astronauts descended to the lunar surface. 

The offload consisted of a number of specified (sub-)activities that were trained extensively and assigned to 
each of the astronauts. The order in which these tasks were to be performed, and whether the Lunar 
Module Pilot or the Commander was to perform the task, i.e. the plan, was the same for all five missions. 
Figure 6-2 shows the plan and start-time for the Apollo 12 ALSEP Offload. 

 

Figure 6-2. Apollo 12 Surface Checklist 47 for the ALSEP Offload 

The order in which the astronauts were to perform their tasks was pre-specified and trained. In other words, 
offloading the ALSEP was a highly choreographed collaborative activity performed by two astronauts 
working in parallel. 

However, even though this high-level task was planned and choreographed up front, the plan did not 
include the situational variations, the actual communication and collaborative activities between the 
astronauts, and the communication between and coordination of activities by the Manned Spaceflight 
Center (MSC) in Houston. MSC, also known as Mission Control, kept track of where the astronauts were on 
the plan, solving unplanned problems, and monitoring and communicating life support status for the 
astronauts. Central in this collaborative activity is the person who played the role of Capsule Communicator 
(CapCom). The CapCom was the “voice” of Houston and the only person in direct communication with the 
astronauts. This communication happened through the voice-loop (see section 6.7 on modeling the voice-
loop). 
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The work practice of the ALSEP Offload, or any work practice for that matter, consists of more than the 
sequence and distribution of tasks. What constitutes the practice of the ALSEP Offload is the way the actual 
plan is carried out; The situational activities of the collaborators, the way they react to their environment, the 
way they communicate, what is said, the way they “know” how to do their tasks given the situation. It is 
situated action (Suchman 1987). A choreographed play “executed” during the performance, planned and 
trained, but always different.  

In the next sections, I will describe how the ALSEP Offload work is modeled in a model of work practice. 
The model is not a model of the problem-solving knowledge of each individual involved in this task. Instead, 
it is a model of the behavior of the individuals. It describes how the collaboration, coordination, and 
communication between the three individuals happen, and make this a fluent event. The activities of one 
individual are like the movements of a musician in a symphony orchestra. The communication between 
individuals is like the interleaved notes that seem to “tell” each musician what to play next. The artifacts and 
tools are like the instruments of the musician. The environment of the Moon and Mission Control is like the 
symphony hall. The Brahms “symphony” that is being played is planned and scored on a piece of paper (i.e. 
the astronaut’s checklist). The orchestra has trained the piece many times (i.e. the astronaut training on 
Earth). However, what comes out in the performance is due to their practice, the concert hall (i.e. the Moon), 
and the way they play together that specific evening (i.e. EVA 1 on Apollo 12). 

6.2 THE AGENT MODEL 

One of the most relevant design issues for any Brahms model is the design of the agents and the groups 
they belong to. The Agent Model describes to which groups the agents belong and how these groups are 
related to each other.  

Designing an Agent Model is similar to the design of an Object Model in object-oriented design (Rumbaugh 
et al. 1998). Just as the class-hierarchy in an Object Model, we need to design the group-hierarchy in the 
Agent Model. As a rule of thumb, we identify the communities of practice of which the agents in the model 
are members, and abstract them to a common denominator for all agents. All agents are members of this 
abstract group. The most abstract group is called the Base Group. This group exists in the Brahms Base 
library. It contains all attribute and relation definitions that are needed by default, such as the name of the 
agent, the group membership relation, and the location of the agent. We specialize this group, until we have 
identified all the similarities and differences between the agents. It should be noted, again, that groups and 
agents can be members of multiple groups. 

Figure 6-3 shows the Agent Model design. We start with defining our agents. Each agent represents a 
person in our domain, e.g. Ed Gibson, Pete Conrad, Al Bean, and Dick Gordon. We generalize the 
community all four agents belong to as the group of ApolloAstronauts.  
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Figure 6-3. Apollo Agent Model design 

The Capsule Communicator (CapCom) was always an astronaut. In the case of Apollo 12, Ed Gibson was 
a civilian chosen with the fourth group of astronauts in 1965. The role of the CapCom was to be the only 
person in Mission Control to talk directly to the astronauts. Dick Gordon, the CommandModulePilot (CMP), 
was a Navy Captain chosen with the third group of astronauts in 1963. The role of the CMP was to fly the 
Command Module (CM), named “Yankee Clipper”, circling in orbit around the moon while the Lunar Module 
(LM), named “Intrepid”, was on the moon. Pete Conrad, the Apollo 12 Commander (CDR), also a Navy 
Captain, was chosen with the second group of astronauts in 1962. Last, the LunarModulePilot (LMP) Al 
Bean, who was also in the Navy, was chosen with the third group of astronauts in 1963.  

I represent the role of each of the astronauts as a group. This way I can represent role specific attributes 
and activities at the group level. The AlsepOffloadGroup is a functional group in the sense that it does not 
specify a specific role, but a task of the agent. This group represents all work activities and attributes that 
have to do with the ALSEP Offload task in one group. This way the group represents the community of 
agents that can perform the ALSEP Offload task. For Apollo 12, both the CDR and the LMP trained for the 
ALSEP Offload activities, and both of them could, if necessary, perform the ALSEP Offload task by 
themselves, and therefore belong to the group ALSEPOffloadGroup. Thus, the Commander and 
LunarModulePilot groups are members of the group AlsepOffloadGroup. Since both the CDR and the LMP 
were working on the surface there are tasks that both astronauts needed and/or could perform. The ALSEP 
Offload task was one of them, but there were others as well. All the activities that needed to be performed 
by all astronauts on the lunar surface are represented in the LunarSurfaceAstronaut group. Such activities 
include taking photographs and changing the cooling of their space suit. In conclusion, we can describe the 
group hierarchy of Apollo astronauts in three sub-groups, CapCom, CommandModulePilot, and 
LunarSurfaceAstronaut. The LunarSurfaceAstronaut group has the AlsepOffload group as a subgroup, 
which in turn is subdivided into the subgroups Commander and LunarModulePilot.  
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Figure 6-4 shows the Brahms source code of the group and agent definitions, as shown in Figure 6-3. 

Figure 6-4. Brahms source code of the agent model 

Figure 6-5 shows the Agent Model in the Brahms Model Builder. The Brahms Model Builder application 
allows the modeler to create and compile the Brahms model. Figure 6-5 shows the group and agent 
hierarchy compiled from the source code in Figure 6-4. Each group has a number of “folders” underneath it. 
Each folder is a different category of model elements for the group. The “Member Groups” folder contains all 
the subgroups that are a member of the group. The “Member Agents” folder contains all agents that are 
members of the group. The rectangles around the groups and agents are not part of the GUI, but are added 
for clarification purposes, so that the reader can easily identify them in the figure. The colors show the 
different group-levels. At the top, in black, you see the BaseGroup. All the other groups are a subgroup of 
the BaseGroup group, and are therefore shown in the “Member Group” folder. The yellow rectangles show 
the four agents, while the other colors show the intermediate groups in the group hierarchy (the colors are 
only visible in a color reprint). 

// Groups 
group BaseGroup { … } 
 
group ApolloAstronaut memberof BaseGroup { … } 
 
group CapCom memberof ApolloAstronaut { … } 
 
group LunarSurfaceAstronaut memberof ApolloAstronaut { … } 
 
group CommandModulePilot memberof ApolloAstronaut { … } 
 
group AlsepOffloadGroup memberof LunarSurfaceAstronaut { … } 
 
group Commander memberof AlsepOffloadGroup { … } 
 
group LunarModulePilot memberof AlsepOffloadGroup { … } 
 
// Agents 
agent PeteConrad memberof Commander { … } 
 
agent AlBean memberof LunarModulePilot { … } 
 
agent DickGordon memberof CommandModulePilot { … } 
 
agent EdGibson memberof CapCom { … } 
 



 

111 

 

Figure 6-5. Agent Model in the Brahms Model Builder 
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6.3 THE OBJECT MODEL 

After the Agent Model, the next model that needs to be designed is the Object Model. In this model we 
design the class-hierarchy of all the domain objects. Figure 6-6 shows the Object Model design in UML 
(Rumbaugh et al. 1998) for the Apollo 12 domain objects and artifacts. As with the Agent Model, the root-
class of the class hierarchy is the class BaseClass. All other classes and objects inherit from this BaseClass 
class. 

 

Figure 6-6. Apollo Object Model design 

The objects with the dotted arrows pointing up represent the object instances of a class. The solid arrows 
show the built-in contains relation. This relation represents objects contained in other objects. This relation 
has a pre-defined semantic meaning, which is discussed in section 6.4.4.  

The objects with the dotted arrows pointing up represent the object instances of a class. The solid arrows 
show the built-in contains relation. This relation represents objects contained in other objects. This relation 
has a pre-defined semantic meaning, which is discussed in section 6.4.4.  

Figure 6-7 shows the Brahms model source code for the LM and SEQBay objects. Both the LM and 
SEQBay objects are instances of the class BaseClass. Besides representing the corresponding artifacts on 
the Apollo 12 mission, the source code also specifies the initial location of these objects within the 
Geography Model (see section 6.4). Both objects are located in the SEQBayArea area. Furthermore, the 
objects declare the attributes with which we can describe the different aspects of these objects. Although we 
could describe any number of aspects of an object, such as the color, height, et cetera, we only declare 
those attributes that are relevant. To model the fact that the astronauts inspect the LM and the SEQ Bay’s 
exterior appearance after the landing, we declare the attribute exteriorAppearance as a type symbol 
attribute. Using this attribute we can represent the state of the exterior of these objects. Both the LM and the 
SEQBay objects have an initial fact describing the state of their exterior appearance after the landing on the 
moon as an initial fact for the simulation, e.g.  

(the exteriorAppearance of current = SEQBayExteriorLooksGood).  
 

The status of the door of the SEQBay is modeled with the door attribute of type symbol that can have a 
value of closed or open. The door is in the initial state (i.e. an initial fact) of being closed, e.g. (the door of 
current = closed). This represents the door of the SEQ Bay being closed at the start of the ALSEP offload. 
Next, we model the objects that are located within the LM and SEQ Bay. This is represented with the 
contains relation (see Figure 6-6). This relation is declared in the BaseClass class, and inherited by the LM 
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and SEQBay objects. The fact that the SEQBay is located on the outside of the LM is represented as an 
initial fact in the LM object, i.e.  

(current contains SEQBay).  

The object LM represents the Apollo 12 Lunar Module, named Intrepid. This is the Lunar Module in which 
the astronauts landed in Surveyor cater. For this model the only relevant object that is part of the LM and 
that is relevant for the ALSEP Offload is the SEQBay, positioned on the outside of the LM. The SEQBay 
contains a number of artifacts that are relevant during the ALSEP offload activity. These artifacts are also 
modeled as Brahms objects in the model (see Figure 6-7 and Figure 6-8). 

Figure 6-7. Apollo 12 LM and SEQ Bay Brahms objects 

First, there are the LanyardRibbon objects. These objects are used to open the SEQBay door 
(SEQBayDoorLanyardRibbons) and lower the ALSEP packages (Pkg1LanyardRibbons and 
Pkg2LanyardRibbons), respectively. The lanyard ribbons are rope-like artifacts the astronauts pull on to 
open the door and lower the packages. The two main objects are the ALSEP packages, AlsepPkg1 and 
AlsepPkg2. These are the packages the astronauts have to lower from the SEQ Bay and position on to the 
lunar surface. The SEQ Bay also contains booms (SEQBayBooms). These artifacts are rail extension 
structures at the top of the SEQ Bay. When the astronaut pulls on the package lanyard ribbons, the ALSEP 
package comes out attached to the booms. The packages are automatically released from the booms, after 
which the astronaut slowly lowers them to the lunar surface by releasing the tension on the lanyard ribbons. 
The last artifact of interest in the SEQ Bay is the OffloadChecklistDecal object. This is the decal that is 
shown in Figure 6-2, and is a decal that shows the activities and their order for offloading the ALSEP. It is 
there as a reminder for the astronauts. 

Figure 6-8 shows the objects mentioned above, as well as the objects that are contained in each of them. 
One last interesting note to make is that of the pippin objects. Pippins were used to fasten objects to the 
ALSEP packages and other artifacts. The HTC (Hand Tool Carrier) object is fastened on AlsepPkg2 with 
five pippins. The fact that the pippins fasten the HTC is modeled by having them be contained in both the 
AlsepPkg2 object and in the HTC object. Removing the HTC from AlsepPkg2 means to first “remove” the 
pippin objects from both the HTC and the AlsepPkg2 objects, before the HTC object can be removed from 
the AlsepPkg2 object. 

// Apollo 12 objects 
object LM instanceof BaseClass { 
 display: “Intrepid”; 
 location: SEQBayArea; 
 attributes: 
  public symbol exteriorAppearance; 
 initial_facts: 
  (the exteriorAppearance of current = LmExteriorLooksGood); 
  (current contains SEQBay); 
} 
 
object SEQBay instanceof BaseClass { 
 location: SEQBayArea; 
 attributes: 
  public symbol door; 
  public symbol exteriorAppearance; 
 initial_facts: 
  (the exteriorAppearance of current = SEQBayExteriorLooksGood); 
  (the door of current = closed); 
  (current contains AlsepPkg1); 
  (current contains AlsepPkg2); 
  (current contains OffloadChecklistDecal); 
  (current contains SEQBayDoorLanyardRibbons); 
  (current contains Pkg1LanyardRibbons); 
  (current contains Pkg2LanyardRibbons); 
  (current contains SEQBayBooms); 
} 
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Figure 6-8. Apollo 12 contained artifacts 

Now that the agents and artifacts are represented, the next section describes the geography model in which 
the agents and artifacts are located during the simulation. 

6.4 THE GEOGRAPHY MODEL 

In Brahms we model geographical locations using two concepts, area-definitions and areas. Area-definitions 
are user-defined types of areas. Areas are instances of area-definitions. Thus an area is an instance of a 
specific location in the real world that is being modeled. Furthermore, areas can be part-of other areas. With 
this representation scheme we can represent any location at any level of detail. 

For the Apollo 12 ALSEP Offload activity, the following locations are important; Earth, the Manned-Space 
Center (MSC), the Moon, the Apollo 12 landing-site (“Surveyor Crater”), the area where the SEQ Bay is 
located, the ALSEP deployment area, an area away from the SEQ Bay to place artifacts after offloading, 

// Apollo 12 objects 
object SEQBayDoorLanyardRibbons instanceof LanyardRibbons { } 
 
object Pkg1LanyardRibbons instanceof LanyardRibbons { } 
 
object Pkg2LanyardRibbons instanceof LanyardRibbons { } 
 
object AlsepPkg1 instanceof AlsepPackage { 
 initial_facts: 
  //carries objects 
  (current contains DRT); 
  (current contains FTT); 
  (current contains UHT1); 
  (current contains UHT2); 
} 
 
object AlsepPkg2 instanceof AlsepPackage {  
 initial_facts: 
  //carries objects 
  (current contains PipPin1); 
  (current contains PipPin2); 
  (current contains PipPin3); 
  (current contains PipPin4); 
  (current contains PipPin5); 
  (current contains HTC); 
} 
 
object HTC instanceof Tool { 
 initial_facts: 
  //carries objects 
  (current contains PipPin1); 
  (current contains PipPin2); 
  (current contains PipPin3); 
  (current contains PipPin4); 
  (current contains PipPin5); 
} 
 
object PipPin1 instanceof PipPin { } 
object PipPin2 instanceof PipPin { } 
object PipPin3 instanceof PipPin { } 
object PipPin4 instanceof PipPin { } 
object PipPin5 instanceof PipPin { } 
 
object DRT instanceof Tool { } //Dome Removal Tool 
 
object FTT instanceof Tool { }  //Fuel Transfer Tool 
 
object UHT1 instanceof Tool { } //Universal Handling Tool 
 
object UHT2 instanceof Tool { } 
 
object OffloadChecklistDecal instanceof BaseClass { } 
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and last, the lunar orbit and the Command Module (“Yankee Clipper”). Figure 6-9 shows the geography 
model design. 

 
Figure 6-9. Apollo Geography Model design 

Figure 6-10 shows the Brahms source code of the area definitions (areadef) and area objects (area). The 
area definition types used to represent the area-instances are World, City and Building. 

Figure 6-10. Geography Model Brahms source code 

areadef World { } 
areadef City { } 
areadef Building { } 
 
area ApolloGeography instanceof World { } 
 
// back on Earth! 
area PlanetEarth instanceof City partof ApolloGeography { } 
area MissionControlCenter instanceof Building partof PlanetEarth { } 
 
// on the Moon!! 
area Moon instanceof City partof ApolloGeography { } 
area LunarOrbit instanceof City partof ApolloGeography { } 
area SEQBayArea instanceof Building partof Moon { } 
area AwayFromTheSEQBayArea instanceof Building partof Moon { } 
area AlsepDeploymentArea instanceof Building partof Moon { } 
 
// Apollo 12 Geography 
area CommandModule instanceof Building partof LunarOrbit { 
 display: "Yankee Clipper"; 
} 
area LandingSite instanceof Building partof Moon { 
 display: "Surveyor Crater"; 
} 
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It does not seem logical to give the area-definitions the names “World”, “City”, and “Building,” and indeed it is 
not. The reason for this is the limitation of the current Brahms simulation engine33. The current engine only 
accepts three types of areas, namely World, City and Building. Also, in the current engine there can only be 
one world-area. This limitation stems from the fact that our initial designed use of Brahms was for work 
practice models for the type of work that is performed within buildings, such as the more traditional office-
work. This creates an obvious limitation in our representational needs for this extra-terrestrial work domain. 
First, the work happens in two different worlds, namely on Earth and on the Moon. We therefore would like 
to create two world-areas in our model. However, because of the current limitation of the engine we need to 
create the Earth and the Moon as type city-areas, being part of one world. We therefore create one world-
area called ApolloGeography. This area represents the total “world” for our simulation. An area of type 
World can contain only areas of type City, therefore the Earth and Moon are areas of type City. Now we 
have our two planets—Earth and Moon—represented as cities. Secondly, the work on the Moon does not 
happen within buildings. However, we can only represent areas within a city-area as a type Building area. 
Thus, the Moon, being of type City, can only have areas of type Building located within it. We therefore 
represent the locations in which the astronauts perform their work as building-areas. A third “city” is created 
namely the orbit of the Command Module around the Moon. Since we are not concerned about the location 
of the Command Module with respect to the Moon and the Earth, we represent the orbit as a city-area within 
our world. The reason for this is that the Command Module Pilot “lives” within this area. It is therefore easier 
to locate the Command Module Pilot within his “building” location. 

The geographical areas are hierarchically represented as instances of Buildings, which are part of Cities, 
which in turn are part of the World. This leads to the Compiled Geography Model as represented in Figure 
6-1134. 

 
Figure 6-11. Apollo 12 ALSEP compiled Geography Model 

                                                      
33 We have re-implementing the engine in Java. 
34 Figure 6-11 is a part screen capture from the Brahms Builder application. 
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6.4.1 Initial locations 

Each agent and object has an initial location in one of the lowest-level areas, (CommandModule, 
AwayFromTheSEQBayArea, AlsepDeploymentArea, LandingSite, SEQBayArea, or MissionControlCenter). 
Initial locations are locations in which an agent or object is placed during the initialization phase of the 
simulation. This way each agent and object starts out being located in a geographical location (an area). To 
define an initial location for an agent the modeler uses the location attribute at the group or individual agent 
level. Figure 6-12 shows the initial location for each agent. 

Figure 6-12. Agent initial location 

6.4.2 Movement 

Agents and objects can move from one area to another. Moving from one location to another removes the 
agent from the starting location and moves the agent to the new location. This is accomplished by having 
the agent perform a move-type activity. The time the activity is active (i.e. the activity duration-time) 
determines how long it takes the agent to move from location A to location B. Figure 6-13 shows an 
example of a move-activity.  

Figure 6-13. Move activity source code 

The move-activity Moving starts in the area the agent is located at the moment the move-activity gets 
activated, and ends at the new area location given by the loc parameter. When both agents, PeteConrad 
and AlBean, perform the activity Moving(SEQBayArea, 0, 5) they both move independently from the 
LandingSite area (Surveyor Crater), their initial location, to the SEQBayArea in 5 seconds, as shown in 
Figure 6-14. 

move Moving(Building loc, int pri, int dur) { 
priority: pri; 
max_duration: dur; 
resources: MoveActivity; 
location: loc; 

} 

agent PeteConrad memberof Commander { 
 location: LandingSite; 
… 
} 
agent AlBean memberof LunarModulePilot { 
 location: LandingSite; 
… 
} 
agent DickGordon memberof CommandModulePilot { 
 location: CommandModule; 
… 
} 
agent EdGibson memberof CapCom { 
 location: MissionControlCenter; 
… 
} 
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Figure 6-14. Pete Conrad and Al Bean moving to the SEQBayArea 

Figure 6-15 gives a from-above view of the LM landing site and the ALSEP Offload Area of activity (the 
SEQBayArea in the model) from the Apollo 14 Press Kit (NASA 1971). 

 

Figure 6-15. Apollo 14 Landing site and ALSEP Offload area of activity 

6.4.3 Detecting agents and objects 

As both agents arrive at their new location area they will immediately detect facts about the location of other 
agents and objects that are also in the area they arrive at. The simulation engine automatically creates 
beliefs for the agent from the facts about other objects and agents that are in the same location. The agents 
already in that location will get the belief that the agent that arrived is now also in the location. This way, 
agents will always notice other agents and objects that are in the location the same area. 
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Figure 6-16. Pete Conrad's location beliefs 

Figure 6-16 shows the beliefs and facts of the PeteConrad agent in the Brahms Builder application. By 
opening a simulation history database35 the modeler can investigate what happened during a specific 
simulation run. Figure 6-16 shows all the beliefs the agent PeteConrad received and the facts it created 
during the specific simulation run. The columns show the time the agent created the belief or fact, the type 
(belief/fact) and how it was created (Created by). The (red) rectangle shows the location beliefs agent 
PeteConrad received at time one second into the simulation, created by the simulation engine (Created By: 
ENGINE). The agent received these beliefs due to the move activity Moving that moved the agent from the 
LandingSite area to the SEQBayArea. As you can see in Figure 6-16, at the moment the PeteConrad agent 
arrived at the SEQBayArea location it noticed (i.e. received the beliefs) that Al Bean, his EMU space suit 
and cuff checklist, the LM and the SEQBay, and he himself are all in the SEQBayArea location. Figure 6-16 
also shows other beliefs and facts of the PeteConrad agent. The Created By column shows who or what 
created the belief/fact for the agent. ENGINE means that the simulation engine created the belief/fact, 
CONSEQUENCE shows that a consequence in a workframe or thoughtframe of the agent created the 
belief/fact. DETECTABLE shows a detectable in a workframe created the belief. The name of an agent or 
object in the column shows that that agent or object communicated the belief to the agent. 

6.4.4 Containment relation 

During this case study I ran into a Brahms language limitation. To model the movement of agents and 
objects correctly I had to add the notion of containment to the language (see Figure 6-6). An agent or object 
can “carry” other agents and objects. Consequently, when an agent or object moves locations all the objects 
or agents that are “carried” by the moving agent or object should also move to the new location.  

This is best explained with a simple example from the domain. As shown by the contains-relation in the 
object model in Figure 6-6, the lunar surface astronauts carry their EMU suit and their cuff checklist. As the 
astronauts move from location to location we want these carried objects to move with them, without having 
to specify this moving behavior separately for these objects. Instead, to accomplish this automatically we 
specified a built-in semantic relation called contains. 

                                                      
35 a Microsoft® Access database 
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When the simulation engine executes a move-activity for an agent (or object) it first checks which objects or 
agents the moving agent contains. The simulation engine checks this by finding existing facts of the form: 

Fact:   ( [moving agent-or-object]  contains  [contained agent-or-object] ) 
 

For every such fact the contained agent-or-object is moved as well. To simulate that an agent or object is no 
longer containing another object or agent the above containment-fact needs to be negated: 

Fact:   ( [moving agent-or-object]  contains  [contained agent-or-object]  is false ) 
 

Such a negation undoes the containment, and the previously contained agent or object will not be moved in 
case the agent or object moves.  

Following is a small example of the use of the containment relation in the Apollo 12 model. Consider the 
following scenario; while the LMP agent is offloading an ALSEP package from the SEQ Bay, the CDR agent 
needs to move the first ALSEP package (AlsepPkg1) out of the way, so that the LMP can put the second 
ALSEP package down. Figure 6-17 shows the source code of the activity. 

Figure 6-17. Moving contained object source code 

In step 1, the agent “picks up” the object AlsepPkg1. This is modeled by creating a contains-relation fact 
(fc:100). A belief is also created for the agent (bc:100), because it is obvious that the agent knows he picked 
up the object. Next, in step 2, he performs a move-activity that moves both him and the contained objects to 
the AwayFromTheSEQBayArea area. Then, in step 3, the agent “sets down” the AlsepPkg1 object. This is 
modeled by negating the previously created containment fact and belief. Last, step 4 moves the agent, and 
its current contained objects, back to the SEQBayArea area. Consequently, the AlsepPkg1 object remains 
in the AwayFromTheSEQBayArea area. 

Figure 6-18 shows the simulation output of the execution of the MovingPkg1OutOfTheWay workframe 
described above36. The focus in the picture is on the area within the (red) rectangle. The picture shows the 
activity time-line of the CDR (agent PeteConrad) and that of the ALSEP package (AlsepPkg1) being moved. 
It can be seen that agent PeteConrad is performing step 2 and step 4 from Figure 6-17. The two rectangle 
boxes with the text “mv:”37 and “mv: Move” in it, show the duration of the two move activities. It can be seen 
that after step 2 (rectangle with text “mv:”) the location of both the agent PeteConrad and the object 
AlsepPkg1 has changed from the SEQBayArea area to the AwayFromTheSEQBayArea area38. After agent 
PeteConrad has performed step 4 (rectangle with text “mv: Move”), only agent PeteConrad (and its 
contained objects not shown in Figure 6-18) has moved back to the SEQBayArea area. Consequently, due 
to step 1 and step 3 (the creation and negation of the containment fact), not shown in the figure but 
executed nonetheless, object AlsepPkg1 has been moved out of the way. 

                                                      
36 Figure 6-18 is a screen dump of the AgentViewer tool that shows the result of a simulation. This interface is described in section 6.9.5, 
as well as the loose insert that is provided. 
37 Due to a lack of space in the rectangle, the name of the move activity “MovePkgOutOfTheWay” is not shown. 
38 Figure 6-18 only shows the “Away” text in the agent location bar, again, because of space limitation for the complete text string. 

1. conclude((current contains AlsepPkg1), bc:100, fc:100); 
 

2. MovePkgOutofTheWay(AlsepPkg1, AwayFromTheSEQBayArea, 100, 5); 
 

3. conclude((current contains AlsepPkg1 is false), bc:100, fc:100); 
 

4. Move(SEQBayArea, 10, 5); 
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Figure 6-18. Moving contained object simulation 

6.5 THE ACTIVITY MODEL 

In this section, I describe the ALSEP Offload activities that are performed on the lunar surface, and I 
describe the Brahms model of the Apollo 12 ALSEP Offload. This model represents a part of the work 
practice of the Apollo 12 lunar surface astronauts as they performed the ALSEP Offload activity. As shown 
in section 6.2, there are four people relevant to the Apollo 12 ALSEP Offload; the lunar surface astronauts; 
Pete Conrad the Commander (CRD), Al Bean the Lunar Module Pilot (LMP), as well as Ed Gibson the 
Capsule Communicator (CapCom), and Dick Gordon the Command Module Pilot (CMP).  

There are three separate areas where these four people are located during the Apollo ALSEP Offload 
activity (described in section 6.4). The CapCom sits in the Mission Control Center (MCC) located in the 
Manned Spaceflight Center in Houston, Texas39. His main function is to listen to and communicate directly 
over the voice-loop with the astronauts. The CDR and LMP are the astronauts on the lunar surface and are 
located at or near the area of the SEQ Bay, which is located on the backside of the Lunar Module (LM) 
“Intrepid”. The CMP is orbiting around the moon in the Command Module (CM) “Yankee Clipper.” The main 
characters in the ALSEP Offload activity are CDR Pete Conrad, and the LMP Al Bean. Their work activities 
were planned and trained according to the ALSEP Offload checklist (see Figure 6-2).  

Figure 6-19 shows that although the sequence of removing ALSEP packages during the mission was 
planned, there were more activities performed in practice. After the LMP identified that it is time to start the 
ALSEP Offload, he walks to the SEQ Bay and picks up the SEQ Bay door lanyard from outside of the SEQ 
Bay, and uses it to pull the SEQ Bay door open. The CDR is watching the LMP opening the door, and is not 
as is suggested in the plan “doing-nothing”. Once the SEQ Bay door is open, the CDR grabs the lanyard for 
lowering the first ALSEP package. He walks back from the SEQ Bay with the lanyard in his hand. 
Meanwhile, the LMP is warm and decides to lower the temperature in his EMU suit (Extra-vehicular Mobile 
Unit suit, i.e. his space suit). The CDR pulls the lanyard to move the first ALSEP package from the SEQ Bay 
and lowers it to the ground. While the CDR is performing this activity, the LMP is watching him. When the 
LMP sees a nice reflection in the CDR’s helmet visor he decides to take a couple of photographs of the 
CDR. After the CDR has lowered the first ALSEP package to the surface, it is the LMP’s turn to get the 
second ALSEP package out of the SEQ Bay (compare Figure 6-2 and Figure 6-19). The LMP performs the 
same activities as the CDR to lower the second ALSEP Package to the lunar surface. While lowering the 
second ALSEP package, it is the CDR who is watching the LMP. However, when the LMP is lowering the 

                                                      
39 During the Apollo days the NASA center in Houston was called the Manned Spaceflight Center (MSC). Today it is referred to as 
Johnson Space Center (JSC). 
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package the CDR notices that the first ALSEP package is in the way, and mentions that he will take the first 
package and carry it away from the SEQ Bay area. Once he has done that, and is back at the SEQ Bay, he 
will take three photographs. One photograph of the first ALSEP package as he placed it away from the SEQ 
Bay, and two more photographs of the LMP lowering the second ALSEP package from the SEQ Bay. 
During these activities of the two astronauts on the lunar surface the CapCom is listening to the 
conversation of the astronauts. 

CDR LMP

Watching LMP Open SEQ Bay Door

Remove PKG 1 Watching CDR

Change EMU Suit Cooling

Taking Photographs

Watching LMP Remove PKG 2

Moving PKG 1 Out Of The Way

Taking Photographs

 
Figure 6-19. Activities in practice 

There were activities that the astronauts performed that were not planned or trained. This has to do with the 
nature of what happens in practice, and is precisely what we want to capture in the model, since it defines 
how the work actually happened, i.e. the work in practice. 

6.5.1 Data sources 

I have identified the similarities and differences between the planned activities and the real performed 
activities during the mission by studying the transcribed data of the communications between the CDR, LMP 
and CapCom from the Apollo Lunar Surface Journal (Jones 1997). These communication transcriptions 
have been my major source of data for the Apollo 12 mission. Another source of information has been the 
Apollo 12 Press Kit (NASA 1969) and the Apollo 12 NASA Mission Reports (Godwin 1999). Unfortunately, 
there is no video data for the Apollo 12 ALSEP Offload available. This is due to the fact that an unforeseen 
problem with the TV camera lens and the bright sun on the Moon left the TV camera incapacitated from the 
beginning of the first EVA, right before the ALSEP Offload. Nevertheless, an accurate account of what 
happened during the ALSEP Offload can be derived from the second by second verbal communication 
between the astronauts, in combination with the mission plans. Also, there is video data available from the 
Apollo 14 ALSEP Offload activities. Although the specifics are somewhat different, the opening of the SEQ 
Bay door and lowering the ALSEP packages are similar, and the video is therefore a good source for filling 
in the gaps found in the transcribed communication data. Furthermore, the mission photographs are 
available as well, and provide some extra visual data. 

6.5.2 The Apollo 12 ALSEP offload model 

To reiterate, the goal of this modeling experiment is to describe the work activities of the lunar surface 
astronauts of the Apollo 12 mission as they are offloading the two ALSEP packages from the SEQ Bay. The 
hypothesis is that with Brahms we can describe (model and simulate) the work practice of these Apollo 
astronauts. 

The data paints an accurate picture of the two lunar surface astronauts communicating. However, the data 
does not provide an accurate description of the activities of the LMP and CDR. Although the data provides 
some of the communication from the CapCom and the CMP, there is no detail data of the activities of the 
CapCom and the CMP. However, I will show that the model proofs the hypothesis, by accurately modeling 
and simulating the work practice of the Apollo 12 lunar surface astronauts during the ALSEP Offload, while 
including, where possible, some of the activities of the CapCom and the CMP. 
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The model describes the activities listed in Figure 6-2: Open SEQ Bay Door, Remove PKG-1, Remove 
PKG-2, Deploy Hand Tool Carrier, Unstow Cask Tools, Stow Booms, Unstow Universal Handling Tools, 
and Close SEQ Bay Door. The activity start- and end-times are computed from the Apollo Lunar Surface 
Journal (see Table 6-2) (Jones 1997). 

Table 6-2. ALSEP Offload activity timetable 

Activity Performer GET Begin Time GET End Time Total Time 

1. Open SEQ Bay Door  LMP 116:31:34 116:32:22 0:00:48 

2. Remove PKG-1  CDR 116:32:22 116:33:53 0:01:31 

3. Remove PKG-2 LMP 116:33:53 116:34:44 0:00:51 

4. Deploy Hand Tool Carrier  LMP 116:34:44 116:38:46 0:04:02 

5. Unstow Cask Tools  LMP 116:34:44 116:36:25 0:01:41 

6. Stow Booms  CDR 116:34:44 116:36:25 0:01:41 

7. Unstow UHT CDR 116:34:44 116:36:25 0:01:41 

8. Close SEQ Bay Door  CDR 116:36:25 116:36:49  0:00:24 

Figure 6-20 shows the activities Table 6-2 in the Brahms model. The model is viewed within a tree-view. 
Figure 6-20 shows the AlsepOffload Group in the Groups folder of the Apollo 12 Model. The parent groups 
of a group are positioned under the Parent Groups folder. The parent group of the AlsepOffload group is the 
LunarSurfaceAstronaut group (see also Figure 6-3), which means that the AlsepOffload group inherits all 
elements from that group. The subgroups of a group are positioned under the Member Groups folder. The 
subgroups are the Commander and LunarModulePilot groups, according to the design of the Agent Model 
(see Figure 6-3). The PeteConrad agent is a member of the Commander group, while the AlBean agent is a 
member of the LunarModulePilot group. Consequently, both the PeteConrad and AlBean agent inherit all 
the model elements defined in the AlsepOffload group, as well as all model elements inherited by the 
AlsepOffload group from its parent groups. This means that both agents can theoretically perform all the 
ALSEP offload activities. In reality this was also the case, since both astronauts trained the ALSEP offload 
activities together on Earth many times before the mission. If, for some reason, one astronaut would not be 
able to perform his planned activity, the other could perform it for him. This was shown in later missions, 
when some activities where performed by the astronaut who was not planned to perform the activity (e.g. 
during the ALSEP Offload on the Apollo 15 mission). 
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Figure 6-20. The Brahms ALSEP Offload group and activities model 

The ALSEP offload activities from Table 6-2 are modeled as sub-activities of the AlsepOffload composite-
activity, and can be seen in Figure 6-20 under the Activities Folder of the AlsepOffloadGroup. In the next 
sections, I will describe these activities in more detail, and will explain the Brahms model accordingly. 

6.5.3 The open SEQ Bay door activity 

The ALSEP Offload starts at 116 hours 31 minutes and 34 seconds ground-elapsed time (GET)40, with the 
LMP announcing that they’re starting the offload of the ALSEP (see Table 6-2 and Figure 6-21). The next 
activity is for the LMP to open the SEQ Bay door. In this section, I describe how I modeled this activity in 
Brahms, based on the available Lunar Surface Journal data (Jones 1997). Figure 6-21 is the transcription 
from the actual voice loop communication between the CDR and the LMP during the opening of the SEQ 
Bay door (Jones 1997, Apollo 12 ALSEP Off-load). 

116:31:34 Bean: Okay. And we’ll off-load the ALSEP. (Garbled).  

116:31:39 Conrad: Nope. (Pause)  

116:31:42 Bean: We ought to be able to move out with this thing.  

116:31:44 Conrad: Okay.  

116:31:48 Bean: The experiment bay looks real good.  

116:31:49 Conrad: Yup.  

116:31:50 Bean: The LM exterior looks beautiful the whole way around. Real good shape. Not a lot that doesn’t look the way it 
did the day we launched it.  

                                                      
40 The ground-elapsed time (GET) was the time clock in Houston that was started at the moment of launch. 
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116:32:02 Conrad: (Possibly pulling a lanyard to open the SEQ bay doors) Light one. (Pause)  

116:32:12 Bean: Okay. Here we go, Pete. Ohhhhh, up they go, babes. One ALSEP. (Pause)  

[They have raised the doors that cover the cavity where the ALSEP packages are stowed.] 

116:32:22 Conrad: There it is. 

Figure 6-21. Apollo 12 LSJ: ALSEP Offload transcription (Jones 1997) (with permission) 

There are three high-level (sub)activities that one can identify in this OpenSEQBay activity. First, there is a 
communication to MSC in Houston that they are ready to offload the ALSEP. This is the communication 
starting at 116:31:34. The issue to solve for the modeler is when this activity ends and the next activity 
begins. From the CDR communication at 116:32:02 we can infer that this is the time that the LMP actually 
opens the SEQ Bay door by pulling at the SEQ Bay door lanyard ribbons. So, we could start the activity of 
raising the SEQ Bay door around that time. However, from the video of the Apollo 14 ALSEP Offload it can 
be shown that before the LMP can pull the lanyard ribbons he has to grab them from the SEQ Bay, walk 
back until the ribbons are tight, and only then pull the ribbons to raise the SEQ Bay door. These activities 
have to happen before 116:32:02. 

Table 6-3 shows the activities and sub-activities of the Open SEQ Bay Door activity for both LMP and CDR, 
mapped onto the communication transcribed in the Apollo LSJ. The actual names of the activities and sub-
activities are more or less arbitrary, and conceptualize the modeler’s interpretation of the observations of the 
Apollo 12 communication data and the Apollo 14 video data. However, these data and observations are 
strong evidence that these are the actual activities that are performed during the OpenSEQBay activity. 
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Table 6-3. Open SEQ Bay door activity 

LMP CDR 

Communicate Ready To Offload Watching Opening SEQ Bay Door 

Activity Communication Communication Activity 
Communicate 

Open Door 
116:31:34 Bean: Okay. And 
we’ll off-load the ALSEP. 
(Garbled). 

 Watch Opening 
SEQ Bay Door 

Inspect SEQ 
Bay  116:31:39 Conrad: Nope. 

(Pause)  

 
116:31:42 Bean: We ought to 
be able to move out with this 
thing. 

  

  116:31:44 Conrad: Okay.  

 
116:31:48 Bean: The 
experiment bay looks real 
good. 

  

  116:31:49 Conrad: Yup.  
Raising SEQ Bay Door   

Activity Communication   

Grab Lanyard 
Ribbons 

116:31:50 Bean: The LM 
exterior looks beautiful the 
whole way around. Real 
good shape. Not a lot that 
doesn’t look the way it did 
the day we launched it. 

  

Walk Back To 
Pull Ribbons 

Tight 
   

Pull Lanyard 
Ribbons  

116:32:02 Conrad: 
(Possibly pulling a lanyard 
to open the SEQ bay 
doors) Light one. (Pause) 

 

 

116:32:12 Bean: Okay. Here 
we go, Pete. Ohhhhh, up 
they go, babes. One ALSEP. 
(Pause) 

  

  116:32:22 Conrad: There it 
is.  
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6.6 THE BEHAVIORAL MODEL 

The activities from Table 6-3 are implemented in the Brahms model as the OpenSEQBayDoor composite-
activity. Figure 6-22 shows this activity, its sub-activities and workframes. 

 
Figure 6-22. The OpenSEQ BayDoor composite-activity, sub-activities, and workframes 

Each (sub)activity is “executed” by a workframe, which means that when an agent executes the workframe 
the activity is performed within the context of that workframe. As the first activity during the ALSEP offload, 
the CDR and LMP start walking to the area of the SEQ Bay. Walking to the SEQ Bay area to start opening 
the SEQ Bay door is modeled by the Move activity, seen at the top of Figure 6-22. Now that we defined the 
sub-activities and workframes of the OpenSeqBayDoor activity the question is; how do the CDR and LMP 
agents start this activity during the simulation? Figure 6-23 shows the workframes of the AlsepOffload 
activity that both agents can execute to offload the ALSEP. 

The first workframe to fire—the highest-level workframe, but lowest in Figure 6-23—is the OffloadingAlsep 
workframe, which executes the AlsepOffload activity. Executing the AlsepOffload activity enables all the 
workframes, shown in Figure 6-22, it to potentially fire for the agent. Each of these workframes will execute 
lower-level activities, which are subsumed by the higher-level AlsepOffload activity. 

 
Figure 6-23. The AlsepOffload workframes 
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We can represent the relationship between workframes executing activities, containing other workframes 
that execute activities, etc, in a workframe-activitiy subsumption hierachy as shown in Figure 6-24. 

WF: OffloadingAlsep

ACT: AlsepOffload

WF: DeployingHTC WF: MovingToSEQBay WF: OpeningSEQBayDoor

ACT: Move ACT: OpenSEQBayDoor

WF:
RemovingAlse

pPkg1

WF: CommunicateReadyToOffload WF: RaisingSEQBayDoor WF: WatchingOpeningSEQBayDoor

z

ACT: CommunicateOpenDoor ACT: InspectSeqBay

ACT: GrabLanyardRibbons ACT: WalkBackToPullRibbonsTight ACT: PullLanyardRibbons

ACT: WatchOpeningSEQBayDoor

 

Figure 6-24. AlsepOffload workframe-activity subsumption hierarchy 

Only one primitive activity can be active at any given time (i.e. at any clock-tick). This means that the order 
in which workframes at the same level in the hierarchy fire depends on two things; first, the conditions of the 
workframe that are to be matched to the beliefs of the agent, and second, the priority of the activities within 
the workframes. 

6.6.1 Representing the work context 

Figure 6-25 represents the parallel sequential order of the activities of the CDR and LMP from Table 6-3 
and Figure 6-22. However, Figure 6-25 does not represent how the CDR and LMP came to do what they 
did. The question is not if we can describe the sequential activities of each of the astronauts, but rather, 
what makes the astronauts do what they do at each moment in time. What influence does the specific 
Apollo 12 situation have on when and how they do things? What influence do they have on each other’s 
activity? Are they merely executing the OpenSeqBayDoor plan? Or, are they deciding what to do based on 
their personal knowledge of that plan? If so, we can represent the knowledge of the plan for each individual 
agent, and be done. This is the traditional knowledge-based systems approach, in which we represent the 
knowledge “inside people’s heads” as production rules. However, what makes Al Bean know that he needs 
to open the door now, and what makes Pete Conrad know that he has to just watch the commander. What 
makes them react?  

As much as it has to do with their knowledge of the plan for opening the SEQ Bay door, e.g. the steps that 
they have to go through, it is also a function of the situation, i.e. the situation specific context which they are 
part of. To start the opening door activity they not only need to know what is the right activity to be 
performing at that moment (according to the plan), but they also need to know that they need to go to the 
SEQ Bay. To go to the SEQ Bay they need to know where the SEQ Bay is. Once they are at the SEQ Bay, 
they can see if the door of the SEQ Bay is already open or not. They need to know that the ALSEP 
packages are located inside the SEQ Bay, and where the lanyard ribbons are located, et cetera. All this has 
to do with the context of the Apollo 12 mission. 
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Figure 6-25. Open SEQ Bay door activity sequence model 

In Brahms, we model context using three different modeling concepts. First, we model the geographical 
places at which people perform the work we are interested in (see the section on the Geographical Model, 
section 6.4). Second, we model all the objects and artifacts that are important in the work. In the case of 
opening the SEQ Bay door, we model the LM, the SEQ Bay, the ALSEP packages, as well as the lanyard 
ribbon used to pull open the SEQ Bay door (see the section on the Object Model, section 6.3). Third, we 
model the state of the world in terms of facts that can be detected by our agent astronauts. For example, 
when the astronauts walk over to the SEQ Bay, they immediately detect the state of the SEQ Bay door; is it 
open or closed? They notice the location of all objects in their surroundings. These are the world-facts that 
trigger the agents to react in certain ways, given the activity they are currently performing. For example, Al 
Bean would not always open the SEQ Bay door when he comes to the SEQ Bay and notices that the door 
is closed. He will only do this when he is in the activity of offloading the ALSEP, in particular when his next 
activity is to open the door. This is where the plan interacts with the situation specific context. 

Why does Pete Conrad watch the LMP? What makes him perform that activity? His plan does not say to 
perform that activity (see Figure 6-2). Rather, this activity is a reaction on the LMP’s activity of opening the 
door during the ALSEP Offload. It is the collaboration between the two astronauts that makes Pete Conrad 
watch his partner. He sees his partner grabbing the lanyard ribbons. He therefore knows what activity his 
partner is performing. It is a reaction to the situation and the context, as well as the fact that he is done 
performing his previous activity. 

Figure 6-25 does not represent this context. The influence the context has on the sequence of the activities 
within Figure 6-25 determines the transitions. The interesting parts of Figure 6-25 are the transitions 
between the activities. What makes the model go from one state to another? This is what we want to 
uncover in the understanding of the work practice of the ALSEP offloading. 

6.6.2 A narrative description of what happens in practice 

Following is my interpretation of what happened during the opening of the SEQ Bay door and why the LMP 
and CDR do what they do: 

When they are ready to offload the ALSEP, they first have to walk over to the SEQ Bay, 

Once they arrive at the SEQ Bay, the two astronauts can see the SEQ Bay and can immediately notice that 
the door of the SEQ Bay is still closed. Of course, they both know that the SEQ Bay contains the two 
ALSEP packages, and since they are in the activity of offloading the packages they first need to open the 
door. 
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This triggers them to start the activity of opening the SEQ Bay door, and since the Apollo 12 ALSEP Offload 
plan states that the LMP, Al Bean, is to open the SEQ Bay door, he is the one that announces that they will 
now start with the ALSEP offload. 

Since the LMP is the one who is to perform the activity of opening the SEQ Bay door, he is taking the first 
action and the next activity that is performed is the LMP inspecting the SEQ Bay. However, this is not a 
planned activity. It seems very likely that this activity is performed based on the astronauts’ knowledge that 
mission control is interested in knowing how the SEQ Bay and the LM have withstood the long travel to the 
Moon. It is therefore a very important piece of information that the LMP communicates to Mission Control at 
this point. 

Next, the LMP is ready to start raising the door. To do this he needs to grab the lanyard ribbon with which to 
pull open the door of the SEQ Bay. This means he must know where the lanyard ribbon is to pick-up the 
ribbon. He then walks back with the ribbon. He needs to tighten the ribbon to have enough leverage to pull 
the ribbon. Meanwhile, the CDR is standing close by and is watching the LMP, ready to help in case it is 
needed. Even though the offload plan does not specify any activity for the CDR at this moment, it is logical 
to infer that the CDR’s objective is to closely watch what is happening just in case something happens. This 
is an activity in and of itself. The CDR would not do anything else even though he could. It seems that the 
two astronauts always know what high-level activity the other is performing. This means they are always 
ready to help each other. 

After the SEQ Bay door is all the way open, the LMP lets the lanyard ribbon drop to the lunar surface. 

I created this narrative, based on my analysis of the available mission data. Based on this short description 
of what is happening and what makes the two astronauts do what they do, we can list those elements in the 
context that are most important to include in the model of work practice of the astronauts. 

• The SEQ Bay area location near the LM where this all takes place. 

• The SEQ Bay and the fact that the SEQ Bay is part of the LM located in the SEQ Bay area location. 

• The fact that the exterior of the LM and SEQ Bay are in good condition. 

• The two ALSEP packages and the fact that they are located inside the SEQ Bay. 

• The door of the SEQ Bay, and that it is closed. 

• The lanyard ribbon with which to open the SEQ Bay door. 

• The fact that both astronauts detect each other’s activity. 

• The fact that the LMP needs to carry the lanyard ribbon, and thus must know where this ribbon is 
located for him to pick it up. 

• The fact that after the LMP has completed the activity of opening the door, the SEQ Bay door is open. 

• The fact that after the SEQ Bay door is open the lanyard ribbon’s location is the lunar surface, because 
the LMP lets it fall to the surface. 

• The fact that both astronauts are noticing all these events and become aware of them, and react to 
them appropriately. 

The challenge is to include these independent context elements into the model. Being able to include these 
elements in the model is what makes a Brahms model different from the sequential model of Figure 6-25. A 
sequential model, such as Figure 6-25, can only be executed in the pre-specified order, and does not allow 
for variations based on context. However, work practice is not the rigid execution of a pre-specified activity 
sequence. In practice, the sequence of activities depends on the situation. Is the door already open? Are the 
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packages inside the SEQ Bay or are they already on the ground, et cetera? In the next section, I will 
describe how these contextual and situational elements are included in the model. 

6.6.3 Executing the OffloadingAlsep workframe 

In this section, I describe the execution of the OffloadingAlsep workframe (Figure 6-26). The 
OffloadingAlsep workframe is the highest-level workframe (see Figure 6-23) in the AlsepOffload group (see 
Figure 6-24). Both LunarSurfaceAstronaut agents (LMP and CDR) inherit this workframe, and 
independently, can execute this workframe in order to start the ALSEP offload. 

Figure 6-26. AlsepOffloading workframe 

6.6.3.1 Variable bindings and preconditions 

In order for the agents to execute a workframe (or thoughtframe) all preconditions of the workframe must 
evaluate to true. The Brahms scheduler will test each precondition and match the precondition to the beliefs 
of the agent. If there is a belief that matches the precondition, the precondition evaluates to true. The 
AlsepOffloading workframe in Figure 6-26 uses three variables within the preconditions to bind to objects 
and agents in the model. The first variable, vlcoms (i.e. voice-loop communicators), is used to match to the 
list of all agents (a “collectall” variable) who are members of the group LmVoiceLoop (see the 
“communicationType” precondition), except for the agent itself (see the “not” precondition). This variable is 
passed as a parameter to the AlsepOffload activity, where it is used to communicate to all the agents who 
are listening to the voice loop (see section 6.7). The second variable, pagt, is used to bind to the partner of 
the agent in the “partner” precondition. In case the agent executing the workframe (i.e. current) is the CDR, 
pagt is bound to the LMP agent (i.e. AlBean). In case the agent executing the workframe is the LMP, pagt is 
bound to the CDR agent (i.e. PeteConrad). This is because the LMP agent, AlBean, has an initial-belief  

(the partner of current = PeteConrad),  

workframe OffloadingAlsep { 
 repeat: false; 
 variables: 
  collectall(LmVoiceLoop) vlcoms; 
  forone(LunarSurfaceAstronaut) pagt; 
  forone(EMUSuit) emusuit; 
 
 detectables: 
  detectable DetectPartnerActivity { 
   when (whenever) 
     detect((the currentActivity of pagt = the currentActivity of pagt)); 
  } 
 
  detectable DetectCoolingLevel { 
   when (whenever) 
     detect((the coolingLevel of emusuit = value)); 
  } 
 
  detectable NoticeAlsepPkg1LocationChange { 
   when (whenever) 
     detect((the objectLocation of AlsepPkg1 = anylocation)); 
  } 
 
  detectable NoticeAlsepPkg2LocationChange { 
   when (whenever) 
     detect((the objectLocation of AlsepPkg2 = anylocation)); 
  } 
 
 when (knownval(the currentConceptualActivity of current = AlsepOffload) and 
            not(the name of current = the name of vlcoms) and  
            knownval(the communicationType of vlcoms = LmVoiceLoop) and 
            knownval(the partner of current = pagt) and 
            knownval(current contains emusuit)) 
 do { 
  AlsepOffload(vlcoms, pagt); 
 } 
} 
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while the CDR agent, PeteConrad, has an initial-belief  

(the partner of current = AlBean).  
 

For each of these two agents the precondition matches, and the pagt variable gets bound to the matched 
agent. The third variable, emusuit, is bound to the EMUSuit object of the current agent in the “contains” 
precondition. 

All the above-mentioned preconditions are not used to actually guard the workframe from firing. These are 
all preconditions that are used to bind the variables to the appropriate objects and agents. The only real 
guard for the workframe is the “currentConceptualActivity” precondition. Not until the agent has the belief 
that his current (conceptual) activity is to offload the ALSEP, will this workframe fire. This shows that writing 
workframe preconditions has all the similar precondition control characteristics, such as the ordering, as 
writing preconditions for production rules in traditional expert systems (Clancey 1983), (Clancey 1988) and 
(Clancey 1992). 

6.6.3.2 Detectables 

The workframe in Figure 6-26 contains four detectables that are active as long as the agent is executing the 
AlsepOffload activity within the workframe (this is due to the “whenever” condition in each detectable). All 
four detectables have a “continue” action part (this is the default action of a detectable). This means that all 
the detectables are defined in the workframe so that the agent executing the workframe will detect any of 
the facts that match the detect-conditions, while performing the AlsepOffload activity without disrupting the 
activity itself. This makes it possible for the agent to notice certain facts in the world and react to them, 
because the facts turn into beliefs for the agent. This allows for the following reactive behavior on the part of 
the agent: 

• The DetectPartnerActivity detectable makes sure that during the ALSEP offload activity the CDR 
and LMP are always aware of the activity their partner is performing. This enables the agent to 
react to their partner’s activity. There are multiple reasons for modeling that the astronauts on the 
lunar surface are always aware of this. The first one is that their activities are well choreographed 
and trained, and the second reason is that it is part of the NASA policy that there is a “buddy 
system” for EVA work performed by astronauts. This “buddy system” is a safety precaution. This 
way there is always someone who can help out. This means that the two lunar surface astronauts 
where very much in tune with what their partner was doing, even if they would be working on their 
own activity. 

• The DetectCoolingLevel detectable models the fact that both astronauts are always aware of the 
cooling-level of their space suit. The fact that the astronauts are wearing their space suit makes this 
obvious. This detectable allows the agents to react to the cooling-level, and chance the level of 
cooling accordingly. 

• The NoticeAlsepPkg1(2)LocationChance detectables speak for themselves. Whenever the location 
of either ALSEP package is changed, the agent will notice this, and can react accordingly. This is 
used to simulate the fact that when one of the agents lowers the ALSEP package from the SEQ 
Bay, both agents will become aware of the fact that the ALSEP package has changed its location 
from the SEQ Bay to the SEQ Bay area (i.e. the lunar surface). This belief is used to start/stop the 
activities for offloading the actual packages 

6.6.3.3 Workframe exectution 

Following is a description of how Brahms executes the AlsepOffloading workframe during simulation of both 
the AlBean and the PeteConrad agent. The workframe is executed at time t=0 for both agents. This means 
that both agents are executing an instance of the workframe (Workframe Instantiation or WFI) at the same 
time. I’ll show the WFI for both agents by repeating the workframe from Figure 6-26, but then showing the 
bindings of the variables in preconditions, consequences, detectables, and activity parameters. Figure 6-27 
and Figure 6-28 show the WFI for the agents AlBean and PeteConrad respectively. 
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Figure 6-27. AlsepOffloafing WFI for agent AlBean 

 

 

workframe OffloadingAlsep { 
 repeat: false; 
 variables: 
  collectall(LmVoiceLoop) vlcoms; => (PeteConrad, LmComCircuit) 
  forone(LunarSurfaceAstronaut) pagt; => PeteConrad 
  forone(EMUSuit) emusuit; => BeanEmuSuit 
 
 detectables: 
  detectable DetectPartnerActivity { 
   when (whenever) 
     detect((the currentActivity of PeteConrad = the currentActivity of PeteConrad)); 
  } 
 
  detectable DetectCoolingLevel { 
   when (whenever) 
     detect((the coolingLevel of BeanEmuSuit = value)); 
  } 
 
  detectable NoticeAlsepPkg1LocationChange { 
   when (whenever) 
     detect((the objectLocation of AlsepPkg1 = anylocation)); 
  } 
 
  detectable NoticeAlsepPkg2LocationChange { 
   when (whenever) 
     detect((the objectLocation of AlsepPkg2 = anylocation)); 
  } 
 
 when (knownval(the currentConceptualActivity of AlBean = AlsepOffload) and 
            not(the name of AlBean = the name of (PeteConrad, LmComCircuit)) and  
            knownval(the communicationType of (PeteConrad, LmComCircuit) = LmVoiceLoop) and 
            knownval(the partner of AlBean = PeteConrad) and 
            knownval(AlBean contains BeanEmuSuit)) 
 do { 
  AlsepOffload((PeteConrad, LmComCircuit), PeteConrad); 
 } 
} 
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Figure 6-28. AlsepOffloafing WFI for agent PeteConrad 

The next two sections describe how the CDR and LMP agents are both performing the AlsepOffload 
activity, and in doing so collaborating in opening the SEQ Bay door. 

6.6.4 Performing the AlsepOffload activity 

After the firing of the OffloadingAlsep workframe both agents execute the AlsepOffload composite activity 
(see Figure 6-29). For each agent, the simulation engine changes the agent Activity-Context Tree (ACT) 
based on the workframes and thoughtframes in the composite activity that execute. An ACT consists of 
WFI’s and the current activity context of the selected workframe41. In this section, I will show how the 
simulation engine scheduler schedules the activities for each of the lunar surface astronaut agent. To do 
this, I first provide the source code of the workframes of the AlsepOffload composite activity. Next, I will 
show the ACT for both the AlBean and the PeteConrad agent for two simulation events (steps). I will show 
the change in the ACTs as the beliefs of the agents and the world-facts change over time, due to the 
workframe execution and the agent’s reasoning, interaction with other agents/objects and their environment. 

                                                      
41 Only one workframe instantiation can be fired at any time, which means that there is always only one current activity and therefore only 
one current activity-context. 

workframe OffloadingAlsep { 
 repeat: false; 
 variables: 
  collectall(LmVoiceLoop) vlcoms; => (AlBean, LmComCircuit) 
  forone(LunarSurfaceAstronaut) pagt; => AlBean 
  forone(EMUSuit) emusuit; => ConradEmuSuit 
 
 detectables: 
  detectable DetectPartnerActivity { 
   when (whenever) 
     detect((the currentActivity of AlBean = the currentActivity of AlBean)); 
  } 
 
  detectable DetectCoolingLevel { 
   when (whenever) 
     detect((the coolingLevel of BeanEmuSuit = value)); 
  } 
 
  detectable NoticeAlsepPkg1LocationChange { 
   when (whenever) 
     detect((the objectLocation of AlsepPkg1 = anylocation)); 
  } 
 
  detectable NoticeAlsepPkg2LocationChange { 
   when (whenever) 
     detect((the objectLocation of AlsepPkg2 = anylocation)); 
  } 
 
 when (knownval(the currentConceptualActivity of PeteConrad = AlsepOffload) and 
            not(the name of PeteConrad = the name of (AlBean, LmComCircuit)) and  
            knownval(the communicationType of (AlBean, LmComCircuit) = LmVoiceLoop) and 
            knownval(the partner of PeteConrad = AlBean) and 
            knownval(PeteConrad contains ConradEmuSuit)) 
 do { 
  AlsepOffload((AlBean, LmComCircuit), AlBean); 
 } 
} 
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Figure 6-29. Workframes within the composite AlsepOffload activity 

1. STEP 1: time t = 0 

For each Lunar Surface Agent, the scheduler checks the preconditions of all the workframes and thoughtframes in 
the AlsepOffload activity, based on the agent’s current belief set. 

 
AlBean: 
 

Current Belief Set: 
t=0    =>  BELV: The currentConceptualActivity of AlBean = AlsepOffload 
t=0    =>  BELV: The agentLocation of AlBean = Surveyor Crater 
t=0    =>  BELV: The agentLocation of PeteConrad = Surveyor Crater 
t=0    =>  BELV: The agentLocation of DickGordon = Yankee Clipper 
t=0    =>  BELV: The agentLocation of EdGibson = MissionControlCenter 
t=0    =>  BELV: The partner of AlBean = PeteConrad 
t=0    =>  BELV:  SEQBay contains AlsepPkg1 
t=0    =>  BELV:  SEQBay contains AlsepPkg2 
t=0    =>  BELV:  SEQBay contains OffloadChecklistDecal 
t=0    =>  BELV:  SEQBay contains Pkg1LanyardRibbons 
t=0    =>  BELV:  SEQBay contains Pkg2LanyardRibbons 
t=0    =>  BELV:  SEQBay contains SEQBayDoorLanyardRibbons 
t=0    =>  BELV:  AlBean contains BeanEMUSuit 
t=0    =>  BELV:  AlBean contains LmpCuffCheckList 
t=0    =>  BELV:  BeanEMUSuit contains BeanHasselblad70mm 
t=0    =>  BELV:  PeteConrad contains ConradEMUSuit 
t=0    =>  BELV: PeteConrad contains CdrCuffCheckList 
t=0    =>  BELV:  ConradEMUSuit contains ConradHasselblad70mm 
 

Precondition Matching: 
workframe MovingToSEQBay: 

Prec: not(the agentLocation of current = SEQBayArea)  
TRUE, based on BELV: The agentLocation of AlBean = Surveyor Crater 
 

workframe OpeningSEQBayDoor 
Prec: knownval(the agentLocation of current = SEQBayArea 
FALSE, based on BELV: The agentLocation of AlBean = Surveyor Crater 
Prec: knownval(the door of SEQBay = closed) 
FALSE, based on NO belief about the door of SEQBay 

workframe MovingToSEQBay { 
 repeat: false; 
 detectables: 
  detectable DetectSEQBayDoor { 
   when (100) 
    detect((the door of SEQBay = value)); 
  } 
 when (not(the agentLocation of current = SEQBayArea)) 
 do { 
  conclude((the currentActivity of current = MoveActivity), bc:100, fc:100); 
  Move(SEQBayArea, 5, 1); 
  conclude((the nextActivity of current = OpenSEQBayDoorActivity), bc:100, fc:0); 
 } 
} 
 
workframe OpeningSEQBayDoor { 
 repeat: false; 
 variables: 
  collectall(AlsepPackage) alseppkgs; 
 
 when (knownval(the agentLocation of current = SEQBayArea) and 

knownval(the door of SEQBay = closed) and 
not(the objectLocation of alseppkgs = SEQBayArea)) 

 do { 
  conclude((the currentActivity of current = OpenSEQBayDoorActivity), bc:100, fc:100); 
  OpenSEQBayDoor(vlcoms); 
  conclude((the door of SEQBay = open), bc:100, fc:100); 
 } 
} 
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Prec: not(the objectLocation of alseppkgs = SEQBayArea) 
TRUE, based on NO belief about the location of AlsepPkg1 and AlsepPkg2 
 

Activity-Context Tree: 

 

Figure 6-30. AlBean's Step 1 Activity-Context Tree 

PeteConrad: 
 

Current Belief set: 
t=0    =>  BELV: The currentConceptualActivity of PeteConrad = AlsepOffload 
t=0    =>  BELV: The agentLocation of PeteConrad = SurveyorCrater 
t=0    =>  BELV: The agentLocation of AlBean = SurveyorCrater 
t=0    =>  BELV: The agentLocation of DickGordon = YankeeClipper 
t=0    =>  BELV: The agentLocation of EdGibson = MissionControlCenter 
t=0    =>  BELV: The partner of PeteConrad = AlBean 
t=0    =>  BELV:  SEQBay contains AlsepPkg1 
t=0    =>  BELV:  SEQBay contains AlsepPkg2 
t=0    =>  BELV:  SEQBay contains OffloadChecklistDecal 
t=0    =>  BELV:  SEQBay contains Pkg1LanyardRibbons 
t=0    =>  BELV:  SEQBay contains Pkg2LanyardRibbons 
t=0    =>  BELV:  SEQBay contains SEQBayDoorLanyardRibbons 
t=0    =>  BELV:  AlBean contains BeanEMUSuit 
t=0    =>  BELV:  AlBean contains LmpCuffCheckList 
t=0    =>  BELV:  BeanEMUSuit contains BeanHasselblad70mm 
t=0    =>  BELV:  PeteConrad contains ConradEMUSuit 
t=0    =>  BELV: PeteConrad contains CdrCuffCheckList 
t=0    =>  BELV:  ConradEMUSuit contains ConradHasselblad70mm 
 

Precondition Matching: 
workframe MovingToSEQBay: 

Prec: not(the agentLocation of current = SEQBayArea)  
TRUE, based on BELV: The agentLocation of PeteConrad = SurveyorCrater 
 

workframe OpeningSEQBayDoor 
Prec: knownval(the agentLocation of current = SEQBayArea 
FALSE, based on BELV: The agentLocation of PeteConrad = SurveyorCrater 
Prec: knownval(the door of SEQBay = closed) 
FALSE, based on NO belief about the door of SEQBay 
Prec: not(the objectLocation of alseppkgs = SEQBayArea) 
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TRUE, based on NO belief about the location of AlsepPkg1 and AlsepPkg2 
 

Activity-Context Tree: 

 

Figure 6-31. PeteConrad's Step 1 Activity-Context Tree 

Both agents are executing a move-activity from their current location (i.e. Surveyor Crater) to the 
SEQBayArea, as can be seen in Figure 6-30 and Figure 6-31. As the agents move to the new location, the 
objects that they are containing (i.e. cuff checklist and EMU suit) are automatically moved with them to the 
new location. As the agents arrive in the new location, they detect that the SEQ Bay door is still closed. Also 
shown in Figure 6-30 and Figure 6-31, the agents automatically notice (i.e. the engine automatically creates 
the beliefs for the agents) the location of all other objects and agents that are also in the new location; i.e. 
the location of the other agent, its cuff checklist and EMU Suit, the LM, and the SEQ Bay. Both agents also 
detect each other’s current activity, through the DetectPartnerActivity detectable in the AlsepOffload activity. 
Lastly, the agents receive a belief about their next activity to open the SEQ Bay door. 

When the simulation clock has increased by one, the following (partial) situation exists: 

2. STEP 2: time t = 1 

For each Lunar Surface Agent, the scheduler checks the preconditions of all the workframes and thoughtframes in 
the AlsepOffload activity, based on the agent’s current belief set. 

 
AlBean: 
 

Current Belief Set: 
t=1    => BELV: The currentActivity of AlBean = OpenSEQBayDoorActivity 
t=1    =>  BELV: The nextActivity of AlBean = OpenSEQBayDoorActivity 
t=1    =>  BELV: The door of SEQBay =  closed 
t=1    => BELV: The currentActivity of PeteConrad = MoveActivity 
t=1    =>  BELV: The objectLocation of SEQBay = SEQBayArea 
t=1    =>  BELV: The objectLocation of LM = SEQBayArea  
t=1    =>  BELV: The agentLocation of AlBean = SEQBayArea 
t=1    => BELV: The objectLocation of BeanEMUSuit = SEQBayArea 
t=1    => BELV: The objectLocation of LmpCuffCheckList = SEQBayArea 
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t=1    =>  BELV: The agentLocation of PeteConrad = SEQBayArea 
t=1    => BELV: The objectLocation of ConradEMUSuit = SEQBayArea 
t=1    => BELV: The objectLocation of CdrCuffCheckList = SEQBayArea 
t=1    => BELV: The currentActivity of AlBean = MoveActivity 
t=0    =>  BELV: The currentConceptualActivity of AlBean = AlsepOffload 
t=0    =>  BELV: The agentLocation of DickGordon = YankeeClipper 
t=0    =>  BELV: The agentLocation of EdGibson = MissionControlCenter 
t=0    =>  BELV: The partner of AlBean = PeteConrad 
t=0    =>  BELV:  SEQBay contains AlsepPkg1 
t=0    =>  BELV:  SEQBay contains AlsepPkg2 
t=0    =>  BELV:  SEQBay contains OffloadChecklistDecal 
t=0    =>  BELV:  SEQBay contains Pkg1LanyardRibbons 
t=0    =>  BELV:  SEQBay contains Pkg2LanyardRibbons 
t=0    =>  BELV:  SEQBay contains SEQBayDoorLanyardRibbons 
t=0    =>  BELV:  AlBean contains BeanEMUSuit 
t=0    =>  BELV:  AlBean contains LmpCuffCheckList 
t=0    =>  BELV:  BeanEMUSuit contains BeanHasselblad70mm 
t=0    =>  BELV:  PeteConrad contains ConradEMUSuit 
t=0    =>  BELV:  PeteConrad contains CdrCuffCheckList 
t=0    =>  BELV:  ConradEMUSuit contains ConradHasselblad70mm 
 

Precondition Matching: 
workframe MovingToSEQBay: 

Prec: not(the agentLocation of current = SEQBayArea)  
FALSE, based on BELV: The agentLocation of AlBean = SEQBayArea 
 

workframe OpeningSEQBayDoor 
Prec: knownval(the agentLocation of current = SEQBayArea 
TRUE, based on BELV: The agentLocation of AlBean = SEQBayArea 
Prec: knownval(the door of SEQBay = closed) 
TRUE, based on BELV: The door of SEQBay =  closed 
Prec: not(the objectLocation of alseppkgs = SEQBayArea) 
TRUE, based on NO belief about the location of AlsepPkg1 and AlsepPkg2 
 

Activity-Context Tree: 
 

As the move-activity in Step 1 (Figure 6-30) ends, in the next clock-tick (t=1) the ACT for agent AlBean 
changes. The agent is still within the OffloadAlsep activity, because there are still workframes that are in the 
working-state. The MovingToSEQBay workframe has finished executing, its preconditions are false, and its 
repeat-variable has the value “false”. Therefore, the working WFI is finished and stops. However, the 
preconditions of the OpeningSEQBayDoor workframe have become true in the same clock-tick (t=1), and a 
new working WFI for this workframe is created (see Figure 6-32). Next, the composite activity 
OpenSEQBayDoor in this WFI gets executed. Consequently, the preconditions of all workframes in it are 
checked. It turns out that for agent AlBean, the preconditions of two of the three workframes evaluate to 
“true”. This means that WFI’s are created for both the RaiseSEQBayDoor and 
CommunicateReadyToOffload workframes, and their state becomes “available”. Since there can only be 
one WFI working at that level in the ACT, the engine solves the conflict by comparing the priorities of the two 
available WFI’s. The priority of a WFI is equal to the priority of the highest activity priority within it. In this 
case, the priority of the RaiseSEQBayDoor WFI is zero (0) and that of the CommunicateReadyToOffload 
WFI is ten (10). Consequently, the CommunicateReadyToOffload WFI becomes the working WFI, and its 
first activity Talk the current activity, i.e. the agent’s activity that is being executed. 
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Figure 6-32. AlBean's Step 2 Activity-Context Tree 

Also shown in Figure 6-32 are the detectables in the workframes OffloadingAlsep and 
CommunicateReadyToOffload firing in step 2 (t=1). However, in both cases the beliefs are not created until 
t=2, as a result of detecting the facts at t=1. This occurs at t=2 and not t=1, due to the clock-based 
simulation engine. The current activity Talk starts execution at t=1. This means that all the detectables in the 
working WFI’s are checked at t=1. The beliefs are not created until the next clock-tick, t=2.42 

PeteConrad: 
 

Current Belief Set 
t=1    => BELV: The currentActivity of PeteConrad = WatchOpeningSEQBayDoorActivity 
t=1    => BELV: The currentActivity of PeteConrad = OpenSEQBayDoorActivity 
t=1    =>  BELV: The nextActivity of PeteConrad = OpenSEQBayDoorActivity 
t=1    =>  BELV: The door of SEQBay = closed 
t=1    => BELV: The currentActivity of AlBean = MoveActivity 
t=1    => BELV: The fieldOfVision of PeteConrad = AlsepPackageInSeqBay 
t=1    =>  BELV: The objectLocation of SEQBay = SEQBayArea 
t=1    =>  BELV: The objectLocation of LM = SEQBayArea  
t=1    =>  BELV: The agentLocation of AlBean = SEQBayArea 
t=1    => BELV: The objectLocation of BeanEMUSuit = SEQBayArea 
t=1    => BELV: The objectLocation of LmpCuffCheckList = SEQBayArea 
t=1    =>  BELV: The agentLocation of PeteConrad = SEQBayArea 
t=1    => BELV: The objectLocation of ConradEMUSuit = SEQBayArea 
t=1    => BELV: The objectLocation of CdrCuffCheckList = SEQBayArea 
t=1    => BELV: The currentActivity of PeteConrad  = MoveActivity 
t=0    =>  BELV: The currentConceptualActivity of PeteConrad = AlsepOffload 
t=0    =>  BELV: The agentLocation of DickGordon = YankeeClipper 
t=0    =>  BELV: The agentLocation of EdGibson = MissionControlCenter 
t=0    =>  BELV: The partner of PeteConrad = AlBean 
t=0    =>  BELV:  SEQBay contains AlsepPkg1 
t=0    =>  BELV:  SEQBay contains AlsepPkg2 
t=0    =>  BELV:  SEQBay contains OffloadChecklistDecal 
t=0    =>  BELV:  SEQBay contains Pkg1LanyardRibbons 
t=0    =>  BELV:  SEQBay contains Pkg2LanyardRibbons 
t=0    =>  BELV:  SEQBay contains SEQBayDoorLanyardRibbons 
t=0    =>  BELV:  AlBean contains BeanEMUSuit 
t=0    =>  BELV:  AlBean contains LmpCuffCheckList 

                                                      
42 In our new Java-based discrete event simulation engine the beliefs will be created at the same clock-tick, i.e. t=1. 
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t=0    =>  BELV:  BeanEMUSuit contains BeanHasselblad70mm 
t=0    =>  BELV:  PeteConrad contains ConradEMUSuit 
t=0    =>  BELV:  PeteConrad contains CdrCuffCheckList 
t=0    =>  BELV:  ConradEMUSuit contains ConradHasselblad70mm 
 

Precondition Matching: 
workframe MovingToSEQBay: 

Prec: not(the agentLocation of current = SEQBayArea)  
FALSE, based on BELV: The agentLocation of PeteConrad = SEQBayArea 
 

workframe OpeningSEQBayDoor 
Prec: knownval(the agentLocation of current = SEQBayArea 
TRUE, based on BELV: The agentLocation of PeteConrad = SEQBayArea 
Prec: knownval(the door of SEQBay = closed) 
TRUE, based on BELV: The door of SEQBay =  closed 
Prec: not(the objectLocation of alseppkgs = SEQBayArea) 
TRUE, based on NO belief about the location of AlsepPkg1 and AlsepPkg2 
 

Activity-Context Tree: 
 

As the PeteConrad agent also comes into the SEQBayArea location, he also starts working on the 
OpenSeqBayDoor activity. Potentially the agent can execute the same workframes as AlBean. However, 
due to the belief-set of the agent PeteConrad, it will fire the WatchingOpeningSEQBayDoor workframe, 
which therefore becomes the working WFI. 

 

Figure 6-33. PeteConrad's Step 2 Activity-Context Tree 

6.6.5 Viewing the simulation results 

In this section I show the results of the simulation of the OpenSEQBayDoor activity, as described in the 
previous sections. Figure 6-34 shows the ACTs of the AlsepOffload activity performed by both the AlBean 
and the PeteConrad agent, as described in section 6.6.4, as well as the communication between the two 
agents. While performing the AlsepOffload composite activity, both agents are within the OpenSEQBayDoor 
activity. While AlBean is performing the activities within the CommunicateReady and the 
RaisingSEQBayDoor workframe, the PeteConrad agent is performing the activities within the 
WatchingOpenSEQBayDoor workframe. The grain-size of the simulation is one second. This means that 
the simulation engine changes the ACT for every agent and object every second of simulated time. We can 
therefore say that the simulation is a second by second model of the work practice of the lunar surface 
astronauts. Figure 6-34 also shows the location the agent was in when performing the activity. As an 
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overlay, the dotted arrows show the communication of beliefs between agents AlBean and PeteConrad. 
The direction of the arrows show the direction in which the beliefs are being communicated, while the little 
square box at the start of the arrow shows the agent that is performing the communication.  

Figure 6-34 is a screen shot from the AgentViewer application43. The AgentViewer application takes as 
input a Brahms Simulation History database44. This history database contains the historical situation-specific 
model data of a particular simulation run. The AgentViewer application creates a graphical representation of 
the activity of agents and objects during a simulation. 

 

Figure 6-34. AlsepOffload activity agent timeline 

Grouping a number of important data about the activity of the agent during the simulation into an agent 
workframe-activity hierarchy shows the ACT of an agent or object, at any time during the simulation. Each 
agent’s ACT consists of a number of “bars.” Each bar is an object that can be manipulated in the 
AgentViewer.  

At the top of each agent’s ACT there is the location bar. The location bar shows the movement of the agent 
throughout its activities. When an agent changes location the color of the location bar changes45. In Figure 
6-34 both agents start in the same initial location This is the Apollo 12 LandingSite area (Surveyor Crater). 
You can see that the next location both agents are in is the SEQBayArea location. 

The next bar in the agent’s ACT is the time-line bar. This bar shows the simulation time. Figure 6-34 shows 
that the AlsepOffload activity starts just after 8:31:30 AM (in fact the simulation clock starts at time 8:31:32 
AM). Each thin white line in the time-line bar shows a 5-second interval. Consequently, Figure 6-34 shows 
an activity interval of about 50 seconds (from 8:31:30 AM until about 8:32:23 AM. 
                                                      
43 The AgentViewer application is a stand-alone Visual Basic application we developed for viewing the results of a simulation. 
44 The history database is a complex relational database containing the simulation data preserving their relationships. 
45 An agent does not effectively change its location until the simulation engine has finished a move activity and consequently positions the 
agent into the new location. The agent’s location during the move activity stays unchanged, even though the agent is moving, and should 
thus not be in any location. Brahms is not modeling the movement of agents during the execution of a move-activity. 
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The third bar is the agent’s name bar, with the name of the agent and an agent icon). This bar shows which 
agent or object46 is being displayed  

The fourth and final bar is the workframe-activity bar. This is the bar that shows the execution of the 
workframes, activities, and thoughtframes for the agent. Workframes are represented as blue bars that start 
with the letters “wf”, for workframe, and the name of the workframe (if it fits within the graphics block). 
Underneath a workframe bar there can either be a flesh-colored bar, or a green-colored bar. A flesh-colored 
bar represents a composite activity, and starts with the letters “ca”, for composite activity. A green-colored 
bar is a primitive-, move-, communicate-, or create-object activity. These are always the lowest level 
activities. Each type of primitive activity is indicated by a different shade of green. Other than a color 
indication; a primitive activity is indicated by the letters “pa”, for primitive activity; a move activity by the 
letters “mv”, for move; a communicate activity by the letters “cw”, for communicating-with; a create-object 
activity by the letters “co”, for create-object. When the size of the graphics block is large enough to contain 
the name of the activity it is shown as well. If not, the name is shown when the user moves the mouse over 
the activity or workframe box. 

6.7 VOICE-LOOP COMMUNICATION 

One of the most important aspects of work practice is the way people communicate. The communication to 
and from the Apollo Lunar Surface was made possible by the Extra-Vehicular Communication System 
(EVCS). The EVCS was a communication relay system that communicated voice from the astronauts via 
their EMU suits to the LM and via the LM, using a S-Band antenna, to mission control. The voice of the 
CapCom was communicated back to the LM and the astronauts via the same system (see Figure 6-35). 
This way the lunar surface astronauts and CapCom were in constant two-way communication. The CMP 
and CapCom had a similar communication system via the CM. The two lunar surface astronauts where 
operating their communication system in dual mode, which meant that they were always able to hear each 
other. However, the CMP was not in direct communication with the lunar surface astronauts, and was 
therefore not always able to hear them. 

In this section I describe how the EVCS, or as I have named it, the voice-loop communication has been 
modeled in Brahms. 

6.7.1 Communication delay 

Conversational overlaps are a normal part of human dialog, and humans are pretty well apt to deal with this 
phenomenon. However, the communication delay from Earth to the Moon is significantly larger than the 
face-to-face or phone communication on Earth. The one-way delay, to Earth and to the Moon, is one and a 
quarter (1.25) second. This means a minimum of two and a half (2.5) seconds round-trip communication 
delay. If one of the astronauts made an utterance, the CapCom would hear the utterance one-and-a-quarter 
second later. If the CapCom would respond immediately, the astronauts would not hear this response until 
one and a quarter second later, which means a total of, at minimum, two and a half seconds. 

                                                      
46 Objects have a different object icon. 
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Figure 6-35. Extra-Vehicular Communication System 

During the Apollo missions the communication delay sometimes lead to problematic communication 
patterns, as is shown in the example from Apollo 17 from the section "Journal Preparation and Structure" in 
the Apollo LSJ (Jones 1997).  

In the following example, we imagine CapCom Bob Parker giving Gene Cernan instructions on 
parking the Rover. Before Cernan hears Parker, he starts to make a comment about where he is 
parked. He then stops talking, listens to Parker (who doesn't stop talking), responds, and then 
continues with his comment.  

Parker: Gene, just a reminder that we want a Rover (garbled)...  

Cernan: Bob, we've stopped next to...(Hears Parker)  

Parker: ...(heading) of 045; and, when you get out, we'll need readouts.  

Cernan: (Responding to Parker) Okay, Bob. We've parked next to one of the fresh craters that shows 
up on the map.  

Generally, when someone's utterance ends with ellipses and his next utterance begins with ellipses, 
the reader should infer that the speaker kept talking under the overlapping remark. When someone's 
utterance ends with ellipses but his next utterance does not begin with ellipses, the reader should infer 
either a break in thought or a pause to listen. Unintelligible dialog is indicated by the editorial comment 
"garbled". Unintelligible dialog is often associated with overlapping conversations and in this 
illustration, on the continuation of Parker's utterance I have indicated the likely missing word. “ 

Although in this example Eric Jones is referring to the transcription as done for the Apollo LSJ, the fact of 
the matter is that if one wants to model the communication utterances of the astronauts and their impact on 
work practice, we have to model the one and a quarter delay for each communication event.  

6.7.2 Modeling the communication to Earth 

The voice-loop in context of the Apollo missions is the inter-communication system between the astronauts 
on the Moon and the CapCom at MSC in Houston. 

There is a significant difference between voice-loop communication and face-to-face (f-2-f) communication. 
First, and foremost, f-2-f communication is bounded to geographical location of the agents. This means that 
the agents have to be in the same location to be able to engage in a f-2-f communication activity. This is 
referred to as Same Time/Same Place (STSP) communication (Chapter 3.2.4.4). In voice-loop 
communication there is no restriction on the geographical location of the engaging agents. The agents can 
be in any location, indeed even on Earth and on the Moon. 
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Another difference is the fact the in a voice-loop communication there is no need to “go to” somebody 
before a communication can take place. This is similar to a phone communication (Same Time/Different 
Place (STDP) communication). However, different from a phone communication, there is no need to “call” 
someone before the communication can start. Therefore, a voice-loop communication is a combination of f-
2-f and phone communication, it is a STSP/DP communication form. 

To model the communication delay over the EVCS, I have developed a voice-loop communication model 
that includes the LM communication circuit as an additional agent with behavior. When a lunar surface 
agent makes an utterance (i.e. performs a communication transfer), this utterance is communicated to his 
partner and to the LM communication circuit agent. The LM communication circuit agent (LmComCircuit) 
communicates the utterance to the CapCom agent with a delay of one second47. The result is that the 
CapCom agent will receive the communicated belief a second (a clock-tick) later, while the partner on the 
lunar surface will receive the belief instantaneous, i.e. at the moment of the communication. 

Figure 6-36 shows how the voice-loop communication model lets the lunar surface agent AlBean 
communicate to both his partner PeteConrad and CapCom EdGibson that he is ready to start with the 
offload activity. First, the agent that speaks, AlBean in this case, has to have a belief about what needs to be 
spoken. Figure 6-36 shows this belief about the speechAct attribute being created in the 
CommunicateReadyToOffload workframe: 

conclude((the speechAct of current = ReadyToOffloadAlsep)); 
 

The agent AlBean can now communicate this belief in the Talk communicate-activity: 

Talk(vlcoms, start, OpenSEQBayDoorActivity, 10, 8); 
 

This Talk activity transfers the belief at the start of the activity to all the agents bound to the vlcoms variable 
(PeteConrad and LmComCircuit in this case). The Talk activity is part of the VoiceLoopCommunicator group 
shown in Figure 6-37. Every member of the VoiceLoopCommunicator group, which the AlBean agent (as 
well as the PeteConrad and LmComCircuit agents) is a member of, inherits this Talk activity and will 
therefore be able to communicate its current belief about the speechAct attribute. Consequently, both the 
PeteConrad and the LmComCircuit agent receive AlBean’s belief about the speechAct attribute. Next, the 
LmComCircuit agent performs the SendComToEarth activity, which actually transfers the speechAct belief it 
just received from AlBean to the agents bound to the vlagts variable.  

SendComToEarth(AlBean, vlagts); 
 

The vlagts variable is bound to just the EdGibson agent (since he is the only agent with the 
communicationType equal to “MscVoiceLoop,” meaning he is the only agent listening to the voiceloop in 
MSC. The SendComToEarth activity, shown in Figure 6-36, has a duration of one second and transfers the 
speechAct belief at the end of the activity. Consequently, this describes the communication delay from the 
Moon to Earth. For longer delays one would simply increase the duration of SendComToEarth activity, 
making this a general model for voice-loop communication with communication delay. 

                                                      
47 The Brahms clock grain-size cannot be set to 1.25 seconds, but has to be set to an integer number. 
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Figure 6-36. Voice-loop communication via LmComCircuit 

6.7.3 The voice-loop library model 

This voice-loop behavior is something that we want to re-use in other modeling efforts. I therefore developed 
this behavior as a library model that can be re-used over and over again. To do this we need to abstract the 
functionality of the voice-loop into separate functional groups. In this section, I describe the design of the 
voice-loop library model as it is shown working in Figure 6-36. 

We can abstract the workings of the voice-loop system into two separate groups. First, there is a group of 
agents that can communicate over a voice-loop together. These agents are all members of the 
VoiceLoopCommunicator group. The VoiceLoopCommunicator group in turn is a member of the more 
abstract Communicator group. This group specifies those agents that can communicate in one way or 
another with each other, be it using a voice-loop, a telephone, e-mail, et cetera. There are three subgroups 
of the VoiceLoopCommunicator group, namely the LmVoiceLoop, the CmVoiceLoop, and the 
MscVoiceLoop group. 

ComCircuit: 
workframe SendingLmpComToEarth { 
 repeat: true; 
 variables: 
  collectall(MscVoiceLoop) vlagts; 
  foreach(LunarModulePilot)lmp; 
 when (knownval(the earthCom of lmp = true) and 
    knownval(the groupMembership of lmp = "LunarModulePilot") and 
    knownval(the communicationType of vlagts = MscVoiceLoop)) 
 do { 
  SendComToEarth(lmp, vlagts); 
  conclude((the earthCom of lmp = false), bc:100, fc:0); 
 } 
} 

AlsepOffloadGroup: 
workframe CommunicateReadyToOffload { 
 repeat: false; 
 detectables: … 
 when (knownval(the groupMembership of current = "LunarModulePilot")) 
 do { 
  conclude((the speechAct of current = ReadyToOffloadAlsep)); 
  Talk(vlcoms, start, OpenSEQBayDoorActivity, 10, 8); 
  … 
  … 
  conclude((the nextActivity of current = sRaiseSEQBayDoorActivity)); 
 } 
} 
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Then there is a group of agents that represent the communication circuits for each voice-loop. This is the 
ComCircuit group. This group has two member agents, namely one for the CM voice-loop, CmComCircuit, 
and one for the LM voice-loop, LmComCircuit. These two agents represent the communication circuits that 
create the delay of the communication between Earth and the Moon. The reason for modeling these as a 
group with agents, as opposed to a class with objects, is because we need these communication circuit 
agents to react to the communication transfers of beliefs from the “talking” agent. Although objects can 
receive and communicate beliefs, they cannot react to the beliefs they receive (objects only react to facts). 
All in all, it makes things easier from a modeling standpoint to model the communication circuits as agents, 
and since Brahms does not prescribe when to use agents versus objects this is a perfectly fine decision. 
The group hierarchy of the voice-loop model is presented in Figure 6-37. 

 

Figure 6-37. Voice-loop library model group hierarchy 

6.8 OBJECT INTERACTION 

We live in a world with objects. We look at them, touch them, and use them in our every day lives. When 
people work they use tools to accomplish what needs to be done. Interacting with objects in our 
environment is something so natural that we almost take it for granted when we consider how we do things. 
If we take a closer look at the work practice level, we need to include the way people interact with objects to 
describe what they do. On the moon the astronauts were together. However, they had artifacts with them, 
and objects that they needed to work on, and tools to use in their work. In this section, I describe how in 
Brahms we can model the interaction between objects and agents. I show the astronauts taking 
photographs and describe the model of the activities of the agent, and how the object it uses in these 
activities reacts and the way they both interact. 

6.8.1 Lunar surface photography 

Imagine taking a photograph. What do you do? What do you need? What does the camera do? Is it you or 
the camera that creates the photo? As I described before, all the tasks of the astronauts were planned and 
well trained. However, taking photographs was an acceptation to that rule. As it turns out, the Apollo 
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photographs were one of the most important scientific data returned to Earth. Some photographs were 
planned, but most were not, as is shown in the following example. 

 
Figure 6-38. NASA picture AS12-47- 6913 

Figure 6-38 shows a photograph that Al Bean took of CDR Pete Conrad, when he was lowering ALSEP 
Package-1 to the lunar surface. How did he do it? It is a subtle point, but it shows the collaboration between 
the two astronauts through the use of the photo camera. 

116:32:48 Bean: Sure do. (Pause) Here it (probably the first package) comes.  

116:32:53 Conrad: Coming right out.  

116:32:54 Bean: And just about right. Riding right out on the boom, Houston. Sure looks pretty.  

116:33:02 Gibson: (Making a mis-identification) Roger, Pete. We copy. (Long Pause)  

116:33:36 Bean: (Wanting to take a picture) Look at me, Pete. (Pause) It’s a good shot, babe. 
The LM and everything’s reflecting in your visor. (Pause)  

[Al’s photos AS12-47- 6913 (**) and 6914 (**) show Pete using a tape to guide the first of the ALSEP 
packages out of the SEQ Bay. Photo 47-6915 (**) was probably taken late in the ALSEP off-load.]  
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Figure 6-39. Al Bean taking two photographs of Pete Contrad 

Figure 6-39 shows what happened during the simulation of the activity of taking this picture. First, it is 
important to realize how Al Bean decides to take a picture, and how this is modeled in Brahms. If we look at 
the utterance of Al Bean, we get some clues as to how this interaction happened. Al Bean says: “The LM 
and everything’s reflecting in your visor.” I interpret this as that the beautiful reflections in Pete Conrad’s 
visor of his EMU suit made him want to take a picture (see the beautiful reflection in Figure 6-38). You can 
see in Figure 6-39 that the ConradEMUSuit object creates the fact that there is a reflection from its visor. At 
that moment, agent PeteConrad performs the activity LoweringPkgToSurface. Agent AlBean detects the 
reflecting visor fact, while watching agent PeteConrad. This detection interrupts agent AlBean’s activity, and 
makes him perform the activity GetCommandersAttention. This activity represents the communication of Al 
Bean at time 116:33:36, where he says: “Look at me, Pete.” This communication is shown in Figure 6-39 by 
the first arrow. After this activity, agent AlBean starts the TakingPhotograph workframe shown in Figure 6-39 
and described in Figure 6-40. 
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First of all, taking a photograph is something that is not related specifically to the ALSEP Offload activity. 
Therefore, the TakingPhotograph workframe is not defined in the AlsepOffloadGroup group. Instead, it is 
part of all possible activities for members of the LunarSurfaceAstronaut group, because every lunar surface 
astronaut can take photographs at any moment. It is therefore that the agent AlBean interrupts the 
AlsepOffload activity to start the TakingPhotograph activity. 

Figure 6-40. Taking a photograph 

After he has taken the photographs, he continues with the interrupted AlsepOffload activity (see the small 
vertical four lines in Figure 6-39, at the beginning and end of the OffloadingAlsep workframe of agent 
AlBean). Figure 6-40 describes the interaction between the agent and a PhotoCamera object in order for 
the agent to take a photograph (this numbered list refers to the numbers in Figure 6-40):  

1. After agent AlBean starts the workframe TakingPhotograph, due to the fact that it beliefs that the 
number of photos to take is smaller than the number he has taken (see the precondition), it is simulated 
that the agent pushes the shutter release button on the camera. This is represented by the creation of 
the belief and fact  

(AlBean PushesShutterReleaseButtonOf BeanHasselblad70mm) 
 

The creation of this fact triggers the PhotoCamera object BeanHasselblad70mm to perform the 
OpenAndCloseShutter workframe, due to the fact that its preconditions are now satisfied. 

2. Next, the camera object performs the CreateImageOnFilm create-object activity. On the left side of 
Figure 6-39 this dynamically-created object is shown as a NasaPicture object (AS12-47-691x). This 
actually represents the photo in Figure 6-38. After this activity, the camera object creates three facts; 
first, it creates the fact that the photo object has been created. Secondly, it creates the facts that it has 
taken a photo and that the agent AlBean stopped pushing the shutter release button on the camera. 
These last two facts are detected by agent AlBean, who is still performing the TakingPhotograph activity 
(arrows 2a and 2b in Figure 6-40). Arrow 2b shows that the agent stops the TakeThePicture activity by 
performing a complete action in the ReleaseShutter detectable, simulating that the agent has pushed 
the shutter button and has taken the picture.  

1 

2a 

2b 

3 

4a 

4b 
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3. Arrow 3, at the same time, shows that the agent fires the thoughtframe PhotoTaken. This thoughtframe 
increases the agent's belief about the number of photos it has taken. 

4. Last, but not least, arrows 4a and 4b, make sure that the agent takes the right number of photographs. 
In the example in Figure 6-39, the agent takes two photographs, one after the other. 

This example shows a general model for taking pictures. The only thing the agent needs to start out with is 
its camera contained on his EMU suit. Later on in the ALSEP Offload activity, during the offload of the 
second package, the PeteConrad agent actually takes three photos of AlBean while he is lowering object 
AlsepPkg2 to the ground, using the ConradHasselblad70mm PhotoCamera object (see Figure 6-41). 

 

Figure 6-41. The PeteConrad agent taking photographs 

Figure 6-42 shows the three actual photographs Pete Conrad took. 

     

Figure 6-42. Photographs AS12-47-6783, 84, and 85 by Pete Conrad 

A Brahms limitation 

This example shows one of the limitations of a Brahms simulation. Although we can represent and simulate 
the taking of photographs, as well as the camera actually creating the NasaPicture objects, Brahms cannot 
show the sightlines of the camera, and that of the agents. The picture objects created do not include a 
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representation of what was captured on film (shown by the three photos in this example). The only way we 
could possibly represent this is to create beliefs that represent the scene being captured and “store” these 
beliefs in the NasaPicture object. 

Not being able to model the line of sight of agents means that the model does not include whether the 
astronauts could actually see each other and/or the objects during their activities. Noticing other people 
and/or objects is often constrained by the line of sight. In Brahms, we can only model the detection of facts, 
based on the detectable being active and the existence of the fact in the world. However, in the real world 
the detection of certain facts depends on whether we can “observe the fact” through our field of vision, such 
as seeing someone in distress. Not being able to model the field of vision limits us in constraining the 
detection of facts based on the sightlines of the agent. 

6.9 VERIFICATON AND VALIDATION 

In this section, I describe the verification and validation (V & V) process I have followed to test the accuracy 
of the Apollo 12 ALSEP model. First, I will talk about V & V as a process and describe its elements, and 
some of its issues. Then, I will show in some detail the V & V steps I have followed and the results of this 
process in this experiment. Using this V & V process, I can say something about the accuracy of the model 
and my hypothesis about Brahms as a modeling and simulation language for describing a work practice. 

To clarify the issues involved, I define the concepts verification, validation, and to be complete, credibility as 
follows: 

• Verification is the process whereby the modeler asks if the model is performing as it was designed. In 
this step in the V & V process, the objective is to determine if the logic of the computer model correctly 
implements the assumptions made in the conceptual model. 

• Validation is the process whereby the modeler asks how accurately the model is representing reality. 
That is, is it a good model of the intended work system? 

• A credible model is one that the client accepts as being valid enough to use in making decisions. That 
is, is it a useful model for the task at hand? It should be noted that in this experiment we do not have a 
client that will make such a credibility judgment. 

6.9.1 The purpose of verification and validation 

An important part of modeling and simulation is the V & V of the model and the results of the simulation. 
Without a thorough V & V there is no ground in having any confidence in the model and the results of the 
simulation. Although it is important to realize that it is impossible to prove that a model is a general valid 
model (Robinson 1999). The reason for this is the fact that: 

1. A model is only certified as valid with respect to its purpose. For instance, a model that has been 
created for the purpose of predicting the future state of a system might not be valid as a prescriptive 
model of the future system. 

2. There are different interpretations of the real world possible. Depending on the worldview, or 
Weltanschaüng, is a different interpretation of the real world and therefore, of the model and its validity 
(Checkland and Scholes 1990). 

3. The data used to develop the model may be inaccurate. Even if that is not the case, it should be 
realized that the data used and the data generated by the simulation are but a small data sample. 
Therefore, they can only be seen as a probabilistic answer and not a definitive one. 

The conclusion is that, although in theory a model is either valid or invalid, in practice it is not easy and often 
not possible to prove that a model is valid. Therefore, we have to think in terms of the confidence we can 
place in the model. The V & V of the model in this experiment is not one of demonstrating that the model is 
correct, but instead it is a process of falsification, i.e. demonstrating that the model is incorrect (Robinson 
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1999). In so doing, the purpose of V & V is to increase the confidence in the model, even though we might 
find inconsistencies and problems with the model according to the real-world data. 

6.9.2 The verification and validation process 

Many authors have described the process of a successful simulation (Law and Kelton 1991) (Kleindorf et al. 
1998) (Banks et al. 1996) (Robinson 1994). All of them mention a series of processes that need to be 
followed. The high-level processes are shown in Figure 6-43, which is borrowed from (Robinson 1999). A 
simulation study first starts with understanding the real world, as well as the problem to be tackled. In this 
Brahms study, the real world is the Apollo 12 ALSEP Offload, with as the problem to be tackled, to test if we 
can describe the work practices of the lunar surface astronauts in a Brahms simulation. When the real world 
is sufficiently understood the modeling activity starts, and a conceptual model is described. For this study, I 
described the model as a qualitative model using a modeling approach called World Modeling (Sierhuis and 
Selvin 1996). After this, the model was coded into a computer model, in this case the Brahms language. 
When the model is complete, experiments are run to develop solutions to the real-world problem being 
handled. In this case, a greater understanding of the real world was obtained. In real-world projects it is 
hoped that the solutions found in the experiments can be implemented in the real world, or that the better 
understanding of the problem will lead to better decision making. In this experiment there has been no 
attempt to implement the model or change the real world based on the understanding, simply because this 
was not the purpose. 

Even though there is a natural sequence in following these steps, it is obvious that the actual process is not 
strictly sequential, and that several iteration through the steps are necessary. This was also the case in this 
effort. First, there was no implementation phase based on the outcome of this study. Secondly, there were a 
number of cycles through the conceptual model, computer model and solution/understanding phase that 
were mostly driven by the validation and verification of the models with the real-world data. Even though this 
study did not end with an implementable solution in the real world, the process as depicted in Figure 6-43 
still holds. 

 

Figure 6-43. Simulation model verification and validation in the modeling process (borrowed from (Robinson 1999)) 

In the next sections, I will describe the activities of the three phases, conceptual model, computer model, 
and solution/understanding and the validation and verification methods used in each of these phases. 
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6.9.3 Data validation 

As is shown in Figure 6-43, data validation is important at every step of the simulation process, because at 
each step in the process data is used. The data I used are all original NASA records of the actual Apollo 
missions. Table 6-4 lists all data sources that have been used in this case study. Since the Apollo missions 
are part of world history the facts and data are well known to the world and are therefore undisputed. By 
using the original lunar videos, as well as the transcripts of the original conversations of the astronauts, and 
the original photographs, mission reports and press releases, the validity of the data is very high. It can thus 
be said that, if the simulation data is validated against the original mission data, and it can be shown that the 
outcome is correct in relation to this data, the validity of the simulation model is high. 

Table 6-4. Data sources used during experiment 

Data Source Data Type 

Apollo Lunar Surface Journal Transcriptions of actual astronaut voice loop 
recordings + mission photographs. 

Apollo 14, 15 & 16 Video Tapes Video Recordings of the actual Apollo 
missions from NASA. 

Apollo 12 ,14, 15 & 16 Press Kits Copies of the actual Apollo Press Kits from 
the Apollo missions, published by NASA. 

6.9.4 Conceptual model validation 

I started the modeling effort by creating a conceptual model of the Apollo 12 ALSEP Offload. The method 
used is called Compendium, and is described in (Sierhuis and Selvin 1996) (Selvin and Sierhuis 1999b) 
(Selvin and Sierhuis 1999a) (Selvin et al. 2001). The discussion of this method falls outside of this thesis. 
Figure 6-44 shows the Raise SEQ Bay Door activity described in the conceptual model. To model this 
activity, I used the voice loop transcription data from the Apollo LSJ (see Figure 6-45), as well as the Apollo 
video of the Apollo 1448 mission. The voice loop data is modeled as the communication attribute in the 
model. By reading and listening to the communication, matching this to the mission plan, and validating this 
with the video, I was able to analyze who performed this activity (see Figure 6-45), and where in the voice 
loop transcription the astronaut was starting and ending this activity. The approach I used was to identify the 
activity duration based on communication sequences. The astronaut was performing the activity during the 
first utterance and the last utterance of a communication sequence. By using the timestamps in the Apollo 
LSJ, I calculated the total time of the activity (see Figure 6-47). I also represented where the agents were 
located while performing this activity, as well as what objects (artifacts) the astronaut was touching or using 
during this activity. 

By analyzing the transcription of the voice loop data this way, I have represented and validated each activity 
of the agents. After this process was completed, the conceptual model had to be coded in the Brahms 
language. 

                                                      
48 Due to a unfortunate problem with the camera, there is no video tape of the Apollo 12 ALSEP Offload. 
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Figure 6-44. The conceptual model 

The purpose of the conceptual model validation is to determine that the scope and level of detail of the 
proposed model is sufficient, and that all assumptions are correct (Robinson 1999). To describe this 
validation, let me take a step back and restate the problem I addressed in this study. The problem in this 
study was that of showing that the Brahms modeling and simulation language is powerful enough to 
describe the work practice of the Apollo 12 lunar surface astronauts during the ALSEP Offload activity. The 
level of model detail that is needed to test this hypothesis is given by the definition of what to include in a 
model of work practice (see chapter 3.2). 
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Figure 6-45. Voice loop transcription data from the Apollo LSJ Figure 6-46. Voice loop transcription matched to activities 

 

Figure 6-47. Voice loop activity time analysis 

If we take as a given the aspects of work practice from chapter 3.2, then we can validate that these aspects 
are indeed included in the model. Therefore, the validation method I used for the conceptual model was to 
analyze the important aspects of modeling work practice, as described in the theory, and to make sure that 
the conceptual model included all of them. Table 6-5 lists the aspects that were to be included in the model, 
as well as how these aspects are made operational in the coded model: 
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Table 6-5. Aspects of modeling work practice 

Aspect of Work Practice Model 

Communities of Practice 

This aspect is incorporated in the model by modeling the 
roles and functional groups of the agents as groups with 
behavior in the model. People who belong to certain CoP 
are represented as agents being members of the groups, 
inheriting the common behavior of the group members. 

Activities 

The behavior of all agents and artifacts is described in terms 
of primitive activities taking time, and composite activities 
decomposed into lower-level activities, and the lowest-level 
into primitive activities. 

Collaboration 

Collaboration is an emergent aspect of the model that is 
shown in the output data of the simulation. By describing the 
activities of agents, and the interaction and constraints that 
make each agent perform an activity based on activities of 
other agents, shows that agents are collaborating together. 

Communication 
The model includes all the speech acts from the real voice 
data. Activities are sometimes dependent on whether these 
speech acts are performed and received. 

Real world artifacts 
For each activity the artifacts that are used or touched in the 
activity are represented in the model. Relationships between 
activities and artifacts are represented. 

Geography and Movement 

For each activity, the location where the activity is performed 
is represented. Agents move from location to location, and 
performance of an activity is sometimes dependent on being 
in the location or noticing other agents and/or artifacts in a 
location. 

6.9.5 Computer model verification 

The next phase in the modeling process is the design and implementation of the Brahms model source 
code. In this phase, the modeler needs to translate the activities, groups, agents, classes and objects 
represented in the conceptual model into the Brahms language. To do this, the modeler needs to be 
proficient in the Brahms language, and specifically in the multiagent and activity programming concepts in 
Brahms. For first time Brahms modelers this is a painstaking process, and is similar to the compile-debug 
cycle in traditional programming languages, such as C++ or Java.  

Figure 6-48. Brahms compile-debug cycle 

Figure 6-48 shows the modeling cycle, which first continues until the complete model can be compiled 
without syntax errors by the Brahms compiler. However, verifying the model is more than getting the 
Brahms compiler to compile the model without syntax errors. Although this is of course a first and important 
step in the process, the most important step is to compare the “functioning” of the model with the conceptual 
model. The model validation and verification steps are driving the Brahms model development process, 
shown in Figure 6-49 

Debugging Modeling 

Compiling 
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Figure 6-49. Brahms model development cycle 

The functioning of the model is visually verified using the AgentViewer application. The AgentViewer is a 
separate Brahms application that uses the simulation history data to display a 2-dimensional graphical time-
line view of the activities of agents and objects. The timeline figures in this and other subsequent chapters 
are all screenshots from selected agents and objects in the AgentViewer. Using the AgentViewer 
application the modeler can investigate the simulation run. 

 

Figure 6-50. AgentViewer application 

Figure 6-50 shows the AgentViewer. Using this application the end-user can select which agents and 
objects to view in the time-line view, and investigate the exact behavior of those agents and objects during 
the simulation (see a-l explanations in Figure 6-50): 

a. Using the menu-bar, the end-user can parse the simulation history data into a history database, and 
open a history database for viewing. 

a. Menu Toolbar 

b. Agent/Object TreeView 

c. Communications 

d. Location 

e. Time Line 

f. Tool Tip 

g. Activity Context Tree 

h. Touch Object Line 

i. Selected Workframe 

k. Selected Activity 

j. Workframe Body 

l. Activity Time 

m. Workframe 

n. Composite Activity 

o. Primitive Activity 
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b. When the database is opened all the agents and objects are loaded into the tree view. Using the tree 
view, the end-user can select which agents and/or objects (s)he wants to view in the time-line view. 

c. By selecting to view the agent/object communication, the (blue) arrows show all the communication 
activities, and the direction of the communication (sender and receivers). The communicated beliefs are 
also accessible by clicking on the square at the top of the sender side of the communication arrow. 

d. For each agent/object the ”current” location is shown. When the agent/object moves to a new location, it 
is shown as a change in the location name and color. 

e. The time-line can show the time in different time-intervals, therewith zooming in and out. 

f. The tool-tip pops up when the mouse is moved over “hot spots”. The hot spots are those areas where 
more information is available than can be shown on the screen. By moving the mouse over those areas 
the hidden information pops up in a tool-tip, such as the name of a workframe or activity. 

g. The Activity-Context Tree is the central piece of the agent/object time-line. It shows the workframe and 
activities hierarchy of the agent or object. 

h. The touch-object line is a (yellow) line that is shown when the agent/object is using certain objects in its 
activity. “Touch objects” are used to calculate the time those objects are used in activities. 

i. The explanation facility view is used to display more detailed information about the execution of 
workframes. By clicking on any workframe (light blue in color), an explanation facility window is opened 
for the workframe at hand. 

j. By selecting the “Active” tab in the explanation facility view, the executed statements in the workframe 
body are shown. 

k. You can select the statements in the workframe body to get more info. 

l. When you select a statement in the body of the workframe, the total time the activity was active is 
shown. Using the other tabs in this view, you can find out the exact time the workframe became 
available, as well as the exact time it became active and ended. 

m. Workframes are situated-action rules that execute activities. The top of a Activity-Context tree is always 
a workframe. You can recognize a workframe by the “wf:” symbol, followed by the name of the 
workframe. When the zoom-level is too high to contain the name of the workframe it is left out of the 
display. Using the tool-tip the user can find out the name. 

n. Composite Activities are executed by workframes, and contain lower-level workframes. You can 
recognize Composite Activities by the “ca:” symbol followed by the name of the activity. When the 
zoom-level is too high to contain the name of the activity it is left out of the display. Using the tool-tip the 
user can find out the name. 

o. Primitive Activities are executed by workframes, and are always at the bottom of the Activity-Context 
Hierarchy. You can recognize Primitive Activities by the following symbols, depending on the type of 
primitive activity: “pa:” (for a primitive activity), “mv:” (for a move activity), “cw” (for a communicate 
activity), “co:” (for a create object activity), followed by the name of the activity. When the zoom-level is 
too high to contain the name of the activity it is left out of the display. Using the tool-tip the user can find 
out the name. 

Using this AgentViewer I have visually inspected the simultaneous behavior of the agents and objects, and 
compared the expected behavior from the conceptual model with the actual behavior during the simulation. 
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6.9.6 Experimentation validation 

Comparing the model output to data from the real system is the most objective and scientific method of 
validation. Of course, this type of validation can only be performed if there is a real system, and real-world 
data that correspond to the simulation parameters. In this descriptive modeling experiment there was a real 
system back in the Apollo days. That system does not exist anymore, but what is most important is the fact 
that there is historical data available to validate our model. 

I describe two types of quantitative data validation of the simulation output data of the Apollo 12 model, 
based on the historical data from the Apollo missions: 

1. Validate the simulated activity times and duration with the activity times and duration derived from the 
timestamps in the Apollo 12 communication transcript from the Lunar Surface Journal (Jones 1997). 

2. Validate the simulated voice loop communication with the voice loop recordings from the actual mission, 
which are transcribed in the same Apollo 12 communication transcript (Jones 1997). 

6.9.6.1 White-box versus black-box validation 

We consider two types of real-world data validation, white-box and black-box validation. The model 
verification described in section 6.9.5 is considered a white-box validation. Validating the simulated activity 
times with the timing of the activities based on the transcript of the voice loop communication is a white-box 
validation. The second validation, that of the actual voice loop data, is a black-box validation. 

White-box validation is a micro validation of the content of the model. In a white-box validation we try to 
validate the model by investigating the model content in detail. The purpose of this type of validation is to 
ensure that the content of the model is true to the real world. The use of a graphical visualization and 
spreadsheet tools are very appropriate in this type of validation. 

 

Figure 6-51. Black-box validation: comparison with the real system (from (Robinson 1994)) 

In a black-box validation we are not looking inside the model, but we are validating the overall behavior of 
the model with the output of prespecified real-world data. In this type of validation we need to validate that 
when we specify input data to the simulation model that is similar to that of the real system, the output data 
from the simulation should be relatively similar to that of the real system as well. This is a validation of the 
alternative hypothesis H1 (Figure 6-51). 

6.9.6.2 Validate activity times 

To validate the timing and duration parameters of the simulation model, we measure the activity times of the 
individual activities performed by each astronaut. Initially I had identified the activities of the astronauts 
based on the Apollo 12 communication transcripts (see Figure 6-45). Based on this and the fact that each 
communication utterance in the transcript is timestamped with the actual mission clock at MSC, I was able 
to calculate the ground-estimated time (GET) start and end times of the activity. From this the total activity 
time could be calculated (Figure 6-47). Here I am only showing the validation of the first three high-level 
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activities (Table 6-6). This is only in the interest of space, and I hope that with this example the reader is 
satisfied and can infer that the same holds for the other activities. 

Table 6-6. Calculated activity times based on real-world data 

Activity Start GET End GET 
Total 
Time 

? from 
ALSEP 
Offload 
Begin 

Performer 

Open SEQ Bay Door  116:31:34 116:32:22 00:00:48 0:00:00 LMP 

Remove PKG-1  116:32:22 116:33:53 00:01:31 0:00:48 CDR 

Remove PKG-2 116:33:53 116:34:44 00:00:51 0:02:19 LMP 

  Total 0:03:10 
(190 sec) 

  

An issue is the fact that the start and end times of the activities were chosen based on a thorough reading of 
the Lunar Surface Journal transcriptions, books and reports on the Apollo 12 mission, as well as the videos 
of the ALSEP Offload activities in subsequent missions. The choices I made are subjective to my own 
interpretation, as well as that of Erik Jones, the editor and creator of the Apollo Lunar Surface Journal 
(Jones 1997). It might well be possible that someone else would make a different interpretation of the timing 
based on the same data. Although this may be the case, it should not have much influence on the outcome 
of this study, since the goal of this validation is in context of the objective of the experiment. As mentioned 
before, the objective is to show that with Brahms we can describe the work practice of a real human activity 
system. We can still make a judgment on this, regardless of the fact that the subjectivity of the modeler is 
unavoidable in a modeling activity. 

Table 6-7. Activity times for LMP Al Bean from simulation history database 

DoneByID DisplayText Start49 Start SET50 End End SET TotalTime Status 

ALBEAN OpenSEQBayDoor 1 8:31:34 49 8:32:22 48 COMPLETED 

ALBEAN RemovePkg1 49 8:32:22 53 8:32:26 4 INTERRUPTED 

ALBEAN ChangeEMUSuitCooling 53 8:32:26 58 8:32:31 5 COMPLETED 

ALBEAN RemovePkg1 58 8:32:31 124 8:33:37 66 INTERRUPTED 

ALBEAN TakingPhotograph 124 8:33:37 137 8:33:50 13 COMPLETED 

ALBEAN RemovePkg1 137 8:33:50 140 8:33:53 3 COMPLETED 

ALBEAN RemovePkg2 140 8:33:53 191 8:34:44 51 COMPLETED 

     Total 190  

                                                      
49 The times in the Start, End, and TotalTime columns are in seconds. 
50 The times in the Start Simulation Elapsed Time (SET) and End SET are in the format h:mm:ss. 
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Figure 6-52. Al Bean's RemovePkg1 and RemovePkg2 activities 

The activity times from Table 6-7 are the result of the emergent performance of lower-level activities of Al 
Bean, as can be seen in Figure 6-52. The timing of the composite activities from Table 6-7 are based on the 
cumulative times of the lower-level primitive activities performed as part of these composite activity. 

Table 6-7 shows that Al Bean interrupts the RemovePkg activities twice to perform activities that are not 
necessarily part of the high-level AlsepOffload composite activity. The ChangeEMUSuitCooling activity is an 
activity that can be performed at the moment the astronaut feels too warm or too cold. Performing this 
activity is an interruption of the AlsepOffload activity and its underlying subactivities that are being performed 
at that moment. Consequently, the current RemovePkg1 activity will continue after the 
ChangeEMUSuitCooling activity is finished. You can see this represented in both Table 6-7 and Figure 
6-52. Table 6-8 and Figure 6-53 show the activities for Pete Conrad. Pete Conrad does not perform the 
ChangeEMUSuitCooling activity (he is too busy offloading the package!), but he is interrupting his 
RemoveAlsepPkg2 activity taking three photographs while Al Bean is lowering the second ALSEP package. 

Table 6-8. Activity times for CDR Pete Conrad from simulation history database 

DoneByID DisplayText Start Start SET End End SET TotalTime Status 

PETECONRAD OpenSEQBayDoor 1 8:31:34 50 8:32:23 49 COMPLETED 

PETECONRAD RemovePkg1 50 8:32:23 140 8:33:53 90 COMPLETED 

PETECONRAD RemovePkg2 140 8:33:53 170 8:34:23 30 INTERRUPTED 

PETECONRAD TakingPhotograph 170 8:34:23 189 8:34:42 19 COMPLETED 

PETECONRAD RemovePkg2 189 8:34:42 191 8:34:44 2 COMPLETED 

    Total  190  

 

 

Figure 6-53. Pete Conrad's RemovePkg1 and RemovePkg2 activities 

From Table 6-6, Table 6-7 and Table 6-8 it can be seen that the timing for both the AlBean and PeteConrad 
agents are similar as the timing data from the Apollo LSJ. With this verification the white-box validation of 
the model is completed, and we can state that the computer model content (i.e. the Brahms model) is a 
valid implementation of the conceptual model, which in turn is based on the Apollo 12 data. 
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6.9.6.3 Subtracting communication delay 

The times, as shown in Table 6-6, present the following small but significant validation issue. The times 
based on the actual voice transcriptions are the mission times as they were measured by mission control. 
Since the activities are those of the lunar surface astronauts being performed on the moon, the actual times 
that the astronauts spoke the words transcribed in the Apollo LSJ documents would have had to be one and 
a quarter (1.25) second earlier. This is because there was a one and a quarter second delay between earth 
and moon communications (see section 6.7.1 about communication delay). 

The start and end GET times are not the actual start and end times of the activities performed on the moon. 
Although the total activity time stays the same, to be correct, the activities of the astronauts need to start one 
and a quarter second earlier. To get to this point, I followed a two-step validation process: 

1. Validation of the simulated activity times by making the times match up exactly with those measured on 
earth, shown in Table 6-6. The result of this validation was shown in Table 6-7 and Table 6-8. 

2. After the simulation model is validated according to (1), we transpose the simulation times to include the 
earth/moon delay. Because only the start time is different, we can simply start the simulation clock 
earlier. This results in the activities of the astronauts starting at the actual start time, and thus in 
communication utterances arriving at mission control at the time measured by the GET clock. The result 
for agent AlBean is shown in Table 6-9 

There is an issue with the capability of the simulation engine only being able to have an integer clock-grain-
size. This means that we cannot simulate the one and a quarter second delay. The closest we can get is to 
have a clock-grain-size of one (1) second. Therefore, the delay I have been able to introduce in the 
simulation is one second. The numbers that have consequently been generated are still off by a quarter 
(0.25) of a second. However, this is a consistent error rate, and thus could easily be subtracted from the 
generated numbers. 

Table 6-9. Activity times for LMP Al Bean including communication delay 

DoneByID DisplayText Start Start SET End End SET TotalTime Status 

ALBEAN OpenSEQBayDoor 1 8:31:33 49 8:32:21 48 COMPLETED 

ALBEAN RemovePkg1 49 8:32:21 53 8:32:25 4 INTERRUPTED 

ALBEAN ChangeEMUSuitCooling 53 8:32:25 58 8:32:30 5 COMPLETED 

ALBEAN RemovePkg1 58 8:32:30 124 8:33:36 66 INTERRUPTED 

ALBEAN TakingPhotograph 124 8:33:36 137 8:33:49 13 COMPLETED 

ALBEAN RemovePkg1 137 8:33:49 140 8:33:52 3 COMPLETED 

ALBEAN RemovePkg2 140 8:33:52 191 8:34:43 51 COMPLETED 

     Total 190  

6.9.6.4 Validate output with real-world data 

Next is the black-box validation. The purpose is to validate that the simulation can recreate the 
communication utterances by the astronauts exactly and at the same ground-elapsed time as the data from 
the Apollo LSJ. I show this validation of the model for the OpenSEQBayDoor activity as described in section 
6.5.3. For ease of the reader, I repeat here the activity/communication table for the OpenSEQBayDoor 
activity. 
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Table 6-10. OpenSEQBayDoor activity with communication 

LMP CDR 

Communicate Ready To Offload Watching Opening SEQ Bay Door 

activity Communication communication activity 

Talk 
116:31:34 Bean: Okay. And 
we’ll off-load the ALSEP. 
(Garbled). 

 Watch Opening 
SEQ Bay Door 

  116:31:39 Conrad: Nope. 
(Pause) Talk 

Talk 
116:31:42 Bean: We ought to 
be able to move out with this 
thing. 

 Watch Opening 
SEQ Bay Door 

Inspect SEQ 
Bay  116:31:44 Conrad: Okay. Talk 

Talk 
116:31:48 Bean: The 
experiment bay looks real 
good. 

 Watch Opening 
SEQ Bay Door 

  116:31:49 Conrad: Yup. Talk 

Raising SEQ Bay Door  Watch Opening 
SEQ Bay Door 

activity Communication  Watch Opening 
SEQ Bay Door 

Grab Lanyard 
Ribbons 

116:31:50 Bean: The LM 
exterior looks beautiful the 
whole way around. Real good 
shape. Not a lot that doesn’t 
look the way it did the day we 
launched it. 

 Watch Opening 
SEQ Bay Door 

Walk Back To 
Pull Ribbons 

Tight 
  Watch Opening 

SEQ Bay Door 

Pull Lanyard 
Ribbons  

116:32:02 Conrad: (Possibly 
pulling a lanyard to open the 
SEQ bay doors) Light one. 
(Pause) 

Talk 

Talk 

116:32:12 Bean: Okay. Here 
we go, Pete. Ohhhhh, up they 
go, babes. One ALSEP. 
(Pause) 

 Watch Opening 
SEQ Bay Door 

Pull Lanyard 
Ribbons  116:32:22 Conrad: There it 

is. Talk 

Table 6-10 shows the subactivities of the OpenSEQBayDoor activity. The objective of this black-box 
validation is to have the simulation generate the exact communication utterance for each agent, at the exact 
time specified in. Of course, the same issue exists regarding the measurement of the time in GET and the 
communication delay to/from the moon. It should again be realized that the times in Table 6-10 are times 
measured by MSC, and are therefore the times that the CapCom agent heard the utterance over the voice 
loop, thus one and a quarter second later than the time the lunar surface astronauts uttered the words. 

After having validated the activity times from the previous section, I changed the model to include the 
communication utterances specifically for this validation. To generate the exact utterance, the agent creates 
the utterance as a belief right before it communicates the belief in the Talk activity. 
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Figure 6-54. Workframe with communication utterance from Apollo LSJ 

Figure 6-54 shows the rewritten CommunicateReadyToOffload activity including the communication 
utterances. For each utterance there is a belief created for the speech attribute for the LMP agent (i.e. 
AlBean). This speech attribute signifies the actual speech-utterance of the agent. 

Figure 6-55. Talk activity to validate communication 

Next, the Talk communicate-activity actually communicates the speech belief to appropriate agents (Figure 
6-55). Running the simulation again with this added communication, first and foremost, does not change the 
behavior of the agents. The end-result of the simulation is the same, as can be seen in Figure 6-56, but 
Table 6-11 shows that the simulation generates the actual voice loop communication transcription 
consistent with that in the Apollo LSJ. 

The data in Table 6-11 is compiled from the history database. The data shows the communication of the 
speech attribute from the LmComCircuit agent. This is the agent that simulates the communication delay 
from/to the moon (see section 6.7, explaining the voice loop model). Therefore, the time this agent relays 
the communication should be equal to the GET from the Apollo LSJ. This is shown in the last two columns. 
The second to last column shows the simulated elapsed time (SET), which is the time from the simulation. 
The last column shows the ground-elapsed time (GET) as it is recorded at MSC, and is shown in the Apollo 
LSJ. 

workframe CommunicateReadyToOffload { 
[detectable deleted] 
 when (knownval(the groupMembership of current = "LunarModulePilot")) 
 do { 
 //communication from transcription 
  conclude((the speech of current = "Okay. And we'll off-load the ALSEP. (Garbled)."), bc:100, fc:0); 
  conclude((the speechAct of current = ReadyToOffloadAlsep), bc:100, fc:0); 
  Talk(vlcoms, start, OpenSEQBayDoorActivity, 10, 8); 
 //end validation 
 
 //communication from transcription 
  conclude((the speech of current = "We ought to be able to move out with this thing."), bc:100, fc:0); 
 Talk(vlcoms, start, OpenSEQBayDoorActivity, 0, 1); 
 //end validation 
 
  InspectSeqBay(0, 4); 
 
 //communication from transcription 
  conclude((the speech of current = "The experiment bay looks real good."), bc:100, fc:0); 
  conclude((the speechAct of current = the exteriorAppearance of SEQBay), bc:100, fc:0); 
  Talk(vlcoms, end, OpenSEQBayDoorActivity, 0, 1); 
 //end validation 
 
  conclude((the nextActivity of current = sRaiseSEQBayDoorActivity), bc: 100, fc: 0); 
 } 
} 

communicate Talk(Communicator agt, symbol whn, Activity act, int pri, int maxd) { 
 priority: pri; 
 max_duration: maxd; 
 resources: act; 
 with: agt; 
 about: send(the speech of current = value), 
            send(the speechAct of current = value); 
 when: whn; 
} 
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Figure 6-56. Voice loop communication for OpenSEQBayDoor activity 

Table 6-11. Agent speech communication validation 

Agent FrameName Attribute 
Name 

Value 
(from Apollo 12 LSJ) 

Start 
Time 

Speech at 
SET 

Speech at 
GET 
(from 

Apollo 12 
LSJ) 

LMCOMCIRCUIT SendingAlBean 
ComToEarth 

speech "Okay. And we'll off-load the 
ALSEP. (Garbled)." 0:00:02 8:31:34 116:31:34 

LMCOMCIRCUIT SendingPeteConrad 
ComToEarth 

speech "Nope." 0:00:07 8:31:39 116:31:39 

LMCOMCIRCUIT SendingAlBean 
ComToEarth 

speech "We ought to be able to 
move out with this thing." 0:00:10 8:31:42 116:31:42 

LMCOMCIRCUIT SendingPeteConrad
ComToEarth 

speech "Okay." 0:00:12 8:31:44 116:31:44 

LMCOMCIRCUIT SendingAlBean 
ComToEarth 

speech "The experiment bay looks 
real good." 0:00:16 8:31:48 116:31:48 

LMCOMCIRCUIT SendingPeteConrad
ComToEarth 

speech Yup. 0:00:17 8:31:49 116:31:49 

LMCOMCIRCUIT SendingAlBean 
ComToEarth 

speech "The LM exterior looks 
beautiful the whole way 

around. Real good shape. 
Not a lot that doesn't look the 

way it did the day we 
launched it." 

0:00:18 8:31:50 116:31:50 

LMCOMCIRCUIT SendingPeteConrad
ComToEarth 

speech "Light one." 0:00:30 8:32:02 116:32:02 

LMCOMCIRCUIT SendingAlBeanCom
ToEarth 

speech "Okay. Here we go, Pete. 
Ohhhhh, up they go, babes. 

One ALSEP." 
0:00:40 8:32:12 116:32:12 

LMCOMCIRCUIT SendingPeteConrad
ComToEarth 

speech "There it is." 0:00:50 8:32:22 116:32:22 
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The data from Table 6-11 shows that the simulation, indeed, generates the communication transcription 
from the Apollo LSJ, herewith validating the output of the simulation model. This concludes the validation of 
the model. In the next section some conclusions will be discussed. 

6.10 CONCLUSION 

In conclusion, I restate the research questions that needed to be answered, and show that indeed these 
questions are answered in this experiment. These questions are operationalized in the Apollo 12 ALSEP 
domain, and this operationalization is implemented in a Brahms model of the domain. The goal of this 
experiment was to investigate the use of the Brahms-language in order to describe an existing work 
practice. The challenge was to investigate if our theory of modeling work practice, implemented in the 
Brahms language, would be sufficient to describe the work practice in the chosen domain. The research 
questions were: 

1. How can we represent the people, things, and places relevant to the domain? 

2. How can we represent the actual behavior of the people, second by second, over time? 

3. How can we show which of the tools and artifacts are used when, and by whom to perform certain 
activities? 

4. How can we include the communication between co-located and distributed people, as well as the 
communication tools used, and the effects of these communication tools on the practice? 

Table 6-12 shows how these questions were implemented in the Brahms model. The first column shows a 
more detailed instantiation of the research questions. The second column shows the operationalization 
based on the Apollo 12 mission. The third column shows how this is implemented in the Brahms model, 
thus answering the question in the first column. 

Table 6-12. Answering the research questions 

Research Question Operationalization in Apollo 12 
ALSEP Offload 

Implementation in Brahms 
Model 

How to represent people? The astronauts Al Bean, Pete 
Conrad on the moon, CapCom Ed 
Gibson, and CMP Dick Gordon 

Agents AlBean, PeteConrad, 
EdGibson, and DickGordon 

How to represent 
Communities of Practice? 

The different organizational roles of 
Commander, Lunar Module Pilot, 
Capsule Communicator, and 
Command Module Pilot. Also, the 
functional roles of “being an 
astronaut on the moon” and 
“offloading the ALSEP.” 

Hierarchy of different roles as 
groups of agents; 
ApolloAstronaut, CDR, LMP, 
CMP, CapCom, 
LunarSurfaceAstronaut, 
AlsepOffloadGroup 

How to represent artifacts? The artifacts that are used and are 
important during the lunar surface 
activity of the two astronauts on the 
Moon; the LM, SEQ Bay, ALSEP 
packages, Lanyard Ribbons, 
Booms, Photo cameras, Space 
Suits, etc. 

Class hierarchy representing 
types of objects, and objects 
being instances of classes to 
represent specific artifacts in the 
world; LM, SEQBay, AlsepPkg1, 
AlsepPkg2, 
Pkg1LanyardRibbons, 
Pkg2LanyardRibbons, etc. 

How to represent places? The areas where the astronauts are 
located, Mission Control, the 
Command Module, and the areas 

Type of areas as area definitions. 
Representing the Apollo 12 
Geography model as the World 
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Command Module, and the areas 
on the moon where the astronauts 
are working to offload the ALSEP, 
such as the area in front of the SEQ 
Bay, etc. 

Geography model as the World 
area, containing the areas Moon, 
PlanetEarth, and LunarOrbit. 
Next, the separate areas part of 
the Moon. Mission Control is part 
of PlanetEarth, and the 
CommandModule area is part of 
the LunarOrbit area. 

How to represent location 
of people and artifacts? 

The lunar surface astronauts are 
located on the Moon, the CapCom 
is located in Mission Control, and 
the CMP is located in the 
Command Module. 

Using the initial_location attribute 
in agents and objects. Each 
agent and object is given an initial 
location at the beginning of the 
simulation. From that moment on 
agents and objects have 
locations, which means they are 
located in an area and can move 
to other areas when needed. 

How to represent actual 
behavior over time? 

During the mission the astronauts 
are always performing activities. 
While the CDR and LMP are 
offloading the ALSEP packages the 
CapCom is listening on the 
voiceloop, etc. 

The agent’s real-life activities are 
represented as different types of 
Brahms activities that take time. 
Composite activities decomposed 
into primitive activities, 
communicate activities, and move 
activities. Behavior of objects, 
such as the astronaut’s space suit 
and photo camera is also 
represented as activities. Next, 
the activities are executed as part 
of workframes, constrained by the 
agent’s beliefs acquired or 
changed over time. 

How to represent the use 
of tools and artifacts? 

The lunar surface astronauts use 
tools to perform activities, such as 
the use of the lanyard ribbons to 
lower the ALSEP packages from 
the SEQ Bay. 

The use of tools and artifacts in 
activities is represented using the 
resources attribute. Also, the 
generation and detection of facts 
represent the interaction or use of 
an artifact in an activity by an 
agent. The generation of facts is 
a representation of the actual 
physical interaction with the 
artifact being used in the activity. 
For example, in the taking a 
photograph activity the agent is 
using the PhotoCamera object. 

How to represent 
communication? 

The communication between the 
lunar surface astronauts on the 
moon, the CapCom in Mission 
Control, and the communication 
between CapCom and CMP. 

Communication is represented as 
an activity. During this activity 
beliefs are communicated to/from 
agents. All the communication 
between the astronauts is 
represented as timed activities 
communicating speechacts, i.e. 
the speechact is represented as 
the value of the attribute 
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speechact communicated as a 
belief from one agent to another. 

How to represent 
communication tools? 

The Apollo astronauts where on a 
communication voiceloop circuit 
with each other and CapCom at 
Mission Control. The 
communication time delay between 
Earth and the Moon was 1.25 
seconds. 

Voiceloop communication is 
represented as a communicate-
activity, communicating with 
agents of the group 
VoiceLoopCommunicator. To 
represent the time delay in the 
communication a LmComCircuit 
agent represents the voiceloop 
circuit through which the 
communication is send to/from 
Earth to the Moon. Both the 
agents on Earth and on the Moon 
communicate through this 
LmComCircuit agent. 

In this Apollo 12 ALSEP Offload experiment I was able to represent the intricate detail of the human 
activities and collaboration using the Brahms language. The fact that the model generates all the 
communication between the astronauts, including the timing of the communication, shows that the Brahms 
Language is powerful enough to model and simulate the work practice of the astronauts on the Moon and 
on Earth. Of course the level of collaboration is shown in terms of the activities each agent is performing, as 
well as the location of the agents, the artifacts the agent is using at that moment, and the use of artifacts in 
the activity. It has been shown that the research questions posted are answered satisfactory. Therefore we 
can say that the hypothesis is proven, and that with Brahms we are able to describe an existing work 
practice. 

This concludes the first of three experiments to show that Brahms is a sufficient language for modeling and 
simulating work practice. In the next experiment I will show that with Brahms we can predict the future 
activity behavior of agents, based on a model of the work practice.  
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7. CASE STUDY 2: PREDICTING SITUATED ERRORS 

A theory is only a good theory if it can predict future events. In this chapter, I show that a Brahms model can 
be developed that predicts plausible future work practice scenarios (Sierhuis et al. 2000b). The model is of 
the Heath Flow Experiment (HFE) deployment during the ALSEP deployment EVA. This model is a theory 
of the work practice of the HFE deployment. In order to prove that this model is a valid implementation of the 
theory of the HFE work practice, I show that the model predicts the future behavior of the agents based on 
the behavioral aspects of the agents in the model. If it can be shown that this model can predict future agent 
behavior, the theory underlying the model (i.e. the theory of modeling work practice) is a valid theory for 
modeling such behavior. This is the next step in the quest for evidence that Brahms is a tool for modeling 
and simulating work practice. 

Goals and objectives 

The objective is to abstract the work practice of the HFE deployment in such a way that we can simulate 
any HFE deployment plan for situation-specific scenarios. To do this, I focus on three important features that 
are needed. First, the model needs a general situated activity-plan execution approach. Second, the model 
needs a general communication policy to handle the necessary planned voice-data communications from 
the lunar surface astronauts. Third, during error situations in the HFE deployment activity the model has to 
show the error-recovery behavior of the agents in situations that have not been previously described. 

If it turns out that we can only model communication and error-recovery by prescribing every situation, it can 
be said that a general model can never be constructed, and that we cannot use the model to predict 
plausible behavior of the agents during new and not previously prescribed situations. If, on the other hand, 
we can model the communication and error-recovery practice of the agents in such a way that we do not 
simply “hardwire” the behavior of the astronauts in previously observed situations, we can use the model to 
predict what will happen in future situations that have not occurred previously. 

The research question in this experiment is: 

Can a work practice model of the Heath Flow Experiment deployment procedures on the 
Moon predict plausible changes in the activity-behavior of the agents in the model, when 
previously unmodeled events occur? 

Proving that we can predict the work practice behavior of agents during new situations is the first step in 
showing that we can use Brahms to design new work processes. Designing a new work process is the 
objective of the third and last experiment, in which we will design the work practices of a semi-autonomous 
robot on the Moon. 

It is important to stress that what is predicted in this experiment is the agent behavior performing situated 
activities from a predefined set, given the occurrence of certain events. It could be easily misunderstood that 
the model is predicting events or new, not previously defined activities. It should be clear that this is not the 
case. By predicting the activities the agents perform from a pre-specified set in given events, we are 
validating the model being a theory of work practice for the HFE deployment on the Moon. 

Approach 

I develop a model of work practice for the HFE deployment based on the Final Apollo 16 Lunar Surface 
Procedures document, in which the detailed nominal timed activities during the HFE deployment are 
specified (Kain et al. 1972). Using the actual Apollo 16 voice-loop data and mission video I am able to 
analyze how the procedures are performed in practice. Unlike the Apollo 12 ALSEP Offload model from the 
previous experiment, this model is not a descriptive model of what happened during the Apollo 16 mission. 
Instead, this model is a more abstract and general model of the HFE deployment activity, based on an 
analysis of how the planned nominal procedures are executed in practice. After the general HFE 
deployment activity is implemented, I will include the error-recovery activities of the astronauts based on 
observed and analyzed errors during the Apollo 15 and 16 missions. During both these missions, events 
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occurred that made the astronaut deviate from the nominal planned procedures. Using these situated-
specific events, a generic activity model with which the agent can react appropriately and plausible in 
“future” error events will be shown. 

As a validation step of this generic error-recovery activity, previously observed error events from Apollo 15 
and 16 will be generated, and the behavior of the agents during the simulation will be compared to those 
observed. In the next sections I describe the important aspects of the model, and the results of the 
validation. Last, there will be some conclusions about the results from this experiment. The description of 
the model will not be in as much detail as that of the first experiment in Chapter 6. Many of Brahms specific 
features are detailed in that chapter, as well as in chapter 4. 

7.1 HFE DEPLOYMENT 

The purpose of the Heat Flow Experiment (HFE) was to measure the thermal conductivity and temperature 
gradient of the upper 2.44 meters of the lunar surface. They predicted two heat sources active in the Moon's 
interior: (1) original heat from the time of the Moon's formation, and (2) radioactivity. The objective of the 
experiment was to gather data on the Moon's internal heating process and use it as a basis for comparing 
the radioactive content of the Moon's interior with the Earth's mantle. In addition to the Moon's internal 
temperature, the experiment was capable of measuring the thermal conductivity of the lunar rock material. 
These combined measurements would give a net heat flux from the lunar interior to the lunar surface. 
Similar measurements on Earth had contributed to the understanding of volcanoes, earthquakes, and 
mountain building processes. Together with seismic and magnetic data from the other experiments, the 
HFE data would give scientist the ability to develop better models of the Moon, and therefore develop a 
better understanding of its history and origin. 

The HFE (S-037) was part of the Apollo Lunar Surface 
Experiments Package (ALSEP), and was part of the 
mission plans for Apollo 13, 15, 16, and 17. As many 
people know, Apollo 13 never made it to the Moon. The 
first deployment was during EVA-1 of Apollo 15. Although 
problematic, the experiment was deployed and data from 
the lunar internal at Hadley-Apennine was sent to Earth. 
Next was the deployment planned for Apollo 16, also 
during EVA-1. Unfortunately, the experiment was broken 
during the deployment and no data was ever received from 
Descartes-Cayley. The last HFE deployment was at 
Taurus-Littrow during the first EVA of Apollo 17. There, 
things finally went according to plan. 

            Figure 7-1. HFE deployment configuration 

The HFE consisted of two heat-flow probes, an electronics box, a probe emplacement tool, and the Apollo 
lunar surface drill (ALSD). Figure 7-1 shows that in the deployment configuration each of the two probes 
was connected by a cable to the HFE electronics box that rested on the surface, at the center of the two 
probes. The two probes were positioned on either side of the electronics box in a straight line about 18 feet 
away. The HFE electronics box provided control, as well as monitor and data processing capability for the 
experiment. The box was connected with a cable to the ALSEP central station 30 feet away. The astronaut 
responsible for deploying the HFE used the ALSD to drill two lined boreholes in the lunar surface to insert 
the probes. By drilling three hollow drill-rod sections into the surface a lined borehole was created. A closed 
drill-bit on the first drill-rod allowed for penetration into the lunar surface. After the lined borehole was 
created an emplacement tool was used to insert the probe to full depth. 

7.1.1 HFE time line 

One astronaut performed the HFE deployment solo, while the other astronaut was deploying other ALSEP 
instruments. During the Apollo missions different astronaut-roles deployed the HFE. During the Apollo 15 
and 17 missions the CDR deployed the HFE, however during the Apollo 16 mission it was the LMP. I have 
not been able to uncover the reason for this switch, but it might have been as simple as personal preference 
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of the individual astronauts. Regardless of this switch, the plan for deploying the HFE was the same on all 
missions. Figure 7-2 shows the summary time line of the ALSEP offload and deployment for the Apollo 16 
mission. 

 
Figure 7-2. Apollo 16 summary time line 

It shows the high-level ALSEP Offload and Deployment activities of the CDR and LMP over time. The 
ellipse in Figure 7-2 shows that the HFE deployment is performed by the LMP and consists of three high-
level activities: HFE equipment preparation, deploying HFE Probe 1 and 2. 

7.1.2 HFE Deployment procedures 

The summary time line from Figure 7-2 was decomposed for planning and training purposes into a very 
detailed step-by-step EVA procedure for each astronaut. In this procedure every step or activity is timed and 
planned. Figure 7-3 shows this detailed procedure for the LMP from the Apollo 16 Final Lunar Surface 
Procedures document (Kain et al. 1972). This is the data used to develop the work practice model.  
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Figure 7-3. Apollo 16 HFE deployment timeline procedures for LMP 

The high-level activity HFE Equipment Preparation in Figure 7-2 appears in Figure 7-3 as the detailed 
procedures Remove HFE SubPallet and Deploy HFE. The HFE Probe 1 activity is decomposed into the 
procedures Bore Hole 1 Drilling and Emplace HFE Probe 1. Similarly, HFE Probe 2 is decomposed into 
Bore Hole 2 Drilling and Emplace HFE Probe 2. 

7.1.3 HFE Deployment activity model 

Figure 7-4 shows the activity decomposition for the HFE deployment procedure from Figure 7-3. The HFE 
deployment procedure consists of the HfeEquipmentPreparation and the DeployingHfeProbe composite 
activities. Every astronaut that has trained to deploy the HFE knew how to perform these activities in the 
HFE deployment procedure. The HFE deployment activities from Figure 7-3 are therefore represented in a 
Brahms activity model that is implemented into the group AstronautsThatCanDeployTheHFE. All members 
of the AstronautsThatCanDeployTheHFE group are able to perform these activities.  
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HfeEquipmentPreparation 
RemoveHfeSubPallet 

RemoveHfeSupPalletFromPwrPkg 
ConnectHfe 

GetHfeCableFromHfeSubPallet 
MovingToConnectHfe 
ConnectHfeToCS 

HfeDeploy 
CarryHfePalletToHfeArea 
DeployHFE 
PlaceHfeSubPalletOnSurface 
RemoveProbeBoxFromPallet 
SplitProbeBox 
CarryProbeToHfeHole 
PlaceProbeBoxOnSurface 

DeployALSD 
ConfigureAlsdHardware 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DeployingHfeProbe 
BoreHoleDrilling 

CaryAlsdHardwareToHfeDrillHole 
MoveToHfeDrillHole 
SetAlsdToolsOnSurface 

SetupAlsdTools 
PickUpBoreStemBag 
OpenStemBag 

LosenVelcroStrips 
TakeCapOffStemBag 

InsertBoreStemIntoDrill 
PlaceDrillOnSurface 
GetBoreStemFromStemBag 

PickStem 
ThreadDrillStemIntoDrill 
PushDrillIntoSurface 
RemoveBatteryThermalShield 
ThreadDrillStemIntoPreviousStem 
ThreadDrillIntoDrillStem 

DrillHfeHole 
EnergizeDrill 

RemoveDrillFromStem 
GetWrenchFromContainer 
AttachWrenchToBoreStem 
RemoveDrillFromBoreStem 
PlaceDrillOnSurface 
RemoveWrenchFromStem 

EmplaceProbe 
PickUpProbeBox 
TakeHFEProbeOutOfProbeBox 
TakeOutEmplacementTool 
PutProbeBoxDown 
InsertProbeIntoBoreHole 
PlaceSunShieldOverTopOfStem 

 

Figure 7-4. HFE Deployment Activity ModelHfeEquipmentPreparation Activity 

Before the astronaut can drill the HFE boreholes and insert the HFE probes, he has to prepare the 
equipment for deployment. The HFE subpallet is stored on the Power Package (PwrPkg; this is the 2nd 
ALSEP package that also contains the RTG power supply). So, first the astronaut takes the HFE pallet off 
the PwrPkg and lays it on the surface next to the PwrPkg. Now the HFE instrument on the pallet has to be 
connected to the Central Station (C/S). The astronaut grabs the flat cable with the C/S connector and walks 
over with it to the C/S (see Figure 7-5, movement 1). There he connects the HFE instrument to the C/S. He 
then goes back to pick up the HFE instrument and carries it a minimum of 30 feet away from the C/S. In 
case of the Apollo 16, the HFE deployment area is 30 feet South of the C/S (see Figure 7-5, movement 2). 
After he positions the HFE pallet on the surface, he takes off the HFE probe box in which the two HFE 
probes are held. The box is in two halves held together with Velcro strips. The astronaut separates the two 
halves of the probe box. Next, he carries the probe box halves 18 feet to the left and right respectively, to 
the HFE borehole areas (see Figure 7-5, movements 3 & 4). He puts the instruments where he will return to 
drill the holes. As the last activity in the equipment preparation, the astronaut needs to get the ALSD, the 
HFE bore, core stems and the bore stem rack together. These are located on the Lunar Rover (LRV), and 
thus the astronaut has to go to the LRV, get the drill, bore stems and rack from the rover and configure them 
(see Figure 7-5, movement 5). 

7.1.3.1 DeployingHfeProbe Activity 

Next, the most complex activity is the actual deployment of the two HFE probes. As can be seen from 
Figure 7-3, these two activities are identical. Therefore, the model requires only one DeployHfeProbe 
activity. This activity is performed twice, once for the first probe and once for the second, at a different 
location with the same drill, but using different bore stems and a different probe. The actual task is pretty 
simple, and if performed on Earth should not create a lot of problems. However, on the Moon in 1/6 G, this 
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task is quite an effort. First, the astronaut has to carry the ALSD, the bore stems and bore rack to the 
deployment site, i.e. the drill hole (see Figure 7-5, movement 6).  

Next, the ALSD tools have to be set up and made 
ready for drilling. This entails opening the core stem 
bag, picking the first core stem from the bag and 
attaching it to the ALSD. Then the core stem is 
pushed with the ALSD into the surface so that the 
drilling can start. By starting the drill, the astronaut 
drills the first bore stem into the surface. When the 
bore stem is far enough into the surface, the ALSD 
has to be removed from the drill. Using the wrench 
does this. The drill is positioned on the surface and 
a second bore stem is grabbed from the bag. 
Instead of screwing the bore stem onto the drill 
laying on the surface, the second stem is screwed 
on the previous stem already drilled into surface. 
Then the ALSD is picked up and screwed on to the 
new bore stem. After this has been accomplished, 
the astronaut activates the ALSD again and the 
second bore stem is drilled further into the surface. 
Next, it is time for the third and last bore stem. After 
all three bore stems are drilled into the surface the 
astronaut has to place the HFE probe into the 
borehole. The probe is located in the probe box that 
was positioned near the borehole during the 
HfeEquipmentPreparation activity.  
 
 

Figure 7-5. Astronaut movement during HFE Deployment activity 

The astronaut picks up the probe box to take out the HFE probe and the probe emplacement tool. He then 
inserts the HFE probe into the borehole, using the emplacement tool. After the probe is emplaced a thermal 
shield is placed into the borehole. As a last activity, the astronaut places a sun shield over the stem to 
protect it. 

7.2 PREDICTIVE MODELING 

The Apollo 12 model of the ALSEP Offload from the previous experiment (chapter 6) is a descriptive model. 
The agents perform their activities and communications in a pre-specified, more or less “hardwired” way. 
The model can only simulate the ALSEP Offload as it happened during the Apollo 12 mission. The question 
that is being addressed in this experiment is how we could develop a work practice model that can be used 
to simulate the work practice during any HFE deployment mission. Such a model would be a predictive 
model of the work practice. 

There are a number of issues in the design of a predictive model that will be worked out in the next sections. 
First, I will describe how we can go from a “hardwired activity model” to a more flexible model in which the 
ordering of an agent's activities is flexible enough that it can change dynamically, rather than having to 
change the source code of the model. Secondly, I will address the issue of having conversations. A 
conversation is a dynamic and situated activity. Agents need to be able to act and react to speech acts in a 
dynamic fashion, such as asking a question when there is a need for information, and answering the 
question if it is being asked.  
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7.2.1 Dynamic plans and schedules 

The activity plan for the agents in the Apollo 12 ALSEP Offload model was hardwired into the workframes of 
the model. After an agent is finished with an activity, the agent knows which next activity to perform, 
because a consequence in the workframe creates the belief about what activity to perform next.  

For example, Figure 7-6 shows a hardwired plan in which, after the agent has moved to the SEQBayArea, 
he will open the SEQ Bay door as his next activity, regardless of the situation that arises at the SEQ Bay. 

Figure 7-6. Hardwired activity plan 

If we want to use this plan for another Apollo mission, or another future HFE deployment mission, it is 
obvious that this approach is not flexible enough to plan new situations. Therefore, a more dynamic 
approach for the scheduling of activities for the agents needs to be implemented, without having to specify 
every context in which an activity might occur (Agre 1995). 

The approach taken is to view the astronauts' activity of determining what next activity to work on as part of 
their work practice. As such, determining what activity to work on next is explicitly represented as an activity 
in the model instead of hardwiring it in workframes, such as the workframe shown in Figure 7-6. The 
operationalization of this activity in the real world can be found in the use of the cuff-checklist the astronauts 
are wearing on their space suit. In effect, this artifact contains a plan for action. When the astronaut is done 
with an activity, he consults his cuff-checklist to determine the next activity. This is modeled as the 
DetermineNextActivity activity. In this activity the astronaut simply reads from his cuff-checklist what his next 
activity is supposed to be51. The cuff-checklist artifact is modeled as located on his space suit (using the 
containment relation), and contains the astronaut's activity schedule (represented as “beliefs in the object”).  

Figure 7-7 graphically represents this activity. The astronauts’ plans are modeled as objects with relations to 
the previous and next activities to be performed. By specifying the sequential ordering relationships between 
activities, we specify the astronaut's plan to be performed. Even more, because the plan is modeled as 
beliefs about activity objects, changing the beliefs about the next activity can dynamically change the plan. 
This also allows for the agent to dynamically receive or change his beliefs about the plan. This is a crucial 
element in the design of this approach, which is used to model the change in the plan during situated errors. 

Next, the model reperesents under what conditions the astronaut will perform the DetermineNextactivity. 
This is done using a very simple workframe, shown in Figure 7-8. Whenever the agent gets the belief 

(current.getNextActivity = true), 
 

the ReadingCuffCheckList workframe (Figure 7-8) gets executed. This immediately makes the agent 
perform the DetermineNextActvity activity, while interrupting any current activity due to the high priority given 
to the execution of the DetermineNextActvity activity (priority = 100). 

                                                      
51 It should be noted that the agent is not planning in this activity, but reading a pre-specified plan developed during the mission planning 
activity, developed and trained long before the actual mission. 

workframe MovingToSEQBay { 
 repeat: false; 
 when (not(the agentLocation of current = SEQBayArea)) 
 do { 
  conclude((current.currentActivity = MoveActivity), bc:100, fc:100); 
  Move(SEQBayArea, 5, 1); 
  conclude((current.nextActivity = sOpenSEQBayDoorActivity), bc:100, fc:0); 
 } 
} 
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Figure 7-7. Dynamic plan execution activity 

Figure 7-8. ReadCuffChecklist workframe 

Figure 7-10 gives the source code of the DetermineNextActivity composite activity. This activity is defined 
within the ApolloAstronaut group. Thus all members of the ApolloAstronaut group can potentially perform 
this activity. However, in the HFE deployment model, only members of the LunarSurfaceAstronaut 
subgroup have the ReadingCuffChecklist workframe, from Figure 7-8. This means that only the members of 
that group (i.e. the LMP and CDR agents) will read a cuff-checklist. Within the DetermineNextActivity 
composite activity there is a communicate-activity for reading the first activity from the checklist. There also 
is a communicate-activity to read all the next activities from the checklist. There are two separate 
workframes, ReadingFirstActivity and ReadingNextActivity, that make the agent perform the 
DetermineNextActivity activity. Obviously, when the agent checks his cuff-checklist for his first activity, the 
ReadingFirstActivity workframe is executed. After this, every time the agent needs to determine his next 
activity, he will execute the ReadNextActivity workframe. 

Importantly, there are two thoughtframes in the composite activity (see Figure 7-10). One of the 
thoughtframes is fired every time, immediately after the agent has performed one of the two reading next 
activity workframes. These thoughtframes create the belief for the agent to start performing the correct next 
activity, 

conclude((current.nextActivity = curact.nextActivity), bc:100, fc:0); 
 

When the agent gets an updated belief for the attribute nextActivity it immediately triggers a workframe to 
perform the next activity. This workframe needs at a minimum a precondition of the form 

knownval(current.nextActivity = <activity object name>). 
 

Every possible activity needs to be an object-instance of the class Activity. For example, the workframe that 
starts the activity for HFE Probe1 deployment is shown in Figure 7-9. There is an object 
HfeProbeNo1Activity that is an instance of the class Activity. 

workframe ReadingCuffCheckList { 
 repeat: true; 
 when (knownval(current.getNextActivity = true)) 
 do { 
  DetermineNextActivity(start, 100, 1); 
  conclude((current.getNextActivity = false), bc:100, fc:0); 
 } 
} 
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Figure 7-9. Workframe for DeployingHfeProbeNo1 

The workframe from Figure 7-9 has to be read as follows: When the agent knows that his next activity is 
HfeProbeNo1Activity he starts working on that activity by first concluding that this is his current activity, then 
he starts performing the DeployHfeProbe activity. After he is done with the DeployHfeProbe activity he 
concludes that he has to get his next activity from the plan. 

7.2.2 Question and answer conversation policy 

Similar to the hardwired plan, the Apollo 12 ALSEP Offload model also has the agent communication 
hardwired in the workframes. Obviously, most conversations are not hardwired, meaning, in situated 
activities we don’t have pre-specified speech acts that are always spoken52. People don't just utter loosely 
connected speech-act sequences. They engage in conversations, i.e. a sequence of speech-acts between 
individuals that when interpreted in the context of a larger activity belong together and form an interpersonal 
dialogue. In order to model conversations, Holmback (1999) argues that we need to predefine the policy of 
specific types of conversations (Holmback et al. 1999b) (Holmback et al. 1999a). 

                                                      
52 There are of course exceptions, such as a standard greeting. 

workframe DeployingHfeProbeNo1 { 
 repeat:false; 
 when (knownval(current.nextActivity = HfeProbeNo1Activity)) 
 do { 
  conclude((current.currentActivity = HfeProbeNo1Activity), bc:100, fc:100); 
  DeployingHfeProbe(0); 
  conclude((current.getNextActivity = true), bc:100, fc:0); 
 } 
} 



 

178 

Figure 7-10. DetermineNextActivity source code 

During the Apollo missions, the detailed EVA timeline procedures included the specification of the voice-
data that the CDR and the LMP were to communicate during their activities. Figure 7-11 shows a piece of 

composite_activity DetermineNextActivity(symbol whn, int pri, int dur) { 
 priority: pri; 
 activities: 
  communicate ReadFirstActivity(DeploymentPlan plan, symbol whn, int pri, int mdur) { 
   priority: pri; 
   max_duration: mdur; 
   with: plan; 
   about:  
    receive(plan.firstActivity = value); 
   when: whn; 
  } 
  communicate ReadNextActivity(DeploymentPlan plan, Activity act, symbol whn, int pri, int mdur) { 
   priority: pri; 
   max_duration: mdur; 
   with: plan; 
   about:  
    receive(act.previousActivity = value), 
    receive(act.nextActivity = value); 
   when: whn; 
  } 
 workframes: 
  workframe ReadingFirstActivity { 
   repeat: false; 
   variables: 
    forone(Activity) curact; 
    forone(CheckList) checklist; 
   when (unknown(current.currentActivity = curact) and 
               knownval(current contains checklist)) 
   do { 
    ReadFirstActivity(checklist, whn, pri, dur); 
   } 
  } 
  workframe ReadingNextActivity { 
   repeat: false; 
   variables: 
    forone(Activity) curact; 
    forone(CheckList) checklist; 
   when (knownval(current.currentActivity = curact) and 
               knownval(current contains checklist)) 
   do { 
    ReadNextActivity(checklist, curact, whn, pri, dur); 
   } 
  } 
 thoughtframes: 
  thoughtframe FirstActivity { 
   repeat: false; 
   variables: 
    forone(CheckList) checklist; 
   when (knownval(current contains checklist) and 
               known(checklist.firstActivity = value) and 
               unknown(current.nextActivity = checklist.firstActivity) and 
               unknown(current.hasStarted = true)) 
   do { 
    conclude((current.nextActivity = checklist.firstActivity), bc:100, fc:0); 
    conclude((current.hasStarted = true), bc:100, fc:0); 
   } 
  } 
  thoughtframe NextActivity { 
   repeat: false; 
   variables: 
    forone(Activity) curact; 
   when (knownval(current.hasStarted = true) and 
               knownval(current.nextActivity = curact.name)) 
   do { 
    conclude((current.nextActivity = curact.nextActivity), bc:100, fc:0); 
   } 
  } 
} 
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the voice-data the astronauts need to communicate during the HFE deployment activities, that is part of the 
lunar surface procedures (Kain et al. 1972). The voice-data schedule includes what data to report, which of 
the astronauts is to report the data, and also the priority of the data (this is the number one or two between 
the rounded brackets in Figure 7-11). A priority one (1) means that there is a mandatory requirement for the 
data at the time or event designated. A priority two (2) means that the data may be deferred until the 
debriefing. 

It is easy for people to forget to make such scheduled utterances in the moment, even if they are well 
planned and trained. This happened a number of times during the Apollo 16 EVA. When this occurred, the 
CapCom, keeping track of the schedule, would ask the astronaut for the data later. 

To model this kind of interaction, I introduce a type of conversation 
policy called the question and answer voice-data policy. The 
purpose of this policy is to represent how the CapCom and the 
lunar surface astronauts handle the voice-data that needs to be 
reported back to Earth. The policy consists of two parts, one part 
describing the policy for the receiver (i.e. the agent(s) needing the 
answer to a question) and one part for the sender (i.e. the agent 
answering the question).  

The operationalization of this policy for the lunar surface EVA's is 
as follows. The question is the indirect request for the voice-data 
as is specified in the lunar surface procedures (see Figure 7-11). 
The sender policy (or answer policy) is the utterance of the 
astronaut at the moment that the voice-data is to be reported.  

 
               Figure 7-11. Voice-data schedule 

The receiver policy defines when the CapCom is going to ask specifically for the data (i.e. a direct request). 
For example, if the astronaut forgets to provide the data as was specified in the schedule and the data has a 
high priority, the CapCom will ask for the data during the EVA. Figure 7-14 shows the conversation policy.  

VoiceData Conceptual Object Class 

Every piece of voice-data that needs to be communicated according to the plan will be represented as a 
VoiceData conceptual object (Figure 7-12). The voice-data is represented as a conceptual object, because 
it is not a physical object, but represents a conceptual voice-data element of the schedule the astronaut 
remembers from their extensive training. Since the astronaut's cuff-checklist does not include all the voice-
data53, they have to remember to communicate the voice-data at the appropriate time during the 
performance of their activities. 

 
Figure 7-12. VoiceData definition 

 

                                                      
53 Some astronauts added references to specific voice-data as reminders on their personal cuff-checklist, but this was the exception and 
they certainly did not contain all voice-data. 
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Each voice-data object has the following meta-data associated with it: 

• data: This represent the data that is communicated. 
• fromAgent: This links the voice-data object to the agent that needs to communicate the data. 
• toAgent: This links the voice-data object to the agent that needs to receive the data. 
• priorty: This is the priority (“1” or “2”) of the voice-data. 
• duringAct: This links the voice-data object to the activity after which the fromAgent needs to 

communicate the data. 
• when: This tells when the voice-data needs to be communicated during the activity; at the 

beginning, or at the end of the activity (“start” or “end”). 
• sent: This tells if the voice-data has already been communicated or not (“true” or “false”). 
• received: This tells if the voice-data has already been received or not (“true” or “false”). 

For each planned voice-data communication there is a conceptual object. The agents get (initial) beliefs 
about these objects as a representation of the fact that they remember the scheduled communications from 
their training, and remember who needs to communicate it and when. For example, Figure 7-13 shows that 
at the moment the LMP has removed the battery thermal shield from the ALSD, he needs to report the start 
of the HFE bore hole #1 drilling. 

 
Figure 7-13. Voice-data example 

This voice-data instance is represented as the conceptual object ReportStartHfeBoreHoleDrilling 

conceptual_object ReportStartHfeBoreHoleDrilling instanceof VoiceData { } 
 

The lunar surface astronauts and the CapCom get initial-beliefs about this conceptual object. Each agent 
that remembers the planned voice data communication has beliefs about the 
ReportStartHfeBoreHole1Drilling conceptual voice-data object, such as: 
 

 (ReportStartHfeBoreHoleDrilling.duringAct = RemoveBatteryThermalShieldActivity); 
(ReportStartHfeBoreHoleDrilling.whn = end); 
(ReportStartHfeBoreHoleDrilling.fromAgent = CharlieDuke); 
(ReportStartHfeBoreHoleDrilling.toAgent = TonyEngland); 
(ReportStartHfeBoreHoleDrilling.pri = 1); 
(ReportStartHfeBoreHoleDrilling.sent = false); 
(ReportStartHfeBoreHoleDrilling.received = false); 
 

Not having beliefs about a voice-data object means that the agent does not remember that this data needs 
to be communicated. This is the way forgetting to communicate the voice data becomes possible. Next, I 
describe how the Question & Answer Conversation Policy is implemented in the Brahms model. 
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Figure 7-14. The Question & Answer conversation policy 
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Sender Policies 

Sender Policy 1 (SP1) and Sender Policy 2 (SP2) define how the sender of the voice-data communicates 
the data. This is considered the answer-part of the policy. The condition under which the sender will 
communicate the data is given in the precondition row of Figure 7-14. For example, the precondition in SP1 
states that if the sender is done with the activity during which he needs to communicate the data, and he 
has to communicate the data at the end of the activity, and the data to be communicated has priority one, 
then communicate the data using the CommunicateVoiceData activity. The precondition in SP2 states that if 
the sender is working on the activity during which he needs to communicate the data, and he has to 
communicate the data at the beginning of the activity, then communicate the data using the 
CommunicateVoiceData activity. 

Each sender policy is implemented as a separate workframe. For example, SP1 is implemented in the 
workframe SenderPolicy1 (see Figure 7-15).  

Figure 7-15. Workframe SenderPolicy1 

The actual voice-data speech-act in both SP's is implemented using the CommunicateVoiceData 
communication activity. Figure 7-15 shows how this activity is called from the SP1 workframe, with the 
correct parameter values. The source code of the communication activity is shown in Figure 7-16. The 
sender communicates the data and fromAgent attributes for the voice-data. The sender also communicates 
the (sub)activity he is working on when communicating the voice-data. This means that the receiver will get 
the data that needs to be communicated, as well as who communicated it and during what activity. 

Figure 7-16. CommunicateVoiceData activity 

The reason for communicating all this data is that although the voice-data communication schedule—
implemented by the voice-data conceptual objects and the agents' beliefs about them—specifies who is to 
communicate the data, during the mission another agent might actually communicate the voice-data. 

workframe SenderPolicy1 { 
 repeat: true; 
 variables: 
  forone(VoiceData) voice_data; 
  forone(Activity) act; 
  collectall(LmVoiceLoop) vlcoms; 
 when (knownval(voice_data.duringAct = act) and 
            knownval(current.subActivity = act) and 
            knownval(act.isDone = true) and 
            knownval(voice_data.whn = end) and 
            knownval(voice_data.pri = 1) and 
            knownval(voice_data.fromAgent = current) and 
            not(voice_data.sent = true) and 
            knownval(vlcoms.communicationType = LmVoiceLoop) and 
           not(current.name = vlcoms.name)) 
 do { 
  conclude((voice_data.data = current.speechAct), bc:100, fc:0); 
  CommunicateVoiceData(100, 1, start, voice_data, act, vlcoms); 
  conclude((voice_data.sent = true), bc:100, fc:0); 
 } 
} 

communicate CommunicateVoiceData(int pri, int dur, symbol whn, VoiceData vd,  
                                                                       Activity act, LmVoiceLoop vlcoms) 
{ 
 priority: pri; 
 max_duration: dur; 
 resources: act; 
 with: vlcoms; 
 about: send(vd.data = anyvalue), 
             send(vd.fromAgent = current), 
             send(current.subActivity = act); 
 when: whn; 
} 
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Similarly, while the plan specifies during what activity the voice-data has to be communicated, in reality this 
might be done during another activity. 

Receiver Policies 

The Receiver Policy1 (RP1) describes under what conditions the receiver (i.e. CapCom) will ask for the data 
(see the precondition row of Figure 7-14). This is considered the question-part of the policy. In normal 
circumstance the receiver never has to ask for the data, since the schedule states when the lunar surface 
astronauts are to communicate. However, this might not always happen, in which case CapCom will ask for 
it. The condition under which the receiver asks for the data is when the data has a high priority (i.e. “1”) and 
the receiver knows that the sender is already done with the activity after which he is supposed to 
communicate the data, and the data has not yet been received. The RP1 is implemented by workframe 
ReceiverPolicy1 that specifies the policy conditions and executes a request for the voice data as a voice-
loop communication activity (Figure 7-17).  

Figure 7-17. Workframe ReceiverPolicy1 

When the receiver asks the sender for the data, the sender, if possible, will reply by executing one of the two 
SP's. This works as follows. 

If the sender does not communicate the voice-data when he needs to according to the schedule, it means 
that the sender has forgotten about it. In the model this happens when the agent does not have the beliefs 
for the specific voice-data conceptual object. Not having any beliefs about a specific voice-data object 
implies that neither of the sender policies can be executed. Thus, when the receiver determines that he has 
not yet received the voice-data that he was supposed to receive, he executes the RequestForData 
communication activity in the ReceiverPolicy1 workframe. This activity communicates all the necessary 
beliefs for the voice-data object (see Figure 7-18). When the sender agent receives the beliefs from the 
request for voice-data, it triggers one of the sender policies, which makes him communicate the voice-data. 

workframe ReceiverPolicy1 { 
 repeat:false; 
 variables: 
  forone(VoiceData) voice_data; 
  forone(Activity) act; 
  forone(LunarSurfaceAstronaut) fromagt; 
 
 when (knownval(voice_data.duringAct = act) and 
            knownval(act.isDone = true) and 
            knownval(voice_data.fromAgent = fromagt) and 
            knownval(fromagt.subActivity = act) and 
            knownval(voice_data.pri = 1) and 
            not(voice_data.received = true)) 
 do { 
  RequestForData(100, 1, start, voice_data, act, fromagt); 
 } 
} 
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communicate RequestForData(int pri, int dur, symbol whn, VoiceData vd, Activity act,  
             LunarSurfaceAstronaut fromagt)  
{ 
 priority: pri; 
 max_duration: dur; 
 with: LmComCircuit; 
 about: send(vd.duringAct = act), 
              send(vd.fromAgent = fromagt), 
              send(vd.toAgent = current), 
              send(vd.pri = anyvalue), 
              send(vd.received = false), 
              send(vd.sent = false), 
              send(vd.whn = anyvalue); 
 when: whn; 
} 

Figure 7-18. RequestForData Activity 

Notice that it will be possible for the agent to have forgotten or simply not to know specific beliefs associated 
with the voice-data. Such an occurance would represent partial forgetting. For example, agent CharlieDuke 
might remember that he needs to communicate the start of the borehole drilling, but has forgotten its priority. 
In that case, there could be an additional policy that would handle this. 

This concludes the description of the Q&A policy and its implementation in the Brahms model. Next, I 
describe how situated-errors can be handles in a general way, without having to specify every error 
condition and situation in advance. 

7.3 DEVIATIONS FROM NOMINAL PROCEDURES 

The procedures for the HFE deployment are nominal, meaning that these only hold as long as everything 
goes according to plan. In practice this almost never happens. The issue is thus, what will happen when 
something goes wrong, or not according to plan? The question we need to answer is how we can represent 
how agents will deal with problem situations, without having to describe every possible situation that can 
occur. 

7.3.1 Problematic situations 

The notion of human error is often cited as the cause for mistakes and disasters. What constitutes a human 
error is often left to the interpretation of the accident investigator. Usually, a deviation from a standard or 
nominal procedure is identified as an “error.” However, when we consider the situation-specific issues and 
the work practice in contrast to the procedures, often human error lies in the design and validation process 
of the procedures. Very often the procedures do not take into account the context and the situation in which 
the activities take place. Were the right people involved in the planning process? How were interactions 
between subsystems tested? Did organizational/functional breakdown prevent interactions between 
activities, materials and the situation? 

The following “human error” occurred during the Apollo 16 deployment of the HFE. The LMP was in the 
process of drilling a hole in the lunar surface to implant the first HFE probe. He had connected the HFE 
package to the Central Station (CS) with a flatbed cable. At the same time, the CDR was busy deploying the 
Passive Seismic Experiment (PSE) in close proximity to the C/S. All this was planned and trained and had 
very detailed procedures (see Figure 7-3). Unfortunately, although known at the time, the procedures and 
training did not include the fact that the flatbed cables would not lay flat on the lunar surface due to the 
minimal lunar gravity. For example, the procedures did not include specific instructions on how to avoid 
getting tangled in one of the cables—it was very difficult for the astronaut to see his feet through the visor of 
his helmet. Consequently, the cable connecting the HFE to the C/S hooked on one of the CDR's boots 
without the CDR noticing it, thus ripping the cable of the C/S and breaking the connection, making the 
Apollo16 HFE probes unusable. 

If we consider the CDR's specific situation, the procedures and his training displaying itself through the work 
practice of the astronauts, it is obvious that we should not call this an astronaut error. The CDR's actions 
were not an intentional deviation from the nominal procedures. It was the situation specific context on the 
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moon that showed the error in the designs and procedures, as well as the lack of a developed work practice 
on the moon. Procedure designers and HFE engineers did not take this into account. 

Nominal procedures can never capture the intricacies of work practice. One of the benefits of modeling and 
simulating not just the nominal procedures—but also the work practice of how the procedures are put into 
action, including the effects of the environment, communication, tools and artifacts, and error conditions—is 
that the design of the activities and interaction of the agents with each other and the environment can be 
more detailed. Thus, specifying contextual procedures and detailing how activities will be performed in 
reality will lower the chance of unplanned situations causing problems. Note that without considering these 
issues, Brahms models could incorporate the same kinds of failures. Therefore, a critical engineering 
framework is required, by which we include systematical failure analysis of past designs (of which the HFE 
is one example). 

The next two sections describe types of activities that I have been able to identify and generalize from data 
of the Apollo 15 and 16 missions. I then describe an activity design that implements a general error-recovery 
activity that is used by the lunar surface astronaut agents to recover from both types of errors, without 
having to specify the error situations up front. 

7.3.2 Two types of error-recovery 

As briefly described in the previous section, the error during the Apollo 16 HFE Deployment broke the 
experiment. This meant that the HFE drilling activity the LMP was working on was not useful anymore. 
Once the LMP had determined this, he decided to stop the activity and start another activity by reordering 
the scheduled plan. This type of behavior is what I refer to as individual error-recovery. In other words, in 
individual error-recovery the individual recovers from a situated error and decides what to do next.  

The second type of error-recovery behavior was observed during the Apollo 15 HFE deployment. I refer to 
this type as distributed error-recovery. During the Apollo 15 HFE drilling activity the CDR could not get the 
ALSD off of the first bore stem he had just drilled into the surface. He was supposed to use his foot to stop 
the bore stem from turning, while he was turning the ALSD counter clockwise, to get it off the bore stem. 
Whatever the CDR tried to do, the bore stem would turn with the ALSD, and consequently the drill would not 
come lose. After awhile the CDR gave up and asked CapCom what he should do, thus letting the people at 
mission control solve the problem. After a few minutes the CapCom gave the CDR a new procedure using a 
wrench to keep the bore stem from turning with the drill. The essence of distributed error-recovery is that the 
individual relies on others to help in an error-recovery activity. The problem solving is distributed over a 
number of individuals. 
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7.3.3 Error-recovery activity design 

How do we model error-recovery activities without describing every potential error situation? The design of 
the error-recovery activity is divided into two pieces. The first objective of the design is to provide a default 
error-recovery practice the lunar surface astronauts will follow when they detect an error and they have no 
specific practice for resolving a particular error. Secondly, the design should allow a modeler to add more 

specific error-recovery activities as part of 
the work practice of each planned activities. 

Figure 7-19 shows the design of the 
ResolveError group. This group is a 
subgroup of the LunarSurfaceAstronauts 
group, and implements the default error-
recovery activity that every lunar surface 
astronaut can perform during error 
situations. The figure is read from left to 
right. It shows the group with all its 
workframes and thoughtframes. The design 
of this default activity is based on how the 
Apollo 15 and 16 astronaut resolved the 
errors that occurred during the HFE 
deployment. First, the astronaut goes over 
to the location where the error has occurred 
to check out the problem 
(CheckOutProblem workframe). This is a 
workframe that the astronauts will always 
perform in case of an error situation that 
affects their activities. During the 
CheckOutProblem activity any of the 
thoughtframes can fire, based on the 
situation. First, the agent needs to 
determine if the error needs to be resolved 
or not (ErrorNeedsToBeResolved 
workframe). 
 

Figure 7-19. Default error-recovery activity workframes and thoughtframes  
                    (generated by the old Brahms simulation G2 engine) 

After it has been determined that the error needs to be resolved, the agent then needs to determine if the 
error needs to be resolved by him (MyErrorToResolve or NotMyErrorToResolve workframes). When the 
agent has decided that it is responsible for solving the error, it now has to figure out if it can start solving the 
error at that moment. There are two possibilities; if there is no previous error the agent can go ahead and 
resolve the one at hand (ResolveError1 thoughtframe). If there is a previous error that the agent was 
supposed to solve, but he is at the moment not working on that particular error, then he can go ahead and 
start solving the one at hand (ResolveError2 thoughtframe). When the agent decides to resolve the error, he 
will start the CheckOutProblem workframe. Next, the astronaut will perform the ErrorHandling workframe. 
Last, the MovingBack workframe allows the agent to move back to the location he was at before he started 
checking out the problem.  

The CheckOutProblem workframe has two activities (Figure 7-20). During the performance of this 
workframe, the thoughtframes in Figure 7-19 can fire. The Moving activity lets the agent move to the 
location where the error occurred. The CheckOutProblem composite activity has just one workframe called 
InvestigateProblem. During the investigate activity the agent can detect the facts that represent the problem 
that occurred; i.e. detect((error.errorCode = value)). 
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Figure 7-20. CheckOutProblem workframe & activity hierarchy 

Now that the agent knows the type of error that has occurred, it can always handle the error using a error 
handling activity. This is done through the implementation of the HandleError activity. Figure 7-21 shows the 
default HandleError activity implementation in the ResolveError group. The ErrorHandling workframe gets 
executed when there is no other more specific HandleError activity available. The effect of this default 
activity is that the agent will ask the CapCom (effectively mission control) how to solve the error. Then the 
agent will wait until the CapCom comes back with a solution. This default behavior is an implementation of 
the default distributed error-recovery approach. 

When the CapCom communicates back the solution from mission control, the agent can execute the 
thoughtframes in Figure 7-21. The two options that have been implemented as default behavior are that a) 
the solution from mission control is to continue with the activity and ignore the error (ContinueCurrentActivity 
thoughtframe), and b) the solution from mission control is to start working on another activity, effectively 
abandoning the current activity (StartNewActivity thoughtframe). In the second case the CapCom 
communicates what activity to work on next, thus effectively changing the astronaut's plan. 

 
Figure 7-21. ErrorHandling workframe & activity hierarchy 

7.4 PURPOSE OF GENERAL REPRESENTATIONS 

The objective of this experiment is to determine if with Brahms we can develop a predictive model of a work 
practice. As described in the introduction of this chapter, prediction in this context means that the model can 
predict what will happen during the Apollo HFE Deployment in not previously specified situations in terms of 
the activities of the lunar surface agents, as well as the communication of voice-data. The focus of the 
prediction of future scenarios is on the order in which astronauts perform activities, their communication of 
the scheduled voice-data, and on the situated error-recovery activities that are performed when a not 
previously modeled error situation occurs. 
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The ALSEP Offload model of the Apollo 12 mission (see chapter 6) was not predicting new communications 
patterns or showing how the agents would recover from error situations. The model was hard-wired in terms 
of speech acts by the lunar surface astronaut agents, and no error-recovery procedure was part of the 
model. The purpose of the design and implementation of the question and answer policies and the error-
recovery procedure described in the previous two sections is to allow for a more general and predictive 
model of practice. 

By abstracting the default practice of the Apollo astronauts dealing with error situation, I was able to develop 
a more general applicable model. The model cannot only show the behavior of the Apollo 16 astronauts, but 
the model is able to predict the behavior of Apollo lunar surface astronauts in situations that were not 
modeled. More over, we could add more specific error-recovery behavior, based on observable errors in 
previous missions. Doing this would make the model even more applicable in predicting the behavior in 
future error events. Such capability would be useful in designing work practice simulations for future 
missions to the Moon that are based on the Apollo missions from the past. I have shown that we can 
implement more general models in Brahms, which will allow us to move to the use of Brahms in design. 
However, in the next section, I first present the V&V of this general model of HFE deployment. 

7.5 VERIFICATION AND VALIDATION 

This section describes the V&V of the model developed in this experiment. The V&V process used in this 
experiment is similar to the process described in the first experiment (section 6.9). Again, we need to verify 
the data used and the conceptual model developed based on this data, as well as the implementation of the 
model in Brahms source code, and the black-box validation of the experiment. 

7.5.1 Data validation 

As in the previous experiment, the data used in this experiment are all original NASA records of the actual 
Apollo missions. Table 7-1 lists all data sources that have been used in this experiment.  

Table 7-1. Data sources used during experiment 

Data Source Data Type 

Apollo 16 Final Lunar Surface Procedures Original official Apollo 16 mission procedures 

Apollo Lunar Surface Journal Transcriptions of actual astronaut voice loop 
recordings + mission photographs. 

Apollo 15 & 16 Video Tapes Video Recordings of the actual Apollo 
missions from NASA. 

The conceptual model is mostly based on the Apollo 16 Final Lunar Surface Procedures (Kain et al. 1972). 
This is the official mission procedures document, and thus contains an accurate pre-mission plan of the 
activities, communications, and timelines. Besides the pre-mission data, there are also mission voice-
transcriptions and video data. Together these provide a very accurate data set upon which the models can 
be based. 

7.5.2 Conceptual model validation 

The validation of the conceptual model is easier in this experiment than in the previous one. This is because 
I developed the conceptual model based on the HFE procedures as described in the Apollo 16 Final Lunar 
Surface Procedures. Validation in this respect means that we need to make sure that all the activities from 
the procedures are indeed specified in the model. The model comprises the hierarchy of activities shown in 
Figure 7-4. The named activities are based upon and cross-referenced with the detailed HFE activity 
timeline in the procedures. Besides basing the activity model on the lunar surface procedures, I also verified 
that the specified activities can be matched with the Apollo 15 and 16 voice transcriptions in the ALSJ 
(Jones 1997), as well as video data available for both missions. 
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7.5.3 Computer model verification 

The Brahms model is a generic HFE Deployment model. It does not describe the work practice of a single 
Apollo mission from the past. Instead, it is an idealized model of the lunar surface astronaut activities based 
on the nominal HFE Deployment procedures. The objective of the model is to represent the procedures in 
such a way that it can be used to simulate past and possible future HFE deployments on the moon, by 
representing the nominal procedures at a work practice level. 

Before we can validate the predictive nature of the model, we need to verify that the model simulates the 
nominal procedures correctly. To do this we split the verification process in two steps. In step one, we verify 
that the model shows the performance of the HFE deployment in the order in which the nominal procedure, 
given in the Final Lunar Surface Procedures (FLSP), tells us that it should be done. In step two, we verify 
that the voice-data that needs to be communicated is communicated in the nominal simulation, according to 
the voice-data schedule given in the FLSP. 

7.5.3.1 Nominal procedure verification 

The order of the high-level HFE deployment activities (Figure 7-2) is: 

0. Place ALSEP Packages on the Lunar Surface (this is the pre-HFE deployment activity) 

1. Prepare the HFE equipment for deployment 

2. Deploy the first HFE Probe. 

3. Deploy the second HFE Probe. 

What we need to verify is that a) the order in which the lunar surface astronaut agent performs the HFE 
deployment is consistent with the FLSP activity order, and b) that each high-level activity is correctly 
performed, based on the detailed FLSP. 

ALSEP Package Placement 

Before the astronaut can start with the HFE deployment, he first needs to place the packages on the lunar 
surface in the correct location, based on the mission specific ALSEP deployment area configuration (see 
Figure 7-1 for Apollo 16's configuration). This is considered the first activity. 

We verify that this happens in our simulation. Figure 7-22 shows LMP agent CharlieDuke reading his first 
activity to perform from the LmpCuffChecklist object contained on his EMU suit. The beliefs the agent gets 
from this “reading” activity triggers him to start the AlsepPackagePlacement activity, described in Figure 
7-23. It shows that the model correctly simulates the start of the first activity, because the name of the first 
activity is provided as input data to the agent on its cuff checklist, instead of being “hardwired” in the model.  
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Figure 7-22. Reading the first activity 

Figure 7-23 shows the nominal procedure of the ALSEP Package Placement Activity. The astronaut to 
perform that activity is the LMP. The first sub-activity is to place the ALSEP packages on the surface. Since 
the LMP carries the packages from the LM to the deployment site, and this is the first activity on arrival at 
the deployment site, the LMP is carrying the antenna-mast with the two packages attached to it. Placing the 
ALSEP packages on the surface means that the astronaut has to put the antenna-mast on the surface, and 
then remove each of the two packages off of the mast. This is done at the C/S site (the site of C/S package). 
After ALSEP Pkg1 (includes C/S) is on the surface, Pkg2 includes the RTG (RTG package) is removed 
from the antenna-mast and carried to the RTG area (i.e. 8' West of Pkg1 in the case of Apollo 16). 

 
Figure 7-23. ALSEP Package Placement Activity 

Figure 7-24 shows the simulation of this activity. After the agent has determined its first activity from the 
plan, it performs the sub-activities from Figure 7-23 in the correct order. First the agent places the ALSEP 
packages on the surface (PlacePkgsOnSurface activity). You can see that during this activity the agent first 
moves the AntennaMast object to the surface (in the CentralStationArea), and at the end of the activity the 
CentralStation object (ALSEP Pkg1) has also been moved to the surface. 
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Figure 7-24. ALSEP Package Placement Activity Verification 

One might ask how it is represented that the agent would first perform the PlacePkgsOnSurface activity. Will 
the agent always perform this activity? Always performing this activity would obviously not be accurate. The 
agent only needs to perform this activity if he is in the correct location and is carrying the antenna-mast with 
the two ALSEP packages attached to it. Figure 7-25 shows how this is accomplished in the preconditions of 
the workframe. The question is also how the agent moves the antenna-mast and the packages to the lunar 
surface? This is done in the body of the workframe. First, the AntennaMast object is moved to the ground. 
The consequence  

conclude((AntennaMast.moveToGround = true), bc:100, fc:100); 
 

in Figure 7-25 creates the belief for the agent, but also creates a fact in the world. The AntennaMast object 
reacts to this fact and executes the MoveToGround activity, which moves the object to the ground (i.e. 
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moves it to the same location as the agent currently containing it). The detectable makes sure that when the 
AntennaMast has moved to the ground, the agent detects that the object is not contained anymore.54 

Figure 7-25. PlacePkgsOnSurface Workframe 

After the AntennaMast object is on the ground, the agent takes the AlsepPkg1 off of the AntennaMast, and 
then moves it to the ground. This is represented by the consequence after the PlacePkgsOnSurface activity 

conclude((AlsepPkg1.moveToGround = true), bc:100, fc:100); 
 

and moves the AlsepPkg1 object to the ground at the end of the activity. Both these object movements can 
be seen in Figure 7-24. 

Next, the agent moves to the RtgArea, carrying the PwrPkg object (AlsepPkg2), which is therefore also 
moved to the RtgArea. When the agent arrives at the RtgArea it puts the PwrPkg object on the ground. After 
this, the agent performs the orientation activity (OrientPkg2) and then tethers the universal handling tool 
object (UHT). At the far right side of Figure 7-24 you can see that the agent is determining its next activity by 
again reading its next activity from the cuff-checklist object. 

Representing work practice means more than the sequential execution of activities according to the 
procedure. It is at minimum necessary that we represent under what situational condition activities are 
performed, e.g. people won't put objects down that they are not carrying. Although it would take a lot of 
space to show all the situational preconditions for each workframe, every workframe contains those 
situational conditions that would make the agent execute the activities within it. Each activity can and will 
only be executed if the “correct” situational context exists in the world, and the agent is aware of it (i.e. has 
beliefs of this context). Effectively, this makes the model able to predict what activities the agent will execute 
next, based on the situational events (modeled by facts) that happen in the world. 

                                                      
54 Modeling putting objects on the ground in this way is needed because the Brahms language does not contain a built-in “put” and “get” 
activity. Such an activity should be added to the language. 

workframe wf_PlacePkgsOnSurface { 
 detectables: 
  detectable DetectAntennaMastRelease { 
   when (whenever) detect((current contains AntennaMast is false)); 
  } 
 when (knownval(current.location = CentralStationArea) and  
    knownval(current contains AntennaMast) and 
    knownval(AntennaMast contains AlsepPkg1) and 
    knownval(AntennaMast contains AlsepPkg2)) 
 do { 
  conclude((AntennaMast.moveToGround = true), bc:100, fc:100); 
  PlacePkgsOnSurface( ); 
  conclude((AlsepPkg1.moveToGround = true), bc:100, fc:100); 
  conclude((AntennaMast contains AlsepPkg1 is false), bc:100, fc:0); // don't create fact! 
  conclude((AntennaMast contains AlsepPkg2 is false), bc:100, fc:100); 
  conclude((current contains AlsepPkg2), bc:100, fc:100); 
 }  
}  
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HFE Equipment Preparation 

The next high-level activity to be verified is the HfeEquipmentPreparation activity (see Figure 7-2). This 
activity is decomposed into three other high-level activities from the Final Lunar Surface Procedures; 
Remove HFE Sub Pallet, Deploy HFE, and Deploy ALSD (see Figure 7-3, number 1 on the left-hand side 
and Figure 7-4). 

 

Figure 7-26. HfeEquipmentPreparation Activity Verification 

All the way to the left on Figure 7-26 we can see the thoughtframe being fired to read the next activity 
(shown by the light bulb right underneath the agent icon). Next, the HFE equipment preparation activity is 
performed. During the HFE equipment preparation activity the agent carries the necessary objects 
(HfeSubPallet, HfeProbe1Box and HfeProbe2Box) to the appropriate locations. Due to the limited space 
available, the zoom-level in Figure 7-26 is such that some of the workframe and activity names cannot be 
displayed, however it has been verified that they are all correctly executed according to the procedure. 
Figure 7-26 shows again that the agent is not simply executing the activities, but is also interacting with 
objects in the environment and moving them to the correct locations. 
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HFE Probe No. 1 

By far the longest and most complex activity is the DeployingHfeProbe activity. This activity is peformed 
twice, once for deploying HFE Probe No.1 and again for HFE Probe No.2. Figure 7-27 verifies the activity 
for deploying the first probe. Again, the full procedure for this activity is shown in Figure 7-3 (numbers 2 and 
3) and Figure 7-4.  

 

Figure 7-27. DeployingHfe/2Probe Activity Verification 

There is a lot that can be said about the implementation and workings of this activity. However, the most 
interesting aspect in this activity is how the agent actually drills the boreholes into the lunar surface, using 
the Apollo Lunar Surface Drill (ALSD). This is modeled in the BoreHoleDrilling activity. The execution and 
duration of this activity is determined by the time it takes to drill the bore stems into the surface. For each 
borehole the agent has to drill three bore stem objects into the surface. A bore stem cannot be drilled into 
the surface, unless the previous stem is drilled sufficiently deep in the lunar crust. The start of drilling the 
next bore stem is therefore dependent on the astronaut's ability to drill the previous stem first. The agent will 
execute the DrillingBoreStem workframe and perform the EnergizeDrill activity, until the bore stem being 
drilled into the ground is all the way into the surface. This means that there is an interaction between the 
agent and the ALSD object, and the ALSD object and the Stem objects that are being drilled. 

The agent first picks a bore stem from the bore stem bag, and inserts the drill onto the stem. Then, when the 
agent energizes the drill (i.e. starts drilling), the ALSD object starts drilling the stem objects connected to drill 
into the ground. The duration of the drilling activity is dependent on the length of the bore stem being drilled 
into the ground and the speed at which the stem is going into the ground (the speed of drilling is an average 
of five inches every five seconds). The stem objects themselves simulate this. Each stem object has a 
length, plus the workframe DrillingIntoSurface that simulates moving the bore stem into the lunar surface, as 
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long as it is contained by the ALSD and the ALSD is energized. It does this by calculating how deep the 
current bore stem is in the surface, using the following consequence 

conclude((current.inchesIntoSurface = current.inchesIntoSurface + 5), bc:0, fc:100); 
 

Every five seconds the stem moves five inches deeper into the ground. The stem object continues moving 
itself into the surface as long as the ALSD is energized. Moreover, the agent energizes the ALSD, as long 
as the bore stem is not all the way into the surface. Consequently, this is an interaction between the agent, 
the ALSD object and the bore stem object, as shown in Figure 7-28.  

 
Figure 7-28. Drilling BoreStem1 in the surface 

It should be noted that when a bore stem is drilled into the surface and the next bore stem is attached to it, 
all the bore stems that are attached to each other will be moving deeper into the surface with every drilling 
cycle of the ALSD. This phenomenon is shown in Figure 7-29 when bore stem objects BoreStem1 and 
BoreStem2 are both being moved into the surface at the same time. Since the bore stems have different 
lengths, the time it takes to drill each one of them into the surface differs. 
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Figure 7-29. Drilling BoreStem2 in the surface 

It should be noted that if the agent fails to drill one bore stem all the way into the surface, he will not be able 
to drill the other ones either, and thus will not finish the drilling activity. This is an important feature of the 
model for being able to model errors, which is the subject of the black-box validation (section 7.5.4 - 7.5.6). 
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7.5.3.2 Voice-data communication verification 

The second step in the computer model verification is to verify that the voice-data communications happen 
as they are prescribed in the procedures (Figure 7-11 and Figure 7-13). Figure 7-30 is the verification that 
the sender conversation policy described in section 7.2.2 works correctly. 

Figure 7-30. Conversation Policy Verification 

Figure 7-30 shows that right after the interrupted DeployingHfeProbeNo1 activity, agent CharlieDuke 
communicates the ReportStartOfDrilling data to agent TonyEngland specified by the 
ReportStartHfeBoreHoleDrilling voice-data object. A second later, through the voice-loop delay, agent 
TonyEngland has received the voice-data, as well as the belief about which agent communicated the voice-
data. 

To end the nominal model verifcation, Figure 7-31 shows the complete simulation of the HFE deployment, 
including the voice-data communication. The LMP agent CharlieDuke first prepares the HFE equipment in 
the RTG area. He then deploys the HFE and the ALSD in the HFE area and the LRV parking area 
respectively. Then, the agent deploys HFE probe 1 and 2 by drilling three bore stems for each into the 
surface. All the while communicating the voice-data to the CapCom agent TonyEngland. Figure 7-31 is the 
emerging activity performance and communication, based on the FLSP. 
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Figure 7-31. Voice-Data Communication Verification 

7.5.4 Experiment validation 

Validation is the determination of the degree of accuracy of a measuring device.55 In this case the 
“measuring device” is the Brahms model of the Apollo HFE deployment procedures. What could this device 
be measuring? In other words, what are we validating?  

In the previous section we have verified that the model simulates the nominal procedures for deploying the 
HFE experiment on the Moon. Meaning, we have established the truth about the accuracy of the model. 
Thus, we can say with a certain degree of confidence that the model is a representation of the nominal 
procedures at the work practice level, of the lunar surface astronauts performing the HFE deployment task. 
However, showing that this could be done in Brahms was the subject of the first experiment. In this 
experiment we want to go a step further and ask the question; if we have a model of work practice that 
simulates how astronauts on the Moon deploy the HFE, can we use this model to predict what will happen if 
the situation is different from the nominal procedures? The ultimate question in this section is thus whether 
the model is a “measuring device” for the work activities of the astronaut performing the HFE deployment in 
situations never previously described in the model. In other words, can we use the model to predict how the 
astronaut will behave in unanticipated situations, i.e. situations beyond the nominal case? 

One of the main reasons for using simulation of any system is to predict the future behavior of the system, 
especially if we want to understand the impact of changes to a system before they happen. What is being 
validated here is whether the nature of the modeling—the way we built the model—allows us to use Brahms 
in developing predictive models that are based on representations at the work practice level. We want to 
understand what the impact will be on the activity performance of the lunar surface astronaut deploying the 
HFE, if the situation changes from the nominal procedures. I will show this by running different simulations in 
which I introduce a specific type of change event into the simulation—a scenario—and evaluate the 
outcome. 

                                                      
55 Miriam-Webster's Collegiate Dictionary 
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We could try to give an exhaustive list of situations that could change the nominal procedures (types of 
changes). However, besides being impossible, this is overkill in relation to the purpose of this experiment. 
The purpose is to show that with Brahms we can make predictions about the work practice. Showing the 
model can handle one type of change would be too limited of a sample to draw conclusions. Being able to 
show more than one type would increase the validity, and thus two types of changes to the nominal 
procedures are worked out. The types of changes to the nominal model that can be introduced are: 

 

7.5.5 Validating changes in voice-data communication 

7.5.5.1 Adding voice-data communication 

Adding voice-data communication to the model allows the simulation to predict when agents will 
communicate the voice-data during the performance of their activities. Adding voice-data requires the 
modeler to add a voice-data object to the model. There are two ways of changing the model. First, we could 
add a voice-data object statically, i.e. before the simulation starts. In a sense, this is like changing the voice-
data communication procedures for the agent. This is obviously possible, because that is how the nominal 
voice-data communication is simulated. However, more interestingly we could assume that the agent who is 
to communicate the voice-data has no pre-specified procedure for this. What will happen if another agent, 
say the CapCom agent asks the HFE deployment agent for specific information not previously part of the 
procedures? 

Scenario 

When the LMP starts drilling the first bore stem into the surface, mission control wants to know when the 
bore stem is all the way into the surface. Therefore, the CapCom asks the LMP to give an “end mark” for the 
drilling of the borehole. 

We change the model as follows: we add a workframe to the CapCom group that will make the CapCom 
ask the LMP for this drilling end mark voice-data (Figure 7-32). 
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Figure 7-32. AskForDrillingEndMark workframe of CapCom agent 

The precondition of the wf_AskForDrillingEndMark (Figure 7-32) states that when the agent gets the belief 
that the drilling of the borehole has started, the agent will ask agent CharlieDuke to report the drilling end 
mark (i.e., the moment the bore stem is all the way into the lunar surface). 

Figure 7-33 shows that immediately after the LMP agent tells the CapCom agent that he will start the 
drilling, the CapCom agent asks the LMP agent to communicate when he is done with drilling the bore stem. 
This communication happens at the end of the DrillHfeHole activity. Note, that the LMP agent's model did 
not change from the nominal model of the procedures. The simulation predicts that the LMP agent will 
answer the question of the CapCom agent for Voice-Data, as well as when the LMP agent will give the 
answer. 

 
Figure 7-33. Asking For Voice-Data 

workframe wf_AskForDrillingEndMark { 
 repeat:false; 
 when (knownval(ReportStartHfeBoreHoleDrilling.data = ReportStartOfDrilling)) 
 do { 
  conclude((ReportDrillingEndMark.duringAct = EnergizeDrillActivity), bc:100, fc:0); 
  conclude((ReportDrillingEndMark.fromAgent = CharlieDuke), bc:100, fc:0); 
  conclude((ReportDrillingEndMark.pri = 1), bc:100, fc:0); 
  conclude((ReportDrillingEndMark.received = false), bc:10, fc:0); 
  conclude((ReportDrillingEndMark.sent = false), bc:100, fc:0); 
  conclude((ReportDrillingEndMark.toAgent = current), bc:100, fc:0); 
  conclude((ReportDrillingEndMark.whn = end), bc:100, fc:0); 
  AskForDrillingEndMark( ); 
 } 
} 
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7.5.5.2 Forgetting to communicate voice-data 

The Q&A conversation policy includes a policy for the receiver to ask for voice-data (as shown in the 
previous scenario). If the sender does not communicate the pre-specified voice-data communication, the 
receiver is to ask for it. Using this approach the model is able to predict when the CapCom agent will ask for 
voice-data in situations where the LMP forgets to communicate it. 

Scenario 

Let's assume the LMP forgets to communicate the first scheduled voice-date communication (i.e. reporting 
that the RTG cable is connected to C/S). 

We change the model as follows: remove the LMP agent's (the sender's) initial-beliefs about the 
ReportHfeCableConnectedToCs voice-data. This creates the situation that the agent forgets to 
communicate the voice-data. 

 

Figure 7-34. Asking for Voice-Data 

Figure 7-34 shows that after the LMP agent has finished connecting the HFE cable to the C/S, and is 
starting to move to the RtgArea to deploy the HFE, the CapCom agent realizes that the LMP agent did not 
communicate that the HFE cable was connected to the C/S. Therefore, the CapCom agent executes the 
ReceivePolicy1 workframe to ask the LMP for confirmation. The LMP agent replies with the confirmation of 
this voice-data. Thus, the simulation predicts a question and answer conversation about voice-data between 
the CapCom agent and the LMP agent, in case the lunar surface agent forgets to communicate the voice-
data. This was validated against the voice transcription of the Apollo 15 and 16 missions. 



 

202 

7.5.6 Validating creating problem situations 

As described in section 7.3, the model includes an error-recovery procedure. The agent has a general 
procedure for dealing with unknown situations that cannot be handled by nominal procedures. The 
corrective behavior of people in a work setting is all about their ability to handle situations that occur and are 
not described by the nominal procedures. This is part of human ability that is difficult to duplicate by 
machines. If we want to model and simulate human work practices, we need to be able to simulate this 
human ability in our models, in order to predict what will happen to the activity-behavior of people in 
unplanned situations. I will describe the result of two types of scenarios that show how the model is able to 
predict the agent's activity-behavior when unplanned situations occur. The first scenario deals with a 
situation the agent does not know how to handle. Consequently, the agent falls back on the default error-
recovery procedure described in section 7.3.3. The second scenario deals with a situation that the agent 
does know how to handle. 

7.5.6.1 Agent does not know how to solve problem 

The default error-recovery procedure (section 7.3.3) describes how a distributed team can handle a 
situation. This procedure, used by the lunar surface astronauts was very simple: when you're stuck and 
don't know what to do next, ask mission control what to do. The following scenario is being modeled and 
validated against the mission data. 

Scenario 

Let’s assume that after the LMP astronaut has carried the ALSD tools from the LRV to the first HFE probe 
area, and he is setting the tools down on the lunar surface, something happens to the bore core stem bag 
that creates a problem situation. When the astronaut has no method to solve this problem, he asks 
CapCom what to do. 

We change the model as follows: during the activity SetAlsdToolsOnSurface an error event needs to be 
generated that simulates the problem occurring. Having the BoreCoreStemBag object create an Error 
object simulates this. 
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Figure 7-35. Default error-recovery procedure 

Figure 7-35 shows both the generation of the error event and the performance of the default error-recovery 
procedure by the LMP and the CapCom. At time 8:43:07 AM the BoreCoreStemBag object creates the 
HfeDeploymentError object (Figure 7-35), and transfers (communicates) the error information in the form of 
beliefs to the object (shown in Figure 7-36). This in effect is the generation of the error-event. The error 
object contains event-specific information about the error. The information that is generated is that an error 
has occurred, where the error has occurred, and an error code that specifies the severity of the error.  

 

Figure 7-36. Error Object Data 

The LMP detects the error immediately, and after deciding that the error is an error he has to resolve (this is 
represented by the four thoughtframes that are shown in Figure 7-35) he starts the CheckOutProblem 
activity described in section 7.3.3, Figure 7-2056. After checking out the problem and because the agent 
does not have a specific error procedure for this type of error, the agent starts the default ErrorHandling 
activity, described in section 7.3.3, Figure 7-21. In this default ErrorHandling activity the LMP asks the 
CapCom for help in solving the problem. The CapCom decides what activity the LMP needs to perform 
next. This is what the CapCom communicates back to the LMP over the voice-loop (Figure 7-37). 

                                                      
56 Figure 7-35 does not show the name of the CheckOutProblem workframe and activity due to the font size and lack of space. 
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Figure 7-37. CapCom's error-recovery decision 

Because the ErrorCode for the Error object is “not serious,” the CapCom has decided that the LMP should 
continue with the deployment of the first HFE probe (i.e. the HfeProbeNo1Acitivity in Figure 7-37). The LMP 
performs the WaitForAnswer activity until the CapCom has communicated this decision. At that point the 
LMP determines (via a thoughtframe) that he needs to continue with the HfeProbeNo1Activity. He continues 
the DeployingHfeProbe composite activity, and keeps setting the ALSD tools on the lunar surface. 

This error handling activity is a general activity, and would work for both lunar surface astronauts in any of 
their activities for any type of error that affects their activity performance. This is because the error object 
describes (in terms of the beliefs it ”encodes”) what activity it impacts ((error hasOccuredIn activity)). The 
downside of this approach is that it is not the astronaut agent determining whether the error impacts his 
activity, it is the modeler creating the error event. What the model predicts is how the astronaut agent 
behaves when such an error occurs. To make the determining of the error impact also predictive, we need 
to represent cognitive error diagnosis abilities for the agent, based on the type of error and its impact on the 
activity.  

7.5.6.2 Agent knows how to solve problem 

The previous section verified the model's default error-handling procedure. Asking mission control what to 
do is a safe default procedure, because mission control has more information, and more people to help in 
finding the best solution in a given situation. However, this is not the fastest procedure in all cases. EVA 
time is resource bounded, and time is critical. Therefore, it makes sense to have the astronaut be able to 
make critical decisions when he can. The question is how we can model such behavior in a generic way 
such that the astronaut will use his decision procedure in a situation when there is one, and if not, will fall 
back on the default error-handling procedure. This is the topic of this section. 

Example Scenario from Apollo16 

While the LMP is emplacing the first HFE probe into the borehole that has been drilled and is 
communicating the voice-data about the depth of the probe, et cetera., the CDR is working at the C/S taking 
off a sub-package and bringing it to another site. While the CDR is walking away from the C/S, his foot gets 
caught behind the HFE cable connected to the C/S, and he breaks the cable at the connector to the C/S. At 
this point the LMP decides how to solve this unrecoverable error. 

Figure 7-38. CreateHfeCableError workframe 

We change the model as follows: 

As in the previous validation, the model needs to generate the appropriate error-event at the appropriate 
time. In a complete model of both the lunar surface astronauts' work practices, we would include the 
behavior of the CDR agent as well. In that case, the CDR agent would trigger the error-event because the 
model would simulate him tripping over the HFE cable. In this limited model we leave out the behavior of the 

workframe CreateHfeCableError { 
 repeat:false; 
 when (knownval(HfeCable isConnectedTo current) and 
            knownval(CharlieDuke.location = ProbeNo1Area) and 
            knownval(EmplaceProbeActivity.isDone = true) and 
            knownval(CharlieDuke.currentActivity = HfeProbeNo2Activity)) 
 do { 
        conclude((HfeDeploymentError.hasOccurred = true), bc:100, fc:100); 
        conclude((HfeDeploymentError hasOccurredIn HfeProbeNo2Activity), bc:100, fc:100); 
        conclude((HfeDeploymentError.occurredInLocation = CentralStationArea), bc:100, fc:100); 
        conclude((HfeDeploymentError.errorCode = unrecoverable), bc:100, fc:100); 
        Error(HfeDeploymentError, CentralStationArea, HfeProbeNo2Activity); 
        conclude((current contains HfeCable is false), bc:0, fc:100); 
 } 
} 
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CDR agent. We use an approach similar to the previous error-recovery validation (section 7.5.6.1). The 
AlsepPkg1 object (i.e. the C/S) generates the HfeDeploymentError object with the appropriate error-event 
information, at the appropriate moment in time (Figure 7-38). The error-event is generated when the LMP is 
done with the EmplaceProbe activity, and is just starting the HfeProbeNo2Activity activity. Breaking the HFE 
cable cannot be fixed; thus the error is an unrecoverable error. The location where the error occurred is the 
location of the C/S (CentralStationArea). 

Now that the correct error-event is being generated, the next change in the model is to add a situation 
specific error-handling activity that allows the agent to handle unrecoverable errors during the DeployingHfe 
activity. When there is an unrecoverable HFE error, the astronaut deploying the HFE should not continue 
deploying the HFE, because this would be a waste of time. This is the basis upon which we can develop an 
error-handling activity in which the astronaut can decide himself what to do next. 

Polymorphic Activity-Behavior 

Polymorphism is a feature of object-oriented programming in which it becomes possible to design and 
implement systems that are easily extensible (Cardelli and Wegner 1985). By including more specific 
classes and methods in a generic hierarchical class structure, only those parts of a program need 
modifications that require direct knowledge of the more specific behavior. In borrowing this concept for 
designing the ability to add more specific error-handling behavior, I have developed an extensible and easy 
modifiable error-handling activity design, based on the notion of polymorphism. 

The idea behind the design is the following: we specify default activity-behavior for agents who need to be 
able to perform an error-handling activity in a group that represents the activity—in this case I called the 
group the ResolveError group. This group includes all the activities and workframes for being able to resolve 
errors in a default way. Agents who are members of this group can resolve errors. Then, if we need to make 
a more specific error-handling behavior for an agent, we add a more specific error-handling activity in a 
subgroup of the ResolveError group, and use a form of activity overriding to execute the correct error-
handling activity. 

Figure 7-39 shows the polymorphic design for the error-handling behavior. The ResolveError group 
represents the default error-handling behavior. The ErrorHandling workframe calls the HandleError activity 
(see Figure 7-21 and Figure 7-35) with a high priority of 50. In the HfeDeployment group a more specific 
error-handling procedure is defined in the more specific HfeDeployment.HandleError( ) activity. This activity 
is called in the DeployingHfeProbeErrorHandling workframe with a priority of 55. 

When the error-handling activity needs to be performed, both workframes in the two groups can become 
available for an agent. Because of the higher priority activity in the more specialized lower-level workframe, 
the lower-level workframe will always have precedence over the more higher-level workframe. Interestingly, 
if for some reason the more specialized activity cannot find an appropriate solution, the higher-level activity 
will be executed, which in this case will always result in the default error-recovery behavior, i.e. asking 
mission control for help. 
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Figure 7-39. Polymorphic Error Handling Behavior 

HfeDeployment HandleError Activity 

Figure 7-21 shows the workframe-activity hierarchy for the default HandleError activity, whereas Figure 7-40 
shows it for the more specific HandleError activity in the HfeDeployment group. 

 
Figure 7-40. HfeDeployment group's HandleError Activity tree, generated by the Brahms engine 

In this more specific activity the agent decides on a solution to the error situation. The only decision he 
knows to make is when there is an unrecoverable error. In that case, while the agent is executing the 
DecideWhatToDo activity, the UnrecoverableError thoughtframe fires. 

Figure 7-41. Workframe DeployingHfeProbeErrorHandling in the HfeDeployment Group 

workframe DeployingHfeProbeErrorHandling { 
 repeat:false; 
 variables: 
  foreach(Error) error; 
  forone(Activity) act; 
  collectall(LmVoiceLoop) vlcoms; 
 
 when (knownval(error.parentClass = Error) and 
             knownval(current isResolving error) and 
             knownval(vlcoms.communicationType = LmVoiceLoop) and 
             not(current.name = vlcoms.name) and 
             knownval(current.currentActivity = act)) 
 do { 
  HandleError(55, error, vlcoms, act); 
 } 
} 
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Figure 7-42. Activity HandleError in the HfeDeployment Group 

Figure 7-41 and Figure 7-42 give the source code for the workframe that calls the HandleError activity, and 
the HandleError activity, respectively. As described above, it is the UnrecoverableError thoughtframe that 
allows the agent to decide what to do next. In case of an unrecoverable error situation during the 
deployment of a HFE probe, the agent will stop with the current activity, and will start the 
DrillCoreSampleActivity as his immediate next activity (see the thoughframe in Figure 7-42); 

conclude((current.nextActivity = DrillCoreSampleActivity), bc:100, fc:0); 
 

How does the agent switch from deploying the HFE probe to drilling the core sample? This is accomplished 
using an impasse detectable. An impasse means that the workframe being impassed cannot continue until 
the impasse condition is lifted. In this scenario, the impasse condition should hold as long as the HFE 
deployment error is not corrected, and the agent cannot continue deploying the HFE probe. This is 
implemented with the DetectErrorCondition detectable in the DeployingHfeProbeNo1 and 
DeployingHfeProbeNo2 workframes. Figure 7-43 shows the detectable in the DeployingHfeProbeNo2 
workframe. 

During the deployment of the HFE probes, as soon as the agent detects that an HfeDeploymentError error 
has occurred (see detectable in Figure 7-43): 

detect((HfeDeploymentError.hasOccurred = true)) 
 

the current activity of the agent gets impassed, until, 

(HfeDeploymentError.hasOccurred = false). 

composite_activity HandleError(int pri, Error error, LmVoiceLoop vlcoms, Activity act) { 
 priority: pri; 
 activities: 
  primitive_activity DecideWhatToDo(int pri, int dur, Activity act) { 
   priority: pri; 
   max_duration: dur; 
   resources: act; 
  } 
 workframes: 
  workframe DecideErrorSolution { 
   repeat: false; 
   when (known(error.errorCode = value)) 
   do { 
    DecideWhatToDo(0, 5, act); 
   } 
  } 
 thoughtframes: 
  thoughtframe UnrecoverableError { 
   repeat: false; 
   when (knownval(error.errorCode = unrecoverable)) 
   do { 
          conclude((current.nextActivity = DrillCoreSampleActivity), bc:100, fc:0); 
          conclude((current needsToResolve error is false) , bc:100, fc:0); 
          conclude((current isResolving error is false) , bc:100, fc:0); 
          conclude((error.status = resolved), bc:100, fc:0); 
   } 
  } 
} 
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Figure 7-43. Workframe DeployingHfeProbeNo2 

Simulation Result 

Simulating the scenario results in the behavior is shown in Figure 7-44. When the HFE error occurs at 
9:20:50 AM, the agent immediately detects the error and starts the default error-recovery procedure, 
impassing the current PickUpAlsdHardware activity (see Figure 7-19). The default error-recovery procedure 
is started. The first step is to check out the problem. To do this the agent moves to the location where the 
error occurred, i.e. at the CentralStationArea. Then, instead of performing the default HandleError activity, 
the agent performs the more specific HandleError activity in the HfeDeployment group. You can see the 
firing of the UnrecoverableError thoughtframe above the HandleError activity. 

 
Figure 7-44. Simulating DeployingHfeProbe ErrorHandling Procedure 

After the agent has made the decision, he continues with the default error-recovery procedure. The next 
activity is to move back to the area where the agent came from, i.e. ProbeNo1Area. Once he has arrived at 
that area, he starts the DrillCoreSample activity. The DeployingHfeProbe activity is impassed, and will stay 
impassed, because the error will not be resolved. 

workframe DeployingHfeProbeNo2 { 
 repeat:false; 
 detectables: 
  …. 
  detectable DetectErrorCondition { 
   when (whenever) 
    detect((HfeDeploymentError.hasOccurred = true)) 
   then impasse; 
  } 
  …. 
 when (knownval(current.nextActivity = HfeProbeNo2Activity)) 
 do { 
  conclude((current.currentActivity = HfeProbeNo2Activity), bc:100, fc:100); 
  PickUpAlsdHardware(0); 
  DeployingHfeProbe(0); 
 } 
} 
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Validation of the simulation data 

The simulation in Figure 7-44 is based on the real Apollo 16 error-scenario described previously. We can 
therefore validate the simulation result with the data from the Apollo 16 mission. Following is the voice 
transcription of the Apollo 16 mission from (Jones 1997). Although the specific timing from the real data and 
the simulation data is not exact, the model is a plausible representation of what transpired during the actual 
Apollo 16 mission. 

121:21:21 Duke: Okay, (on) the second one: the thermal cover is in to the second red mark. And, Tony, the probe is out of the 
ground up to B-8. Right on the line between B-7 and B-8.  

121:21:37 England: Okay; Baker 7 and 8. (Pause)  

[While Charlie was talking, John lifted the mortar package off the top of the Central Station and headed around the east side 
toward the subpallet. As he went between the rock and the Central Station, he lifted his right foot to clear a cable - as he had 
done previously - but, just off-camera, his trailing left foot was caught in the heat-flow ribbon cable and, because of the tension 
from that cable, he stumbles slightly and, in the process, bends his right knee enough that his left knee almost touches the 
ground. As he brings his left leg forward, we see the heat-flow cable draped over the top of his foot. Fendell tilts the TV down as 
John steps forward with his right foot and then, as he makes a final step with his left, the cable pulls taught and tears loose from 
the base of the Central Station. John turns to his left and, as he hops backwards away from the Central Station, his left leg off 
the ground, he surveys the damage.] 

121:21:45 Young: Charlie.  

121:21:46 Duke: What?  

121:21:47 Young: Something happened here.  

121:21:48 Duke: What happened?  

121:21:49 Young: I don't know. (Brief Pause) Here's a line that pulled loose. (Pause)  

[John puts the mortar package down and goes to his right knee to try to get the end of the heat-flow cable. He rises without it.] 

è 121:21:57 Duke: Uh-oh.  

121:21:58 Young: What is that? What line is it?  

[John kicks the end of the cable toward the rock and then gets down on both knees, steadying himself with his left hand on the 
rock, and picks up the severed end of the cable.] 

è121:22:02 Duke: That's the heat flow. You've pulled it off.  

121:22:05 Young: I don't know how it happened. (Pause)  

[John rises easily and merely has to step forward to get his feet under him. All of his movements are amazingly stable.] 

121:22:11 Young: (Walking toward the Central Station) Pulled loose from there?  

121:22:12 Duke: Yeah.  

121:22:14 Young: God almighty. (Pause)  

è121:22:17 Duke: Well, I'm wasting my time.  

[John drops to his knees at the back of the Central Station and examines the connector. Photo AS16-113-18348 (**) is a close-
up of the end of the cable and the connector.] 

121:22:20 Young: I'm sorry. I didn't even know...I didn't even know it. (Pause) Agh; it's sure gone.  
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[John leans back to get his center-of-gravity over his feet, rises, and, this time, has to hop back a foot or two to get his balance.] 

121:22:34 England: Did the wire or the connector come off?  

121:22:36 Young: (lost under Tony) had our first catastrophe. It's broke right at the connector.  

[John starts walking toward the mortar package; and Charlie comes into view, going to the Central Station to inspect the 
damage.] 

è121:22:42 Duke: The wire came off at the connector.  

121:22:45 England: Okay, we copy. (Pause)  

[To get past the rock, John actually steps up on it and over. To my knowledge, this is the only record in Apollo of someone 
stepping up on something. The rock is approximately 20 centimeters tall and is equivalent to the rise of an ordinary household 
step.] 

121:22:45 England: Okay, I guess we can forget the rest of that heat flow.  

è121:22:55 Duke: Yeah, I'll go do the (deep core). (Pause) Oh, rats! 

7.6 CONCLUSION 

In conclusion I come back to the research question for this experiment, and discuss the findings. Simulation 
is an imitation of the operation of a real-world process or system over time. Whether done by hand or by 
computer, simulation generates an artificial history of the system and the observation of that history to draw 
conclusions about the operating characteristics of the real-world process or system (Banks et al. 1996). 
Predicting behavioral changes of a complex system is thus one of the important reasons for using 
simulation technology.  

In this case study I used Brahms to simulate the procedures for the Apollo HFE deployment. The simulation 
model was used to predict the astronaut's behavior, based on the real Apollo 15 and 16 missions. The 
Brahms simulation generated a simulation history file that could be inspected using the Brahms 
AgentViewer program. 

7.6.1 Experiment outcome discussion 

The goal in this experiment is to determine whether using Brahms allows us to develop models of work 
practice that can predict the changes in human behavior and the impact on the work system based on 
contextual changes. To determine this, I implemented a Brahms model of the nominal work process of a 
lunar surface astronaut (the LMP) deploying the Heat Flow Experiment on the Moon (sections 7.1, 7.2, and 
7.3). 

First, I verified the Brahms model's simulation of the normative behavior of the astronaut, based on the 
detailed Apollo 16 Lunar Surface Procedures (sections 7.5.1, 7.5.2 and 7.5.3). Next, I defined a number of 
types of situational changes we could create as changes to the model (section 7.5.4). Then, I found a two 
scenarios from the Apollo 15 and 16 missions with which I tested these types of changes in separate 
simulation runs, to validate the predictive behavior of the model (sections 7.5.5 and 7.5.6). The outcome of 
this experiment is summarized in Table 7-2.  
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Table 7-2. Summary of Experiment Outcome 

Predict Operationalization Model Input Model Output 

Nominal Activity 
Behavior 

Apollo HFE deployment 

Apollo 16 Final Lunar 
Surface Procedures for 
nominal HFE 
deployments 

Prediction of nominal 
activity behavior during 
HFE deployment on the 
Moon. 

Changes in 
Voice-Data 
Communication 

Adding and forgetting of 
HFE voice-data 
communication from 
lunar surface to mission 
control 

Changes to the Apollo 
16 Final Lunar Surface 
schedule for HFE voice-
data communication 
(additions and 
omissions) 

Prediction of voice-data 
communication-activity 
behavior. 

Error Recovery 
Behavior 

Situated error events 
during HFE deployments 

Error objects and  
generated error events 

Prediction of individual 
and distributed error-
recovery behavior 

The validation shows that with the correct behavioral abstraction and modeling approach we can develop 
Brahms models that can be used to predict the collective behavior of agents in specific situations.  

7.6.2 Modeling approaches discussion 

The modeling approaches that have been developed during this experiment are useful for future predictive 
models. In the first experiment, the Apollo 12 ALSEP Offload, the model was developed with no generic 
features in mind, even though we were able to reuse part of the voice-loop communication model. The 
model could not simulate any other scenario than the Apollo 12 specific scenario. In the HFE Deployment 
model I focussed on making the model generic. This means that by changing some simple parameters in 
the input, I was able to simulate a different scenario. The following modeling techniques and approaches 
were developed, and could be used in the future for predictive models. 

1. Parameterize the activity plan for agents—Section 7.2.1. 

The agents do not have their activity plan hardwired in the preconditions, but instead have an external plan 
represented as beliefs in an artifact. This way the agent can dynamically determine the order of the 
activities, either by communicating with the artifact (such as reading a plan), inferring a new plan, or by 
detecting changes in the environment. Other agents are also able to communicate any changes in the plan. 

2. Conversation policies for predicting agent communication—Section 7.2.2 

I abstracted a standard process of asking and answering questions into conversation policies. Using this 
pragmatic modeling approach for defining how agents converse, based on transcriptions of the Apollo 15 
and 16 mission, I was able to predict when and how question and answer conversations between agents 
take place. Again, in the Apollo 12 model the communications were hardwired in the body of workframes, 
and were very limited, because it does not allow for variations in the communication between agents. 

3. Polymorphic activity design for specializing activity behavior—Section 7.5.6.2 

Another interesting finding in this experiment is the use of polymorphism, supported by the Brahms 
language in designing default and more specialized activity behavior. The use of group membership and the 
inheritance of attributes, relations, initial beliefs and facts, as well as activities and workframes, allow for 
polymorphism. This is similar to polymorphism in object-oriented languages. In object-oriented languages 
polymorphism is used to specialize object type behavior. However, in modeling agent behavior, 
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polymorphism is used for a different purpose. The purpose here is to create default and specialized 
behavior. The lower in the group hierarchy a polymorphic activity is defined, the more specialized this 
behavior is. However, the specialized behavior is not overriding the default behavior, but is in addition to it. 
Therefore, the agent can perform both the default behavior, as well as the more specialized behavior. Using 
this approach we can make sure the agent is always able to act in any situation, by providing at least one 
default activity and more specialized activities for different situations. 

This ends the second case study. Next, I describe the third and last case study, that of prescribing a new 
work system. 
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8. CASE STUDY 3: DESIGNING HUMAN-ROBOT COLLABORATION 

In this chapter, I describe the third and last case study. This study is showing the use of Brahms as a tool for 
the design of a work system for a robotic mission to the Moon. Design is a prescriptive activity, and using 
Brahms as a design tool means that we are creating a prescriptive model, that is, a model of a work system 
that does not yet exist. At NASA this type of design activity falls under the rubric of Mission Operations 
Design (Wall and Ledbetter 1991). Currently, the people involved in designing mission operations for robotic 
missions use relatively impoverished tools for the task at hand. Consequently, the confidence in the 
prescriptive models is not high, with as a result that the designers include “slack” in their designs. For 
example, the complexity of spreadsheet models for the design of mission timelines and activities does not 
allow them to include all relevant variables into the analysis. Also, the lack of powerful modeling tools does 
not allow mission operation designers to investigate many scenarios that could be relevant. In a personal 
conversation with a Co-Investigator for the 2003 Mars Exploration Rovers ('03 MER) mission57, I was told 
that due to a lack of powerful tools they were able to investigate only two of the original five mission 
scenarios. The reason for this was the complexity of the model and the time it took to create a scenario. 

In this case study I investigate the use of Brahms for the design of mission timelines and activities, based on 
a richer model of the work system than is currently possible with the available tools. This case study shows 
that providing mission operation designers with more powerful prescriptive modeling tools will allow them to 
be more efficient and effective in the design of missions. This helps NASA with doing missions better, faster, 
and ultimately cheaper. 

Robots and Humans as Partners  

In the coming decades, the moon will also prove useful as a laboratory and test bed. Astronauts at a 
lunar base could operate observatories and study the local geology for clues to the history of the solar 
system. They could also use telepresence to explore the moon's inhospitable environment and learn 
how to mix human and robotic activities to meet their scientific goals.  

The motives for exploration are both emotional and logical. The desire to probe new territory, to see 
what's over the hill, is a natural human impulse. This impulse also has a rational basis: by broadening 
the imagination and skills of the human species, exploration improves the chances of our long-term 
survival. Judicious use of robots and unmanned spacecraft can reduce the risk and increase the 
effectiveness of planetary exploration. But robots will never be replacements for people. Some 
scientists believe that artificial- intelligence software may enhance the capabilities of unmanned 
probes, but so far those capabilities fall far short of what is required for even the most rudimentary 
forms of field study.  

To answer the question "Humans or robots?" one must first define the task. If space exploration is 
about going to new worlds and understanding the universe in ever increasing detail, then both robots 
and humans will be needed. The strengths of each partner make up for the other's weaknesses. To 
use only one technique is to deprive ourselves of the best of both worlds: the intelligence and flexibility 
of human participation and the beneficial use of robotic assistance. (Spudis 1999) 

Mission operation design and planning for robotic and mixed human-robotic tasks is currently done quite 
informally with the design team's heuristic intuitions about tasks the agents (either human or robotic) need to 
do, and the likelihood of that capability being available in the future state of the art. This creates the 
fundamental problem where the analysis of the human and robotic collaborative elements of a mission is 
being carried out at a very high-level of abstraction, until well into the commitment for a design of the robot. 
In part this is a consequence of the inadequacy of current systems in allowing easy modeling of the 
intricacies of a rich and dynamic set of tasks being carried out by robots in conjunction with humans (Sims 
et al. 2000). 

                                                      
57 http://mars.jpl.nasa.gov/missions/future/2003.html 
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The Melding of Mind and Machine  

Human dexterity and intelligence are the prime requirements of field study. But is the physical 
presence of people really required? Telepresence—the remote projection of human abilities into a 
machine—may permit field study on other planets without the danger and logistical problems 
associated with human spaceflight. In telepresence the movements of a human operator on Earth are 
electronically transmitted to a robot that can reproduce the movements on another planet's surface. 
Visual and tactile information from the robot's sensors give the human operator the sensation of being 
present on the planet's surface, “inside” the robot. As a bonus, the robot surrogate can be given 
enhanced strength, endurance and sensory capabilities.  

If telepresence is such a great idea, why do we need humans in space? For one, the technology is not 
yet available. Vision is the most important sense used in field study, and no real-time imaging system 
developed to date can match human vision, which provides 20 times more resolution than a video 
screen. But the most serious obstacle for telepresent systems is not technological but psychological. 
The process that scientists use to conduct exploration in the field is poorly understood, and one 
cannot simulate what is not understood. Finally, there is the critical problem of time delay. Ideally, 
telepresence requires minimal delays between the operator's command to the robot, the execution of 
the command and the observation of the effect. The distances in space are so vast that instantaneous 
response is impossible. A signal would take 2.6 seconds to make a round-trip between Earth and its 
moon. The round-trip delay between Earth and Mars can be as long as 40 minutes, making true 
telepresence impossible. Robotic Mars probes must rely on a cumbersome interface, which forces the 
operator to be more preoccupied with physical manipulation than with exploration. (Spudis 1999) 

There are two major problems Spudis writes about: 1) poorly understood work practice of field science, both 
on Earth and in space, and 2) the issue of time delay in teleoperated robots and its impact on the interface 
between humans and machines. Both these issues have been the partial focus of the previous case studies 
in this thesis. Unlike Spudis, who states that “one cannot simulate what is not understood,” in the previous 
two case studies I used modeling and simulation to understand the work practices of field scientists on the 
Moon, while in the process of developing the simulations. In other words, in the previous case studies I have 
developed a way of using multiagent simulation technology as a technology solution for the process of 
understanding. In this case study I go one step further, and use modeling and simulation as a process for 
designing solutions. 

In this study, I use Brahms to design the human-robotic collaboration58 for the Victoria mission. The Victoria 
mission proposal is a recently submitted NASA proposal for a semi-autonomous robot to search for water 
on the South Pole of the Moon. In this proposal an Earth-based science team will conduct a long-term 
robotic mission investigating permanent dark areas on the Moon’s South Polar region. A semi-autonomous 
robot will be the agent doing the actual field science, while in constant communication with the science 
team. The issue I address in this case study is the use of work practice modeling and simulation for design 
of the human-robotic collaboration. 

Goals and objectives 

The goal of this case study is to show that with Brahms we can design how humans and robots can work 
together. In the process of developing a computational model of a new human-robotic work system we 
acquire requirements for the systems (such as for the robot and data systems), communication, team 
interactions, and the distribution of work activities. 

The research question in this case study is: 
                                                      
58 Some people might question the concept of collaboration with a teleoperated robot, and I am aware of this seemingly strange notion. 
However, in this thesis the notion of collaboration is used specifically in situations where one or more agents (human or machine) are 
aware of each other's activities in pursue of a common goal. The question is thus not if the humans and the robot are collaborating, but 
instead we accept the fact that the humans in this endeavor feel that they are in a collaborative activity with the robot and other human 
participants. Therefore, the question becomes, how can we make the robot aware of the fact that such collaborations exists? Answering 
this question goes beyond the scope of this study, but a start will be made with getting closer to answering this question, by creating a 
model of this collaboration. 
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Can the Brahms modeling and simulation environment be used to prescribe a realistic work 
practice in the design of the human-robotic collaboration during a robotic lunar mission? 

The objective of this case study is to design a working Brahms simulation that models a relatively simple, 
but realistic human-robot collaborative activity of the Victoria rover described in the Victoria mission 
proposal. The model should show in relative detail the collaboration and distribution of activities between 
humans on Earth and the robot on the Moon. In the next sections I describe the result of this study. First, the 
next two sections describe the Victoria mission in more detail. Then, I describe how the use of Brahms in 
this case study will be evaluated. I will then briefly describe the V&V of the model. After this the model 
details are described, as well as the outcome of the simulation. Last, I will conclude with some observations. 

8.1 VICTORIA MISSION 

Victoria is the name of a proposed long-term semi-autonomous robotic mission to the South Pole region of 
the Moon at the end of 2005. The name Victoria was chosen after the only ship of Ferdinand Magellan's 
voyage that circumnavigated the world59. 

At the start of this case study the Victoria team was in the middle of writing the proposal. Team members 
(so called Principal Investigator and Co-Investigators) of the Victoria mission are world-renowned scientists 
from different scientific disciplines (planetary scientists geologists, robotisists, and AI-specialists). The 
description and all data mentioned in this thesis come from the drafts of the actual proposal, which can be 
seen as functional requirement specifications for the mission. Scientific space mission proposals are 
necessarily very detailed descriptions of every aspect of the mission. One could view a robotic science 
mission proposal as a detailed requirement specification for the proposed science investigation, the science 
instrumentation, the launch vehicle, spacecraft and robot, and the control & data communication. 

For a space science mission to be funded, a proposal needs to withstand many reviews and severe 
competition from other proposals. It is therefore not surprising that a proposal needs to provide the 
reviewers with much detailed information showing that, when funded, the mission is doable and the 
proposed goals and objectives are likely to be met within the proposed schedule, with the proposed mission 
technology and within the proposed budget. The Victoria mission proposal is a multi-million dollar project 
description and plan from which scientists and engineers are able to start the design and implementation of 
the needed mission elements. 

8.1.1 Mission overview 

Victoria's fundamental goal is to gain a better understanding of the history of volatiles in the solar system, by 
first getting a deeper understanding of how these volatiles might be preserved at an ideal site in space. It is 
determined from the data returned by the previous Lunar Prospector60 mission that the Moon's permanently 
shadowed areas at the poles might be an ideal site for the preservation of volatiles, in particular in the form 
of water ice (Hubbard et al. 1998). There is a secondary goal of gaining a better understanding of the 
evolution of the Moon. Even though the Apollo missions significantly increased our knowledge about the 
Moon's evolution, the ultimate question of how the Moon came about is still not positively answered today. 
Given this, the mission's objectives are to: 

1. Verify the presence of water ice and other volatiles within permanently shadowed regions on the Moon. 
This will be accomplished by gathering the necessary in-situ data for analyzing the history of water and 
other volatiles on the Moon, and by implication in the inner solar system. This is the primary mission 
science objective. 

2. Perform a geological survey of the southern lunar polar region, in extreme high resolution. 

3. Determine the composition of recent pyroclastic type deposits around mare-type volcanos that are 
between one to two billion years old, as well as nearby mare basalts that are about 3.2 billion years old. 

                                                      
59 Ferdinand Magellan, (1480?-1521), Portuguese-born Spanish explorer and navigator, leader of the first expedition to circumnavigate, 
or sail completely around, the world. 
60 http://lunar.arc.nasa.gov/ 
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4. Transect the South Pole-Aitken (SPA) basin creating a fine scale geological survey to understand the 
interaction betweem the SPA impact61 event and the underlying mantle materials. 

These are the high-level scientific purposes of the Victoria mission. From these scientifically important 
objectives, the Victoria team argues that the most efficient way to meet these science objectives is to use a 
high-speed semi-autonomous rover that can traverse over long distances (several hundreds of kilometers), 
for a long time period (three months to a year), to gather the necessary geological and physics data. 

8.2 PROBLEMS WITH AUTOMATED PLANETARY SURFACE EXPLORATION 

8.2.1 Data overload 

Scientific field exploration on Earth is difficult work. Not only does the scientist have to endure tough 
environmental conditions, such as being in cold or warm climates for a long period of time, isolated from the 
rest of the world, but also because of its data intensive nature and the fact that good scientific principles 
need to be adhered to. Automated planetary surface exploration will for the most part eliminate these 
environmental and isolation problems. It will not, however, change the data intensive nature of the work. As 
a matter of fact, recent studies of remote science team activities in automated field exploration on Earth has 
shown that the amount of data that is being collected automatically by the robot in the field is sometimes 
overwhelming for the science team. Thomas et al, note the following problem with data archiving in their 
study of a remote science team at NASA Ames Research Center, during an experiment for automated 
planetary surface exploration (Thomas et al. 1999, p.24); 

The greatest difficulties were noticing the arrival of new information and finding relevant information 
entered by other researchers. Some data products were only available after the initial, raw information 
was reprocessed. Consequently information became available at different times, but no global 
mechanism was available to alert the scientists. 

Based on the problem of data archiving observed by Thomas et al, I will address the following questions in 
the model: 

1. How will science data be gathered, in collaboration with the Earth-based science team, rover 
teleoperator, and the rover on the lunar surface?  

2. How will the gathered science data be made available to the science team on a continuous basis during 
the long mission? 

To answer these questions, I will develop a model of the activities of the above-mentioned teams, based on 
the description of a planned mission traverse described in the Victoria proposal. 

8.2.2 Power constraint 

One of the biggest constraints in any robotic mission is power consumption of the robot. A robot gets its 
energy from onboard batteries. These batteries are charged by solar energy, using large solar arrays on the 
robot (Figure 8-1). In every activity the rover uses energy, therefore the sequence of activities for the rover is 
constraint by the amount of power available to complete the sequence. When the robot's batteries are low, it 
needs to return to a sun-exposed spot in order to recharge its batteries. Batteries are heavy artifacts that 
need to be brought up in space, and are therefore limited in size and power. This makes the robot power 
consumption issue a very important constraint in the design of the robot, but also a very important constraint 
in the ability of the robot to perform certain activities during the mission. 

                                                      
61 SPA is the largest recognizable impact basin in the solar system. 
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During the Victoria mission the rover will traverse into 
permanently dark regions on the Moon. These are 
interesting areas, because of their potential to keep 
water ice from evaporating. These areas exist 
particularly on the South Pole of the Moon, because a) 
the angle of the Sun at the South Pole and b) the terrain 
relief due to large impact craters. A problem with 
traversing into permanent dark regions is the fact that 
the robot needs to have enough power to make it safely 
out of the permanent dark region before its battery is 
empty. This might not be immediately obvious, but it 
should be clear when one realizes that when the robot 
runs out of power in a permanent dark region the 
mission is over and done with. Permanently dark means 
no sun, ever, and if sun is the only way to recharge the 
robot's batteries we can easily see why this is a very 
important constraint. 

                            Figure 8-1. Victoria Rover 

In order to calculate the power consumption for the Victoria rover at any moment in time, I developed the 
following equation: 
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Given (1.0), we can now define the energy usage during an activity for the rover to be: 
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The energy constraint that exists during a mission traverse into a permanent dark area is: 

∫ ≤
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(3.0) 

This constraint says that the total energy usage of the rover during the traverse into a permanent dark area 
cannot be bigger than the available battery power minus a 15% reserve battery capacity, and minus a 100% 
margin (i.e. 50% of Pbattery(start of traverse)). The 15% reserve is a standard reserve that has to do with 
the battery operation specifications. The 100% margin is used only in traverses into permanent dark areas. 
The idea is based on the fact that when the rover does a mission in a permanent dark area, it will use the full 
battery capacity to make the mission as effective as possible. With a full battery you can safely assume that 
you can use half of the battery life to drive into the permanent dark area, and you need half of the battery life 
to get out of the permanent dark area. Therefore, the total energy you can use to get into the permanent 
dark area is given by the energy constraint (3.0). In other words, the time available to get to the halfway 
point of a traverse within a permanent dark area is constraint by the time it takes to use the maximum power 
available that still does not violate constraint (3.0). 

8.3 EVALUATION CRITERIA FOR USE OF BRAHMS IN DESIGN 

The objective in this study is to show that Brahms as a modeling language can help in specifying work 
practices, while the simulation engine permits execution and evaluation of a newly designed work system. 
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Remembering that the previous two case studies proved that modeling and simulation with Brahms has a 
“reality value,” the quality criteria to be applied to this case study are radically different from the ones in the 
first two. In this case study the Brahms language and the simulation engine are used as design aids, which 
implies that the value should be judged on the aid provided, i.e. an evaluation of this aid on relevant criteria. 
These criteria must be elaborated, defined and judged. In other words, the quality of the model and the aid 
the model simulation provides in design is more or less subjective. 

The work system design method proposed in this case study involves modeling, simulation, and analysis of 
a candidate work system for the Victoria mission. There are two quite different uses of modeling and 
simulation in this area:  

1. A Brahms model may be developed and simulated to verify the operational correctness in terms of the 
work system, as well as to evaluate the performance of the designed system. During such an effort, 
more than one design of the work system may be modeled and evaluated to select the best one for 
implementation.  

2. In complex systems, plans are often used for short time horizons. The relative unpredictable nature of 
reality will make a plan useless at the moment situations occur that were not previously considered 
during the planning activity. During the actual Victoria mission, continuous changes to the planned 
activities of the rover and science team will be necessary. If we have a validated model of the 
implemented work system, we can use this model for continuous mission planning during the mission. 
Necessary changes to the plan can be modeled, simulated and evaluated before the actual changes to 
the active plan are being carried out. What-if scenarios can be simulated and different plans compared. 

Formulated as objectives for modeling, these two purposes lead to two quite different experimental frames. 
An experimental frame is a specification of the conditions under which the system is observed, or 
experimented with. As such, an experimental frame is the operationalization of the objectives that motivate 
the modeling and simulation project (Zeigler et al. 2000).  

 

Figure 8-2. Transforming objectives into experimental frames (borrowed from (Zeigler et al. 2000)) 

Figure 8-2 shows the process of transforming objectives into an experimental frame. In order to evaluate 
design alternatives, modeling objectives require measures of effectiveness for the system to accomplish its 
goals. Such measures are called outcome measures. To compute such measures the model needs to 
include output variables that are computed during model execution runs. Therefore, for the above-
mentioned objectives for the use of Brahms in work system design we will need to identify output variables 
that represent system performance.  

8.3.1 Outcome measures 

For this thesis, I am focusing on the use of Brahms for verifying operational correctness of a specific work 
system design (i.e. #1 use). Possible measures that the model could provide are62: 

• human activities performed 
• robot activities performed 

                                                      
62 One could define a number of additional relevant measures, but for the purpose of this case study, in light of this thesis, adding more 
measures does not necessarily enhance the outcome. 
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• the time it takes for the team to complete a mission objective 
• activity times per agent (human and robot) 
• power consumption and energy usage for the robot agent 
• robot command sequence send by the Earth-based team to the robot 
• amount and type of data send to Earth by the robot, and used for decision analysis and 

historical record 
• amount of surface covered during a traverse 

We call these outcome measures. By identifying such outcome measures, we are able to identify the output 
variables that a Brahms simulation should be able to calculate. By investigating the ability of the Brahms 
language to model such output variables, and the ability of Brahms to determine these variables during a 
simulation run we are able to evaluate the use of Brahms in a more objective manner. 

8.3.2 Output variables 

Given the above outcome measures we can define the output variables of the simulation. The simulation 
will produce the output variables, and they can be used to determine the performance of the designed work 
system. If we have enough confidence in the validity of the model, we can use these output variables to 
draw conclusions about the operational correctness of the particular work system design. Table 8-1 shows 
the output variables that will be generated during the simulation: 

Table 8-1. Simulation output variables 

Outcome Measures Output Variables 
human activities performed a list of activities for each human-agent 
robot activities performed a list of activities for each robot-agent 
the time it takes for the team to complete a 
mission objective 

the total duration of a high-level mission 
objective activity 

activity times per agent (human and robot) the duration time of each specific agent-
activity 

power consumption and energy usage for the 
robot agent 

the total power consumed by the robot agent, 
the energy used in each robot activity, 
the battery power left after each robot activity, 

robot command sequence send by Earth to 
the robot 

data send to the robot 

amount and type of data send to Earth and 
used for decision analysis and historical 
record 

for each data transmission made by the 
robot, its type and the amount of data 

amount of surface covered during a traverse length and time of traverses, 
number of mission relevant stops 

8.4 MODEL VERIFICATION AND VALIDATION 

In system design, i.e. when designing a system that does not yet exist, it seems only possible to do model 
verification. Model validation is difficult, because we cannot compare the outcome of the model with the 
outcome from an existing source system (Zeigler et al. 2000, chapter 14, fig.1). In this section, I describe 
how the simulation in this case study is verified and validated. 

8.4.1 Verification 

As described in chapter 6.9.5, verification is the attempt of establishing that the simulation relation holds 
between the simulator and the model being simulated. In other words, does the simulator execute the model 
correctly? Correctly in this context means, does the simulator execute the model as intended, after the 
compiler has been able to correctly translate the model source code?  

The model is developed based on the Apollo HFE deployment model from the second case study on the 
one hand, and the Victoria mission proposal on the other. This data allows for a relatively accurate design of 
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the activities and the robot. To verify the correctness of the simulation of the model, I presented the 
conceptual design model of the Victoria work system to the principal investigator, and a science team 
member of the Victoria mission, and based on their feedback I implemented the conceptual design into a 
Brahms model. I also interacted with co-investigators of the Victoria mission on the modeling of the rover 
and its instruments. With one of the designers of the Victoria rover from Carnegie Mellon University I had 
design interactions on the energy performance of the rover. With the designers of the lunar surface drill 
(Honeybee Robotics, Ltd.) and the research scientists responsible for the Neutron Detector instrument, I 
discussed the operations and energy consumption of these instruments. After syntax error revisions, and 
because of the two previous case studies, we can be confident that the Brahms simulator executes Brahms 
models correctly. I then verified the model simulation using the visual AgentViewer application. After several 
debugging cycles, I verified that the outcome of the simulation produced the correct behavior of all the 
agents in the system over time. 

8.4.2 Validation 

The point of the exercise is to test the use of simulation as a design aid for the implementation of the actual 
system. The model consists of a number of modeled agents (humans and robots) and systems that could 
individually be validated. However, the overall system behavior is what determines the effectiveness.  

Since there is no real-world system data, the way I have been able to validate is to use a rather qualitative 
comparison step; i.e. validating the model based on responses from the Victoria principal investigator. After 
the model was simulating correctly, I presented this outcome to the principal investigator of the Victoria 
mission and he validated its behavior. This gives a relative confidence that the model indeed simulates the 
appropriate level of behavior of the future work system. 

8.4.3 Model fidelity 

An important concept in design models is fidelity. Fidelity is often used for a combination of validity and 
detail. Thus, a high-fidelity model may refer to a model that is high both in detail and in validity. However, 
one needs to be aware of the fact that high detail is a necessary, but not sufficient condition for high fidelity. 
There can be a highly detailed, but invalid model that is very much in error. This tacit assumption is 
especially important in design models, because design models are very difficult to validate before a system 
is implemented and we are able to validate the model against the implementation. Therefore, it is important 
to realize that high detail does not eliminate the validity concern in work system design models. 

Model detail depends on the objective of the modeling effort. The more demanding the question, the greater 
the resolution needs to be to answer the question. The level of detail of the human-robotic work system to 
be designed should be high enough so that the modeling activity is relatively simple and fast, but on the 
other hand detailed enough to be relevant for mission-operation designers, robot designers, and/or software 
developers.  

The collaboration between the humans on Earth and the robot on the Moon is grounded in the performance 
of a specific task. What needs to be included in the model should be based on all the relevant activities and 
contextual information that influence this collaborative activity. The level of detail at which to model each 
aspect depends on our ability to identify those aspects that have influence. There is no hard and fast rule 
that can be applied to the modeling level. For example, it is obvious that the communication time-delay 
between the Earth and the Moon needs to be included in whatever collaborative activity is being designed. 
However, it is not clear if and how the make-up of the mission science-team has to be included in the 
model. I could decide to model every individual member of the science-team as separate agents, while on 
the other hand I could decide to model a whole team as one agent communicating their decisions to other 
teams. From previous field-test simulations it seems obvious that the work practices of the human teams 
has great influence on the collaboration with the robot in performing field science (Thomas et al. 1999) 
(Cabrol et al. 2001). 

In system design, the measures of the effectiveness of the system in accomplishing its goals are required to 
evaluate the design alternatives. This suggests that the outcome measures from Table 8-1 could be used to 
measure the effectiveness of a specific work system design model. One of the most important measures for 
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the evaluation of an alternative is the power consumption and energy usage of the robot during the model 
simulation. For a design alternative to be accepted it will at least need to satisfy energy constraint (3.0). The 
level at which to model is the level that can show and explain all the events that influence this constraint. 
The objective in the rest of this chapter is to describe how this was done in the Victoria model. 

8.5 MISSION OPERATIONS WORK SYSTEM DESIGN 

The work that is involved in the Victoria mission is distributed over a number of human teams, and the 
Victoria rover. In a sense, we can view the Victoria science team as a user of the semi-autonomous rover. 
The science team is a user from the perspective that the rover is on the lunar surface in service of the Earth-
based science team. On the other hand, the rover is not merely a computer system with a user in the 
traditional sense of the word. The rover is more of a collaborator with its user. From the perspective of a 
team performing a scientific lunar surface exploration mission, the rover is part of the team. The work 
practice of this team is what will make the difference in the performance of this team. As such, the rover 
cannot be simply viewed as a complex piece of machinery that needs to be remotely controlled by its user, 
but instead the rover has to be seen as an integral part of the team performing the work; Who is doing what, 
where, when, and how? The purpose of this case study is to show how a model of the prescribed work 
practice can aid the mission operation system (MOS) designers in designing the most efficient work system 
for the mission, given its objectives. 

8.5.1 Functional division of activity 

Organizational structures of mission operation teams for robotic missions can be based on similar functions 
for more traditional remote-sensing missions. Wall & Ledbetter describe the organizational structure of 
remote-sensing missions in functional terms (Wall and Ledbetter 1991). The two top functions described 
are: 

1. Keep the robot safe and functioning, and 

2. Request, collect, process and analyze the data sent back by the robot. 

However, in the case of a semi-autonomous rover mission the rover is defined as a member of the mission 
operations team. Therefore, I identify a third important top-level function. 

3. Perform the science activity and send data back to Earth. 

These functions require two distinct data flow processes: uplink, the definition, preparation and transmission 
of instructions and data to the robot; and downlink, the collection, transmission and processing of data from 
the robot. Wall & Ledbetter describe the sub-functions necessary for accomplishing these two data flow 
processes from an Earth-based mission operations point of view. (see Table 8-2). 
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Table 8-2. Relation of data flow process to functions (from (Wall and Ledbetter 1991)) 

 Robot/Spacecraft operation  
and safety 

Request, collect, process, 
analyze data 

Uplink process 1. Commands for engineering 
operation of robot/spacecraft 

2. Maneuver commands 

3. Telecommunications commands 

4. Emergency or anomaly resolution 
commands 

5. Engineering data loads 

 

1. Command sequences for 
experiment operation 

2. On-board data storage commands 

3. Payload pointing commands 

4. Long-term planning for science 
opportunities 

Downlink process 1. Monitoring of health and status 
telemetry from robot/spacecraft 
subsystems 

2. Subsystem trend analysis 

3. Subsystem performance prediction 

4. Quality of downlink signal 

1. Experiment data collection 

2. Data processing and enhancement 

3. Image processing 

4. Data quality assessment 

The functions in Table 8-2 need to be performed collaboratively by the mission operation teams and the 
rover. How this happens is constrained by the work system that needs to be designed. The model will 
prescribe the work system by incorporating a model of the work practice, including all the Earth-based 
teams, the rover, their communication actions, as well as the hardware and software systems they use. 

Figure 8-3 gives a pictorial representation of the currently known elements and their relative geographical 
location during the Victoria mission. The Science Team consists of a number of sub-teams, all co-located in 
Building 244 at NASA Ames Research Center, Moffett Field, California. The sub-teams are the Science 
Operations Team (SOT), the Instrument Synergy Team (IST), and the Data Analysis and Interpretation 
Team (DAIT). There are two other supporting teams outside the Science Team. These are the Data and 
Downlink Team (DDT) and the Vehicle and Spacecraft Operations Team (VSOT). All these teams work 
together to perform the mission. In doing so, their objective is to accomplish the scientific objectives of the 
mission. They communicate with the Victoria rover on the lunar surface, using the Universal Space Network 
(USN) via two separate communication links, the high capacity S-Band direct Earth to rover link, as well as 
the UHF communication link via Victoria's lunar orbiter. 

The flow of data from the rover will be dominated by contextual and multi-spectral image data, but will also 
include thermal emission, neutron spectrometer, time-of-flight mass spectrometer (TOF-MS), X-ray 
spectrometer (APXS), microscopic imaging, and various engineering data of scientific interest. This data will 
come to NASA Ames via the USN data connection and will be automatically converted in near real-time to 
accessible data formats that can be made available to the teams via data access and visualization 
applications. In addition to this continuous data conversion activity, the data will be streamed to a redundant 
DVD storage facility-that will then immediately be made available to the Planetary Data System (PDS) in 
raw format. Within a 24 hours time period, the Victoria science team will release the images of greatest 
interest on the public available Victoria web site. 

In the next sections I will describe the design of this work system through the design of the agent model, the 
object model, their activity models and the geographical model 



 

 223

 

Figure 8-3. Victoria work system 

8.5.2 Agent model design 

Figure 8-4 shows the group membership hierarchy on which the design of the work system is based. The 
agents in the model are the Earth-based human teams and the Victoria rover, as shown in Figure 8-3. The 
teams are represented as agents, because at this moment it is not possible to describe the composition of 
each team in more detail. This means that the activities represented in the model are at the team-level, and 
it remains unspecified how the teams themselves inter-operate. For example, the “plan a command 
sequence” activity of the SOT represents the work of the whole team, while the individual activities of each 
team member remain unspecified. As the team structure and inter-operation of the teams become known, 
we could update the model to reflect more specific internal team-design. The modular agent-based design 
allows us in the future to decompose the team into multiple agents, as well as decompose each team-
activity into more specific team member activities. 

The VictoriaRover is modeled as an agent, i.e. an instance of the group Rover, which is a subgroup of the 
group DataCommunicator. Agents of the group DataCommunicator know how to create and communicate 
data objects. This is relevant for rovers, because they need to communicate information to Earth. The 
VictoriaRover agent can communicate either over the S-Band directly to Earth, or over the UHF-band via 
the orbiter. 
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Figure 8-4. Victoria Agent Model 

Given the above teams, Table 8-3 shows a possible distribution of the functions from Table 8-2 over the 
Victoria teams. Different teams collaborate together to perform these functions. How such collaborations 
happen depends on the work practice, specified in the situation-action rules (i.e. the workframes) of the 
different agents. 

Table 8-3. Functional activity distribution over Victoria teams 

 Science 
Operations 

Team 

Instrument 
Synergy Team 

Data Analysis 
and 

Interpretation 
Team 

Data and 
Downlink Team 

Vehicle and 
Spacecraft 
Operations 

Team 

Rover 

Uplink 
process 

1. Maneuver 
commands 

2. Command 
sequences for 
experiment 
operation 

3. Payload 
pointing 
commands 

4. Long-term 
planning for 
science 
opportunities 

1. Commands for 
engineering 
operation of 
robot/spacecraft 

2. Emergency or 
anomaly 
resolution 
commands 

3. Payload 
pointing 
commands 

4. Long-term 
planning for 
science 
opportunities 

 

1. Long-term 
planning for 
science 
opportunities 

1. Telecommuni-
cations 
commands 

1. Commands for 
engineering 
operation of 
robot/spacecraft 

2. Maneuver 
commands 

3. Telecommuni-
cations 
commands 

4. Emergency or 
anomaly 
resolution 
commands 

5. Command 
sequences for 
experiment 
operation 

6. On-board data 
storage 

1. Command 
execution 

2. Long-term 
planning for 
science 
opportunities 
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commands 

7. Payload 
pointing 
commands 

Downlink 
process 

 1. Monitoring of 
health and 
status telemetry 
from robot 
subsystems 

2. Subsystem 
trend analysis 

3. Subsystem 
performance 
prediction 

1. Data quality 
assessment 

2. Experiment data 
collection 

1. Quality of 
downlink signal 

2. Experiment data 
collection 

3. Data processing 
and 
enhancement 

1. Monitoring of 
health and 
status telemetry 
from robot 
subsystems 

2. Subsystem 
trend analysis 

3. Subsystem 
performance 
prediction 

1. Experiment data 
collection 

2. Monitoring of 
health and 
status telemetry 
from robot 
subsystems 

For the purpose of this study, the model only includes some of the functions from Table 8-2, and 
consequently also from Table 8-3. 

8.5.3 Object model design 

The object model consists of the classes and instances of the artifacts, as well the statically and dynamically 
created data objects. The Victoria object model (Figure 8-5) includes classes for the science instruments on 
the rover, as well as other objects contained in the rover, such as the carousel and the battery. Furthermore, 
the model includes the data communicator class, which includes the objects for S-band and Uhf 
communication. The simulation scenario, presented in the next section, only requires the S-bandMGA 
antenna on the rover. The model also includes the software system that is needed to receive and convert 
the mission data, as well as an object that represents the data visualization system needed to present the 
Victoria team with the data in a usable format. The Data and CoreSample classes are used to dynamically 
create data instances and lunar core sample objects, during the simulation. 

8.5.4 Geography model design 

The geography model is similar to that of the two Apollo models, since we are again modeling geographical 
locations on Earth and on the Moon. Figure 8-6 shows the Victoria geography model design, as is depicted 
in Figure 8-3. There are two distinct areas of interest on Earth; The Building244 area where the Victoria 
teams and systems are located, and the UsnSatelliteLocation area where the UsnDish1 satellite dish is 
located. On the Moon, the areas represented are locations for the specific scenario that is being simulated 
(see next section). There is a location called ShadowEdgeOfCraterSN1, which represents the location the 
rover is at the start of the simulation. This is the location on the shadow edge that is in crater SN1. Another 
location that is important during the scenario is the area ShadowArea1InCraterSN1. This represents the 
specific location in the permanent shadowed SN1 crater where the rover will perform a drilling activity. The 
LandingSite area is only represented for completeness, and does not play a significant role in the simulation 
of the actual scenario. 
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Figure 8-5. Victoria Object Model 
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Figure 8-6. Victoria Geography Model 

8.6 MODEL SIMULATION SCENARIO 

The Victoria proposal spells out a number of surface activities that will be performed by the rover, in 
collaboration with the teams on Earth. For this case study I selected the activity of searching for water in 
permanently shadowed craters, as described in the proposal: 

[T]he Victoria team will proceed to the crux of the primary science objective, i.e., the characterization 
of volatiles, including ice in a permanently shadowed crater or depression.  The rover will traverse 
from the landing site area to a preselected nearby crater that contains a permanently shadowed area. 
It will seek ice and other volatiles that are expected to be present in such a permanently shadowed 
cold trap. Several regions close to the pole exist that fulfill Victoria's exploration criteria:  

Site number 1 is a depression located at 89.5°/70°W. The depression is approximately 10 km across. 
Both radar and Clementine data indicate that it is permanently shadowed in its center. Assuming that 
a landing site close to the pole is selected, high resolution coverage exists from the pole along a ridge 
to the edge of the depression.  

Site number 2 is located 88.5°/120°E. Clementine showed that there is a plateau in this region 
receiving large amounts of illumination. Several dark zones surround this plateau and appear to be 
permanently in the dark. The good hires coverage of this region, coupled with Victoria team members 
[…] who are particularly knowledgeable about the lunar polar regions and their topography, will ensure 
an optimization of the current existing data and a minimization of environmental risks. 

Upon arriving at the chosen crater, the rover will travel down into the selected crater and to the edge 
of the shadow. Then, a full battery charge will be confirmed and the rover will traverse into the crater's 
dark area for a duration of approximately one hour.  Over the next few Earth-days several rover 
traverses will be performed into this shadowed zone, each lasting up to three hours or longer.  The 
Victoria's rover is capable of reasonably high speeds on much of the lunar terrain, but it is anticipated 
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that shadowed zones will be traversed at speeds not exceeding 1 m/sec.  During this traverse, the 
rover will periodically stop and deploy its neutron detector to seek hydrogen within the first half meter 
of the surface. Either at the detection of hydrogen or at a fixed time, the rover will use the drill to 
collect samples from a depth of approximately 1 m below the surface.  Samples will be examined by 
the microscopic imager, APXS (modified for the detection of hydrogen), TDL looking for volatile water 
and by the laser VIMS. For this phase of investigation, the integration time of the neutron detector and 
APXS will be approximately 15 minutes and for the laser VIMS and TDL less than a minute each. The 
1m drilling for a core will take a half-hour or less. The analysis of the core sample will give us a 
stratigraphic record of the texture, volatiles, elemental analysis and unambiguous water ice present in 
the top meter of the surface. At half its traverse time, the rover will retrace its tracks back to lighted 
areas to recharge its batteries. 

The part of the scenario that is modeled is the traverse into crater site number 1. The model scenario is as 
follows:  

The rover has arrived at the shadow edge of crater site number 1. The battery has been fully charged. 
Based on the data analysis by the Earth-based teams, of the Clementine data available for the shadow 
edge area of crater site number 1, the science team now decides where to go into this crater and search for 
water ice. While the rover is traversing into the crater, it is taking hydrogen measurements with the Neutron 
Spectrometer. When the rover arrives at the assigned location within this crater and it finds hydrogen there, 
the science team decides it should start drilling 10cm into the surface using the SATM, and collect a 1.0cc 
lunar sample. When the rover receives this command, it starts the drilling activity and finally deposits the 
sample into the instrument carousel. 

Table 8-4 describes these two instruments in terms of the science it is used for. 

Table 8-4. Victoria rover instruments used during scenario 

Instrument Science 

Neutron spectrometer 

 

Detect hydrogen within the first half meter of the 
lunar surface below the rover. The most likely form 
of this hydrogen is water ice. 

SATM drill 

 

SATM can penetrate the lunar regolith to depths of 
over 1 m to acquire samples while preventing 
cross-contamination.  The SATM is equipped with 
a sample cavity volume capable of between 0.1 to 
1.0 cc to acquire samples of different lengths and at 
different depths bellow the lunar surface. 
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In this scenario the rover uses two of its instruments, the Neutron Spectrometer and the lunar surface drill, 
called SATM63. In the next section, I first describe the activities of the rover during the scenario. After that I 
describe the activities of the Earth-based teams. The reason for ordering the discussion of the model this 
way is because the reader will have an easier time understanding the activities on Earth, by first having an 
understanding of the rover's activities. The rover activities are a result of the Earth-based team's behavior, 
and they better explain the objective of the scenario. 

8.7 ROVER ACTIVITY 

The Victoria rover is modeled as an agent, whereas the neutron spectrometer and SATM instruments are 
modeled as separate science instrument objects contained in the rover agent. Both instruments are 
modeled to perform the science activities according to their definition. Figure 8-7 shows the VictoriaRover's 
activities during simulation of the scenario. The NeutronSpectrometer object is active and creates a 
HydrogenData_1 object containing the hydrogen data that is send to Earth, while the VictoriaRover is 
traversing to a permanently shadowed area within the crater, known as site number one (see Move to area 
in crater and look for hydrogen in Figure 8-7). Next, the rover is waiting for the next command sequence 
from Earth (see Waiting for command from Science Team in Figure 8-7). During this time the Earth-based 
teams are analyzing the hydrogen data and are deciding what to do next (see section 8.8). The simulation 
shows that the rover is given the command to search for water ice in the permanent dark area. This triggers 
the SATM instrument to start the drilling activity. Figure 8-7 shows the SATM and Augur objects performing 
activities in order to collect a sample from the lunar soil (see Drill 10cm into surface and take 1cc sample in 
Figure 8-7). 

To collect a sample the SATM has to 1) lower its augur to the surface, 2) drill to the depth given as part of 
the command by the Earth-based Science Team (in this scenario the command says to take a 1.0cc 
sample at 10cm depth), 3) open the sample cavity door, 4) continue to drill to collect the sample, 5) closing 
the sample door when done, 6) retract the drill from the surface, and finally 7) depositing the collected 
sample on the instrument carousel. Figure 8-7 also shows the Augur object, contained in the SATM object. 
The Augur object creates the LunarSample_1 object as part of its activity to capture the lunar sample, after 
opening the sample door and continuing the drilling to collect the 1.0cc sample. The way the drilling activity 
works in the model is copied from the way the drilling activity worked in the previous Apollo HFE deployment 
case study (see section 7.5.3). This shows a low-level model reuse. 

The activity times for drilling into the surface are dynamically derived during the simulation. Honeybee 
Robotics, Ltd.64 provided the times for moving the augur to the surface, opening and closing the sample 
door, as well as the average time it takes to drill the augur into, and retracting it out of the lunar surface. 
Table 8-5 gives the sub-activity duration for the autonomous lunar sample collection activity by the SATM 
instrument on the Victoria Rover. Using these numbers in the model, the (autonomous) SATM object 
calculates the actual activity times dynamically, based on the sample collection depth and sample volume 
parameters provided externally (i.e. by the rover command). 

Table 8-5. SATM collecting lunar surface sample activity times (from Honeybee Robotics, Ltd.) 
Activity Duration 

Lower its augur to the surface 3.5 min, (10 cm/min), (0.18 Watt/Hr) 

Drill augur nominal drill rate into the lunar surface 4 cm/min @ 12 Watts, 150 rpm, 10 lbs thrust 

Open/close sample cavity door 1 min, (2 rpm), (0.05 Watt/Hr) 

Retract the augur from lunar surface 7 cm/min 

Move augur to start position above lunar surface 10 cm/min 

Drop sample on Carousel 5 min (move to carousel, open sample door, take sample out, 
close sample door, move augur back). It will have an 
acceleration profile, but as it approaches the drop off interface 
on the carousel it will slow to about 1 cm/min 

                                                      
63 Sample Acquisition and Transfer Mechanism 
64 Honeybee Robotics, Ltd. are the designers and makers of the SATM instrument. 
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Figure 8-7. Victoria Rover scenario activities 

Activities of the VictoriaRover agent are shown at the top, above the activities of the NeutronSpectrometer and SATM instruments. The 
HydrogenData_1 object is created by the NeutronSpectrometer, which represents the hydrogen data that it found and communicates 
back to Earth (the communication to Earth is not shown in this figure). The Augur object creates the LunarSample_1 object in the “collect 
sample” activity. This object represents the 1cc lunar sample that was captured during the drilling activity. The VictoriaRover commands 
the drill to start, getting its command from Earth, but then the drill performs the activity autonomously. 

Table 8-6 gives the values of the list of activities and activity simulation time output variables for the Victoria 
rover, from the simulation shown in Figure 8-7. The complete list of Victoria Rover activities is comprised of 
all the parallel activities of the rover agent and the instruments used during the rover's activities. Table 8-6 
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shows the activities for the VictoriaRover agent, the NeutronSpectrometer object, the SATM object, and the 
Augur object contained in the SATM object. 

Table 8-6. VictoriaRover and Science Instruments activities and times in seconds 

 Activity StartTime EndTime TotalTime 

VictoriaRover DoNothing 0 7514 7514 

 ProcessUplinkData 7514 7516 2 

 TraverseToLocation 7516 8416 900 

 CommunicateToEarthTeam 8416 8418 2 

 DoNothing 8418 9815 1397 

 ProcessUplinkData 9815 9817 2 

 SearchForWaterIceInPermanentDarkArea 9817 10914 1097 

   Total 10914 

NeutronSpectrometer  DetectingHydrogen 7516 8416 900 

 AddDataTypeToDataObject  8416  8417  1 

   Total 901  
SATM ExtendAugur 9817 10027 210 

 Drilling 10027 10180 153 

 StopDrilling 10180 10181 1 

 OpenSampleDoor 10181 10241 60 

 StartSampleAcquisition 10241 10242 1 

 Drilling 10242 10251 9 

 StopDrilling 10251 10252 1 

 CloseSampleDoor 10252 10312 60 

 ReverseDrilling 10312 10404 92 

 RetractAugur 10404 10614 210 

 DropOffSampleOnCarousel 10614 10914 300 

   Total 1097 

Augur MovingIntoSurface 10027 10180 153 

 SampleAcquisition 10242 10251 9 

 MovingOutOfSurface 10312 10404 92 

   Total 254 

 

The total duration of the complete scenario is given by the total time of the VictoriaRover's activities. Table 
8-6 shows a total scenario duration time of 3 hrs and 2 min (10914 sec). This includes the DoNothing 
activity of the rover at the start of the scenario. During this activity the human teams on Earth are working 
towards a decision on the first rover command. This will be discussed in the next section. The total duration 
of the traverse into the permanent dark area, including the extraction of one lunar sample is 57 minutes (see 
Table 8-7). 

Table 8-7. VictoriaRover agent output variables 

 Actual Value Hrs and Min Length 
Traveled 

Data Type 

Total Duration Time 10914 sec  3 hrs, 2 min   
Duration For Rover (without 
the first DoNothing activity) 3400 sec  57 min   

Rover Traverse 900 sec 15 min 900 m  
Data Transmission To Earth 2 sec   Hydrogen data 
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8.8 TEAM ACTIVITIES 

The SOT is a group of mission scientists who, at the start of each traverse of the rover, have some science 
objective they want to accomplish. The SOT is at the center of the decision making process for a specific 
mission objective. The SOT is the team that decides what activity the rover is to execute next. To do this, 
the SOT needs help from the DAIT. The DAIT team's responsibility is to make sure that the SOT has the 
appropriate mission data available to make a decision. Analyzing such mission data is a collaborative 
activity between the SOT, the DAIT, and the rover. The rover gathers data and sends it to Earth for analysis. 
The DAIT locates the correct data, which is then presented to the SOT. Together these two teams analyze 
the data, given the current mission objective and state. When the SOT has decided what the rover is to do 
next, it communicates this to the VSOT. This team consists of technical individuals who know how to 
operate the robot. The VSOT takes the decision of the SOT, and creates a command sequence for the 
robot. Using the teleoperation system, the VSOT executes the command sequence, which is then send to 
the rover via the USN satellite dish. The rover is responsible for executing the activities as specified in the 
command sequence, as well as communicating its findings back to the Victoria Team. The next two 
sections explain how the scenario is simulated, given the work system design model. 

8.8.1 Uplink process 

Figure 8-8 shows how the uplink process for the search for water ice in the permanent dark crater scenario 
is simulated. The scenario starts with the DAIT team retrieving the Clementine data image of the shadow 
edge area, where the rover is located at the start of the scenario—this data is modeled as an static 
Clementine mission data object, available in the VisualizationSystem object at the start of the simulation. 
They review this image using the visualization system, which is shown in Figure 8-8 by the communication 
line at the top-left corner in the VisualizationSystem object.  

This first example already shows some work system design decisions that were made: a) deciding that the 
DAIT team retrieves this image, and b) the fact that they do this without anyone requesting that they look at 
this data. This means that the DAIT needs to be aware of the location and situation of the rover at all times, 
as well as that they need to know that this data is available and needs to be retrieved, and where and how 
they can retrieve it. These activities were designed as a result of the fact that the function of the DAIT team 
is to perform long-term planning for science opportunities, given in Table 8-3. 

Once the DAIT has retrieved the images, it communicates this to the SOT team, and they collaboratively 
analyze these images. This is shown in Figure 8-8 by the AnalyzeRoverImages activity that both the DAIT 
and the SOT team perform at the same time (see Team Collaboration in Figure 8-8). At the end of this 
analysis the SOT team plans the first rover command sequence (see Rover Command Decision in Figure 
8-8). According to the scenario being simulated, the SOT decides that the rover needs to drive for a 
specified amount of time (15 min) into the crater to a specific location (ShadowArea1InCraterSN1), and 
while driving it should be using its neutron detector instrument to detect hydrogen in the lunar surface. This 
decision is communicated to the VSOT team (and the DAIT team). After this communication, the SOT waits 
for the rover's downlink data. The command sequence that is created is represented as the following 
communicated beliefs, by the SOT: 

belief: (projects.victoria.VictoriaRover.nextActivity = MoveToLocationActivity) 
belief: (projects.victoria.VictoriaRover.subActivity = projects.victoria.DetectHydrogenActivity) 
belief: (projects.victoria.VictoriaRover.drivingTime = 900.0) 
belief: (projects.victoria.VictoriaRover.gotoLocation = projects.victoria.ShadowArea1InCraterSN1) 
belief: (projects.victoria.VehicleAndSpacecraftOpsTeam.transmitCommand = true) 

Now the VSOT team starts its activity of creating the command sequence. This is done using the 
teleoperation software system, and is shown in Figure 8-8 by the communication of the command sequence 
from the VSOT team to the TeleOperationSystem (see Communicate Command Sequence in Figure 8-8). 
How this interaction between the TeleoperationSystem and the VSOT team works is not further specified, 
but could be seen as a high-level requirement for the development of the actual teleoperation system. 
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The TeleOperationSystem activity shows the TeleOperationSystem communicating the command 
sequence to the USN satellite dish UsnDish1, after which the UsnDish1 object communicates this data to 
the VictoriaRover, waiting at the shadow edge in crater SN1. The VictoriaRover agent receiving this 
information and acting upon it was described in the previous section on the rover activity (see Move to area 
in crater and look for hydrogen in Figure 8-7). 

Figure 8-8 also explains why the VictoriaRover is performing the DoNothing activity at the start of the 
scenario; the length of the DoNothing activity is determined by the time it takes the Victoria team to 
collaboratively decide what the next command should be for the rover. All the collaborative activities that are 
performed during this first part of the simulation are part of the uplink process for requesting, collecting, 
processing and analyzing data, as shown in Table 8-2. The VictoriaRover is waiting for this uplink process to 
be completed. 
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Figure 8-8. Simulation of first uplink command activities 
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8.8.2 Downlink process   

After the rover has received the first uplink command it will start the traverse into the permanent dark crater. 
When the rover detects hydrogen in the ShadowArea1InCraterSN1 location the downlink process starts. 
What happens during the downlink process is shown in Figure 8-9. The VictoriaRover agent contains the S-
BandMGA object, which represents the S-Band transmitter on the rover. The VictoriaRover creates a data 
object with a) the current rover location information and b) the hydrogen data. This data object is then 
communicated to Earth, via the UsnDish1 object. The UsnDish1 object communicates this data to the 
DataConversionSystem (see Downlink Process in Figure 8-9). As can be seen in Figure 8-9, the 
DataConversionSystem performs two conversion activities, one for the hydrogen data and one for the 
location data from the rover. In the work system design, as implemented in the model, it has been decided 
that the data conversion system should be intelligent enough to handle the data conversion for and the 
transmission to the visualization system, without human intervention. This creates a certain level of 
requirements for these systems that have not been specified in more detail in the model, but could have 
easily been modeled in more detail. 

When the VisualizationSystem receives the newly converted data, the system alerts the user, i.e. the DAIT 
team. This is implemented in the model through the creation of facts that simulate software “alarms” that are 
being detected by the DAIT agent using detectables (see Detect, retrieve, interpret and communicate data 
in Figure 8-9). This simulates the activities of a member of the DAIT. They are monitoring the 
VisualizationSystem while in the activity WatchForDownlink. This is shown in the activity timeline of the 
DAIT agent in Figure 8-9. When the DAIT agent detects that there is newly available neutron detector and 
location data, it retrieves the data from the VisualizationSystem object (i.e. the activities 
RetrieveNeutronData, InterpretNeutronData, and FindRoverLocationData). This simulates the DAIT team 
members looking at and interpreting the rover's neutron and location data, using the visualization system. 
After these activities are performed, the DAIT team communicates their findings to the SOT. The scenario 
states that the hydrogen data suggest that the rover has found hydrogen in the ShadowArea1InCraterSn1. 
When the SOT hears these findings, it decides very quickly what the next command sequence for the rover 
is, and communicates this decision to the VSOT team (i.e. CommunicateDoDrillActivity) (see Next Rover 
Command Decision in Figure 8-9). The command sequence that is created is represented as the following 
communicated beliefs: 

belief: (projects.victoria.VictoriaRover.nextActivity = SearchForWaterIceInPermanentDarkAreaActivity) 
belief: (projects.victoria.VictoriaRover.subActivity = projects.victoria.DrillingActivity) 
belief: (projects.victoria.SATM.lengthIntoSurface = 10.0) 
belief: (projects.victoria.SATM.sampleVolume = 1.0) 
belief: (projects.victoria.VehicleAndSpacecraftOpsTeam.transmitCommand = true) 

The communication tells the VSOT that they have to transmit the command sequence to the VictoriaRover. 
The command sequence tells the VictoriaRover to start the 
SearchForWaterIceInPermanentDarkAreaActivity. It also tells the VictoriaRover that its sub-activity during 
this activity is to perform the DrillingActivity. The next commands are parameters for the DrillingActivity that 
the rover needs to know, to a) know how deep to drill and b) know how big of a sample to collect at that 
depth. Figure 8-9 shows a part of this second uplink process, which is performed in the same way as the 
first data uplink shown in Communicate Command Sequence Figure 8-8. 

The length of this downlink and second uplink process determines the length of the second DoNothing 
activity of the VictoriaRover, which simulates the time the rover is waiting for the Victoria science team to 
decide the next command sequence for the rover (see Waiting for command from Science Team in Figure 
8-9). 
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Figure 8-9. Simulation of downlink and second uplink command activities 
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8.8.3 Output variables for human agents 

Given the activities of the Victoria team shown in Figure 8-8 and Figure 8-9, we can generate the output 
variables for the human agents, i.e. the different Science and Victoria Team agents. Table 8-8 shows the 
activities and activity times for each human agent in the model. 

Table 8-8. Victoria Team activities and time in seconds 

Agent Group Activity StartTime EndTime TotalTime 

DataAnalysisAndInterpretationTeam ScienceTeam RetrieveImages 0 1800 1800
  AnalyzeRoverImages 1800 5400 3600
  RetrieveNeutronDetectorData 8481 8781 300
  InterpretHydrogenData 8781 8901 120
  FindRoverLocationData 8901 9201 300
  CommunicateData 9201 9501 300
   Total 6420

ScienceOperationsTeam ScienceTeam AnalyzeRoverImages 1800 5400 3600
  PlanFirstCommandSequence 5400 7200 1800
  CommunicateNextRoverActivity 7200 7210 10
  AskToWatchForNewDownlink 7210 7220 10
  WaitingForData 7220 9501 2281
  CommunicateNextRoverActivity 9501 9511 10
  WaitingForData 9511 10914 1403
   Total 9114

VehicleAndSpacecraftOpsTeam VictoriaTeam ExecuteRoverCommand 7210 7510 300
  ExecuteRoverCommand 9511 9811 300
   Total 600
 

8.9 CALCULATING ROVER ENERGY USAGE 

This section describes how the output variable for rover energy usage (e.g. Eacti from (2.0) in section 8.2.2) 
is calculated during the simulation. The reason for describing the techniques used in more detail is a) 
because this variable is of particular interest for judging the quality of the work system design for the Victoria 
mission, and b) the Brahms programming techniques used to model this variable is an important technique 
to understand for future modelers. 

To calculate the total power consumption of the rover during the scenario we need to calculate the energy 
being used over time. This is done by identifying the energy usage during every primitive activity of the 
rover, based on each subsystem and instrument on the rover requiring power during a specific activity. 
Using equation (2.0) we can calculate the energy usage during each rover activity. The total power 
consumption of the rover during the scenario can then be calculated by adding all the energy usages for 
each rover activity: 

∑
=

=
n

0i

actiE   nConsumptioPower  Total     (4.0) 

shows the data calculated from equations (2.0) and (4.0). The energy usage during the rover's activities 
consists of the energy used by the rover, its subsystems, the Neutron Spectrometer and SATM. 
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Table 8-9. Energy usage for the rover during scenario 

 Activityi Location Power Needed For Eacti 
(W/hr) 

VictoriaRover DoNothing Edge of crater SN1 N.A.65  

 ProcessUplinkData Edge of crater SN1 N.A.65  

 TraverseToLocation Shadow crater SN1 Thermal Protection during driving+ 
Mobility during driving + Altitude 
Determination during driving + 
Command and Data Handling during 
driving 

99.06 

 CommunicateToEarthTeam Shadow crater SN1 Thermal Protection during driving + 
Command and Data Handling during 
driving + Ground Link during driving 

86.84 

 DoNothing Shadow crater SN1 Thermal Protection during driving + 
Command and Data Handling during 
driving 

33.96 

 ProcessUplinkData Shadow crater SN1 Thermal Protection during driving + 
Command and Data Handling during 
driving + Ground Link during driving 

0.37 

 SearchForWaterIceIn 
PermanentDarkArea 

Shadow crater SN1 Thermal Protection during science + 
Command and Data Handling during 
science 

49.52 

Neutron 
Spectrometer  

DetectingHydrogen Shadow crater SN1 Take Spectral Image 0.02 

 AddDataTypeToDataObject 
 

Shadow crater SN1 N.A66. 0 

SATM ExtendAugur Shadow crater SN1 Move Augur Platform 0.18 

 Drilling Shadow crater SN1 Nominal Drilling 30.60 

 StopDrilling Shadow crater SN1 N.A.66 0 

 OpenSampleDoor Shadow crater SN1 Open Chamber Door 0.05 

 StartSampleAcquisition Shadow crater SN1 N.A.66 0 

 Drilling (reverse) Shadow crater SN1 Nominal Drilling 1.80 

 StopDrilling Shadow crater SN1 N.A.66 0 

 CloseSampleDoor Shadow crater SN1 Close Chamber Door 0.05 

 ReverseDrilling Shadow crater SN1 Nominal Drilling 18.20 

 RetractAugur Shadow crater SN1 Move Augur Platform 0.18 

 DropOffSampleOnCarousel Shadow crater SN1 Sample Drop 0.20 

    

   Total Power Consumption during 
scenario 

321.03 
Watt 

 

To implement the calculation of the energy usage for the rover, I needed to operationalize the calculation of 
the energy needed for each subsystem during a rover activity (see Table 8-9). Here I show the way this is 
done using the simplest rover activity as an example. From Table 8-9 we can see that the energy the rover 
uses during the DoNothing activity is defined by the energy needed for Thermal Protection during driving + 
Command and Data Handling during driving. What this means is that even while the rover is standing still 
and “doing nothing,” it consumes power for its thermal protection and its commanding and data handling for 
its subsystems, such as its processor board. The rover designers67 were able to provide the power 
consumption specification for these power consuming low-level activities of the rover (Table 8-10). 

                                                      
65 This energy is not added to the total energy used, because this before the rover starts the traverse in the permanent dark area. The 
battery is charged to full capacity at the moment the traverse begins. 
66 There is no energy usage associated with this activity. 
67 The Robotics Institute at Carnegie Mellon University; http://www.ri.cmu.edu/centers/frc/index.html 
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Table 8-10. Rover power consumption data 

  Subsystem 

Permanent 
Shadow 
Traverse  
w/growth (W) 

Permanent 
Shadow 
Science 
Investigation  
w/growth (W) 

Shadow 
Hibernation  
w/growth (W) 

Thermal     
 Thermal Radiator 0 0 0 
 Multi-layer Insulation 0 0 0 
 Thermal Switches    
 Thermal Coatings 0 0 0 
 Temperature Sensors 0.225 0.225 0 
 Heaters 39.375 50.625 84.375 

Thermal Total   39.6 50.85 84.375 

     
Command & Data Handling     
 Processor Board 24.48 24.48 12.24 
 

Non-Volatile Memory Board 3.6 3.6 1.8 

 
Command & Telemetry Board 3 3 0 

 ADCS/Payload Interface 
Board 3 3 0 

 Motion Control Board 7.722 1.755 0 
 

Power Distribution/Propulsion 
Driver/Heater Control Board 2.4 2.4 2.4 

 Charge Control/Array 
Switching 0 0 0 

 DC-DC Converter 4.8 4.8 4.8 
 Hardware Box 0 0 0 

Command & Data Handling Total   49.002 43.035 21.24 

© The Robotics Institute, CMU 

The power consumption data is represented for the VictoriaRover agent as initial-beliefs (so that the agent 
can use them) and initial-facts (so that the instrument objects can use them), using six attributes of type 
double: 

 
Using these beliefs (and facts) the Brahms model can calculate the energy used during the DoNothing 
activity. This is done in the workframe wf_Waiting: 

agent VictoriaRover memberof Rover, DataCommunicatorGroup { 
 initial_beliefs: 
  (current.powerNeededForThermalProtectionDuringShadowDriving = 39.6);  
  (current.powerNeededForThermalProtectionDuringShadowScience = 50.85); 
  (current.powerNeededForThermalProtectionDuringShadowHybernation = 84.375); 
  (current.powerNeededForCommandAndDataHandlingDuringShadowDriving = 49.002); 
  (current.powerNeededForCommandAndDataHandlingDuringShadowScience = 43.035); 
  (current.powerNeededForCommandAndDataHandlingDuringShadowHybernation = 21.24); 
 initial_facts: 
  (current.powerNeededForThermalProtectionDuringShadowDriving = 39.6);  
  (current.powerNeededForThermalProtectionDuringShadowScience = 50.85); 
  (current.powerNeededForThermalProtectionDuringShadowHybernation = 84.375); 
  (current.powerNeededForCommandAndDataHandlingDuringShadowDriving = 49.002); 
  (current.powerNeededForCommandAndDataHandlingDuringShadowScience = 43.035); 
  (current.powerNeededForCommandAndDataHandlingDuringShadowHybernation = 21.24); 
} 



 

240 

workframe wf_Waiting { 
 repeat: true; 
 variables: 
  forone(double) hourlyratio; 
  forone(double) thermalprotectionpower; 
  forone(double) commanddatahandlingpower; 
 
 when  (knownval(hourlyratio = 60 / 3600) and 
   knownval(thermalprotectionpower = current.energyNeededForThermalProtectionDuringShadowDriving 
                      * hourlyratio) and 
   knownval(commanddatahandlingpower =  
                      current.energyNeededForCommandAndDataHandlingDuringShadowDriving * hourlyratio)) 
 do { 
  DoNoth ing(0, 60); 
  conclude((current.energyUsedInActivity = thermalprotectionpower), bc:100, fc:100); 
  conclude((current.energyUsedInActivity = current.energyUsedInActivity + commanddatahandlingpower),  
                                      bc:100, fc:100); 
  conclude((VictoriaRover.consumedEnergy = true), bc:0, fc:100); 
 } 
} 

 
Every 60 seconds, this workframe calculates the energyUsedInActivity belief and fact, based on the energy 
used for the thermal protection and the command and data handling for the duration of the DoNothing 
activity (60 sec). The model includes this type of calculation in every workframe for the VictoriaRover agent, 
the Neutron Detector object, the SATM object, and the Augur object. Figure 8-10 and Figure 8-11 show the 
calculated data from the Brahms MS Access™68 simulation history database. Using simple database 
queries in MS Excel™68, I was able to create the bar graphs showing the Energy level calculated in each 
workframe. The numbers in Figure 8-10 and Figure 8-11 correspond with those in Table 8-9. 

 
Figure 8-10. Rover energy used in drilling activity from simulation history database 

                                                      
68 Microsoft Corporation 
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Figure 8-11. Instrument energy used in drilling activity from simulation history database 

Besides the ability to show the energy usages per activity, it is also possible to generate a line graph 
representing the overall rover energy usage during the traverse into the crater. This is given in Figure 8-12. 

 
Figure 8-12. Rover total energy usage during traverse into crater 

Up to this point, I have described how we calculate the first six output variables from Table 8-1. Another 
important aspect is being able to determine if the model adheres to constraint (3.0). To determine this, I 
modeled the battery of the rover (object RoverBattery) to keep track of the power drainage during the rover's 
activities. Each time the rover agent or one of the instrument objects calculates the energyUsedInActivity 
value for a specific activity, it triggers the RoverBattery object to calculate how much power there is left in 
the battery. The calculation of the powerLeftToUse attribute of the RoverBattery object allows us to show if 
the current work system design model violates the energy constraint (3.0) (see Figure 8-13). 
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Figure 8-13. Battery power left, based on constraint (3.0) 

Besides the power left to use after the scenario, another interesting variable is the energy usage rate by the 
rover. 

traverse) of tartPbattery(s /Power  TotalEnergyRate    =   (5.0) 

Figure 8-13 tells us that given the energy used in the scenario—drive 900m into the crater, and take one 
1.0cc sample at 10cm depth—with the current work system design, the robot has used almost a third of its 
power:  

EnergyRatedrilling in permanent dark crater ˜  0.30 

This variable represents the rover power consumption effectiveness of the work system design, and is a 
measure that can be used to compare different work system designs for a model scenario. 

This concludes the description of the model and the simulation output. In the next and last section, I will 
conclude with some observations and give an answer to the research question stated in the beginning of 
this chapter. 

8.10 CONCLUSION 

This third and last case study investigates the use of Brahms in a design activity. Design is an activity in 
which the designer develops a model of a future system. In that sense, the design model prescribes the 
future system. Developing a prescriptive model is very similar to developing a predictive model, because we 
can view a prescriptive model as predicting the future behavior of a system. However, there is a major 
difference between these two modeling activities. In a prescriptive model the system being modeled does 
not yet exist. This has certain consequences for the use of the model.  

First, it means that a design scenario should drive bottom-up development of the model. Without a realistic 
scenario the design activity can only be done top-down. Secondly, the value of a design model in a design 
project is subjectively based on the aid provided to the designers. This is an often overlooked, but very 
important aspect of using modeling and simulation in a design activity. The questions of what should be 
modeled, and what is the outcome of such a model are directly related to the aid that the model should 
provide to the designers. Finally, the difference between prescriptive and predictive models changes the 
way we can verify and validate the model. A predictive model can be validated based on predictions of past 
events. By showing that a predictive model can predict past events we can become confident about the 
predictions of future events, which can later be validated. A validated model of an existing system can be 
used to predict the behavior of that system in the future. In a prescriptive model we do not have this ability. 
There is no ability to validate the design upfront. To validate the design we will have to implement the model 
in the real world. At that moment the prescriptive model becomes a predictive model, and we can use the 
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same validation approach as with predictive models. However, to implement a prescriptive model without a 
good feeling about the validity of the model requires a costly leap of faith on the side of the engineers. 

Good design tools are hard to come by. Good design tools for the design of work systems are almost non-
existent. Having described this case study and the developed Victoria model in the previous sections, I will 
describe here some of the findings in performing this prescriptive modeling activity, and in doing so, will try 
to answer the research question that was posed in the first section of this chapter. 

The research question, here restated, was: 

Can the Brahms modeling and simulation environment be used to prescribe a realistic work 
practice in the design of the human-robotic collaboration during a robotic lunar mission? 

8.10.1 Answering the research question 

Described in section 8.3, an objective evaluation of the use of Brahms for a descriptive design model can be 
done by evaluating to what extent the model is able to generate the defined outcome variables. Because 
the outcome variables have been defined by the outcome measures that where defined based on the 
modeling objective (see Figure 8-2), we can evaluate the use of Brahms for this objective by evaluating if 
and how we can calculate such outcome variables in a Brahms model. Table 8-11 presents how the 
Brahms model was able to provide the outcome variables, defined for the Victoria model objective. 

To evaluate the ability to calculate each output variable from the simulation of the model, I use the following 
criteria:  

1. Is the variable calculated in the model, and therefore, do we need to use the power of the Brahms 
language to perform the calculation?  

2. Is the variable calculated as part of the Brahms simulation, and therefore, can we display the 
variable by executing a pre-specified SQL-query on the simulation history database that is created 
by Brahms?  

3. Do we need to calculate the variable post-simulation, by executing a pre-specified SQL-query on 
the simulation history database that is created by Brahms? 

In terms of ease of modeling, we can see that the easiest way to calculate a simulation outcome variable is 
the case in which we can use method (2) to show the result. Calculating a variable using method (2) means 
that we can use the intrinsic power of the history of the simulation events, captured by the Brahms 
simulation engine. The modeler does not have to perform any additional work to be able to generate these 
outcome variables from the simulation. The simulation engine keeps track of these measurements 
automatically. In both (1) and (3) the modeler has to perform extra work. With method (3) the simulation 
engine keeps track of most of the measurements, but the modeler needs to do some specific SQL 
development after the simulation is complete. Therefore, the ability for the simulation engine to provide the 
measurements without any extra modeling work depends on the type of data that can be extracted from the 
history database. In case the engine does not provide the needed data “for free,” the modeler needs to use 
method (1). This means that the modeler needs to add specific variable calculation code to the model itself. 
This makes the modeling effort more complex on the one hand, but allows the modeler to extend the 
possible outcome measurements, and thus provides the modeler with a flexible approach. 
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Table 8-11. Outcome variable evaluation 

Output Variables Variables Calculated  
in Brahms Model 

How 
Calculated/Displayed Method 

A list of activities for each 
human-agent 

No specific variable 
calculated in the model 

Displayed by executing a 
pre-specified SQL-query 
on the simulation history 
database 

2 

A list of activities for each 
robot-agent ,, 

Displayed by executing a 
pre-specified SQL-query 
on the simulation history 
database 

2 

The total duration of a 
high-level mission 
objective activity 

,, 
Calculated by executing a 
pre-specified SQL-query 
on the simulation history 
database 

3 

The duration time of each 
specific agent-activity ,, 

Displayed by executing a 
pre-specified SQL-query 
on the simulation history 
database 

2 

 
The total power 
consumed by the robot 
agent 
 
The energy used in each 
robot activity 
 
The battery power left 
after each robot activity 

 
RoverBattery.energyUsed 
 
 
[VictoriaRover | 
EnergyConsumer]. 
energyUsedInActivity 
 
RoverBattery.energyLeftToU
se 

 
Calculated in workframes 
associates with the agent 
or object and displayed by 
executing a pre-specified 
SQL-query on the 
simulation history 
database 

 
 
 
 
 
1 

Data send to the robot No specific variable 
calculated in the model 

Displayed by executing a 
pre-specified SQL-query 
on the simulation history 
database 

2 

For each data 
transmission made by 
the robot, its type and the 
amount of data 

,, ,, 2 

Length and time of 
traverses, 
Number of mission 
relevant stops 

,, ,, 2 
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Table 8-11 shows us that using Brahms I was able to calculate every outcome variable that was defined for 
the given modeling objective. This gives us an objective answer to the research question, namely: 

Brahms can be used to prescribe a realistic work practice in the design of the human-robotic 
collaboration during a robotic lunar mission. 

In this case study the objective was to investigate the use of Brahms in as a prescriptive modeling 
environment. Although the conclusion is that Brahms can be used as a modeling tool for the design of 
mission operations work systems, the question remains if such a project is worth the time and effort. 
Quantifying the added value and cost-benefit of a Brahms modeling project would require a focused effort, 
which falls outside of this thesis. However, in the next two sections, I present some of my personal 
evaluation of the perceived values and benefits in this case study. 

8.10.2 Added value of Brahms 

In this section I discuss the added value of using Brahms in the design of the Victoria MOS. The Victoria 
mission proposal was not selected for funding in 2001, therefore the results from this case study did not 
feed back into the next mission design cycle. However, there are some subjective benefits that can be 
discussed. 

Relationship between rover design and work system design 

The Brahms simulation study operationalized the inherent relationship between the design of the rover and 
instruments and the design of the total mission operations work system. Everyone involved in the Victoria 
proposal was convinced that this relationship existed and played a role in the total design of the mission. 
However, current mission design tools are not capable of showing these relationships. Therefore, the 
analysis of this relationship and the impact on the design of the systems are currently only done informally 
by the mission designers. Design decisions that are based on these relationships are currently made based 
on the experience of the mission designers involved. Since every NASA mission is considerably different 
from previous missions, these experiences are often not based on high confidence data. 

In this case study, I have shown that with Brahms we are able to operationalize the relationships in a 
simulation of both the work system and the hardware and software systems. This shows a tremendous 
potential benefit in mission design. 

Science return 

The mission designers proposed that the Victoria rover could spend about 2 hours within a permanent-dark 
crater. They proposed that within these two hours they could make several stops in the crater, and take 
lunar samples. The SATM designers pride themselves in the proposal of being able to drill to a maximum of 
1m into the lunar surface, and take a 1.0cc sample. 

However, these numbers are not substantiated based on a simulation of the permanent-dark crater mission 
scenario in which the work of the Earth-based teams was taken into account. The reason for this is simply 
because there are no tools available to do such analysis. The only way to get somewhat accurate scenario 
data is by re-enactment of the scenario in field tests. Such field tests are a) not possible until all or some of 
the mission systems have been developed, or are at least in prototype stage, b) difficult to setup, c) time 
consuming, and d) costly. Therefore, at the mission proposal stage there is currently no capability to perform 
any scenario re-enactment. 

This case study shows that Brahms could be used to perform such scenario re-enactment virtually through 
simulation of the scenario, based on a work practice model of the MOS. This capability would provide 
mission designers with better tools to develop more realistic mission scenarios, and thus could do a better 
job in quantifying the possible science result in a mission. 
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Rover battery requirements 

Currently, the battery design for the Victoria rover is developed based on weight and volume constraints for 
the rover, and on the power consumption of the rover’s systems and instruments during the mission. 
Whether the Victoria mission would ever be successful depends on the amount of science that can be done 
during the mission, given the capability of the total MOS, including the capabilities of the rover and the 
Earth-based teams. 

This case study showed that the amount of science that can be done in a mission into a permanent dark 
crater is less than was proposed in the mission proposal—there is about 25% less time available to do 
science. Although the model is incomplete, and the study was only a preliminary study to show the 
capability of Brahms, it can be said that having this modeling and simulation capability provides the mission 
designers with a tool that can help evaluate design decisions and generate more accurate design 
requirements for hardware and software systems for the mission.  

In a personal conversation with the PI of the Victoria mission, the PI told me that he would now consider 
redesigning the battery system for the rover. This is strong testimonial evidence that this case study added 
value to the Victoria proposal. 

High-level requirements for mission support systems 

Similar to the generation of requirements for the rover hardware, the model simulation showed the 
relationships between the data uplink and downlink activities of the human teams, the rover, and the needed 
software support systems part of the MOS. The model does not go into details of user interface design, but 
does show the relationship between human activity and the software system’s functionality requirements in 
support of these activities. A Brahms simulation model is useful as a software requirement specification of 
how the software systems fit in a human-centered work system. 

Mission field test support 

NASA Mission designers a) design MOS and b) test the MOS in time-consuming and costly field tests. 
Using Brahms to create initial designs and provide data before and during such field tests would provide the 
mission designers with an evaluative capability that feeds back valuable data from the field tests to the 
mission design efforts. 

To highlight this benefit, I briefly describe a real-life problem that is currently being addressed in the ‘03 MER 
mission, being designed at JPL. I then discuss how the ’03 MER mission designers are solving the problem, 
and contrast this with how a Brahms model and simulation effort could benefit the mission designers: 

The ’03 MER mission is a planned 2003 mission to Mars with two identical Athena rovers. One of the 
mission operation work system design problems has to do with having the Earth-based human teams use 
Mars-time or Earth time during this long-term mission (90 days or longer). The issue is that a Martian day—
sol—is 24 hours, 39 minutes in Earth time. Mission designers have created a work group, which has a 
charter to study the advantages and disadvantages of working Earth time versus Mars time, versus some 
combination of these times, on personnel who work the duration of the mission. The working group must 
understand the problems inherent with the different operation methods and deliver a detailed report and 
recommendation, within two months. 

Without going into much detail, some of the attributes of the mission that need to be considered by the work 
group are: 

• Provide capability for commanding the rovers every Martian sol. 

• Provide margin for dealing with contingencies within the nominal timeline. 

• Minimize the impact on personal lives. 

• Ensure information of key information across shift boundaries. 
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• Resiliency in face of anomalies. 

• Support operation for two rovers simultaneously. 

• Maximize the potential for science return. 

These are some of the issues that the work group needs to address in their recommendation to the mission 
commander. Their current approach is to divide the work group into two advocate teams—Pro-Mars and 
Pro-Earth—that will each independently research the pros and cons from their points of view. After this, they 
will present their findings and defend their group positions. They will then come together and adopt the best 
of both plans, compiling a report with recommendations. 

The work group could benefit from a Brahms simulation of the ’03 MER mission operations work system, by 
running separate what-if scenarios based on a model that implements the Pro-Mars and Pro-Earth team’s 
design in the Brahms model. For each possible design, the Brahms model could generate appropriate 
variables that allowed the work group to compare the different designs. 

Such a use of Brahms would be extremely useful for the ’03 MER mission if the model would be available at 
the start of the task of the work group, and if the changes to the model, representing the different team 
designs, could be implemented in at most a couple of weeks. If it is possible to create such a MER model in 
Brahms is an empirical question, but the Victoria case study is positive evidence that this is possible, and 
shows that the potential benefit for the ’03 MER mission is high. Today, the work group has no tools 
available to support them in this difficult task. 

8.10.3 Cost-benefit of using Brahms 

In this section I discuss the potential cost of using Brahms in the design of the Victoria MOS. Given the 
added value of a Brahms simulation, I discuss the cost of developing the Victoria model. There are a 
number of important criteria that should be mentioned: a) the model that was developed was a relatively 
small model and did not include all the necessary detail for a real modeling effort, b) the model was 
developed by one individual, outside of the mission proposal team, c) the modeler was an experienced 
Brahms user, and d) the modeler was able to re-use some model libraries from the previous Apollo case-
studies. Although, there is no detailed cost data available, the cost of the Brahms modeling effort in this 
case study could be defined as follows: 

Model development time 

The largest amount of time for developing the model was in creating the initial design of the work system as 
a conceptual model (about 70% of the total modeling time). Such a design needs to be done with or without 
the use of Brahms, and is thus not dependent on the use of Brahms. 

The amount of time it took to develop the Brahms model (less than one man-month) is small in relation to 
the design and development of the total mission (at least 4 years). 

Cost benefit for mission field tests 

Using Brahms to create initial designs and provide data before and during such field tests would cut down 
the field test time, and thus would create a measurable cost reduction in the total mission. 

This concludes the description of the last case study. In the next chapter, I give my overall conclusions for 
the research presented in this thesis. 
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9. CONCLUSIONS 

This thesis described a work practice modeling and simulation methodology, based on the Brahms 
language and simulation environment. The Brahms language is the result of research on how to model and 
simulate work processes. I argued that to assess a work system's quality, modeling the informal and 
circumstantial interactions is essential. Such a model is referred to as a model of work practice. I described 
a theory of modeling work practice that includes the representation of collaboration between people and 
systems, communication and interaction, all while being located in a geographical environment. This theory 
is operationalized in the Brahms modeling language and simulation environment. To verify and validate the 
theory I aimed to show that the Brahms language is complete and sufficient to represent human behavior at 
the work practice level. I performed three case studies that show the different ways of using work practice 
simulation models; 1) describing an existing work practice, i.e. the Apollo 12 ALSEP Offload, 2) predicting 
future agent-behavior based on a general model of work practice, based on the Apollo 15 & 16 missions, 
and 3) designing a new work practice, i.e. the mission operations of a proposed robotic mission to the 
Moon. 

To recap what has been presented in this thesis, in the first chapter I introduced the problems with modeling 
work processes based on workflow modeling, and stated the two research questions. Part 1 of the thesis 
discussed several existing human behavior modeling approaches. Besides workflow modeling, I discussed 
related cognitive approaches, distributed-AI systems that include a multiagent approach, and systems from 
computational organization theory. I argued that none of these approaches and systems include all the 
relevant aspects for modeling at the work practice level. I then described the theory for modeling work 
practice and the Brahms language and simulation environment. Part 2 presented the research design and 
the three case studies in detail.  

In this last chapter, I present conclusions based on my experience in designing Brahms and applying it to 
real-world domains. First, I reflect on the two research questions and to what extent they have been 
answered. Next, I describe the contributions that have been made to the scientific communities of modeling 
and simulation, agent-based systems, and a new emerging field called human-centered computing. I end 
with some comments on future research topics on work practice modeling and simulation. 

9.1 REFLECTIONS ON RESEARCH QUESTION 

I started this research by stating two research questions (see Chapter 1.2). Here I reflect on these two 
questions, with the goal of describing to what extent I have been able to answer them. I will show that with 
using Brahms in the three case studies, I have successfully answered the first question. I will then show 
that, while developing and applying the Brahms environment for answering the first question, I have also 
been able to answer the second question. 

9.1.1 Research question 1 

The main research question was stated as follows: 

How can we model an organization’s work practice in such a way that we include people’s 
collaboration, “off-task” behaviors, multi-tasking, interrupted and resumed activities, informal 
interactions, and geography? 

In chapter 2, I explained how other human behavior modeling systems and approaches lack, in some 
fundamental way, the ability to include the aspects of work practice that are mentioned in the research 
question. The challenge for Brahms then is to include symbolic representations for these aspects. While 
some aspects can be represented as part of the model, other aspects—interrupt and resume, “off-task” 
behavior, informal interaction—are shown as emergent phenomena during a simulation. I answer the 
research question by describing how Brahms represents each of the aspects, based on the experience I 
gained in the case studies. 

1. Collaboration 
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In chapter 3.2.3 I defined collaboration in two ways. First, as a mental awareness by the people involved in 
the collaboration. This awareness does not necessarily have to exist at the same time, in the same place, 
and in the same way for every individual in the collaboration. However, the awareness is created at the 
moment the collaborators are in their individual activities, making them feel they are collaborating. Secondly, 
I defined a form of collaboration I call indirect collaboration. Such type collaboration exists when the 
collaborators are not directly aware of the collaboration. For example, a company sales representative adds 
an order to the order database, which is picked up downstream in the order process by another employee to 
act upon. In short, collaboration integrates the activities of individuals in a group as a whole, a collaborative 
activity with a purpose, and thus over time establishing a community of practice. 

In Brahms we can represent collaboration between agents (and/or objects) in three fundamental ways. First, 
we can describe the dependencies between agents’ activities in terms of the result of one agent’s activity 
(i.e. changes in the world state) triggering another agent’s activity. An agent’s interaction with and 
movement of objects, and the use of these objects in subsequent activities explicitly represents this. For 
example, in the Apollo 12 model the simulation shows the commander moving the first ALSEP package out 
of the way, so that the lunar module pilot can finish lowering the second package to the ground.  

Secondly, the Brahms language allows for explicit representation of communication between agents (and/or 
objects). During a simulation, agents can react to received communications from other agents or objects. 
Brahms allows the modeler to represent send and receive agent (and/or object) communication activities. 
This provides not only the ability to show agents talking to each other, but also an agent reading from or 
writing to an object, which allows for representing indirect communications between people. Another 
important aspect of modeling communication in Brahms is the ability to model the communication devices 
(such as the voice loop and the communication time delay) and the practice of using them. 

Third, the ability to represent an agent's beliefs about other agents’ activities, location, and beliefs. This 
allows the modeler to represent that an agent will or will not perform a certain activity, based on the beliefs 
about another agent’s state. For example, in the HFE deployment model the commander agent knows the 
location of the lunar module pilot agent and is aware of its activity at the moment it puts the ALSEP 
packages onto the lunar surface. This awareness is part of the reason the commander agent start its activity 
of driving the lunar rover to the ALSEP deployment area. The other reason is the plan on his cuff checklist. 

Given the ability to model these aspects of agent interaction, I conclude that Brahms allows the modeler to 
represent the necessary parts of collaboration and explain the emergent result of collaborative activity 
during a simulation. Whether Brahms' ability to model collaboration is sufficient is an empirical question. I 
was able to represent the collaboration in the three case studies, and therefore I conclude that the Brahms 
language is sufficient for modeling collaboration as shown in the case studies. 

2. Interrupt and resume 

It is very natural for people to be interrupted while in an activity, such as being in a meeting with someone 
when the telephone rings. A person can easily interrupt the meeting conversation, answer the phone and 
engage in a completely separate conversation. When finished with the telephone conversation, the person 
can easily resume the meeting where it was left. The Brahms workframe-activity subsumption architecture 
is based on this very principle (see sections 4.4.7, 4.6.2, and 4.6.4). 

This means that the modeler does not have to specify when or how workframes or activities can be 
interrupted. It is an inherent property of the agent’s activity execution space. Thus, Brahms handles people’s 
natural behavior of interrupt and resume of activities. Specifically, the general error-recovery model and the 
conversation policy model for asking and answering questions, designed in the second case study (Chapter 
7), were made possible by this property of the Brahms architecture. 

3. Off-task behaviors 

Off-task behaviors affect the rhythm work. Someone’s activity rhythm is often disturbed by the demands of 
others in the environment. People often interrupt activities of others, such as asking to participate in an 
unscheduled meeting, or a telephone call. In Brahms we can easily represent such “off-task” behaviors. 
Every behavior is represented as the execution of an activity in a workframe. There is no distinction between 
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workframes, except for the preconditions that determine when they are triggered, and their relative priority. 
Workframes are declarative statements of when activities are performed. Often, people react to their 
environment, such as reacting to a ringing telephone, or someone entering their location. People refer to this 
as “off-task”, because of their goal-oriented perspective of the work. However, with an activity-oriented view 
of work this can simply be seen as reactive behavior. For example, in the Apollo 12 model the lunar module 
pilot took photographs of the commander, because of a nice reflection on his visor. This activity was not 
planned in the overall scheme of offloading the ALSEP. It was simply a reaction to an external event, i.e. the 
nice reflection. It could be seen as “off-task.” However, in Brahms this photograph activity is represented no 
differently than the “on-task” activities for the agent offloading the ALSEP. The reason for this is that in 
Brahms a modeler does not distinguish an agent’s activity as either being on-task or off-task, because 
Brahms does not represent tasks and goals, but only an agent’s activities. 

Off-task behaviors are possible to represent due to the interrupt and resume capability made possible by the 
subsumption architecture. I thus conclude that Brahms allows the modeler to easily represent off-task 
behaviors of agents (and/or objects). 

4. Multi-tasking 

People's ability to multi-task can be defined in three ways. First, different tasks can be performed by a group 
of people at the same time. Second, people can multi-task by interrupt and resume (see above). Third, 
people can perform multiple tasks simultaneously, such as being on the phone while driving a car. 

In Brahms it is possible to represent all three ways. First, because Brahms is an agent language, we can 
represent multi-tasking with multiple agents working on different activities at the same time. For example the 
simultaneous activities of the CDR and LMP in the Apollo case studies, and more specifically, the 
VictoriaRover agent moving into the crater while detecting hydrogen with the HydrogenSpectrometer object. 
Secondly, a single agent can perform “activity context switching.” All the workframes of an agent are vying 
to become the current workframe the agent is executing. At each moment in time, a workframe’s 
preconditions can evaluate to true, making it the current workframe and the activity inside it the agent’s 
current activity. Consequently, an agent might be working on one activity at time t and another activity at 
time t+1, then back to the previous activity at time t+2. Such activity context switching emulates people’s 
multi-tasking behavior. A third form of multi-tasking can be exemplified with the LMP agent CharlieDuke, in 
the HFE deployment, connecting the HFE to the Central Station while removing the HFE subpallet. In 
Brahms we model such human multi-tasking abilities with activity decomposition, i.e. by using a composite 
activity. A higher-level composite activity represented the overall activity of removing the HFE, while the sub-
activities within it represented those activities that were performed while removing the subpallet, such as the 
activity of connecting the HFE to the Central Station. Due to the Brahms subsumption architecture, the 
agent can be in the activity of removing, and at the same time in the sub-activity of connecting. 
Consequently, the subsumption architecture together with the composite activity language construct, allows 
representing the simultaneous multi-activity context for an agent. 

One limitation of the Brahms architecture is that it is not possible for one agent to perform two or more 
primitive activities at the same time. This limits an agent to perform only on action in the world at a time, and 
therefore it is not possible to represent, for example an agent communicating while moving. The way we 
would have to represent in Brahms an agent moving while communicating is by representing one of the two 
actions as a composite activity, with the other action as a primitive activity within a workframe in the 
composite activity. For example, we could represent the movement as a composite activity, and the 
communication action as a communication activity within a workframe in the composite activity and also a 
move activitiy for the actual movement action as a workframe within the composite activity. 

I thus conclude that Brahms allows the modeler to represent multi-tasking, by either using multiple agents 
(or objects), or using one agent and representing multi-tasking with composite activities. Brahms also shows 
multi-tasking as emergent agent-behavior during the simulation, shown by the agent’s activity context 
switching made possible by the subsumption architecture. However, representing multiple same-time 
actions (i.e. primitive activities) in the world is not possible. 
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5. Informal interaction 

The multiagent COT and DAI systems, described in chapter 2, all represent agent interaction based on 
formal agent communication. Formal communication prescribes what can be communicated to who and 
when. Formal interactions are idealizations of how they should be performed. However, in practice people 
often interact informally. Often it is difficult to determine when informal interactions will take place, which 
makes it hard to model. Most formal models leave out serendipity in the interaction between agents or 
represent it stochastically. Although Brahms allows for the representation of formal interaction between 
organizational roles, you can also represent informal communications between agents outside of the 
context of their formal roles. Brahms agents can come together in geographical locations, detecting each 
other’s presence and begin an informal interaction. Agents can also detect objects in the environment that 
were created or placed there by other agents. Together with reactive behavior this allows for informal 
interaction to happen. When such interactions take place is emergent from each agent’s independent 
activity and movement within their environment. Because Brahms agents can detect facts in the world (such 
as location of objects and agents) and react to them, it allows for serendipity. 

The astronaut in the Apollo 12 ALSEP Offload model taking a photograph of his partner, because of a 
beautiful reflection in his visor, is an example of an informal interaction that I was able to represent in 
Brahms. However, one obvious aspect of informal interaction is that the agent communication is not 
previously specified as part of a particular activity. How to handle agent communication not “hard-coded” 
into the model is a challenge, and was addressed in the second case study. Part of the answer is the 
modeler's representation of non-task specific activities, such as the abstracted conversation policies 
represented in the HFE Deployment model (chapter 7). Such policies allow agents to react appropriately to 
informal interaction that are outside the formal procedures, such as sudden questions, or not previously 
specified occurring external events. Indeed, these types of informal interaction constitute an important part 
of the work practice.  

Although informal interaction is difficult to model, Brahms provides computational possibilities for 
incorporating informal behavior. Important Brahms language concepts for representing informal agent 
behavior are detectables, activity priorities, activity inheritance and polymorphism, and parameterized agent 
communication. Besides these language constructs, the built-in interrupt and resume behavior of the 
simulation engine is also essential for this. However, it is up to the modeler to develop his or her model in a 
way that makes agents behave in situations that informally present it self. This is a challenge and an art at 
the same time. Modeling informal agent behavior is accomplished by generalizing behavior into more 
general applicable activities of communication and assistance, represented at a higher, non-tasks specific 
level. 

informal behavior = syntactic and simulation provisions in Brahms + 
                                    modeler's representation of non-task specific activities 

I conclude that a Brahms agent's reactive capability, as well as its ability to detect state changes in the 
environment (i.e. fact detection) provides modeling and simulating informal interactions. 

6. Cognitive behavior 

There are various ways Brahms models cognitive behavior. Brahms agents can assert new beliefs or 
change existing beliefs. This can be done in three ways. First, agents can contain traditional production 
rules—thoughtframes—that fire in forward-chaining mode. Secondly, Brahms agents can receive new 
beliefs through a communication with other agents or objects. Thirdly, Brahms agents can detect facts in the 
world that turn into beliefs for the agent, which allows for the simulation of cognitive stimuli, such as visual, 
auditory, and touch. Both communicating agents and fact detection in a representation of the physical 
environment distinguishes Brahms models from more traditional cognitive modeling approaches, such as 
Soar and ACT-R. 

There is another important Brahms language feature that makes Brahms models different from the more 
traditional cognitive and business process models. Workframes contain consequences, which can create 
new beliefs for agents, thus creating an agent's internal belief-state of the world, as well as creating new 
facts, simulating the agent changing the world state. Brahms agents act—perform situated activities within 
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workframes—based on the individual beliefs the agent accumulates. This activity-based paradigm makes 
the workframes of a Brahms agent represent the modeler's interpretation of the agent's situated actions in 
the world. The agent’s current, pending and interrupted activities represent the agent’s behavior in relation 
to the rest of the agents and objects in the world. I refer to this as a model of situated activity. A workframe-
instantiation relates an agent’s world-model—its belief-state—to its current activity state, the environment 
and the other agents and artifacts in it. A Brahms model represents a third-party's model of agent behavior 
in practice, not, as is the case with cognitive models, a model of the agents' internal cognitive behavior. As is 
shown in Figure 9-1, a Brahms model is in between a detailed model of the problem-solving behavior (i.e. 
cognitive behavior), and an abstract model of business process. Instead, it is a model of activity behavior in 
practice. 

Cognitive 
Model 

(inference)

Business 
Process 
Model 

(functions)

Brahms 
Model 

(activities)
 

Figure 9-1. Relation of Brahms to other models of work 

The subsumption architecture and the composite activity language concept together is one of the most 
important aspects of the Brahms environment. It provides the modeler with the ability to represent a 
person's individual actions within context of the person's high-level activities. This makes it possible to model 
an individual's situated activities in their social, behavioral, cultural, and geographical context. In other 
words, Brahms allows modeling of people's activities in the way people conceive of themselves being 
situated in a social environment, group or organization. 

7. Geography 

The Brahms ability to model geography has been mentioned a number of times in the above descriptions. 
Representing geographical locations, as well as their state—as facts—allows us to model the relation 
between the physical world and the agent’s activities and cognitive state. People’s activities are always 
located in a geographical space. People’s environment and its impact—in the form of constraints—on their 
ability to act is as important as their ability to reason. This is because people always act within a 
geographical space of arranged objects that trigger and support their reasoning as an “external” memory 
(Hutchins 1995). Therefore, representing the relation between the physical location of an agent and 
activities within this location is one of the most important aspects of modeling people’s work practice. This 
was shown in the case study models, where location and movement of agents and artifacts over time 
played an important role in their behavior. For example, the drilling of the HFE drill holes in the second case 
study, and the drilling of the SATM in the third case study. 

Brahms allows for a simple representation of the physical world as area definitions and areas and located 
objects and agents. This limited capability still proved powerful for representing the work practice of the 
agents and objects in the case studies. However, the representational capabilities in the current Brahms 
language are limited, and should be extended to allow Brahms to connect to a more detailed virtual 
representation of the physical world, such as 3D virtual reality models. 

One of the limitations of the Brahms geography model is an agent’s behavior while moving from one 
location to another (during a move activity). Agents move over specified paths between locations. Currently, 
the modeler specifies how long it takes for an agent to move across the path to the connected location on 
the other end. It would be better to change this to represent not the travel time of the agent, but the length of 
the path in some metric. Then, according to the speed of the agent (or object) moving over the path, the 
engine can calculate the travel time required. 

Also, a path is not a location, and thus it is not possible for an agent to “run into” another agent that is 
moving over the same path in a different or same direction at the same time. When an agent’s move activity 
is interrupted, due to a higher priority activity, the agent will “move back” to the start location before the 
actual move activity is executed. One solution is to implement a path as a type of area, i.e. an area with a 
certain length and width. This would allow modeling an agent's movement incrementally and 
instantaneously in a continuous plane, and would allow integration with a 3D virtual-world in which Brahms 
agents are represented as “bots” (Damer 1997). 
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A more detailed geography model would allow the specification of 3D worlds with a coordination system, as 
was originally specified in (Steenvoorden 1995). Such a representation would also allow the representation 
of an agent’s field of vision, for example when facing a particular agent or object, or looking in certain 
directions. This capability would have allowed the simulation of the field of vision of the television camera 
object on the lunar rover in the Apollo HFE deployment model (Chapter 24). This would allow for the 
simulation of what the CapCom agent in mission control could see on the video screen in mission control. 

Even though Brahms currently has limited representational capabilities for modeling geography, the current 
capability does allow for the modeling of the interaction of agents within their environment, as was shown in 
the case studies. However, the interaction between objects and agents is conceptual, and not based on a 
model of physics. For example, in the Apollo HFE deployment model the simulated error situation where the 
commander trips over the “floating” cable connected to the Central Station could not be modeled at the level 
of physical force between the astronaut's leg movement and the cable. Again, integrating Brahms with a 
virtual world could allow modeling of the physics. 

This concludes the discussion of the first and main research question. In conclusion, I state that I have 
shown that the Brahms language and simulation environment is able to represent all the aspects of work 
practice, with some mentioned limitations. I have shown that with the Brahms environment we are able to 
model and simulate a large number of work process types at the work practice level. However, it is 
important to mention some examples of types of activities that the current Brahms environment is not able 
to simulate: 

• An agent following another agent; e.g. a patient following a nurse. 

• Conversations while walking; e.g. having a conversation in the hallway while walking to a meeting. 

• Multiple agents carrying objects together; e.g. carrying a large suitcase together. 

These types of activities can be modeled in an abstracted form, but not at the level at which behavior is 
coordinated between the multiple agents and objects involved. Next, I discuss the second research 
question. 

9.1.2 Research question 2 

The secondary research question stated in chapter 1 was: 

What is the added value of computer simulation in a model-based approach? 

I have shown three case studies where Brahms was used to model and simulate a work practice. In the 
conclusion sections of the three case study chapters, I showed to what extent we can use the Brahms 
language and simulation engine to describe, predict, and prescribe a work practice. In all three cases the 
hypothesis was confirmed, and I thus concluded that the Brahms language and simulation engine is by and 
large sufficient and complete to model and simulate work practice. However, the question “why do we need 
to simulate?” often comes up. Although simulation has been around since the sixties, in fields such as 
operations research and industrial engineering (Markowitz et al. 1963) (Tocher 1963) (Mize and Cox 1968) 
(Kiviat et al. 1969) (Forrest 1970), some engineering analysis and design methodologies have only recently 
started adding simulation capabilities (Christie 1999). One reason is that only in the late eighties computer 
systems became powerful enough to support the computational resources needed. Today the benefits of 
model-based approaches have been widely accepted (Simon 1955) (Newell 1982) (Schreiber et al. 1993) 
(Yourdon 1989) (Jacobson 1994) (Rumbaugh et al. 1998), while the benefits of computer simulation is less 
well understood. In other words, what is the value of adding simulation to the modeling process described in 
chapter 3.3.4 (see Figure 3-6)? 

The simple answer is that a static model—non-computational—does not show the behavioral changes of 
the model elements and their relations over time. Therefore, using a static model we are unable to describe 
the influence of time on the model. What does this mean for a model of work practice? I will answer this by 
discussing the effect in terms of negative impact and added value of not being able to simulate the case 
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studies, and consequently the added value of simulation. The way to read the tables bellow is that 
everything from Table 9-1 could also be included in Table 9-2 and Table 9-3, and that everything from Table 
9-2 could also be included in Table 9-3. Therefore, the three tables together provide a complete list of 
impacts and added values. 

Case Study 1 

Table 9-1 shows the effect of not being able to simulate a descriptive, predictive or prescriptive Brahms 
model. This analysis is based on the static model and model simulation from case study 1. 

Table 9-1. Effects of not being able to simulate in Case Study 1 

Element/Outcome Impact of Not Being  
Able to Simulate Added Value of Simulation 

Activity Start/End Times 
The model is not able to show 
the start/end times of when 
agents perform activities. 

Shows how the agents spend 
their time during the course of 
the simulation. I.e. when 
activities are executed, started 
and stopped. 

Activity Performance 
The model is not able to show 
which agents perform what 
group activity. 

Shows who performs what 
group activity when. 

Activity Interrupt/Resume 
The model is not able to show 
when activities are interrupted 
by other activities, and why. 

Shows the rhythm of work for 
an agent. Shows how agents 
are interrupted, why and by 
what or who. 

Communication 

The model is not able to show 
specific agent 
communication—agent 
communicates what, when, and 
with whom. 

The model is not able to show 
what communication tool is 
used for what activity. 

Shows the communication 
pattern of agents over time. It 
shows the impact of 
communication on the 
performance of agent activities. 
It shows the communication 
tools used during specific 
communication activities; which 
tool is used when and why 
(based on where the agent is, 
and what tool is available). 

Movement 

The model is not able to show 
the movement of agents, 
carrying, moving and creating 
objects in specific locations, at 
specific times. 

Shows when agents/objects 
move to or are in specific 
locations. Shows agent/object 
movement patterns over time. 

Interaction 

The model is not able to show 
which agents work together, 
and what makes that happen 
(communication, fact detection, 
belief creation or location). 

Shows when and why 
agents/objects interact.  

Inference The model is not able to show 
the change of beliefs over time. 

Shows when, where and why 
agents receive new beliefs. 
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Case Study 2 

Table 9-2 shows the effect of not being able to simulate a predictive or a prescriptive model. This analysis is 
based on the static model and model simulation outcome from case study 2. 

Table 9-2. Effect of not being able to simulate in Case Study 2 

Element/Outcome Impact of Not Being  
Able to Simulate Added Value of Simulation 

Prediction of Communication 

The model is not able to show 
what will happen if an agent 
forgets to communicate at a 
specific time. 

Ability to predict agent 
interaction based on modeled 
communication policies. 

Prediction of Activities 
The model is not able to show 
how an agent recovers from an 
error situation. 

Predict error resolution 
behavior in specific error 
situations. 

Activity Scheduling 
The model is not able to show 
how an agent’s dynamically 
created schedule is executed. 

Ability to schedule an agent’s 
activities dynamically, based on 
specified plans. 

Activity Duration 

The model is not able to predict 
the total duration of the drilling 
activity, based on the number 
and length of bore stems used. 

Ability to dynamically calculate 
activity durations based on 
situation specific data or 
events. 

Case Study 3 

Table 9-3 shows the effect of not being able to simulate a prescriptive model. This analysis is based on the 
static model and model simulation outcome from case study 3. 

Table 9-3. Effect of not being able to simulate in Case Study 3 

Element/Outcome Impact of Not Being  
Able to Simulate Added Value of Simulation 

Calculating Variables 

The model is not able to 
calculate the rover’s energy 
consumption, based on the 
activities performed. 

Ability to dynamically calculate 
outcome variables based on 
situational events and activities. 

In general, leaving out simulation in a model-based approach means that the model’s users will not be able 
to show any of the effects of timing-relations that exist in the static model. It would be possible to show a 
static timing model, such as a sequence of activities or flow of data, but without a simulation capability this 
can never show the emergent interaction and changes over time (similar to the task layer in a static 
CommonKADS model (van Harmelen and Balder 1992) (Schreiber et al. 2000)).  

In a work practice model this means a lack of start and stop times of agent/object activities, agent/object 
communication, agent/object movement, dynamic agent/object interaction, agent/object activity interruptions 
and resumes, and inferences over time. To conclude, a static work practice model is not able to predict, nor 
is it able to calculate. Therefore, a static model does not allow for what-if analysis, which makes a static 
model less suitable for design and evaluation of new work practices. 
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9.2 SCALING OF BRAHMS MODELS 

It is useful to say something about the issue of scaling Brahms models to larger work systems then those 
modeled in the case studies. There are two forms of scaling Brahms models I will talk about. First, there is 
the issue of modeling large work systems. The size of a work practice model can be measured in the 
number of groups and agents, as well as in the number of work activities represented in the model. The 
second issue is the issue of scaling the simulated work time in a work system model. The case studies in 
this thesis model two small and one medium size work system, and all three case studies simulate a short 
work time interval. 

9.2.1 Managing model detail 

By managing the detail of the different parts of a work system, we can manage scaling the models up to 
larger models. This can be done in two ways: teams as agents, and different detail for different parts of the 
model. 

9.2.1.1 Teams as agents 

By modeling groups of people as single agents we can easily scale a model to large organizations. The 
design of the agent model is completely flexible, and the modeler can decide what teams are modeled as 
agents, and which individuals as agents. This approach was used in the third case study, where the 
organization that was modeled was an order of magnitude larger than that of the two Apollo case studies. 
This was accomplished by modeling the science sub-teams as agents, while the Victoria rover was 
modeled as an agent. Doing this made the total number of agents not much larger than those in the Apollo 
models. 

9.2.1.2 Different detail for different parts of the model 

Model detail can be managed easily for different parts of the model. It is the modeler’s choice to decide 
which agent and objects are modeled in what detail. This approach was successfully used in the Apollo 
models and the Victoria model. In the Apollo model, the detail of the activity of the CapCom agent was very 
small. In the Victoria model, the detail of the rover and the instruments models are much higher than those 
of the science teams. This was partly due to the fact that no more information was available, but it was also 
deliberately based on the chosen objective of the model. The approach is general, and can be used for 
modeling complex work systems. 

9.2.1.3 Adding more detail 

One of the big issues is using a model over a long project life cycle. The cost benefit of developing a 
complex Brahms model will go up if we can use the model in the different life-cycle phases of a project. 
There is a great potential that a Brahms modeling effort could be used in the complete life cycle of a 
development project. Models from one phase of the project can be easily reused in the next phase. Due to 
the Brahms agent language, a Brahms model can be easily made more specific by adding more detailed 
agentrs and activities. A model of one agent per group can be easily scaled-up to multiple agents of the 
same group, by simply adding more members of the group. Currently, future research interests are in 
showing the use of Brahms from analysis to design and implementation for developing agent-based 
software systems. Future research will focus on generation of agent software systems from a Brahms 
model. 

9.2.2 Modeling longer time intervals 

Scaling Brahms models to model large organizations is not the most difficult scaling issue. This seems to be 
easily handled by the Brahms language. However, the experience to date is only with models that simulate 
a relatively small time period of the total work activities in the modeled work system. The case study models 
simulate no more than a couple of hours of work. However, models will certainly have to simulate a 
complete work day, and longer. For example, if we would model the work-life of astronauts in the 
International Space Station we would certainly want to model several days, if not weeks of work. A model of 
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a human mission to Mars would easily need to simulate the trip to Mars, as well as the time on Mars and the 
trip back to Earth. Such models would need to simulate months, if not years of work activity. 

At this moment, I have no relevant data of models that simulate one day, let alone weeks, months or even 
years. There are several research issues that show up when we think of scaling the simulated work time to 
such levels. For example, how do we handle training, learning, forgetting of agents that are simulated for 
weeks or months? 

Given the limited simulated work time in the case studies, I cannot give a substantiated argument about 
scaling Brahms models to simulate more than a day of work in an organization. More research is needed to 
answer the question of scaling simulations to simulating longer time periods. 

9.2.3 Gathering data for large organizations 

The biggest scaling issue for Brahms models is in the ability to gather organizational work practice data on 
witch to base a model (methodology M1, from chapter 3.3.4). Creating Brahms models is relatively easy. 
One simply needs to learn the Brahms programming language and the Brahms modeling approach. 
However, work practice data gathering is a serious bottleneck. Observational work inside existing work 
systems is a) a lot of work, and b) not always possible. The ability or inability to gather the relevant data for 
developing a Brahms model is one of the most problematic issues in scaling up the methodology. 

9.3 SCIENTIFIC CONTRIBUTIONS 

In this thesis, I have presented a new methodology for modeling human and system work processes. This 
new methodology is based on combining a number of new and existing representational paradigms—agent-
based, object-based, geography-based, rule-based, belief-based, and activity-based. This has led to an 
extension of knowledge in several areas of management and computer science. The methodology for 
modeling and simulating work practice presented in this thesis extends the knowledge of modeling and 
simulation of work processes, design and development of agent-based systems, and the recently emerging 
field of human-centered systems (Kling et al. 1997). In this section, I briefly discuss the contributions that 
were made to these scientific fields. 

9.3.1 Modeling and simulation of work processes 

Current state of the art in workflow or business process modeling is based on an information process-
oriented paradigm. Business processes are abstractions of how work gets done in organizations. 
Collaboration between people and organizations is represented as the processing of information; who gets 
what when? People's work activities are seen as long- and short-term transactions in which information is 
either being send or being requested. People's work practice knowledge is abstracted away in so called 
business rules, which describe the business process logic for when and how to process information. 

The work in this thesis shows a modeling and simulation methodology using a new agent-based and 
activity-based paradigm. Modeling work processes using this paradigm is shown to be more naturally 
located in an organization's work practice, i.e. how the work really gets done. The case studies in this thesis 
are about a work process domain that few of us would suggest to be relevant to business process research. 
However, after an initial reluctance to see the relevance and when looking at the work practice issues at 
hand, we see many similarities with work processes in Earth-based organizations. The Apollo Astronauts on 
the Moon were working, not just “looking around.” They were performing planned activities, having goals 
and objectives. The work during an Apollo mission, or a robotic mission for that matter, is distributed across 
many teams, co-located and distributed in space and time. Information is being communicated in real-time, 
as well as in “batch mode.” Activities span multiple days and multiple organizational handovers, while tools 
and systems are used to perform the work. 

Using the Brahms language and simulation environment, I was able to model the work process at a level 
that is not possible in today’s work process tools. The Brahms research was started because of a failed 
attempt to model a coordination role using a workflow paradigm. In contrast, coordination roles are easily 
represented with the agent-based paradigm in Brahms, as is shown with the modeling of CapCom during 
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the Apollo missions. A Brahms model focuses the modeler’s attention on the activities of individuals or 
groups of individuals. Work is described in terms of an agent’s behavior over time, and its actual impact on 
the organizational goal. A model of work practice is a holistic approach to process modeling. It allows for 
multiple views of the work process: organization, individual activity, communication and geographical. This 
is in contrast to only a process view, where the focus is on transformation of process input to output and not 
on how this happens in practice. Using the modeling methodology described in this thesis will allow the 
business process modeling community to model processes in organizations down to the work practice level. 
The approach makes it possible to represent business rules based on how things really work, not based on 
how things should work according to idealized prescriptive formulations. Representing a business process 
as a team of cross-organizational agents, collaborating together in performing their activities is more natural. 
The benefit of this approach will especially show its value in the implementation of new business processes 
and systems, where changes in the current work practice of the organization are inevitable. 

9.3.2 Agent-based systems 

Current state-of-the-art software agent research focuses on two types of agent-based systems (Bradshaw 
1997); 1) software agents that behave independently and autonomously, regardless of their interaction with 
humans, and 2) software systems that interact with people in such a way that people ascribe agency to the 
software system, as for them the system acts as-if it is independent and/or autonomous. However, there is a 
movement to the middle where agent researchers are trying to combine these two notions of software 
agents into one definition that define agent-based systems (Bradshaw 1996) (Shoham 1993) (Genesereth 
and Nilsson 1994) (Weiss 1999) (Wooldridge and Jennings 1995). A non-exhaustive list of research topics 
that are included in this movement is: teamwork, mobility, intelligence, reactivity, learning, and personality. 

The contribution that this thesis makes to this research area, although not the main topic of the work, is to 
push the use of an agent-based system—Brahms—to represent the behavior of people, not merely 
software agents. Representing people’s behavior, by definition, includes all the agent research topics listed 
above. This is not a new revelation, for the simple reason that the whole notion of agency is derived from 
humans. However, what is shown by the work in this thesis is how we can represent collaboration between 
people. By extension, we can use this to understand how we could represent teamwork for software agents, 
or a combination of human and software agents. What was also shown is how to represent people acting 
based upon and interacting with their environment, including movement and reactive behavior. By 
extension, we can use this to represent how software agents act upon and interact with the hardware and 
software environment they “live” in. Last, but not least, the Brahms agent architecture was intentionally 
based on multi-tasking and the interrupt and resume ability of humans. In this thesis, I have shown that the 
Brahms subsumption architecture is highly appropriate for representing human behavior as deliberate or 
reactive activity-based behavior. By extension, it seems useful to use the same subsumption architecture in 
the development of intelligent or flexible software agents that must interact with humans. 

9.3.3 Human-centered computing 

There is a strong move towards a multi-disciplinary approach for the development of computer systems in 
particular, and technology systems in general. Computer scientists, systems designers, and social scientists 
are coming together to frame a computing paradigm shift. This is a true shift from the way computer 
systems have conventionally been designed and implemented. Usually, systems are being developed 
according to a technology-centered design approach. This approach adheres to the rule, the more and the 
“better” the technology, the better and useful the tools. This is the mindset of most computer scientists and 
system developers today. The technology is put in the center, while the users and how they work are on the 
periphery. Even though we know about participatory design (Ehn 1988) (Greenbaum and Kyng 1991), most 
computer systems today are still developed in isolated technology organizations and the ivory laboratory 
towers of companies. Obtaining a better understanding of how the users perform their work, based on 
workplace observations and ethnographical studies, and modeling and simulation of the work practice, is 
rarely accomplished during the requirements analysis, design and implementation of systems. 

However, software development is changing. More and more computer and information science 
departments in the United States are starting to offer graduate courses in human-centered systems or 
human-centered computing (e.g. UC Berkeley, Indiana University, UC Irvine). The National Aeronautics and 
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Space Administration (NASA) has a significant funding budget for Human-Centered Computing (NASA 
2000). The National Science Foundation (NSF), in 1997, held a workshop on Human-Centered Systems 
(Flanagan and Huang 1997). 

Human-centered computing is proposed as a new paradigm for system development. The analysis has to 
be based on a deep understanding of the concrete social and technical environment, rather than some 
vague idea of a generic user. In this thesis, I have shown a methodology that allows system designers to do 
this, using a model-based simulation approach. 

Kling, et al (1997) specify a number of research directions. I would argue that the research in this thesis has 
contributed to at least two of these research directions: a) characterization and theories of human-centered 
systems, and b) modeling and representing human-centered systems. As a contribution to the first, I have 
defined a theory of modeling work practice that allows us to characterize the realistic work process of a 
human organization and how systems fit in and are being used within this process. The second mentions 
modeling human-centered systems. I have shown such a capability by developing a methodology for 
analyzing and designing human work systems. 

9.4 FUTURE RESEARCH 

In this last section, I take the liberty to present some of my ideas on future research that is needed in the 
area of work practice modeling and simulation. This section may serve as a guide for future research in this 
area 

9.4.1 Work system design methodology 

Although I presented a methodology for modeling and simulating work practice, much needs to be done to 
provide the business and software engineering community a methodology for designing human-centered 
work systems in existing and new organizations. Designing a total work system is a multi-disciplinary effort. 
It combines business anthropology, business management, knowledge-based systems engineering, and 
information technology development. A work system design methodology should adhere to a holistic 
human-centered approach in which the design is based on the people’s existing work practice, the 
constraints of the work environment, the ability to integrate new technology with existing technology, and the 
adherence to the philosophy that technology has to be human-centered.  

The Brahms methodology is only one piece of the puzzle. It provides a worldview, an approach and a tool 
that can be applied in this process. However, a complete work system design methodology needs to 
provide a path from analysis and design to implementation. Modeling and simulation can be used within 
each phase of this path, but future research needs to work out how this should be done effectively. I state 
that current business process redesign methodologies lack theories, methods and tools to be applied in 
work system design efforts. Instead, today’s business process redesign methodologies only focus on 
information systems design for an organization’s electronic-business and globalization efforts, without a 
notion of what it means to develop human-centered systems. 

9.4.2 Enhancing the Brahms language 

There are several areas in which research needs to be conducted to enhance the Brahms language with 
more sophisticated capabilities to represent human behavior. 

Learning 

First and most obvious is the notion of learning. Currently, Brahms agents do not learn. What constitutes 
learning is a difficult and widely researched topic. However, what seems particularly interesting in the 
learning of human activity is how humans learn to do something over time by a form of apprenticeship, and 
by collaborating with others. This goes beyond the research in machine learning and data mining, although 
it might be useful to investigate the use of machine-learning techniques. What seems to be needed is a 
theory about learning through watching others, as well as a theory of learning from practice and the 
circumstantial aspects of performing activities. How do people learn to perform new activities by participating 
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in ongoing activities with others? Social scientists sometimes refer to this as legitimate peripheral 
participation (Lave and Wenger 1991). How do people learn by observing and mimicking? How does their 
performance change over time? With the notion of learning comes the notion of forgetting. Activity 
performance degradation is an important aspect of forgetting. What is needed is a theory of human learning 
of activities that also explains activity degradation and forgetting over time. 

Researchers are getting interesting results in the area of behavior-based robotics. However, most learning 
in such behavior-based systems is at a very low-level, such as learning to map the world, and navigate in 
that world. More recently, the field of cognitive robotics or cognobotics is starting to deal with learning of new 
cognitive behavior in robots (Brooks 1997). What is needed is learning of complex high-level activities and 
when and where to perform them. This is still an area where more research needs to be done. 

Biological and social primitives 

Another important aspect of human activity is the biological constraints on the human body. We need to 
understand which biological constraints have an impact on activity performance, and how to model such an 
impact. Examples include fatigue, hearing and field of vision (Freed 1998). Research needs to be 
conducted in order to develop a theory of the impact of these constraints on human activity, and a way to 
represent these constraints within the Brahms environment. Either as part of the language or as part of the 
simulation engine. 

Personality, emotion and social constraints are another important part of human behavior. For example, 
trustworthiness and liking or disliking people impacts how we collaborate. How do we represent the social 
and personality behavior of, for example, a teenage gang, or a team of astronauts going on a three-year 
mission to Mars, living in a confined space together? 

More research in this area would help us develop representational schemes for including these types of 
phenomena in a Brahms model. 
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A. BRAHMS LANGUAGE 

A.1. NOTATION CONVENTIONS (Backus Naur Form) 

This appendix defines the modeling language for Brahms. This document is to be used by model builders to 
create Brahms models. Brahms model builders will have to comply to the language as defined in this 
document. This document is also used as a requirements specification for the parser that needs to be build 
to parse these models. 
 
The language element are defined in BNF (Backus Normal Form) grammar rules. The notation used in 
these grammar rules is given in table 1. 
 

Construct Interpretation 
::= * + {} [] | . Symbols part of the BNF formalism 
X ::= Y The syntax of X is defined by Y 
{X} Zero or one occurrence of X 
X* Zero or more occurrences of X 
X+ One or more occurrences of X 
X | Y One of X or Y (exclusive or) 
[X] Grouping construct for specifying scope of operators e.g. [X|Y] or [X]* 
symbol Predefined terminal symbol of the language 
symbol User-defined terminal symbol of the language 
symbol Non-terminal symbol 

Table 9-4: Synopsis of the notation used  

Identifiers (ID) 

name ::= [ letter ][ letter | digit | ‘-‘ ]* 
 
letter ::= ‘a’ | ’b’ |…| ’z’ | ’A’ | ’B’ |…| ’Z’ | ’_’ 
 
digit ::= ‘0’ | ’1’ |…| ’9’ 
 
blank-character  ::= ‘ ‘ | ‘\t’ | ‘\n’ | ‘\f’ | ‘\r’  
 
number ::= [ integer | double ] 
 
integer ::= { + | - } unsigned 
 
unsigned  ::= [ digit ]+ 
 
double ::= [ integer.unsigned ] 
 
truth-value ::= true | false 
 
literal-string ::= “ [ letter | digit | ‘-‘ | ‘:’ | ‘;’ | ‘.’ ] ”  
 
literal-symbol ::= name 
 
It is possible to add comments to models. One line comments need to start with ‘//’. Multi-line comments 
have to start with ‘/*’ and end with ‘*/’.  
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A.2. SYNTAX OF A MODEL (MOD) 

Syntax 

model ::=  [ import import-declaration ; ]* 
   [ GRP.group | 
   AGT.agent | 
   CLS.object-class | 
   OBJ.object | 
   COC.conceptual-object-class | 
   COB.conceptual-object | 
   ADF.area-def | 
   ARE.area | 
   PAT.path ]* 

 
import-declaration ::=  single-type-import | multi-type-import 
 
single-type-import ::=  concept-name | library-name . concept-name 
 
concept-name  ::=  ID.name 
 
library-name  ::=  ID.name | library-name . ID.name 
 
multi-type-import  ::=  * | library-name . * 

Semantics 

The import declaration allows for the import of specific concepts or for the import of a library of concepts. 
The import of a specific concept is realized by referencing it’s name. The name of the concept must be the 
same as the name of the file in which it is stored. The extension of the file must always be ‘.b’. 
 
To reference a specific concept in a library the library-name can be used. The library name reflects the 
directory in which the concept is stored with a ‘library-path’ as it’s base path. So for example if the library-
path is 
 

library-path = C:\brahms  
 
and we have an import statement like 
 
 import nynexst.phonemodel.PhoneUsers; 
 
then the concept PhoneUsers is expected to be found in the file 
 
 C:\brahms\nynexst\phonemodel\PhoneUsers.b 
 
It is also possible to reference all concepts in a specific library. The wildcard ‘*’ can be used in place of a 
specific concept-name. The following import statement will import all concepts in the phonemodel library: 
 
 import nynexst.phonemodel.*; 
 
This statement will import all concepts defined in the directory C:\brahms\nynexst\ phonemodel defined in 
the files with the extension ‘.b’ assuming the library-path is set to ‘C:\brahms’. 
 
The import statement: 
 
 import *; 
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will import all concepts defined in the files with extension ‘.b’ that are in the same directory as the file in 
which the import statement is defined. 
 
By default every model imports the ‘brahms.base.*’ library (referred to as the ‘BaseModel’) containing base 
constructs for groups and classes and containing standard available classes and relations. The import of 
this library does not have to be defined explicitly.  
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A.3. SYNTAX OF AN  AGENT (AGT) 

Syntax 

agent ::=  
agent  agent-name { GRP.group-membership } { 

    { display : ID.literal-string ; } 
    { cost :  ID.number ; } 
    { time_unit : ID.number ; } 
    { location : ARE.area-name ; } 
    { GRP.attributes } 
    { GRP.relations } 
    { GRP.initial-beliefs } 
    { GRP.initial-facts } 
    { GRP.activities } 
    { GRP.workframes } 
    { GRP.thoughtframes } 

   } 
 
agent-name  ::=  ID.name 

Semantics 

Group membership 
An agent can be a member of one or more groups. When an agent is a member of a group the agent will 
‘inherit’ attributes, relations, initial-beliefs, initial-facts, activities, workframes and thoughtframes from the 
group(s) it is a member of. All attributes and relations are inherited including private ones (an agent can be 
seen as an instance of a group in terms of object oriented practices). In case the same constructs are 
encountered in the inheritance path always the most specific construct will be used, meaning that a 
workframe defined for the agent has precedence over a workframe with the same name defined in one of 
the groups of which the agent is a member.  
 
Defaults 
Every agent in a model is by definition a member of ‘BaseGroup’ defined in the ‘BaseModel’ library which is 
imported by definition for every model. The ‘BaseGroup’ defines built-in attributes, relations, initial-beliefs, 
initial-facts, activities, workframes and thoughtframes as defaults for agents and groups. The ‘BaseGroup’ 
membership does not have to be defined explicitly. Other defaults are: 
 display  =  <agent-name> 
 cost  = 0 
 time_unit = 0 
 location = none 
 
Constraints 

1. The name of an agent must be unique amongst agents in a model.  
2. The time_unit defines the time in seconds. 
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A.4. SYNTAX OF A GROUP (GRP) 

Syntax 

group ::= 
 group group-name { group-membership } { 
    { display :  ID.literal-string ; } 
    { cost :  ID.number ; } 
    { time_unit :  ID.number ; }  
    { attributes } 
    { relations } 
    { initial-beliefs } 
    { initial-facts } 
    { activities } 
    { workframes } 
    { thoughtframes } 
 } 

 
group-name ::=  ID.name 
 
group-membership ::=  memberof group-name [ , group-name ]* 
 
attributes ::=  attributes : [ ATT.attribute ]* 
 
relations  ::=  relations : [ REL.relation ]* 
 
initial-beliefs  ::= initial_beliefs : [ BEL.initial-belief ]* 
 
initial-facts  ::= initial_facts : [ FCT.initial-fact ]* 
 
activities ::=  activities : [ activity ]*  
 
activity  ::=  [ CAC.composite-activity |  

  PAC.primitive-activity | 
 MOV.move-activity |  
 COA.create-object-activity | 
 COM.communicate-activity | 
 BCT.broadcast-activity ] 

 
workframes  :: = workframes : [ WFR.workframe ]* 
 
thoughtframes ::=  thoughtframes : [ TFR.thoughtframe ]* 

Semantics 

Group membership 
In a model a hierarchy of groups can be built by defining the group-membership. A group can be a member 
of more then one group. When a group is a member of a group the member-group will ‘inherit’ the attributes, 
relations, initial-beliefs, initial-facts, activities, workframes and thoughtframes from its parent groups. Private 
attributes and relations are not inherited, only public and protected attributes and relations are inherited. In 
case the same constructs are encountered in the inheritance path always the most specific construct will be 
used, meaning that a workframe defined for a group lowest in the hierarchy tree has precedence over a 
workframe with the same name higher in the hierarchy.  
 
Cost and Time-Unit 



 

268 

The cost and time-unit are used for statistical purposes and define the cost/time-unit (in seconds) for work 
done by members of the group. The members of the group can override the cost and time-unit figures.  
 
Defaults 
Every group in a model is by definition a member of ‘BaseGroup’ defined in the ‘BaseModel’ library which is 
imported by definition for every model. The ‘BaseGroup’ defines built-in attributes, relations, initial-beliefs, 
initial-facts, workframes and thoughtframes as defaults for groups. The ‘BaseGroup’ membership does not 
have to be defined explicitly. Other defaults are: 
 display  =  <group-name> 
 cost  = 0 
 time_unit = 0 
 
Constraints 

1. The name of a group must be unique amongst groups in a model.  
2. The time_unit defines the time in seconds. 
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A.5. SYNTAX OF AN OBJECT CLASS (CLS) 

Syntax 

object-class  ::=  
class object-class-name { class-inheritance } { 
     { display : ID.literal-string ; } 
     { cost :  ID.number ; } 
     { time_unit : ID.number ; } 
     { resource : ID.truth-value ; } 
     { GRP.attributes } 
     { GRP.relations } 
     { GRP.initial-beliefs } 
     { GRP.initial-facts } 
     { GRP.activities } 
     { GRP.workframes } 
     { GRP.thoughtframes } 
} 

 
object-class-name  ::= ID.name 
 
class-inheritance ::=  extends object-class-name [ , object-class-name ]* 

Semantics 

Class inheritance 
In a model a hierarchy of classes can be built by defining the class inheritance. A class can inherit from 
more then one class, so multiple inheritance is supported. When a class is a subclass of a class the 
subclass will ‘inherit’ the attributes, relations, initial-beliefs, initial-facts, activities, workframes and 
thoughtframes from its parent classes. Private attributes and relations are not inherited, only public and 
protected attributes and relations are inherited. In case the same constructs are encountered in the 
inheritance path always the most specific construct will be used, meaning that for example a workframe 
defined for a class lowest in the hierarchy tree has precedence over a workframe with the same name 
higher in the hierarchy.  
 
Cost and Time-Unit 
The cost and time-unit are used for statistical purposes and define the cost/time-unit (in seconds) for work 
done by instances of the class. The instances of the class can override the cost and time-unit figures.  
 
Resource 
The resource attribute defines whether or not instances of the class are considered to be a resource when 
used in an activity (resource attribute is set to true) or whether the instances of the class are considered 
something that is worked on (resource attribute is set to false). The resource attribute is used in relation with 
the touched-objects definition for activities (see the semantical description of touched-objects in the 
definition of the primitive-activity). 
 
 
Defaults 
Every class in a model is by definition a member of ‘BaseClass’ defined in the ‘BaseModel’ library which is 
imported by definition for every model. The ‘BaseClass’ defines built-in attributes, relations, initial-beliefs, 
initial-facts, workframes and thoughtframes as defaults for classes. The ‘BaseClass’ membership does not 
have to be defined explicitly. Other defaults are: 
 display  =  <class-name> 
 cost  = 0 
 time_unit = 0 
 resource = false 
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Constraints 
1. The name of a class must be unique amongst classes in a model.  
2. The time_unit defines the time in seconds. 

 
Current Limitations 
The current simulation engine does not support class inheritance. The parser will take care of attribute, 
relation, workframe and thoughtframe inheritance by just ‘copying’ those constructs to every class in the 
inheritance tree. Not possible however is assuming that the simulation engine will know of the existence of 
the inheritance hierarchy. A model builder can for example not define a variable of type Location and 
assume that objects being instances of the subclass Building will be bound to the variable. This functionality 
is planned for a future version of the simulation engine. 
 
The current simulation engine also does not support the use of thoughtframes in object classes. This again 
will be supported in a future release of the simulation engine. 
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A.6. SYNTAX OF AN OBJECT (OBJ) 

Syntax 

object  ::=  
object object-name instanceof object-class-name  
    { COB.conceptual-object-membership } { 
    { display :  ID.literal-string ; } 
    { cost :  ID.number ; } 
    { time_unit :  ID.number ; } 
    { resource :  ID.truth-value ; } 
    { location :  ARE.area-name ; } 
    { GRP.attributes } 
    { GRP.relations } 
    { GRP.initial-beliefs } 
    { GRP.initial-facts } 
    { GRP.activities } 
    { GRP.workframes } 
    { GRP.thoughtframes } 
} 

 
object-name ::=  ID.name 

Semantics 

Conceptual object membership 
An object can be part of one or more conceptual objects by defining the conceptual-object-membership for 
the object. This allows for later grouping of statistical results for the object with other objects in one 
conceptual object. 
 
Resource 
The resource attribute defines whether or not the object is considered to be a resource when used in an 
activity (resource attribute is set to true) or whether the object is considered something that is worked on 
(resource attribute is set to false). The resource attribute is used in relation with the resources definition for 
activities (see the semantical description of resources in the definition of the primitive-activity). 
 
Defaults 
 display = <object-name> 
 cost  = 0 
 time_unit = 0 
 resource = <the resource attribute value of object-class-name> 
 location = none 
 
Constraints 

1. The name of an object must be unique amongst objects in a model. It is possible to 
give an object the same name as an object defined in a library.  

2. The time-unit defines the time in seconds. 
Current Limitations 
The current simulation engine does not support thoughtframes for objects. A future release of the simulation 
engine will provide support for thoughtframes on objects. 
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A.7. SYNTAX OF A CONCEPTUAL OBJECT CLASS (COC) 

Syntax 

conceptual-object-class ::=  
    conceptual_class conceptual-class-name { 

     { display : ID.literal-string ; } 
     { GRP.attributes } 
     { GRP.relations } 

    } 
 
conceptual-class-name ::=  ID.name 

Semantics 

Defaults 
 display = <conceptual-class-name> 
 
Constraints 

1. The name of a conceptual-object-class must be unique amongst the conceptual-
object-classes in a model.  
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A.8. SYNTAX OF A CONCEPTUAL OBJECT (COB) 

Syntax 

conceptual-object ::= 
   conceptual_object conceptual-object-name  instanceof conceptual-class-name  

    { conceptual-object-membership }   
{ 
    { display : ID.literal-string ; } 
    { GRP.attributes } 
    { GRP.relations } 

   } 
 
conceptual-object-name ::=  ID.name 
 
conceptual-object-membership ::=  

partof conceptual-object-name [ , conceptual-object-name ]* 

Semantics 

Conceptual-object-membership 
A conceptual-object can in itself be a member of other conceptual object forming a hierarchy of concepts for 
grouping statistical results. 
 
Defaults 
 display = <conceptual-object-name> 
 
Constraints 

1. The name of a conceptual-object must be unique amongst the conceptual-objects in a 
model.  
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A.9. SYNTAX OF AN ATTRIBUTE (ATT) 

Syntax 

attribute  ::=  { private | protected | public }  type-def  attribute-name { attrib-body } ; 
 
attribute-name ::=  ID.name 
 
type-def ::=  [ class-type-def |value-type-def ] 
 
class-type-def ::=  

[ Agent |  
      Group | 
      Class | 
      ConceptualClass | 
      AreaDef | 
      GRP.group-name | 
      CLS.object-class-name |  
      COC.conceptual-class-name  
      ADF.area-def-name ] 
 
value-type-def ::=  [ int | double | symbol | string | boolean ] 
 
attrib-body ::=   { 

 { display :  ID.literal-string ; } 
} 

Semantics 

Attribute scope 
Attributes are always defined within a group, agent, conceptual-class, conceptual-object, class or object 
definition and cannot be defined outside any of these concepts or inside of any other concepts. Attributes 
can have different scopes within the specified concepts defined by one of the keywords private, protected or 
public.  
 
Private attributes: 

Private attributes are scoped down to only the concept for which it is defined. The private 
attribute is not inherited by sub groups or sub classes (agents /objects that are 
members/instances of the group/class will inherit the attribute) and the private attribute can 
only be referenced by initial beliefs, initial facts, workframes and thoughtframes for that 
specific concept.  

Protected attributes: 
Protected attributes are inherited by sub groups and sub classes. Protected attributes can 
only be referenced by initial beliefs, initial facts, workframes and thoughtframes of the 
concept for which the attribute is specified or any of the sub groups/sub classes and of 
agents/objects that are members/instances of the sub group(s)/class(es).  

Public attributes: 
Public attributes are similar to protected attributes, the only difference is that they can be 
referenced by initial beliefs, initial facts, workframes and thoughtframes in any group, 
agent, class or object. 

 
Value assignment 
Value assignment of attributes differs from value assignments in third and fourth generation computer 
languages (which usually use an assignment operator like ‘=’ or ‘:=’. Assignment of a value for an attribute is 
done through beliefs and facts.  
 
Defaults 
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The default scope of an attribute is ‘public’. 
 display  =  <attribute-name> 
 
Constraints 

1. The name of an attribute must be unique within the definition of a group, agent, class 
or object. In case of a name conflict in multiple inheritance (two different concepts from 
which is inherited define an attribute with the same name) the following conflict 
resolution strategy is chosen. If both attributes are of the same type just one definition 
will remain with the same name and same type. If the types of the attributes differ an 
error will be generated. 

 
Current Limitations 
The current simulation engine cannot handle group-name types, which would bind an attribute to only 
agents that are members of the defined group similar to classes. A future release of the simulation engine 
will allow for group-names to be used as a type definition. 
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A.10. SYNTAX OF A  RELATION (REL) 

Syntax 

relation  ::=  { private | protected | public }  ATT.class-type-def  relation-name   
{ attrib-body } ; 

 
relation-name ::=  ID.name 

Semantics 

Relation scope 
Relations are always defined within a group, agent, conceptual- class, conceptual-object, class or object 
definition and cannot be defined outside any of these concepts or inside of any other concepts. Relations 
can have different scopes within the specified concepts defined by one of the keywords private, protected or 
public.  
 
Private relations: 

Private relations are scoped down to only the concept for which it is defined. The private 
relation is not inherited by sub groups or sub classes (agents /objects that are 
members/instances of the group/class will inherit the relation) and the private relation can 
only be referenced by initial beliefs, initial facts, workframes and thoughtframes for that 
specific concept.  

Protected relations: 
Protected relations are inherited by sub groups and sub classes. Protected relations can 
only be referenced by initial beliefs, initial facts, workframes and thoughtframes of the 
concept for which the relation is specified or any of the sub groups / sub classes and of 
agents/objects that are members/instances of the sub group(s)/class(es).  

Public relations: 
Public relations are similar to protected relations, the only difference is that they can be 
referenced by initial beliefs, initial facts, workframes and thoughtframes in any group, 
agent, class or object. 

 
Defaults 
The default scope of a relation is ‘public’. 
 display = <relation-name> 
 
Constraints 

1. The name of a relation must be unique within the definition of a group, agent, class or 
object. In case of a name conflict in multiple inheritance (two different concepts from 
which is inherited define a relation with the same name) the following conflict 
resolution strategy is chosen.  If both relations are of the same type just one definition 
will remain with the same name and same type. If the types of the relations differ an 
error will be generated. 
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A.11. SYNTAX OF AN INITIAL-BELIEF (BEL) 

Syntax 

initial-belief ::=  ( [ value-expression | relational-expression ] ) ; 
 
value-expression  ::= obj-attr evaluation-operator value |  

obj-attr equality-operator object-ref 
 
equality-operator ::=  = | != 
 
evaluation-operator  ::=  BEL.equality-operator | > | >= | < | <= 
 
obj-attr  ::=  the ATT.attribute-name  of  object-ref | object-ref .  ATT.attribute-name 
 
object-ref ::=  

AGT.agent-name |  
OBJ.object-name |  
ARE.area-name | 
VAR.variable-name |  
PAC.param-name | 
current 

 
value ::=  ID.literal-string | ID.number | PAC.param-name 
 
relational-expression  ::=  

object-ref REL.relation-name object-ref { is ID.truth-value } 

Semantics 

Constraints 
1. Variables and parameters are not allowed in the definition of an initial belief. 
2. The attribute type and the right hand side value-type of a value-expression must be 

the same. 
3. The left hand side and right hand side types in a relational expression must match the 

types as defined for the relation used in the relational expression. 
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A.12. SYNTAX OF AN INITIAL-FACT (FCT) 

Syntax 

initial-fact ::=  
( [ BEL.value-expression | BEL.relational-expression ] ) ; 

Semantics 

Constraints 
1. Variables and parameters are not allowed in the definition of an initial fact. 
2. The attribute type and the right hand side value-type of a value-expression must be 

the same. 
3. The left hand side and right hand side types in a relational expression must match the 

types as defined for the relation used in the relational expression. 
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A.13. SYNTAX OF A WORKFRAME (WFR) 

Syntax 

workframe ::=  
   workframe workframe-name  { 

{ display : ID.literal-string ; } 
{ repeat : ID.truth-value ; } 
{ priority : ID.unsigned ; } 
{ variable-decl } 
{ detectable-decl } 
{ [ precondition-decl workframe-body-decl ] |  
workframe-body-decl } 

   } 
 
workframe-name  ::= ID.name 
 
variable-decl ::= variables : [ VAR.variable ]* 
 
detectable-decl ::= detectables : [ DET.detectable ]* 
 
precondition-decl ::=  when ( { [ PRE.precondition ] [ and PRE.precondition ]* } ) 
 
workframe-body-decl  ::=   do  { [workframe-body-element ]* } 
 
workframe-body-element ::= [ PAC.activity-ref |  CON.consequence ] 

Semantics 

Repeat 
A workframe can be performed one or more times depending on the value of the ‘repeat’ attribute. A 
workframe can only be performed once if the repeat attribute is set to false. A workframe can be performed 
repeatedly if the repeat attribute is set to true. In case the repeat attribute is set to false, the workframe can 
only be performed once for the specific binding of the variables at run-time. The scope of the repeat attribute 
of a workframe defined as part of a composite activity is limited to the time the activity is active, meaning that 
the workframe with a specific binding and a repeat set to false will not execute repeatedly while the 
composite activity is active. As soon as the composite activity is ended the states are reset and in the next 
execution of the activity it is possible for the workframe with the same binding to be executed. So only for 
top-level workframes the state will be stored permanently during a simulation run. 
 
Priority 
The priority attribute is currently not used. At this moment priorities have to be defined on the level of 
activities. The workframe priority will be deduced based on the priorities of the activities defined within the 
workframe. The workframe will get the priority of the activity with the highest priority. 
 
Defaults 
 display = <workframe-name> 
 repeat = false 
 priority = 0 
 
Constraints 

1. The workframe name has to be unique within the definition of a group, agent, object-
class or object. 
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A.14. SYNTAX OF A THOUGHTFRAME (TFR) 

Syntax 

thoughtframe ::=  
thoughtframe thoughtframe-name { 

 { display : ID.literal-string ; } 
 { repeat : ID.truth-value ; } 
 { WFR.variable-decl } 
 { [ WFR.precondition-decl thoughtframe-body-decl ] } 

} 
 
thoughtframe-name ::=  ID.name 
 
thoughtframe-body-decl ::=  do { [ thoughtframe-body-element ; ]* } 
 
thoughtframe-body-element ::=  CON.consequence 

Semantics 

Repeat 
A thoughtframe can be performed one or more times depending on the value of the ‘repeat’ attribute. A 
thoughtframe can only be performed once if the repeat attribute is set to false. A thoughtframe can be 
performed repeatedly if the repeat attribute is set to true. In case the repeat attribute is set to false, the 
thoughtframe can only be performed once for the specific binding of the variables at run-time. The scope of 
the repeat attribute of a thoughtframe defined as part of a composite activity is limited to the time the activity 
is active, meaning that the thoughtframe with a specific binding and a repeat set to false will not execute 
repeatedly while the composite activity is active. As soon as the composite activity is ended the states are 
reset and in the next execution of the activity it is possible for the thoughtframe with the same binding to be 
executed. So only for top-level thoughtframes the state will be stored permanently during a simulation run. 
 
Defaults 
 display = <thoughtframe-name> 
 repeat = false 
 
Constraints 

1. The thoughtframe name has to be unique within the definition of a group, agent, 
object-class or object. 

2. It is not possible to use unassigned variables in thoughtframes, therefor the definition 
of these variables is not allowed. 

3. The consequences in thoughtframes can only conclude beliefs. 
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A.15. SYNTAX OF A COMPOSITE ACTIVITY (CAC) 

 

Syntax 

composite-activity ::=  
composite_activity PAC.activity-name({ PAC.param-decl [ , PAC.param-decl ]* } )  
{ 
   { display : ID.literal-string  ; } 
   { priority : [ ID.unsigned | PAC.param-name ] ; } 
   { end_condition : [ detectable | nowork ] ; } 
   { WFR.detectable-decl } 
   { GRP.activities } 
   { GRP.workframes } 
   { GRP.thoughtframes } 
} 

Semantics 

Declaration and reference 
All activities have to be declared in the activities section of either a group, agent, class, object, or composite-
activity. The declared activities can then be referenced in the workframes defined for the group, agent, class 
or object. 
 
Parameters 
It is possible to define input parameters for composite activities. These input parameters are in the first place 
used to pass on variables defined in a  workframe for use in the workframes defined for the composite 
activity and second they can be used to make activities more generic. In the reference the values for the 
input parameters have to be passed. 
 
Priority 
Activities can be assigned a priority. The priorities of activities in a workframe are used to define the priority 
of a workframe. The workframe will get the priority of the activity with the highest priority defined in the 
workframe. 
 
Duration 
Composite activities themselves do not have a duration. Composite activities are decomposed into other 
workframes that a concept can work on as part of the activity which eventually result in a primitive activity to 
be executed having a specific duration. 
 
End-condition 
The end-condition of a composite activity defines how a composite activity can be ended. There are three 
possibilities: 

1. Only end it on the basis of an end-activity detectable. The end-condition has to be set 
to ‘detectable’. When a detectable having an action type of ‘end-activity’ is detected 
the composite activity will be ended. 

2. End the activity when there’s no more work to work on. The end-condition has to be 
set to ‘no-work’. If none of the workframes as defined in the composite-activities can 
be worked on the activity will be ended. 

3. End the activity when there’s no more work to work on, or when an end-activity 
detectable is detected. The end-condition has to be set to ‘no-work’ and an end-
activity detectable needs to be defined for the composite activity. This case combines 
the first two cases. 

 
Defaults 
 display = <activity-name> 
 priority = 0 
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 end_condition = nowork 
 
Constraints 

1. The name of an activity must be unique within the definition of a group, agent, class, 
object, or composite-activity. 

2. The input parameter type of a parameter defined in the declaration of an activity must 
be the same as the input value type or variable type in the reference of the activity. 

3. The parameters assigned to any of the attributes must be of the correct type. 
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A.16. SYNTAX OF A PRIMITIVE ACTIVITY (PAC) 

Syntax 

primitive-activity ::=  
primitive_activity activity-name ( { param-decl [ , param-decl ]* }  )  
{  
   { display : ID.literal-string  ; } 
   { priority : [ ID.unsigned | param-name ] ; } 
   { random : [ ID.truth-value | param-name ] ; } 
   { min_duration : [ ID.unsigned | param-name ] ; } 
   { max_duration : [ ID.unsigned | param-name ] ; } 
   { resources } 
}  

 
activity-name ::=  ID.name 
 
param-decl ::=  param-type param-name 
 
param-type ::=  ATT.type-def | listof ATT.type-def 
 
param-name ::=  ID.name 
 
resources ::=  resources :  [ param-name | OBJ.object-name ]  

.   .   .    [ , [ param-name | OBJ.object-name ]*; 
 
activity-ref ::= activity-name ( { param-expr [ , param-expr ]* } ) ; 
 
param-expr ::=    GRP.group-name | 

AGT.agent-name |  
CLS.object-class-name | 
OBJ.object-name |  
COC.conceptual-class-name | 
COB.conceptual-object-name | 
ARE.area-name | 
VAR.variable-name | 
ID.number | 
ID.literal-symbol | 
ID.literal-string | 
ID.truth-value | 
list-expr 
 

list-expr ::=  ( param-expr [ , param-expr ]* ) 

Semantics 

Declaration and reference 
All activities have to be declared in the activities section of either a group, agent, class, object, or composite-
activity. The declared activities can then be referenced in the workframes defined for the group, agent, class 
or object. 
 
Parameters 
It is possible to define input parameters for primitive activities. These input parameters can be used to make 
activities more generic. In the reference the values for the input parameters have to be passed. 
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Priority 
Activities can be assigned a priority. The priorities of activities in a workframe are used to define the priority 
of a workframe. The workframe will get the priority of the activity with the highest priority defined in the 
workframe. 
 
Duration 
Activities in general have a duration. The duration of the activity can be defined to be a fixed amount of time. 
The random attribute has to be set to false and the max-duration attribute has to be set to the maximum 
duration in seconds. The duration of the activity can also be defined to be a random amount of time. To 
define a random amount of time the random attribute has to be set to true, the min-duration attribute has to 
be set to the minimum duration of the activity in seconds and the max-duration attribute has to be set to the 
maximum duration of the activity in seconds.  
 
Resources 
Artifacts (objects) can be defined as being a resource or not by setting the resource attribute to either true or 
false. In general artifacts that are worked on by agents are not considered to be a resource in an activity (a 
form, a fax). Artifacts that are used by an agent in an activity are considered to be resources ( a fax 
machine, a telephone). 
 
It is possible to associate artifacts with activities for statistical purposes and for the purpose of generating 
object flows by defining them in the list of resources for an activity. Artifacts which are defined as resources 
are also called resource objects. Resource objects associated with activities will only collect statistics and 
will not be used for the object flow generation. Artifacts which are defined not to be a resource and which 
are associated with an activity are also called touch objects. Touch objects should be associated with one or 
more conceptual object(s) for object flow purposes and statistical purposes. 
 
Defaults 
 display  = <activity-name> 
 priority  = 0 
 random  = false 
 min_duration = 0 
 max_duration= 0 
 resources  = none 
 
Constraints 

1. The name of an activity must be unique within the definition of a group, agent, class, 
object, or composite-activity. 

2. The input parameter type of a parameter defined in the declaration of an activity must 
be the same as the input value type or variable type in the reference of the activity. 

3. The parameters assigned to any of the attributes must be of the correct type. 
4. The parameter types for resources must be of type <object-class-name>, the 

parameters assigned to the resources must be either VAR.variable-name or 
OBJ.object-name. 

5. The minimum duration of the activity defines the minimum duration in seconds. 
6. The maximum duration of the activity defines the maximum duration in seconds. 
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A.17. SYNTAX OF A CREATE OBJECT ACTIVITY (COA) 

Syntax 

create-object-activity ::=  
create_object PAC.activity-name ( { PAC.param-decl [ , PAC.param-decl ]* } )  
{  

  { display : ID.literal-string  ; } 
  { priority : [ ID.unsigned | PAC.param-name ] ; } 
  { random : [ ID.truth-value | PAC.param-name ] ; } 
  { min_duration : [ ID.unsigned | PAC.param-name ] ; } 
  { max_duration : [ ID.unsigned | PAC.param-name ] ; } 
  { PAC.touched-objects } 
  action : [ new | copy | PAC.param-name ] ; 
  source : [ CLS.object-class-name | OBJ.object-name |  PAC.param-name ] ;  
  destination : [CLS.object-class-name | OBJ.object-name | PAC.param-name ] ;  

{ location : [ ARE.area-name | PAC.param-name ] ; } 
  { conceptual_object : [ COB.conceptual-object-name | PAC.param-name ]  

[ , [ COB.conceptual-object-name | PAC.param-name ] ] ; } 
{ when : [ start | end | PAC.param-name ] ; } 

}  
 

Semantics 

Declaration and reference 
All activities have to be declared in the activities section of either a group, agent, class, object, or composite-
activity. The declared activities can then be referenced in the workframes defined for the group, agent, class 
or object. 
 
Parameters 
It is possible to define input parameters for create-object activities. These input parameters can be used to 
make activities more generic. In the reference the values for the input parameters have to be passed. It is 
recommended to make the first three parameters in a create-object activity: 

1. action 
2. source object 
3. destination object 

 
Priority 
Activities can be assigned a priority. The priorities of activities in a workframe are used to define the priority 
of a workframe. The workframe will get the priority of the activity with the highest priority defined in the 
workframe. 
 
Duration 
Activities in general have a duration. The duration of the activity can be defined to be a fixed amount of time. 
The random attribute has to be set to false and the max-duration attribute has to be set to the maximum 
duration in seconds. The duration of the activity can also be defined to be a random amount of time. To 
define a random amount of time the random attribute has to be set to true, the min-duration attribute has to 
be set to the minimum duration of the activity in seconds and the max-duration attribute has to be set to the 
maximum duration of the activity in seconds.  
 
When 
The when attribute defines when the actual action has to take place, at the ‘start’ of the activity or at the 
‘end’ of the activity.  
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Defaults 
 display = <activity-name> 
 priority = 0 
 random = false 
 min_duration = 0 
 max_duration= 0 
 resources = none 
 location  = <location of source object> 
 conceptual-object = <conceptual-object of source object> 
 when = end 
 
Constraints 

1. The name of an activity must be unique within the definition of a group, agent, class, 
object, or composite-activity. 

2. The input parameter type of a parameter defined in the declaration of an activity must 
be the same as the input value type or variable type in the reference of the activity. 

3. The parameters assigned to any of the attributes must be of the correct type. 
4. The parameter types for resources must be of type <object-class-name> or list-of 

<object-class-name>, the parameters assigned to the resources must be either 
VAR.variable-name or OBJ.object-name or a list of any of these two. 

5. The action parameter must be of type symbol and its input values must be one of new 
or copy. 

6. The source parameter type has to be of type CLS.object-class-name and its input 
value must be one of VAR.variable-name, CLS.object-class-name, or OBJ.object-
name. 

7. The destination parameter type has to be of type CLS.object-class-name and its input 
value must be one of VAR.variable-name, CLS.object-class-name, or OBJ.object-
name. 

8. The location parameter type has to be of type ADF.area-def and its input value must 
be one of VAR.variable-name or ARE.area-name. 

9. The conceptual-object parameter type has to be of type COC.conceptual-class-name 
or list-of COC.conceptual-class-name and its input value(s) must be one of 
VAR.variable-name, COB.conceptual-object-name or a list of any one of these 
elements. 

10. The when parameter must be of type symbol and its input values must be one of start 
or end. 

11. The minimum duration of the activity defines the minimum duration in seconds. 
12. The maximum duration of the activity defines the maximum duration in seconds. 
13. If the source of the create-object action is a class-name only the new action is allowed. 
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A.18. SYNTAX OF A MOVE ACTIVITY (MOV) 

Syntax 

move-activity ::=  
move PAC.activity-name ( { PAC.param-decl [ , PAC.param-decl ]* } ) {  

  { display : ID.literal-string  ; } 
  { priority : [ ID.unsigned | PAC.param-name ] ; } 
  { random : [ ID.truth-value | PAC.param-name ] ; } 
  { min_duration : [ ID.unsigned | PAC.param-name ] ; } 
  { max_duration : [ ID.unsigned | PAC.param-name ] ; } 
  { PAC.resources } 
  location : [ ARE.area-name | PAC.param-name ] ;  

}  

9.4.3 Semantics 

Declaration and reference 
All activities have to be declared in the activities section of either a group, agent, class, object, or composite-
activity. The declared activities can then be referenced in the workframes defined for the group, agent, class 
or object. 
 
Parameters 
It is possible to define input parameters for move activities. These input parameters can be used to make 
activities more generic. In the reference the values for the input parameters have to be passed. It is 
recommended to make the first parameter the goal-location of the move activity. 
 
Priority 
Activities can be assigned a priority. The priorities of activities in a workframe are used to define the priority 
of a workframe. The workframe will get the priority of the activity with the highest priority defined in the 
workframe. 
 
Duration 
Activities in general have a duration. In case of the move activity it is not necessary to define a duration of 
the activity. The duration of the activity is calculated by the simulation engine using the distance definitions 
defining the distance between two locations. The simulation will determine the shortest path of travel from 
the current location to the goal location and calculate the travel time based on the distance. The duration of 
the move activity will in that case be the same as the calculated travel time. It is possible however to still 
define the duration of the activity. If the simulation engine cannot find a travel path then the defined duration 
will be used. The duration of the activity can be defined to be a fixed amount of time. The random attribute 
has to be set to false and the max-duration attribute has to be set to the maximum duration in seconds. The 
duration of the activity can also be defined to be a random amount of time. To define a random amount of 
time the random attribute has to be set to true, the min-duration attribute has to be set to the minimum 
duration of the activity in seconds and the max-duration attribute has to be set to the maximum duration of 
the activity in seconds.  
 
Defaults 
 display = <activity-name> 
 priority = 0 
 random = false 
 min_duration = 0 
 max_duration= 0 
 resources = none 
 
Constraints 

1. The name of an activity must be unique within the definition of a group, agent, class, 
object, or composite-activity. 
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2. The input parameter type of a parameter defined in the declaration of an activity must 
be the same as the input value type or variable type in the reference of the activity. 

3. The parameters assigned to any of the attributes must be of the correct type. 
4. The parameter types for resources must be of type <object-class-name> or list-of 

<object-class-name>, the parameters assigned to the resources must be either 
VAR.variable-name or OBJ.object-name or a list of any of these two. 

5. The goal-location parameter must be of type <area-def-name>. 
6. The minimum duration of the activity defines the minimum duration in seconds. 
7. The maximum duration of the activity defines the maximum duration in seconds. 
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A.19. SYNTAX OF A COMMUNICATE ACTIVITY (COM) 

Syntax 

communicate-activity  ::=  
communicate PAC.activity-name ( { PAC.param-decl [ , PAC.param-decl ]* } ) {  
   { display : ID.literal-string  ; } 
   { priority : [ ID.unsigned | PAC.param-name ] ; } 

  { random : [ ID.truth-value | PAC.param-name ] ; } 
   { min_duration : [ ID.unsigned | PAC.param-name ] ; } 
   { max_duration : [ ID.unsigned | PAC.param-name ] ; } 
   { PAC.resources } 
   { type : [ phone | fax | email | face2face | pager | none | PAC.param-name ] ; } 
   with :  [ [ AGT.agent-name | OBJ.object-name | PAC.param-name ]  

 [ , [ AGT.agent-name | OBJ.object-name | PAC.param-name ] ] ] ; 
   about :  TDF.transfer-definition , TDF.transfer-definition ]* ; 
   { when : [ start | end | PAC.param-name ] ; } 
}  

Semantics 

Declaration and reference 
All activities have to be declared in the activities section of either a group, agent, class, object, or composite-
activity. The declared activities can then be referenced in the workframes defined for the group, agent, class 
or object. 
 
Parameters 
It is possible to define input parameters for communicate activities. These input parameters can be used to 
make activities more generic. In the reference the values for the input parameters have to be passed. It is 
recommended to make the first parameter(s) in a communicate activity the concepts with which is 
communicated. 
 
Priority 
Activities can be assigned a priority. The priorities of activities in a workframe are used to define the priority 
of a workframe. The workframe will get the priority of the activity with the highest priority defined in the 
workframe. 
 
Duration 
Activities in general have a duration. The duration of the activity can be defined to be a fixed amount of time. 
The random attribute has to be set to false and the max-duration attribute has to be set to the maximum 
duration in seconds. The duration of the activity can also be defined to be a random amount of time. To 
define a random amount of time the random attribute has to be set to true, the min-duration attribute has to 
be set to the minimum duration of the activity in seconds and the max-duration attribute has to be set to the 
maximum duration of the activity in seconds.  
 
Type 
The type attribute defines what type of communication is used. The type can be one of phone, fax, email, 
face2face, pager, or none (meaning not specified). 
 
When 
The when attribute defines when the actual communication has to take place, at the ‘start’ of the activity or 
at the ‘end’ of the activity.  
 
Defaults 
 display = <activity-name> 
 priority = 0 
 random = false 
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 min_duration = 0 
 max_duration= 0 
 resources = none 
 type = none 
 when = end 
 
Constraints 

1. The name of an activity must be unique within the definition of a group, agent, class, 
object, or composite-activity. 

2. The input parameter type of a parameter defined in the declaration of an activity must 
be the same as the input value type or variable type in the reference of the activity. 

3. The parameters assigned to any of the attributes must be of the correct type. 
4. The parameter types for resources must be of type <object-class-name> or list-of 

<object-class-name>, the parameters assigned to the resources must be either 
VAR.variable-name or OBJ.object-name or a list of any of these two. 

5. The type-parameter type has to be a literal-symbol and its values must be one of 
phone, fax, e-mail, face2face, pager, or none. 

6. The with-parameter type has to be one of ‘Agent’ , CLS.object-class-name, list-of 
Agent or list-of CLS.object-class-name and its input value must be one of AGT.agent-
name, OBJ.object-name, VAR.variable-name or a list of any of these elements. 

7. The when parameter must be of type symbol and its input values must be one of start 
or end. 

8. The minimum duration of the activity defines the minimum duration in seconds. 
9. The maximum duration of the activity defines the maximum duration in seconds. 

 
Current Limitations 
Currently the simulation engine does not support communication with more then one agent or object at the 
same time.  
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A.20. SYNTAX OF A BROADCAST ACTIVITY (BCT) 

Syntax 

broadcast-activity  ::=  
broadcast PAC.activity-name ( { PAC.param-decl [ , PAC.param-decl ]* } ) {  
   { display : ID.literal-string  ; } 
   { priority : [ ID.unsigned | PAC.param-name ] ; } 
   { random : [ ID.truth-value | PAC.param-name ] ; } 
   { min_duration : [ ID.unsigned | PAC.param-name ] ; } 
   { max_duration : [ ID.unsigned | PAC.param-name ] ; } 
   { PAC.resources } 
   { type : [ phone | fax | email | face2face | pager | none | PAC.param-name ] ; } 
   about :  TDF.transfer-definition, TDF.transfer-definition ]* ; 
   { when : [ start | end | PAC.param-name ] ; } 
}  

9.4.4 Semantics 

Declaration and reference 
All activities have to be declared in the activities section of either a group, agent, class, object, or composite-
activity. The declared activities can then be referenced in the workframes defined for the group, agent, class 
or object. 
 
Parameters 
It is possible to define input parameters for broadcast activities. These input parameters can be used to 
make activities more generic. In the reference the values for the input parameters have to be passed. 
 
Priority 
Activities can be assigned a priority. The priorities of activities in a workframe are used to define the priority 
of a workframe. The workframe will get the priority of the activity with the highest priority defined in the 
workframe. 
 
 
 
Duration 
Activities in general have a duration. The duration of the activity can be defined to be a fixed amount of time. 
The random attribute has to be set to false and the max-duration attribute has to be set to the maximum 
duration in seconds. The duration of the activity can also be defined to be a random amount of time. To 
define a random amount of time the random attribute has to be set to true, the min-duration attribute has to 
be set to the minimum duration of the activity in seconds and the max-duration attribute has to be set to the 
maximum duration of the activity in seconds.  
 
When 
The when attribute defines when the actual broadcast has to take place, at the ‘start’ of the activity or at the 
‘end’ of the activity.  
 
Defaults 
 display = <activity-name> 
 priority = 0 
 random = false 
 min_duration = 0 
 max_duration= 0 
 resources = none 
 when  = end 
 
Constraints 
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1. The name of an activity must be unique within the definition of a group, agent, class, 
object, or composite-activity. 

2. The input parameter type of a parameter defined in the declaration of an activity must 
be the same as the input value type or variable type in the reference of the activity. 

3. The parameters assigned to any of the attributes must be of the correct type. 
4. The parameter types for resources must be of type <object-class-name> or list-of 

<object-class-name>, the parameters assigned to the resources must be either 
VAR.variable-name or OBJ.object-name or a list of any of these two. 

5. The when parameter must be of type symbol and its input values must be one of start 
or end. 

6. The minimum duration of the activity defines the minimum duration in seconds. 
7. The maximum duration of the activity defines the maximum duration in seconds. 
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A.21. SYNTAX OF A PRECONDITION (PRE) 

Syntax 

precondition  ::= [ known | knownval | unknown | not ] ( comparison ) 
 
comparison  ::=  [ val-comp | rel-comp ] 
 
val-comp  ::= 

expression BEL.evaluation-operator expression | 
BEL.obj-attr BEL.equality-operator ID.literal-symbol | 
BEL.obj-attr BEL.evaluation-operator BEL.object-ref | 
BEL.object-ref BEL.evaluation-operator BEL.object-ref 

 
rel-comp ::=  

BEL.obj-attr REL.relation-name BEL.obj-attr { is ID.truth-value } | 
BEL.obj-attr REL.relation-name BEL.object-ref { is ID.truth-value } | 
BEL.object-ref REL.relation-name BEL.object-ref { is ID.truth-value } 

 
expression ::=  term | expression [ + | - ] term 
 
term ::=  factor | term [ * | / | div | mod ] factor 
 
factor ::=  primary | factor ^ primary 
 
primary ::=  - primary | element 
 
element ::=  ID.number | ( expression ) | BEL.obj-attr | VAR.variable-name 

Semantics 

Precondition modifiers 
A precondition is defined with one of four modifiers: known, knownval, unknown, or not. The modifiers have 
the following meaning. 
 
known: 

The modifier ‘known’ represents the possibility for an agent/object to have a belief/fact, but 
be unspecific as to whether the agent/objects knows the actual value.  
 
For example, to evaluate the following precondition:  
 
known(the color of car1 = blue) 
 
The simulation engine would simply ignore the value “blue” specified in the precondition, 
and look for any belief of the form:  
 
the color of car1 = ? 
 
If the engine finds a belief of the form, as it would when the following belief is present:  
 
the color of car1 = red 
 
then the engine would evaluate the precondition as true. A simple relational precondition 
like:  
 
known(John is-the-son-of Bill is true) 
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will evaluate to true when the engine find the belief:  
 
John is-the-son-of Bill is true 
 
or  
 
John is-the-son-of Bill is false 
 
A more complex preconditions like:  
 
known(the service-tech of Cimap-order1 is-the-son-of the service 
tech of the Cimap-order2) 
 
will evaluate to true if the following beliefs are present: 
 
the service-tech of Cimap-order1 = <agent1> 
the service-tech of Cimap-order2 = <agent2> 
 
where <agent1> and <agent2> can be either values or objects. 
 
Since this outcome may be counterintuitive for the user, we advise the user to use 
variables together with the ‘known-value’ modifier, whenever possible, and use the known 
modifier only in cases when a simple lookup of the form ‘OA-V’ is done and the user does 
not care about the value of the object-attribute. 
 

knownval: 
The modifier ‘knownval’ (known value) means that the simulation engine must find a 
precise match for the precondition. The precondition is only true if matching beliefs/facts 
can be found for both the left hand side and the right hand side and if the relation between 
them is found as well. For example for a complex precondition such as: 
 
knownval(the service-tech of Cimap-order1 is-the-son-of the 
service-tech of Cimap-order2) 
 
the following beliefs must be present: 
 
the service-tech of Cimap-order1 = <agent1> 
the service-tech of Cimap-order2 = <agent2> 
<agent1> is-the-son-of <agent2> 
 
When using variables, the engine will find as many matches as there are valid 
instantiations for the variables. 

 
unknown (aka no-knowledge-of): 

When the modifier ‘unknown’ is used, the simulation engine looks at the beliefs of the 
agent or facts in the world for objects for possible matches of the precondition. If there are 
any matches, the precondition evaluates to false, if no matches are found the precondition 
evaluates to true. The ‘unknown’ modifier can be interpreted as ‘The agent/object has no 
beliefs/facts for <precondition>’. However, there are intricacies that need to be explained 
further.  
 
When matching a precondition of the form: O1A1=O2 or O1A1=V, the simulation engine 
looks for a belief of the form O1A1= ?. The right hand side of the precondition is not used in 
the lookup. When a belief of the form O1A1= ? is found, the simulation engine interprets 
this to mean that the agent ‘knows’ about this object and attribute and thus the 
precondition is false. 
 
When the precondition is of the form O1 rel O2 is true/false. However, no matter what the 
truth of the relation is, the simulation engine will simply look up whether the agent/object 
possesses the belief/fact O1 rel O2, and if so will evaluate the precondition to be false. 
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All other preconditions, require at least two steps for the simulation engine to determine the 
truth or falsehood of the precondition. Some of these precondition forms may have 
counterintuitive outcomes. 
 
The forms O1A1= O2A2 , O1A1 rel O2A2 require the simulation engine to evaluate both the 
left hand side and the right hand side. When a belief/fact for either side is not found, the 
precondition will be evaluated to true, if both are found the precondition will evaluate to 
false. For example given the following beliefs: 
 
the color of car1 = blue 
the color of car2 = red 
 
and the precondition: 
 
unknown(the color of car1 = the color of car2) 
 
The simulation engine will evaluate the precondition to false, because it finds beliefs for 
both “The color of car1 = ?” and “The color of car2 = ?”. If the beliefs of the agent were as 
follows however: 
 
the service-tech of Cimap-order1 = John 
the service-tech of Cimap-order2 = Bill 
 
and the precondition would read:  
 
unknown(the service-tech of Cimap-order1 is-the-son-of the 
service-tech of Cimap-order2) 
 
The simulation engine will also evaluate the precondition to be false. This may seem 
counterintuitive and we therefore advise the user to use this form with care.69  
 
The other cases are of the form: O1A1 = O2, O1 = O2A2,  O1 rel O2A2. These forms are 
evaluated in one lookup, namely O1A1 = ? or O2A2 = ?. If a belief/fact of this form is 
found, no matter what the ? stands for (could be either a value or an object), the 
precondition is evaluated to false. For example, given the following beliefs: 
 
the car of John = car1 
 
the following precondition 
 
unknown(the car of John belongs-to Nynex) 
 
will evaluate to false, since the simulation engine will find a belief for “The car of John”. 
Since this may seem counterintuitive, we advise the user to use this precondition form with 
care. 
 

not (aka no-matching-beliefs): 
Not works similar to knownval, but negates the resulting truth-value. The simulation engine 
will first try the knownval for the precondition. If the precondition with the knownval modifier 
evaluates to true then the precondition with the not modifier evaluates to false and vice 
versa.  

 
Constraints 

1. The left hand side attribute type and the right hand side value-type or right hand side 
attribute type of a value-expression must be the same. 

                                                      
69 It would be more intuitive to evaluate the precondition to “true”, because the agent does not have a belief that states that John is-the-
son-of Bill. The pattern matching algorithm could be changed when the simulation engine is redesigned. 
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2. The left hand side and right hand side types in a relational expression must match the 
types as defined for the relation used in the relational expression. 

3. Expressions must evaluate to a value. 
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A.22. SYNTAX OF A CONSEQUENCE (CON) 

Syntax 

consequence  ::=  conclude ( ( PRE.comparison ) { , fact-certainty } { , belief-certainty } ) ; 
 
fact-certainty ::=  fc : ID.unsigned 
 
belief-certainty  ::=  bc : ID.unsigned 
 

Semantics 

Fact certainty 
The fact certainty is a number ranging from 0 to 100 and represents the percentage of chance that a fact will 
be created based on the consequence. A fact certainty of 0% means that no fact will be created, 100% 
means that a fact will be created at all times. 
 
Belief certainty 
The belief certainty is a number ranging from 0 to 100 and represents the percentage of chance that a belief 
will be created based on the consequence. A belief certainty of 0% means that no belief will be created, 
100% means that a belief will be created at all times. 
 
Defaults 
 fc = 100 
 bc = 100 
 
Constraints 

1. In the comparison the left hand side attribute type and the right hand side value-type 
or right hand side attribute type of a value-expression must be the same. 

2. In the comparison the left hand side and right hand side types in a relational 
expression must match the types as defined for the relation used in the relational 
expression. 

3. The values of fact-certainty and belief-certainty range from 0 to 100 and represent a 
percentage. 

4. A consequence defined in the body of a thoughtframe can only conclude beliefs. The 
fact certainty argument will be ignored, a warning will be generated in case the belief-
certainty is set to 0. 
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A.23. SYNTAX OF A DETECTABLE (DET) 

Syntax 

detectable ::=  
detectable-name { 

{ when ( [ whenever | ID.unsigned ] ) } 
    detect ( ( PRE.comparison ) { , detect-certainty } ) 
{ then detectable-action } ; 

} 
 
detectable-name ::=  ID.name 
 
detect-certainty ::=  dc : ID.unsigned 
 
detectable-action ::=  continue | impasse | abort | complete | end_activity 

Semantics 

When 
For each detectable needs to be specified when the agent or object can detect a certain fact. There are two 
options:  
 
whenever: 

This means that the detectable is checked every time a new fact is asserted in the world 
and for an agent also every time a new belief is asserted. 

 
at a specified time: 

For the detectable needs to be specified exactly when the detectable needs to be checked 
by specifying a percentage varying from 0 to 100% specifying at what percentage of the 
workframe completion the detectable needs to check the fact set and belief set. These kind 
of detectables are only checked once. 

 
Detect-certainty 
The detect-certainty is a number ranging from 0 to 100 and represents the percentage of chance that a fact 
will be detected based on the detectable. A detect-certainty of 0% means that the fact will never be detected 
and basically means that the detectable is switched off. A detect-certainty of 100% means that a fact will 
always be detected based on the detectable. 
 
Detectable action 
There are 5 different detectable actions possible: 
continue: 

Has no effect, only used for having agents or object detect facts and turn them into beliefs. 
 

impasse: 
Impasses the workframe on which the agent or object is working until the impasse is 
resolved. 
 

abort: 
Terminates the workframe on which the agent or object is working immediately. 
 

complete: 
Terminates the workframe on which the agent or object is working immediately, but still 
executes all remaining consequences defined in the workframe. All remaining activities are 
skipped. 
 

end_activity: 
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This action type is only meaning full when used with composite activities. Causes the 
composite activity on which the agent or object is working to be ended. 

 
Defaults 
 when = whenever 
 dc = 100 
 action = continue 
 
Constraints 

1. In the comparison the left hand side attribute type and the right hand side value-type 
or right hand side attribute type of a value-expression must be the same. 

2. In the comparison the left hand side and right hand side types in a relational 
expression must match the types as defined for the relation used in the relational 
expression. 

3. The value of the detect-certainty ranges from 0 to 100 and represents a percentage. 
4. The end-activity action type can only be used when a detectable is defined in a 

composite activity. 
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A.24. SYNTAX OF AN AREA DEFINITION (ADF) 

Syntax 

area-definition ::=  
areadef area-def-name  
{ 

       { display : ID.literal-string ; } 
       { GRP.attributes } 
       { GRP.relations } 
       { GRP.initial-facts } 

} 
 
area-def-name  ::= ID.name 

Semantics 

Defaults 
 display = <area-def-name> 
 
Constraints 

1. The name of an area definition must be unique amongst the area definitions in a 
model.  
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A.25. SYNTAX OF AN AREA (ARE) 

Syntax 

area ::=  
area area-name instanceof area-def-name { partof area-name } { 
    { display : ID.literal-string ; } 
    { GRP.attributes } 
    { GRP.relations } 
    { GRP.initial-facts } 
} 

 
area-name  ::=  ID.name 

Semantics 

Area Decomposition 
Areas can be decomposed into sub-areas. For example a building can consist of one or more floors. The 
decomposition can be modeled using the part-of relationship. 
 
Defaults 
 display = <area-name> 
 
Constraints 

1. The name of an area must be unique amongst the areas defined in a model.  
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A.26. SYNTAX OF A PATH (PAT) 

Syntax 

path-def ::=  
path path-name {  

     { display : ID.literal-string ; } 
     area1 :  ARE.area-name ; 
     area2 :  ARE.area-name ; 
     { distance :  ID.unsigned ; } 

}  
 
path-name ::=  ID.name 
 

Semantics 

Distance 
The distance represents the time it takes to move from area1 to area2 and vice versa. In future versions of 
the language the distance will represent the actual distance and based on the transportation used to travel 
over the path the duration will be calculated.  
 
Defaults 
 display = <path-name> 
 distance = 0 
 
Constraints 

1. The name of a path must be unique amongst the paths defined in a model.  
2. The distance represents the travel duration in seconds. 
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A.27. SYNTAX OF A TRANSFER DEFINITION (TDF) 

Syntax 

transfer-definition ::= transfer-action ( PRE.comparison ) 
 
transfer-action ::= send | receive 

Semantics 

Transfer-action 
The transfer action defines the direction of the communication. The ‘send’ action states that belief(s) of the 
initiating agent or object matching the transfer definition are transferred from the initiating agent or object to 
the non-initiating agent or object. The ‘receive’ action states that belief(s) of the non-initiating agent or object 
matching the transfer definition are transferred from the non-initiating agent or object to the initiating agent or 
object. 
 
Constraints 

1. In the comparison the left hand side attribute type and the right hand side value-type 
or right hand side attribute type of a value-expression must be the same. 

2. In the comparison the left hand side and right hand side types in a relational 
expression must match the types as defined for the relation used in the relational 
expression. 
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A.28. VARIABLE (VAR) 

Syntax 

variable  ::=  { [ assigned | unassigned ] }  
[ collectall | foreach | forone ] ( ATT.type-def ) variable-name  
{ variable-body } ; 

 
variable-name ::=  ID.name 
 
variable-body ::=  { 

{ display : ID.literal-string ; } 
} 

Semantics 

(Un)assigned variables 
Variables can be defined to be assigned variables or unassigned variables. By default variables are 
assigned. This typification is required due to limitations of the simulation engine. Assigned variables are 
bound to a context when an instance of a workframe or thoughtframe is created. Unassigned variables can 
only be defined in a workframe (not in a thoughtframe) and do not get a context when an instance is created 
of a workframe. The unassigned variable gets a context when used in a create-object activity (unassigned 
variable will be bound to the destination object), or in communications to bind the variable to a context 
based on what is  communicated. 
 
Quantification 
Variables are of one of three quantification types: collect-all, for-each and for-one. The difference between 
the three quantification types is the way variables are bound to a specific context of a defined type (agent, 
object, or other value). The difference in binding is as follows: 
 
for-each variable: 

A for-each variable is bound to only one context. For each context that can be bound to the 
variable a separate instance is created for the workframe in which the variable is bound. 
 
For example in the following frame: 
 
 workframe DoSomething { 
  variables: 
   assigned foreach(Order) order; 
  when ((order is-assigned-to current)) 
  do { 
   workOnOrder(); 
  } 
 } 
 
There are three Order instances in the model (order1, order2, and order3) satisfying the 
precondition. For this workframe three instances will be created in which the for-each 
variable is bound to one of the orders in each frame instantiation. This means that the 
agent for which the workframe is defined can only work on one order at a time and will 
work on them in consecutive order if no interruptions take place. 
 

collect-all variable: 
A collect-all variable can be bound to more then one context. The variable will be bound to 
all contexts satisfying the condition in which it is defined. Only one frame instantiation will 
be created as a result of the binding with the collect-all variable. If we consider the same 
example as for for-each variables changing the quantification of the variable to collect-all. 
 
 workframe DoSomething { 
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  variables: 
   assigned collectall(Order) order; 
  when ((order is-assigned-to current)) 
  do { 
   workOnOrder(); 
  } 
 } 
 
Also assume that again three orders match with the precondition based on the beliefs of 
the agent, then all three orders are bound to the variable and one frame instantiation will 
be created for the agent to work on. This means that the agent for which this workframe is 
defined will work on all orders at the same time. 

 
for-one variable: 

A for-one variable can be bound to only one context. Only one frame-instantiation will be 
created as a result of the binding with the for-one variable. A for-one variable binds to the 
first context satisfying the condition in which it is defined. If we consider the same example 
as for for-each variables changing the quantification of the variable to for-one. 
 
 workframe DoSomething { 
  variables: 
   assigned forone(Order) order; 
  when ((order is-assigned-to current)) 
  do { 
   workOnOrder(); 
  } 
 } 
 
Also assume that again three orders match with the precondition based on the beliefs of 
the agent, then one of the orders will be bound to the variable and one frame instantiation 
will be created for the agent to work on. This means that the agent only works on one 
order and it does not matter on which order. The other two orders will not be worked on. 

 
Defaults 
A variable is by default an assigned variable unless otherwise specified. 
 display = <variable-name> 
 
Constraints 

1. The name of the variable must be unique within the definition of a workframe or 
thoughtframe.  
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SUMMARY 

Many organizations spend a lot of time and effort analyzing the knowledge people within the organization 
use to perform their work. This is often done to make the work process more efficient, or to manage the 
knowledge resources (man, machine, or other) better. To do this, the first thing that is often done is to model 
the current state of the work process, after which the process is redesigned to be more efficient. Modeling 
work processes is a very complex task that clearly needs to be supported by effective modeling tools. There 
are a number of modeling tools and approaches that are used today. However, none of these approaches 
allow for the representation of a work process at a work practice level—the level at which people within the 
process perform their work in the real world. 

This dissertation presents a methodology and supporting tool for modeling and simulating the work practice. 
The main research question being answered is the question of representing people working together, 
collaborating and communicating, situated in the real world, using tools and creating artifacts, all the while 
being constraint by the environment they are in. The thesis first reviews existing modeling tools and models 
that, in one way or another, represent people as cooperating agents. It is shown that every tool being 
reviewed lacks, in some fundamental way, the ability to represent all the important aspects from the theory 
of modeling work practice. The work presented here is testing a new computer language and methodology, 
with supporting tools for modeling and simulating work practice. The software tool presented and tested—
and proven to be a significant improvement over available modeling tools—is called Brahms. Specifying 
how the Brahms modeling language can be used to represent a work practice operationalizes the presented 
theory for modeling and simulating work practice. The second part of the thesis presents the application of 
Brahms in three real-world work practice case studies.  

A work practice is defined as the collective activities of a group of collaborating people who communicate 
together, while performing synchronous and asynchronous activities. Most often, people view work merely 
as the process of transforming input to output. This thesis claims that the individual activities, that make up a 
work practice, not only have to do with the transformation of input to output, but more important with the 
collaboration between individuals in action, in pursuit of a goal. Imagine soccer players who collaborate their 
activities in pursuit of scoring a goal. Just focusing on the input and output of the activities of the players 
would not only be very difficult, if not impossible, but it would miss the opportunity to understand what is 
really going on. 

This dissertation presents a different view, namely describing work as a practice, a collection of 
psychologically and socially situated collaborative activities of the members of a group. The purpose of 
modeling a work practice is to understand how, when, where, and why collaborative activities are 
performed, and to identify the effects of these activities. Besides this, it is also important to understand the 
reasons why these activities occur in the way they do. The central theme is to find a representation for 
modeling work practice. The thesis first defines what is meant by the term work practice, and how it relates 
to communities of practice, activities, collaboration, communication, artifacts, and geography. Then, the 
Brahms multiagent modeling language is presented. Brahms models can be simulated to show the effects 
of the activities of groups of people, their collaboration and communication, while situated in a geographical 
environment, using tools and artifacts to perform their collaborative work. 

The Brahms software tool is applied, verified, and evaluated in a case study of the ALSEP Offload task 
performed during the Apollo 12 lunar mission. This first case study is a study about the use of Brahms for 
developing descriptive models. This case study shows a detailed simulation model of the work practice of 
the Apollo 12 astronauts offloading the ALSEP on the Moon. The second case study shows the application 
of Brahms and its associated methodology in the development of a predictive model. This subject of this 
case study is predicting astronaut behavior during error situations and the communication patterns during 
the ALSEP deployment activity on the Moon. This case study is based on the historical data from two work 
practices, namely the Heat Flow Experiment deployment during the Apollo 15 and 16 missions. The subject 
of the third and last case study is the design of a prescriptive Brahms model, for a work system design of 
mission operations for a future robotic mission to the Moon. The thesis ends with an evaluation of the use of 
Brahms in the case studies to answer the research question. Besides the main research question, a 
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secondary research question is answered. What is the added value of a model-based approach? The 
answer is given based on the modeling methodology used in the case studies. 

The National Aeronautics and Space Administration, under the NASA Cross Enterprises Program, funded 
the research presented here. 



 

314 

SAMENVATTING 

Er zijn veel organisaties die tijd spenderen aan het analyseren van de kennis die de mensen binnen een 
organizatie gebruiken, om hun werk te kunnen doen. Vaak wordt dit gedaan om het werk proces te 
verbeteren, of om de kennisbronnen (mens, machine of andere vormen) beter te kunnen beheren. Om dit te 
kunnen doen creëert men steeds vaker eerst een model van het werkproces zoals het op dat moment 
bestaat, waarna het proces wordt herontworpen om meer efficient te kunnen zijn. Het modelleren van 
werkprocessen is erg gecompliceerd en het is duidelijk dat voor deze taak ter ondersteuning effectieve 
modeleringsgereedschappen gebruikt zouden moeten worden. Vandaag de dag zijn er een aantal 
modeleringsgereedschappen die gebruikt kunnen worden. Het probleem is echter dat geen van deze 
gereedschappen het mogelijk maakt het werkproces te representeren op het ‘work practice level’—het 
werkniveau van de mensen binnen het proces zoals het in de praktijk ook werkelijk wordt uitgevoerd. 

De dissertatie presenteert een methodologie en een bijbehorend gereedschap voor het modelleren en 
simuleren van 'work practice' (vertaling: werk zoals het in de praktijk wordt uitgevoerd). De voornaamste 
vraag die wordt gesteld en beantwoord, is de vraag naar een computertaal voor het representeren van 
samenwerkende mensen, collaborerend en communicerend, gesitueerd in de wereld, gebruikmakend van 
gereedschappen voor het creëren van artifacten en terwijl gelimiteerd door hun werkomgeving. Als eerste 
worden er een aantal bestaande modellering tools en modellen besproken, die op een of andere manier 
mensen representeren als cooperatieve agenten. Aangetoond wordt dat deze tools geen van allen de 
mogelijkheid bieden om alle belangrijke aspecten uit de theorie van het modelleren van ‘work practice’ weer 
te geven. Het werk dat hier wordt gepresenteerd is een test van een nieuwe computertaal en methodologie, 
met bijbehorende software tools, voor het modelleren en simuleren van een ‘work practice’. De software tool 
die wordt gepresenteerd en getoetst in de werkelijkheid—en waarvan wordt aangetoond dat deze 
significant beter is dan de tools en modellen die zijn beschreven—is Brahms. De gepresenteerde theorie 
voor het modelleren en simuleren van ‘work practice’ wordt geoperationaliseerd door te specificeren hoe de 
Brahms taal kan worden gebuikt in het weergeven van een work practice. Het tweede deel van de thesis is 
de presentatie van het gebruik van Brahms in drie realistische ‘work practice’ case studies. 

Een ‘work practice’ wordt gedefinieerd als de collectieve activiteiten van een groep samenwerkende en 
onderling communicerende mensen, tijdens het uitvoeren van synchrone en asynchrone activiteiten. Vaak 
wordt werk alleen gezien als een proces van transformeren van input tot output. In deze thesis wordt 
gesteld dat de individuele activiteiten, die een ‘work practice’ definiëren, niet alleen te maken hebben met de 
transformatie van input tot output, maar bovenal als de samenwerking tussen individuën in hun doelgerichte 
acties. Denk bijvoorbeeld aan een voetbalelftal waarin de spelers  samenwerken in hun gezamelijke 
activiteiten om te kunnen scoren. Het focussen op de input en output van individuele activiteiten van de 
spelers, is niet alleen erg moeilijk, als het überhaubt mogelijk is, maar mist ook de grote mogelijkheid om te 
kunnen begrijpen wat er werkelijk aan de gang is. 

In deze dissertatie wordt een andere opvatting van werk gepresenteerd, namelijk het beschrijven van werk 
als een ‘practice’, een collectie van psychologische en sociaal gesitueerde collaboratieve activteiten van 
een groep van mensen. Het doel van het modelleren van een ‘work practice’ is om te kunnen begrijpen hoe, 
wanneer, waar en waarom collaboratieve activiteiten worden uitgevoerd en om de effecten van deze 
activiteiten te kunnen achterhalen. Daarnaast is het van belang om de manier waarop deze activiteiten 
worden uitgevoerd te achterhalen . Daarom is het centrale thema een goede representatie te vinden voor 
het modelleren van ‘work practice’. Als eerste wordt gedefinieerd wat er bedoeld wordt met de term ‘work 
practice’ en deze term wordt gerelateerd aan ‘communities of practice’, activiteiten, collaboratie, 
communicatie, artifacten en geografie. Daarna wordt de Brahms multiagent modelerings taal 
gepresenteerd. Brahms modellen kunnen worden gesimuleerd, om te kunnen laten zien wat de effecten zijn 
van activiteiten van groepen van mensen, hun samenwerking en onderlinge communicatie, gesitueerd in 
een geografische omgeving, gebruikmakend van gereedschappen en artifacten tijdens hun collaboratieve 
werkzaamheden. 

De Brahms software tool is gebruikt, geverifieerd en geëvalueerd in een case studie van de ALSEP Offload 
taak tijdens de Apollo 12 lunar missie. Deze eerste case studie is een studie naar het gebruik van Brahms 
voor het ontwikkelen van beschrijvende modelllen. De case studie beschrijft een gedetaileerde 
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simulatiemodel van de ‘work practice’ van de Apollo 12 astronauten, tijdens het afladen van de ALSEP 
instrumenten op de maan. In de tweede case studie, worden Brahms en de bijbehorende 
modelleringsmethodologie gebruikt voor het ontwikkelen van een voorspellingsmodel. Het onderwerp van 
deze case studie is het voorspellen van het gedrag van astronauten tijdens problematische situaties en de 
communicatiepatronen gedurende het opzetten van de ALSEP instrumenten op de maan. De case studie is 
gebaseerd op de historische data van twee ‘'work practices’, de ‘Heat Flow Experiment deployment’ tijdens 
de Apollo 15 en 16 missies. Het onderwerp van de derde en laatste case studie is het ontwerp van een 
voorschrijvend Brahms model voor een ‘work system design’ van ‘mission operations’ voor een toekomstige 
robot missie naar de maan. De thesis eindigt met een evaluatie van het gebruik van Brahms in de case 
studies, als antwoord op de onderzoeksvraag. Naast deze hoofdonderzoeksvraag is er een tweede 
onderzoeksvraag die wordt beantwoord. Wat is de toegevoegde waarde van een ‘model-based approach’? 
Het antwoord wordt gegeven aan de hand van de modeleringsmethodologie die is gebruikt in de case 
studies. 

De National Aeronautics and Space Administration, als onderdeel van het NASA Cross Enterprises 
Programma, heeft het hier gepresenteerde onderzoek mogelijk gemaakt. 

 


