

105

6. CASE STUDY 1: APOLLO 12 ALSEP-OFFLOAD

In this chapter, I report on the results of the descriptive modeling case study (Sierhuis 2000) (Sierhuis et al.
2000a) (Sierhuis et al. 2000c) (Sierhuis et al. 2000d). A descriptive model is an abstraction of an existing or
historical system, and preserving the relations between system states—system morphism. I describe the
development of a Brahms model and simulation of the ALSEP Offload activity that was part of the ALSEP
instrument deployment during the Apollo 12 Lunar mission.

This chapter is divided into a number of sections that could be read or skipped independent of the other
sections. Section 6.1 gives a short introductory description of the ALSEP Offload task that the astronauts
performed during the Apollo 12 mission. Sections 6.2, 6.3, and 6.4 should be read together. They describe
the design of the agent-, object-, and geographical models of the Brahms model. Section 6.5 describes the
design of the activity model. Section 6.6 describes the behavioral model. This section describes how the
workframes of an agent are executed, and explains the relationship between time, beliefs, workframes,
activities and detectables during the simulation of the model. Section 6.7 describes how the communication
between the lunar surface astronauts, as well as the lunar surface astronauts and the Capcom agent in
mission control is simulated. Included in the communication model is the simulation of the communication
time delay between the Moon and the Earth. Section 6.8 describes in more detail how we can model the
interaction between people and artifacts. I describe this by explaining how we can model the interaction with
a photo camera, while performing the activity of taking a photograph. Section 6.9 describes the process of
verifying and validating the Apollo 12 ALSEP Offload model. In this section I describe how the Brahms
model and simulation is verified and validated against the available historical Apollo 12 data. Last, section
6.10 describes my conclusions for this case study.

Goals and Objectives

The goal of this experiment was to investigate the use of the Brahms-language in order to describe an
existing work practice. The challenge I faced in this experiment was to investigate if the theory of modeling
work practice, implemented in the Brahms language (Chapter 4), is sufficient to describe the work practice
in the chosen domain. The objectives of this first experiment were:

1. Being able to represent the people, things, and places relevant to the domain.

2. Represent the actual behavior of the people, second by second, over time.

3. Show which of the tools and artifacts are used when, and by whom to perform activities.

4. Include the communication between co-located and distributed people, as well as the communication
tools used, and the effects of these communication tools on the practice.

The domain I chose for this experiment is the work practice of the Apollo 12 astronauts in the deployment of
the Apollo Lunar Surface Experiments Package (ALSEP) on the Moon. The reasons for choosing this
domain are the following:

1. The work performed by the astronauts requires unique and highly skilled individuals. The complexity of
the work to be described is high enough to argue that if we can model this type of work practice within
Brahms, we can model most other work practices as well.

2. The ALSEP deployment process is performed by a relatively small number of people. This has a
positive impact on the modeling and simulation effort, in terms of the time it takes to develop the model,
as well as the time it takes to simulate the model.

3. The ALSEP deployment work is distributed over the people involved, and is collaborative in nature.

106

4. There is no work product “flowing” through the work process. This means that this type of work is not
easily represented in a workflow model. Being able to model this type of work in Brahms supports the
argument for developing Brahms.

5. In order to develop a descriptive model of an existing work practice, we need to have access to a
significant amount of data about the actual work. This often means a long observational and/or
ethnographical study of the participants. This takes an enormous amount of effort and is a grounded
research process in and of it self. However, the Apollo project has been well documented by NASA and
numerous institutions, and writers (Compton 1989) (Wilhelms 1993) (Chaikin 1994) (Godwin 1999).
Specifically, there is a significant library of video and audiotapes taken during the actual missions
(NASA 1972)]. This allows us to develop, verify and validate our models using independent data from
the real events.

6. Although a Human Mission to Mars is not an official NASA supported activity at this point in time, more
and more researchers in and outside of NASA are informally studying what it would take to have
humans go to Mars and do scientific work for an extended period of time. We know very little about how
people can or should work on Mars. The only reference point we have about humans working on extra-
terrestrial planets is the work that humans did on the Moon during the Apollo project. Developing
models of the work practices on the Moon might allow us to extrapolate these models and investigate
people working on Mars, before we can physically go there.

7. There is, to certain extent, a real possibility that before we will go to Mars we will first go back to the
Moon. The reasons to do this might be of a scientific or a commercial nature. Regardless of the reason
to go back to the Moon, a model that describes the existing, but mostly forgotten work practices for
deploying instruments on the Moon is self-evident.

6.1 APOLLO 12 AND THE ALSEP OFFLOAD

One of the biggest objectives of the Apollo 12 mission was to deploy the Apollo Lunar Surface Experiments
Package (ALSEP). It would be the first time to deploy the ALSEP on the moon. The earlier Apollo 11
mission only deployed a preliminary version, called the EASEP (Early Apollo Surface Experiment Package).
The ALSEP consisted of a number of independent scientific instruments that were to be deployed on the
moon. The instruments were data collection devices for different scientific experiments about the moon’s
internal and external environment. By deploying similar ALSEP instruments over multiple Apollo missions
(A12, 14, 15, 16 and 17), the ALSEP deployments created an array of data gathering instruments at
different locations on the lunar surface. Table 6-1 shows a list of deployed instruments by mission.

Table 6-1. ALSEP experiments for Apollo missions

 A 12 A 13 A 14 A 15 A 16 A 17
Passive Seismic Experiment (PSE) X (X)32 X X X
Active Seismic Experiment (ASE) X X
Suprathermal Ion Detector Experiment (SIDE) X X X
Solar-Wind Spectrometer X X
Lunar Surface Magnetometer (LSM) X X X
Cold Cathode Gage (CCG) X (X) X X
Charged Particle Lunar Environment Experiment (CPLEE) (X) X
Solar Wind Spectrometer (SWS) X
Heat Flow Experiment (HFE) (X) X (X) X
Lunar Ejecta and Meteorites Experiment (LEAM) X
Lunar Seismic Profiling Experiment (LSPE) X
Gravimeter, Lunar Surface (LSG) X
Lunar Atmosphere Composition Experiment (LACE) X

To deploy the ALSEP on the lunar surface, the astronauts had to accomplish three high-level tasks. First,
they had to offload the ALSEP from the Lunar Module (LM). Second, they had to traverse with the ALSEP
packages to the deployment area, away from the LM. Third, they had to deploy each ALSEP instrument
onto the surface. In this chapter, I discuss the development of a work practice model for the first task, the
ALSEP Offload.

32 The round brackets mean that these were planned experiments that failed to be deployed properly.

107

Figure 6-1. SEQ Bay and RTG Cask located on the side of the LM

All the ALSEP instruments and tools, used for deployment, were stored on two sub-pallets (“packages”) in
the Scientific Equipment Bay (SEQ Bay) during flight. Figure 6-1 shows the SEQ Bay located on the LM, on
the opposite side of the ladder from which the astronauts descended to the lunar surface.

The offload consisted of a number of specified (sub-)activities that were trained extensively and assigned to
each of the astronauts. The order in which these tasks were to be performed, and whether the Lunar
Module Pilot or the Commander was to perform the task, i.e. the plan, was the same for all five missions.
Figure 6-2 shows the plan and start-time for the Apollo 12 ALSEP Offload.

Figure 6-2. Apollo 12 Surface Checklist 47 for the ALSEP Offload

The order in which the astronauts were to perform their tasks was pre-specified and trained. In other words,
offloading the ALSEP was a highly choreographed collaborative activity performed by two astronauts
working in parallel.

However, even though this high-level task was planned and choreographed up front, the plan did not
include the situational variations, the actual communication and collaborative activities between the
astronauts, and the communication between and coordination of activities by the Manned Spaceflight
Center (MSC) in Houston. MSC, also known as Mission Control, kept track of where the astronauts were on
the plan, solving unplanned problems, and monitoring and communicating life support status for the
astronauts. Central in this collaborative activity is the person who played the role of Capsule Communicator
(CapCom). The CapCom was the “voice” of Houston and the only person in direct communication with the
astronauts. This communication happened through the voice-loop (see section 6.7 on modeling the voice-
loop).

108

The work practice of the ALSEP Offload, or any work practice for that matter, consists of more than the
sequence and distribution of tasks. What constitutes the practice of the ALSEP Offload is the way the actual
plan is carried out; The situational activities of the collaborators, the way they react to their environment, the
way they communicate, what is said, the way they “know” how to do their tasks given the situation. It is
situated action (Suchman 1987). A choreographed play “executed” during the performance, planned and
trained, but always different.

In the next sections, I will describe how the ALSEP Offload work is modeled in a model of work practice.
The model is not a model of the problem-solving knowledge of each individual involved in this task. Instead,
it is a model of the behavior of the individuals. It describes how the collaboration, coordination, and
communication between the three individuals happen, and make this a fluent event. The activities of one
individual are like the movements of a musician in a symphony orchestra. The communication between
individuals is like the interleaved notes that seem to “tell” each musician what to play next. The artifacts and
tools are like the instruments of the musician. The environment of the Moon and Mission Control is like the
symphony hall. The Brahms “symphony” that is being played is planned and scored on a piece of paper (i.e.
the astronaut’s checklist). The orchestra has trained the piece many times (i.e. the astronaut training on
Earth). However, what comes out in the performance is due to their practice, the concert hall (i.e. the Moon),
and the way they play together that specific evening (i.e. EVA 1 on Apollo 12).

6.2 THE AGENT MODEL

One of the most relevant design issues for any Brahms model is the design of the agents and the groups
they belong to. The Agent Model describes to which groups the agents belong and how these groups are
related to each other.

Designing an Agent Model is similar to the design of an Object Model in object-oriented design (Rumbaugh
et al. 1998). Just as the class-hierarchy in an Object Model, we need to design the group-hierarchy in the
Agent Model. As a rule of thumb, we identify the communities of practice of which the agents in the model
are members, and abstract them to a common denominator for all agents. All agents are members of this
abstract group. The most abstract group is called the Base Group. This group exists in the Brahms Base
library. It contains all attribute and relation definitions that are needed by default, such as the name of the
agent, the group membership relation, and the location of the agent. We specialize this group, until we have
identified all the similarities and differences between the agents. It should be noted, again, that groups and
agents can be members of multiple groups.

Figure 6-3 shows the Agent Model design. We start with defining our agents. Each agent represents a
person in our domain, e.g. Ed Gibson, Pete Conrad, Al Bean, and Dick Gordon. We generalize the
community all four agents belong to as the group of ApolloAstronauts.

109

Figure 6-3. Apollo Agent Model design

The Capsule Communicator (CapCom) was always an astronaut. In the case of Apollo 12, Ed Gibson was
a civilian chosen with the fourth group of astronauts in 1965. The role of the CapCom was to be the only
person in Mission Control to talk directly to the astronauts. Dick Gordon, the CommandModulePilot (CMP),
was a Navy Captain chosen with the third group of astronauts in 1963. The role of the CMP was to fly the
Command Module (CM), named “Yankee Clipper”, circling in orbit around the moon while the Lunar Module
(LM), named “Intrepid”, was on the moon. Pete Conrad, the Apollo 12 Commander (CDR), also a Navy
Captain, was chosen with the second group of astronauts in 1962. Last, the LunarModulePilot (LMP) Al
Bean, who was also in the Navy, was chosen with the third group of astronauts in 1963.

I represent the role of each of the astronauts as a group. This way I can represent role specific attributes
and activities at the group level. The AlsepOffloadGroup is a functional group in the sense that it does not
specify a specific role, but a task of the agent. This group represents all work activities and attributes that
have to do with the ALSEP Offload task in one group. This way the group represents the community of
agents that can perform the ALSEP Offload task. For Apollo 12, both the CDR and the LMP trained for the
ALSEP Offload activities, and both of them could, if necessary, perform the ALSEP Offload task by
themselves, and therefore belong to the group ALSEPOffloadGroup. Thus, the Commander and
LunarModulePilot groups are members of the group AlsepOffloadGroup. Since both the CDR and the LMP
were working on the surface there are tasks that both astronauts needed and/or could perform. The ALSEP
Offload task was one of them, but there were others as well. All the activities that needed to be performed
by all astronauts on the lunar surface are represented in the LunarSurfaceAstronaut group. Such activities
include taking photographs and changing the cooling of their space suit. In conclusion, we can describe the
group hierarchy of Apollo astronauts in three sub-groups, CapCom, CommandModulePilot, and
LunarSurfaceAstronaut. The LunarSurfaceAstronaut group has the AlsepOffload group as a subgroup,
which in turn is subdivided into the subgroups Commander and LunarModulePilot.

110

Figure 6-4 shows the Brahms source code of the group and agent definitions, as shown in Figure 6-3.

Figure 6-4. Brahms source code of the agent model

Figure 6-5 shows the Agent Model in the Brahms Model Builder. The Brahms Model Builder application
allows the modeler to create and compile the Brahms model. Figure 6-5 shows the group and agent
hierarchy compiled from the source code in Figure 6-4. Each group has a number of “folders” underneath it.
Each folder is a different category of model elements for the group. The “Member Groups” folder contains all
the subgroups that are a member of the group. The “Member Agents” folder contains all agents that are
members of the group. The rectangles around the groups and agents are not part of the GUI, but are added
for clarification purposes, so that the reader can easily identify them in the figure. The colors show the
different group-levels. At the top, in black, you see the BaseGroup. All the other groups are a subgroup of
the BaseGroup group, and are therefore shown in the “Member Group” folder. The yellow rectangles show
the four agents, while the other colors show the intermediate groups in the group hierarchy (the colors are
only visible in a color reprint).

// Groups
group BaseGroup { … }

group ApolloAstronaut memberof BaseGroup { … }

group CapCom memberof ApolloAstronaut { … }

group LunarSurfaceAstronaut memberof ApolloAstronaut { … }

group CommandModulePilot memberof ApolloAstronaut { … }

group AlsepOffloadGroup memberof LunarSurfaceAstronaut { … }

group Commander memberof AlsepOffloadGroup { … }

group LunarModulePilot memberof AlsepOffloadGroup { … }

// Agents
agent PeteConrad memberof Commander { … }

agent AlBean memberof LunarModulePilot { … }

agent DickGordon memberof CommandModulePilot { … }

agent EdGibson memberof CapCom { … }

111

Figure 6-5. Agent Model in the Brahms Model Builder

112

6.3 THE OBJECT MODEL

After the Agent Model, the next model that needs to be designed is the Object Model. In this model we
design the class-hierarchy of all the domain objects. Figure 6-6 shows the Object Model design in UML
(Rumbaugh et al. 1998) for the Apollo 12 domain objects and artifacts. As with the Agent Model, the root-
class of the class hierarchy is the class BaseClass. All other classes and objects inherit from this BaseClass
class.

Figure 6-6. Apollo Object Model design

The objects with the dotted arrows pointing up represent the object instances of a class. The solid arrows
show the built-in contains relation. This relation represents objects contained in other objects. This relation
has a pre-defined semantic meaning, which is discussed in section 6.4.4.

The objects with the dotted arrows pointing up represent the object instances of a class. The solid arrows
show the built-in contains relation. This relation represents objects contained in other objects. This relation
has a pre-defined semantic meaning, which is discussed in section 6.4.4.

Figure 6-7 shows the Brahms model source code for the LM and SEQBay objects. Both the LM and
SEQBay objects are instances of the class BaseClass. Besides representing the corresponding artifacts on
the Apollo 12 mission, the source code also specifies the initial location of these objects within the
Geography Model (see section 6.4). Both objects are located in the SEQBayArea area. Furthermore, the
objects declare the attributes with which we can describe the different aspects of these objects. Although we
could describe any number of aspects of an object, such as the color, height, et cetera, we only declare
those attributes that are relevant. To model the fact that the astronauts inspect the LM and the SEQ Bay’s
exterior appearance after the landing, we declare the attribute exteriorAppearance as a type symbol
attribute. Using this attribute we can represent the state of the exterior of these objects. Both the LM and the
SEQBay objects have an initial fact describing the state of their exterior appearance after the landing on the
moon as an initial fact for the simulation, e.g.

(the exteriorAppearance of current = SEQBayExteriorLooksGood).

The status of the door of the SEQBay is modeled with the door attribute of type symbol that can have a
value of closed or open. The door is in the initial state (i.e. an initial fact) of being closed, e.g. (the door of
current = closed). This represents the door of the SEQ Bay being closed at the start of the ALSEP offload.
Next, we model the objects that are located within the LM and SEQ Bay. This is represented with the
contains relation (see Figure 6-6). This relation is declared in the BaseClass class, and inherited by the LM

113

and SEQBay objects. The fact that the SEQBay is located on the outside of the LM is represented as an
initial fact in the LM object, i.e.

(current contains SEQBay).

The object LM represents the Apollo 12 Lunar Module, named Intrepid. This is the Lunar Module in which
the astronauts landed in Surveyor cater. For this model the only relevant object that is part of the LM and
that is relevant for the ALSEP Offload is the SEQBay, positioned on the outside of the LM. The SEQBay
contains a number of artifacts that are relevant during the ALSEP offload activity. These artifacts are also
modeled as Brahms objects in the model (see Figure 6-7 and Figure 6-8).

Figure 6-7. Apollo 12 LM and SEQ Bay Brahms objects

First, there are the LanyardRibbon objects. These objects are used to open the SEQBay door
(SEQBayDoorLanyardRibbons) and lower the ALSEP packages (Pkg1LanyardRibbons and
Pkg2LanyardRibbons), respectively. The lanyard ribbons are rope-like artifacts the astronauts pull on to
open the door and lower the packages. The two main objects are the ALSEP packages, AlsepPkg1 and
AlsepPkg2. These are the packages the astronauts have to lower from the SEQ Bay and position on to the
lunar surface. The SEQ Bay also contains booms (SEQBayBooms). These artifacts are rail extension
structures at the top of the SEQ Bay. When the astronaut pulls on the package lanyard ribbons, the ALSEP
package comes out attached to the booms. The packages are automatically released from the booms, after
which the astronaut slowly lowers them to the lunar surface by releasing the tension on the lanyard ribbons.
The last artifact of interest in the SEQ Bay is the OffloadChecklistDecal object. This is the decal that is
shown in Figure 6-2, and is a decal that shows the activities and their order for offloading the ALSEP. It is
there as a reminder for the astronauts.

Figure 6-8 shows the objects mentioned above, as well as the objects that are contained in each of them.
One last interesting note to make is that of the pippin objects. Pippins were used to fasten objects to the
ALSEP packages and other artifacts. The HTC (Hand Tool Carrier) object is fastened on AlsepPkg2 with
five pippins. The fact that the pippins fasten the HTC is modeled by having them be contained in both the
AlsepPkg2 object and in the HTC object. Removing the HTC from AlsepPkg2 means to first “remove” the
pippin objects from both the HTC and the AlsepPkg2 objects, before the HTC object can be removed from
the AlsepPkg2 object.

// Apollo 12 objects
object LM instanceof BaseClass {
 display: “Intrepid”;
 location: SEQBayArea;
 attributes:
 public symbol exteriorAppearance;
 initial_facts:
 (the exteriorAppearance of current = LmExteriorLooksGood);
 (current contains SEQBay);
}

object SEQBay instanceof BaseClass {
 location: SEQBayArea;
 attributes:
 public symbol door;
 public symbol exteriorAppearance;
 initial_facts:
 (the exteriorAppearance of current = SEQBayExteriorLooksGood);
 (the door of current = closed);
 (current contains AlsepPkg1);
 (current contains AlsepPkg2);
 (current contains OffloadChecklistDecal);
 (current contains SEQBayDoorLanyardRibbons);
 (current contains Pkg1LanyardRibbons);
 (current contains Pkg2LanyardRibbons);
 (current contains SEQBayBooms);
}

114

Figure 6-8. Apollo 12 contained artifacts

Now that the agents and artifacts are represented, the next section describes the geography model in which
the agents and artifacts are located during the simulation.

6.4 THE GEOGRAPHY MODEL

In Brahms we model geographical locations using two concepts, area-definitions and areas. Area-definitions
are user-defined types of areas. Areas are instances of area-definitions. Thus an area is an instance of a
specific location in the real world that is being modeled. Furthermore, areas can be part-of other areas. With
this representation scheme we can represent any location at any level of detail.

For the Apollo 12 ALSEP Offload activity, the following locations are important; Earth, the Manned-Space
Center (MSC), the Moon, the Apollo 12 landing-site (“Surveyor Crater”), the area where the SEQ Bay is
located, the ALSEP deployment area, an area away from the SEQ Bay to place artifacts after offloading,

// Apollo 12 objects
object SEQBayDoorLanyardRibbons instanceof LanyardRibbons { }

object Pkg1LanyardRibbons instanceof LanyardRibbons { }

object Pkg2LanyardRibbons instanceof LanyardRibbons { }

object AlsepPkg1 instanceof AlsepPackage {
 initial_facts:
 //carries objects
 (current contains DRT);
 (current contains FTT);
 (current contains UHT1);
 (current contains UHT2);
}

object AlsepPkg2 instanceof AlsepPackage {
 initial_facts:
 //carries objects
 (current contains PipPin1);
 (current contains PipPin2);
 (current contains PipPin3);
 (current contains PipPin4);
 (current contains PipPin5);
 (current contains HTC);
}

object HTC instanceof Tool {
 initial_facts:
 //carries objects
 (current contains PipPin1);
 (current contains PipPin2);
 (current contains PipPin3);
 (current contains PipPin4);
 (current contains PipPin5);
}

object PipPin1 instanceof PipPin { }
object PipPin2 instanceof PipPin { }
object PipPin3 instanceof PipPin { }
object PipPin4 instanceof PipPin { }
object PipPin5 instanceof PipPin { }

object DRT instanceof Tool { } //Dome Removal Tool

object FTT instanceof Tool { } //Fuel Transfer Tool

object UHT1 instanceof Tool { } //Universal Handling Tool

object UHT2 instanceof Tool { }

object OffloadChecklistDecal instanceof BaseClass { }

115

and last, the lunar orbit and the Command Module (“Yankee Clipper”). Figure 6-9 shows the geography
model design.

Figure 6-9. Apollo Geography Model design

Figure 6-10 shows the Brahms source code of the area definitions (areadef) and area objects (area). The
area definition types used to represent the area-instances are World, City and Building.

Figure 6-10. Geography Model Brahms source code

areadef World { }
areadef City { }
areadef Building { }

area ApolloGeography instanceof World { }

// back on Earth!
area PlanetEarth instanceof City partof ApolloGeography { }
area MissionControlCenter instanceof Building partof PlanetEarth { }

// on the Moon!!
area Moon instanceof City partof ApolloGeography { }
area LunarOrbit instanceof City partof ApolloGeography { }
area SEQBayArea instanceof Building partof Moon { }
area AwayFromTheSEQBayArea instanceof Building partof Moon { }
area AlsepDeploymentArea instanceof Building partof Moon { }

// Apollo 12 Geography
area CommandModule instanceof Building partof LunarOrbit {
 display: "Yankee Clipper";
}
area LandingSite instanceof Building partof Moon {
 display: "Surveyor Crater";
}

116

It does not seem logical to give the area-definitions the names “World”, “City”, and “Building,” and indeed it is
not. The reason for this is the limitation of the current Brahms simulation engine33. The current engine only
accepts three types of areas, namely World, City and Building. Also, in the current engine there can only be
one world-area. This limitation stems from the fact that our initial designed use of Brahms was for work
practice models for the type of work that is performed within buildings, such as the more traditional office-
work. This creates an obvious limitation in our representational needs for this extra-terrestrial work domain.
First, the work happens in two different worlds, namely on Earth and on the Moon. We therefore would like
to create two world-areas in our model. However, because of the current limitation of the engine we need to
create the Earth and the Moon as type city-areas, being part of one world. We therefore create one world-
area called ApolloGeography. This area represents the total “world” for our simulation. An area of type
World can contain only areas of type City, therefore the Earth and Moon are areas of type City. Now we
have our two planets—Earth and Moon—represented as cities. Secondly, the work on the Moon does not
happen within buildings. However, we can only represent areas within a city-area as a type Building area.
Thus, the Moon, being of type City, can only have areas of type Building located within it. We therefore
represent the locations in which the astronauts perform their work as building-areas. A third “city” is created
namely the orbit of the Command Module around the Moon. Since we are not concerned about the location
of the Command Module with respect to the Moon and the Earth, we represent the orbit as a city-area within
our world. The reason for this is that the Command Module Pilot “lives” within this area. It is therefore easier
to locate the Command Module Pilot within his “building” location.

The geographical areas are hierarchically represented as instances of Buildings, which are part of Cities,
which in turn are part of the World. This leads to the Compiled Geography Model as represented in Figure
6-1134.

Figure 6-11. Apollo 12 ALSEP compiled Geography Model

33 We have re-implementing the engine in Java.
34 Figure 6-11 is a part screen capture from the Brahms Builder application.

117

6.4.1 Init ial locat ions

Each agent and object has an initial location in one of the lowest-level areas, (CommandModule,
AwayFromTheSEQBayArea, AlsepDeploymentArea, LandingSite, SEQBayArea, or MissionControlCenter).
Initial locations are locations in which an agent or object is placed during the initialization phase of the
simulation. This way each agent and object starts out being located in a geographical location (an area). To
define an initial location for an agent the modeler uses the location attribute at the group or individual agent
level. Figure 6-12 shows the initial location for each agent.

Figure 6-12. Agent initial location

6.4.2 Movement

Agents and objects can move from one area to another. Moving from one location to another removes the
agent from the starting location and moves the agent to the new location. This is accomplished by having
the agent perform a move-type activity. The time the activity is active (i.e. the activity duration-time)
determines how long it takes the agent to move from location A to location B. Figure 6-13 shows an
example of a move-activity.

Figure 6-13. Move activity source code

The move-activity Moving starts in the area the agent is located at the moment the move-activity gets
activated, and ends at the new area location given by the loc parameter. When both agents, PeteConrad
and AlBean, perform the activity Moving(SEQBayArea, 0, 5) they both move independently from the
LandingSite area (Surveyor Crater), their initial location, to the SEQBayArea in 5 seconds, as shown in
Figure 6-14.

move Moving(Building loc, int pri, int dur) {
priority: pri;
max_duration: dur;
resources: MoveActivity;
location: loc;

}

agent PeteConrad memberof Commander {
 location: LandingSite;
…
}
agent AlBean memberof LunarModulePilot {
 location: LandingSite;
…
}
agent DickGordon memberof CommandModulePilot {
 location: CommandModule;
…
}
agent EdGibson memberof CapCom {
 location: MissionControlCenter;
…
}

118

Figure 6-14. Pete Conrad and Al Bean moving to the SEQBayArea

Figure 6-15 gives a from-above view of the LM landing site and the ALSEP Offload Area of activity (the
SEQBayArea in the model) from the Apollo 14 Press Kit (NASA 1971).

Figure 6-15. Apollo 14 Landing site and ALSEP Offload area of activity

6.4.3 Detec t ing agents and objec ts

As both agents arrive at their new location area they will immediately detect facts about the location of other
agents and objects that are also in the area they arrive at. The simulation engine automatically creates
beliefs for the agent from the facts about other objects and agents that are in the same location. The agents
already in that location will get the belief that the agent that arrived is now also in the location. This way,
agents will always notice other agents and objects that are in the location the same area.

119

Figure 6-16. Pete Conrad's location beliefs

Figure 6-16 shows the beliefs and facts of the PeteConrad agent in the Brahms Builder application. By
opening a simulation history database35 the modeler can investigate what happened during a specific
simulation run. Figure 6-16 shows all the beliefs the agent PeteConrad received and the facts it created
during the specific simulation run. The columns show the time the agent created the belief or fact, the type
(belief/fact) and how it was created (Created by). The (red) rectangle shows the location beliefs agent
PeteConrad received at time one second into the simulation, created by the simulation engine (Created By:
ENGINE). The agent received these beliefs due to the move activity Moving that moved the agent from the
LandingSite area to the SEQBayArea. As you can see in Figure 6-16, at the moment the PeteConrad agent
arrived at the SEQBayArea location it noticed (i.e. received the beliefs) that Al Bean, his EMU space suit
and cuff checklist, the LM and the SEQBay, and he himself are all in the SEQBayArea location. Figure 6-16
also shows other beliefs and facts of the PeteConrad agent. The Created By column shows who or what
created the belief/fact for the agent. ENGINE means that the simulation engine created the belief/fact,
CONSEQUENCE shows that a consequence in a workframe or thoughtframe of the agent created the
belief/fact. DETECTABLE shows a detectable in a workframe created the belief. The name of an agent or
object in the column shows that that agent or object communicated the belief to the agent.

6.4.4 Containment relat ion

During this case study I ran into a Brahms language limitation. To model the movement of agents and
objects correctly I had to add the notion of containment to the language (see Figure 6-6). An agent or object
can “carry” other agents and objects. Consequently, when an agent or object moves locations all the objects
or agents that are “carried” by the moving agent or object should also move to the new location.

This is best explained with a simple example from the domain. As shown by the contains-relation in the
object model in Figure 6-6, the lunar surface astronauts carry their EMU suit and their cuff checklist. As the
astronauts move from location to location we want these carried objects to move with them, without having
to specify this moving behavior separately for these objects. Instead, to accomplish this automatically we
specified a built-in semantic relation called contains.

35 a Microsoft® Access database

120

When the simulation engine executes a move-activity for an agent (or object) it first checks which objects or
agents the moving agent contains. The simulation engine checks this by finding existing facts of the form:

Fact: ([moving agent-or-object] contains [contained agent-or-object])

For every such fact the contained agent-or-object is moved as well. To simulate that an agent or object is no
longer containing another object or agent the above containment-fact needs to be negated:

Fact: ([moving agent-or-object] contains [contained agent-or-object] is false)

Such a negation undoes the containment, and the previously contained agent or object will not be moved in
case the agent or object moves.

Following is a small example of the use of the containment relation in the Apollo 12 model. Consider the
following scenario; while the LMP agent is offloading an ALSEP package from the SEQ Bay, the CDR agent
needs to move the first ALSEP package (AlsepPkg1) out of the way, so that the LMP can put the second
ALSEP package down. Figure 6-17 shows the source code of the activity.

Figure 6-17. Moving contained object source code

In step 1, the agent “picks up” the object AlsepPkg1. This is modeled by creating a contains-relation fact
(fc:100). A belief is also created for the agent (bc:100), because it is obvious that the agent knows he picked
up the object. Next, in step 2, he performs a move-activity that moves both him and the contained objects to
the AwayFromTheSEQBayArea area. Then, in step 3, the agent “sets down” the AlsepPkg1 object. This is
modeled by negating the previously created containment fact and belief. Last, step 4 moves the agent, and
its current contained objects, back to the SEQBayArea area. Consequently, the AlsepPkg1 object remains
in the AwayFromTheSEQBayArea area.

Figure 6-18 shows the simulation output of the execution of the MovingPkg1OutOfTheWay workframe
described above36. The focus in the picture is on the area within the (red) rectangle. The picture shows the
activity time-line of the CDR (agent PeteConrad) and that of the ALSEP package (AlsepPkg1) being moved.
It can be seen that agent PeteConrad is performing step 2 and step 4 from Figure 6-17. The two rectangle
boxes with the text “mv:”37 and “mv: Move” in it, show the duration of the two move activities. It can be seen
that after step 2 (rectangle with text “mv:”) the location of both the agent PeteConrad and the object
AlsepPkg1 has changed from the SEQBayArea area to the AwayFromTheSEQBayArea area38. After agent
PeteConrad has performed step 4 (rectangle with text “mv: Move”), only agent PeteConrad (and its
contained objects not shown in Figure 6-18) has moved back to the SEQBayArea area. Consequently, due
to step 1 and step 3 (the creation and negation of the containment fact), not shown in the figure but
executed nonetheless, object AlsepPkg1 has been moved out of the way.

36 Figure 6-18 is a screen dump of the AgentViewer tool that shows the result of a simulation. This interface is described in section 6.9.5,
as well as the loose insert that is provided.
37 Due to a lack of space in the rectangle, the name of the move activity “MovePkgOutOfTheWay” is not shown.
38 Figure 6-18 only shows the “Away” text in the agent location bar, again, because of space limitation for the complete text string.

1. conclude((current contains AlsepPkg1), bc:100, fc:100);

2. MovePkgOutofTheWay(AlsepPkg1, AwayFromTheSEQBayArea, 100, 5);

3. conclude((current contains AlsepPkg1 is false), bc:100, fc:100);

4. Move(SEQBayArea, 10, 5);

121

Figure 6-18. Moving contained object simulation

6.5 THE ACTIVITY MODEL

In this section, I describe the ALSEP Offload activities that are performed on the lunar surface, and I
describe the Brahms model of the Apollo 12 ALSEP Offload. This model represents a part of the work
practice of the Apollo 12 lunar surface astronauts as they performed the ALSEP Offload activity. As shown
in section 6.2, there are four people relevant to the Apollo 12 ALSEP Offload; the lunar surface astronauts;
Pete Conrad the Commander (CRD), Al Bean the Lunar Module Pilot (LMP), as well as Ed Gibson the
Capsule Communicator (CapCom), and Dick Gordon the Command Module Pilot (CMP).

There are three separate areas where these four people are located during the Apollo ALSEP Offload
activity (described in section 6.4). The CapCom sits in the Mission Control Center (MCC) located in the
Manned Spaceflight Center in Houston, Texas39. His main function is to listen to and communicate directly
over the voice-loop with the astronauts. The CDR and LMP are the astronauts on the lunar surface and are
located at or near the area of the SEQ Bay, which is located on the backside of the Lunar Module (LM)
“Intrepid”. The CMP is orbiting around the moon in the Command Module (CM) “Yankee Clipper.” The main
characters in the ALSEP Offload activity are CDR Pete Conrad, and the LMP Al Bean. Their work activities
were planned and trained according to the ALSEP Offload checklist (see Figure 6-2).

Figure 6-19 shows that although the sequence of removing ALSEP packages during the mission was
planned, there were more activities performed in practice. After the LMP identified that it is time to start the
ALSEP Offload, he walks to the SEQ Bay and picks up the SEQ Bay door lanyard from outside of the SEQ
Bay, and uses it to pull the SEQ Bay door open. The CDR is watching the LMP opening the door, and is not
as is suggested in the plan “doing-nothing”. Once the SEQ Bay door is open, the CDR grabs the lanyard for
lowering the first ALSEP package. He walks back from the SEQ Bay with the lanyard in his hand.
Meanwhile, the LMP is warm and decides to lower the temperature in his EMU suit (Extra-vehicular Mobile
Unit suit, i.e. his space suit). The CDR pulls the lanyard to move the first ALSEP package from the SEQ Bay
and lowers it to the ground. While the CDR is performing this activity, the LMP is watching him. When the
LMP sees a nice reflection in the CDR’s helmet visor he decides to take a couple of photographs of the
CDR. After the CDR has lowered the first ALSEP package to the surface, it is the LMP’s turn to get the
second ALSEP package out of the SEQ Bay (compare Figure 6-2 and Figure 6-19). The LMP performs the
same activities as the CDR to lower the second ALSEP Package to the lunar surface. While lowering the
second ALSEP package, it is the CDR who is watching the LMP. However, when the LMP is lowering the

39 During the Apollo days the NASA center in Houston was called the Manned Spaceflight Center (MSC). Today it is referred to as
Johnson Space Center (JSC).

122

package the CDR notices that the first ALSEP package is in the way, and mentions that he will take the first
package and carry it away from the SEQ Bay area. Once he has done that, and is back at the SEQ Bay, he
will take three photographs. One photograph of the first ALSEP package as he placed it away from the SEQ
Bay, and two more photographs of the LMP lowering the second ALSEP package from the SEQ Bay.
During these activities of the two astronauts on the lunar surface the CapCom is listening to the
conversation of the astronauts.

CDR LMP

Watching LMP Open SEQ Bay Door

Remove PKG 1 Watching CDR

Change EMU Suit Cooling

Taking Photographs

Watching LMP Remove PKG 2
Moving PKG 1 Out Of The Way

Taking Photographs

Figure 6-19. Activities in practice

There were activities that the astronauts performed that were not planned or trained. This has to do with the
nature of what happens in practice, and is precisely what we want to capture in the model, since it defines
how the work actually happened, i.e. the work in practice.

6.5.1 Data sources

I have identified the similarities and differences between the planned activities and the real performed
activities during the mission by studying the transcribed data of the communications between the CDR, LMP
and CapCom from the Apollo Lunar Surface Journal (Jones 1997). These communication transcriptions
have been my major source of data for the Apollo 12 mission. Another source of information has been the
Apollo 12 Press Kit (NASA 1969) and the Apollo 12 NASA Mission Reports (Godwin 1999). Unfortunately,
there is no video data for the Apollo 12 ALSEP Offload available. This is due to the fact that an unforeseen
problem with the TV camera lens and the bright sun on the Moon left the TV camera incapacitated from the
beginning of the first EVA, right before the ALSEP Offload. Nevertheless, an accurate account of what
happened during the ALSEP Offload can be derived from the second by second verbal communication
between the astronauts, in combination with the mission plans. Also, there is video data available from the
Apollo 14 ALSEP Offload activities. Although the specifics are somewhat different, the opening of the SEQ
Bay door and lowering the ALSEP packages are similar, and the video is therefore a good source for filling
in the gaps found in the transcribed communication data. Furthermore, the mission photographs are
available as well, and provide some extra visual data.

6.5.2 The Apollo 12 ALSEP offload model

To reiterate, the goal of this modeling experiment is to describe the work activities of the lunar surface
astronauts of the Apollo 12 mission as they are offloading the two ALSEP packages from the SEQ Bay. The
hypothesis is that with Brahms we can describe (model and simulate) the work practice of these Apollo
astronauts.

The data paints an accurate picture of the two lunar surface astronauts communicating. However, the data
does not provide an accurate description of the activities of the LMP and CDR. Although the data provides
some of the communication from the CapCom and the CMP, there is no detail data of the activities of the
CapCom and the CMP. However, I will show that the model proofs the hypothesis, by accurately modeling
and simulating the work practice of the Apollo 12 lunar surface astronauts during the ALSEP Offload, while
including, where possible, some of the activities of the CapCom and the CMP.

123

The model describes the activities listed in Figure 6-2: Open SEQ Bay Door, Remove PKG-1, Remove
PKG-2, Deploy Hand Tool Carrier, Unstow Cask Tools, Stow Booms, Unstow Universal Handling Tools,
and Close SEQ Bay Door. The activity start- and end-times are computed from the Apollo Lunar Surface
Journal (see Table 6-2) (Jones 1997).

Table 6-2. ALSEP Offload activity timetable

Activity Performer GET Begin Time GET End Time Total Time
1. Open SEQ Bay Door LMP 116:31:34 116:32:22 0:00:48

2. Remove PKG-1 CDR 116:32:22 116:33:53 0:01:31

3. Remove PKG-2 LMP 116:33:53 116:34:44 0:00:51

4. Deploy Hand Tool Carrier LMP 116:34:44 116:38:46 0:04:02

5. Unstow Cask Tools LMP 116:34:44 116:36:25 0:01:41

6. Stow Booms CDR 116:34:44 116:36:25 0:01:41

7. Unstow UHT CDR 116:34:44 116:36:25 0:01:41

8. Close SEQ Bay Door CDR 116:36:25 116:36:49 0:00:24

Figure 6-20 shows the activities Table 6-2 in the Brahms model. The model is viewed within a tree-view.
Figure 6-20 shows the AlsepOffload Group in the Groups folder of the Apollo 12 Model. The parent groups
of a group are positioned under the Parent Groups folder. The parent group of the AlsepOffload group is the
LunarSurfaceAstronaut group (see also Figure 6-3), which means that the AlsepOffload group inherits all
elements from that group. The subgroups of a group are positioned under the Member Groups folder. The
subgroups are the Commander and LunarModulePilot groups, according to the design of the Agent Model
(see Figure 6-3). The PeteConrad agent is a member of the Commander group, while the AlBean agent is a
member of the LunarModulePilot group. Consequently, both the PeteConrad and AlBean agent inherit all
the model elements defined in the AlsepOffload group, as well as all model elements inherited by the
AlsepOffload group from its parent groups. This means that both agents can theoretically perform all the
ALSEP offload activities. In reality this was also the case, since both astronauts trained the ALSEP offload
activities together on Earth many times before the mission. If, for some reason, one astronaut would not be
able to perform his planned activity, the other could perform it for him. This was shown in later missions,
when some activities where performed by the astronaut who was not planned to perform the activity (e.g.
during the ALSEP Offload on the Apollo 15 mission).

124

Figure 6-20. The Brahms ALSEP Offload group and activities model

The ALSEP offload activities from Table 6-2 are modeled as sub-activities of the AlsepOffload composite-
activity, and can be seen in Figure 6-20 under the Activities Folder of the AlsepOffloadGroup. In the next
sections, I will describe these activities in more detail, and will explain the Brahms model accordingly.

6.5.3 The open SEQ Bay door ac t ivity

The ALSEP Offload starts at 116 hours 31 minutes and 34 seconds ground-elapsed time (GET)40, with the
LMP announcing that they’re starting the offload of the ALSEP (see Table 6-2 and Figure 6-21). The next
activity is for the LMP to open the SEQ Bay door. In this section, I describe how I modeled this activity in
Brahms, based on the available Lunar Surface Journal data (Jones 1997). Figure 6-21 is the transcription
from the actual voice loop communication between the CDR and the LMP during the opening of the SEQ
Bay door (Jones 1997, Apollo 12 ALSEP Off-load).

116:31:34 Bean: Okay. And we’ll off-load the ALSEP. (Garbled).

116:31:39 Conrad: Nope. (Pause)

116:31:42 Bean: We ought to be able to move out with this thing.

116:31:44 Conrad: Okay.

116:31:48 Bean: The experiment bay looks real good.

116:31:49 Conrad: Yup.

116:31:50 Bean: The LM exterior looks beautiful the whole way around. Real good shape. Not a lot that doesn’t look the way it
did the day we launched it.

40 The ground-elapsed time (GET) was the time clock in Houston that was started at the moment of launch.

125

116:32:02 Conrad: (Possibly pulling a lanyard to open the SEQ bay doors) Light one. (Pause)

116:32:12 Bean: Okay. Here we go, Pete. Ohhhhh, up they go, babes. One ALSEP. (Pause)

[They have raised the doors that cover the cavity where the ALSEP packages are stowed.]

116:32:22 Conrad: There it is.

Figure 6-21. Apollo 12 LSJ: ALSEP Offload transcription (Jones 1997) (with permission)

There are three high-level (sub)activities that one can identify in this OpenSEQBay activity. First, there is a
communication to MSC in Houston that they are ready to offload the ALSEP. This is the communication
starting at 116:31:34. The issue to solve for the modeler is when this activity ends and the next activity
begins. From the CDR communication at 116:32:02 we can infer that this is the time that the LMP actually
opens the SEQ Bay door by pulling at the SEQ Bay door lanyard ribbons. So, we could start the activity of
raising the SEQ Bay door around that time. However, from the video of the Apollo 14 ALSEP Offload it can
be shown that before the LMP can pull the lanyard ribbons he has to grab them from the SEQ Bay, walk
back until the ribbons are tight, and only then pull the ribbons to raise the SEQ Bay door. These activities
have to happen before 116:32:02.

Table 6-3 shows the activities and sub-activities of the Open SEQ Bay Door activity for both LMP and CDR,
mapped onto the communication transcribed in the Apollo LSJ. The actual names of the activities and sub-
activities are more or less arbitrary, and conceptualize the modeler’s interpretation of the observations of the
Apollo 12 communication data and the Apollo 14 video data. However, these data and observations are
strong evidence that these are the actual activities that are performed during the OpenSEQBay activity.

126

Table 6-3. Open SEQ Bay door activity

LMP CDR

Communicate Ready To Offload Watching Opening SEQ Bay Door
Activity Communication Communication Activity

Communicate
Open Door

116:31:34 Bean: Okay. And
we’ll off-load the ALSEP.
(Garbled).

 Watch Opening
SEQ Bay Door

Inspect SEQ
Bay

 116:31:39 Conrad: Nope.
(Pause)

116:31:42 Bean: We ought to
be able to move out with this
thing.

 116:31:44 Conrad: Okay.

116:31:48 Bean: The
experiment bay looks real
good.

 116:31:49 Conrad: Yup.
Raising SEQ Bay Door

Activity Communication

Grab Lanyard
Ribbons

116:31:50 Bean: The LM
exterior looks beautiful the
whole way around. Real
good shape. Not a lot that
doesn’t look the way it did
the day we launched it.

Walk Back To
Pull Ribbons

Tight

Pull Lanyard
Ribbons

116:32:02 Conrad:
(Possibly pulling a lanyard
to open the SEQ bay
doors) Light one. (Pause)

116:32:12 Bean: Okay. Here
we go, Pete. Ohhhhh, up
they go, babes. One ALSEP.
(Pause)

 116:32:22 Conrad: There it
is.

127

6.6 THE BEHAVIORAL MODEL

The activities from Table 6-3 are implemented in the Brahms model as the OpenSEQBayDoor composite-
activity. Figure 6-22 shows this activity, its sub-activities and workframes.

Figure 6-22. The OpenSEQ BayDoor composite-activity, sub-activities, and workframes

Each (sub)activity is “executed” by a workframe, which means that when an agent executes the workframe
the activity is performed within the context of that workframe. As the first activity during the ALSEP offload,
the CDR and LMP start walking to the area of the SEQ Bay. Walking to the SEQ Bay area to start opening
the SEQ Bay door is modeled by the Move activity, seen at the top of Figure 6-22. Now that we defined the
sub-activities and workframes of the OpenSeqBayDoor activity the question is; how do the CDR and LMP
agents start this activity during the simulation? Figure 6-23 shows the workframes of the AlsepOffload
activity that both agents can execute to offload the ALSEP.

The first workframe to fire—the highest-level workframe, but lowest in Figure 6-23—is the OffloadingAlsep
workframe, which executes the AlsepOffload activity. Executing the AlsepOffload activity enables all the
workframes, shown in Figure 6-22, it to potentially fire for the agent. Each of these workframes will execute
lower-level activities, which are subsumed by the higher-level AlsepOffload activity.

Figure 6-23. The AlsepOffload workframes

128

We can represent the relationship between workframes executing activities, containing other workframes
that execute activities, etc, in a workframe-activitiy subsumption hierachy as shown in Figure 6-24.

WF: OffloadingAlsep

ACT: AlsepOffload

WF: DeployingHTC WF: MovingToSEQBay WF: OpeningSEQBayDoor

ACT: Move ACT: OpenSEQBayDoor

WF:
RemovingAlse

pPkg1

WF: CommunicateReadyToOffload WF: RaisingSEQBayDoor WF: WatchingOpeningSEQBayDoor

z

ACT: CommunicateOpenDoor ACT: InspectSeqBay

ACT: GrabLanyardRibbons ACT: WalkBackToPullRibbonsTight ACT: PullLanyardRibbons

ACT: WatchOpeningSEQBayDoor

Figure 6-24. AlsepOffload workframe-activity subsumption hierarchy

Only one primitive activity can be active at any given time (i.e. at any clock-tick). This means that the order
in which workframes at the same level in the hierarchy fire depends on two things; first, the conditions of the
workframe that are to be matched to the beliefs of the agent, and second, the priority of the activities within
the workframes.

6.6.1 Represent ing the w ork contex t

Figure 6-25 represents the parallel sequential order of the activities of the CDR and LMP from Table 6-3
and Figure 6-22. However, Figure 6-25 does not represent how the CDR and LMP came to do what they
did. The question is not if we can describe the sequential activities of each of the astronauts, but rather,
what makes the astronauts do what they do at each moment in time. What influence does the specific
Apollo 12 situation have on when and how they do things? What influence do they have on each other’s
activity? Are they merely executing the OpenSeqBayDoor plan? Or, are they deciding what to do based on
their personal knowledge of that plan? If so, we can represent the knowledge of the plan for each individual
agent, and be done. This is the traditional knowledge-based systems approach, in which we represent the
knowledge “inside people’s heads” as production rules. However, what makes Al Bean know that he needs
to open the door now, and what makes Pete Conrad know that he has to just watch the commander. What
makes them react?

As much as it has to do with their knowledge of the plan for opening the SEQ Bay door, e.g. the steps that
they have to go through, it is also a function of the situation, i.e. the situation specific context which they are
part of. To start the opening door activity they not only need to know what is the right activity to be
performing at that moment (according to the plan), but they also need to know that they need to go to the
SEQ Bay. To go to the SEQ Bay they need to know where the SEQ Bay is. Once they are at the SEQ Bay,
they can see if the door of the SEQ Bay is already open or not. They need to know that the ALSEP
packages are located inside the SEQ Bay, and where the lanyard ribbons are located, et cetera. All this has
to do with the context of the Apollo 12 mission.

129

Figure 6-25. Open SEQ Bay door activity sequence model

In Brahms, we model context using three different modeling concepts. First, we model the geographical
places at which people perform the work we are interested in (see the section on the Geographical Model,
section 6.4). Second, we model all the objects and artifacts that are important in the work. In the case of
opening the SEQ Bay door, we model the LM, the SEQ Bay, the ALSEP packages, as well as the lanyard
ribbon used to pull open the SEQ Bay door (see the section on the Object Model, section 6.3). Third, we
model the state of the world in terms of facts that can be detected by our agent astronauts. For example,
when the astronauts walk over to the SEQ Bay, they immediately detect the state of the SEQ Bay door; is it
open or closed? They notice the location of all objects in their surroundings. These are the world-facts that
trigger the agents to react in certain ways, given the activity they are currently performing. For example, Al
Bean would not always open the SEQ Bay door when he comes to the SEQ Bay and notices that the door
is closed. He will only do this when he is in the activity of offloading the ALSEP, in particular when his next
activity is to open the door. This is where the plan interacts with the situation specific context.

Why does Pete Conrad watch the LMP? What makes him perform that activity? His plan does not say to
perform that activity (see Figure 6-2). Rather, this activity is a reaction on the LMP’s activity of opening the
door during the ALSEP Offload. It is the collaboration between the two astronauts that makes Pete Conrad
watch his partner. He sees his partner grabbing the lanyard ribbons. He therefore knows what activity his
partner is performing. It is a reaction to the situation and the context, as well as the fact that he is done
performing his previous activity.

Figure 6-25 does not represent this context. The influence the context has on the sequence of the activities
within Figure 6-25 determines the transitions. The interesting parts of Figure 6-25 are the transitions
between the activities. What makes the model go from one state to another? This is what we want to
uncover in the understanding of the work practice of the ALSEP offloading.

6.6.2 A narrat ive descript ion of w hat happens in prac t ice

Following is my interpretation of what happened during the opening of the SEQ Bay door and why the LMP
and CDR do what they do:

When they are ready to offload the ALSEP, they first have to walk over to the SEQ Bay,

Once they arrive at the SEQ Bay, the two astronauts can see the SEQ Bay and can immediately notice that
the door of the SEQ Bay is still closed. Of course, they both know that the SEQ Bay contains the two
ALSEP packages, and since they are in the activity of offloading the packages they first need to open the
door.

130

This triggers them to start the activity of opening the SEQ Bay door, and since the Apollo 12 ALSEP Offload
plan states that the LMP, Al Bean, is to open the SEQ Bay door, he is the one that announces that they will
now start with the ALSEP offload.

Since the LMP is the one who is to perform the activity of opening the SEQ Bay door, he is taking the first
action and the next activity that is performed is the LMP inspecting the SEQ Bay. However, this is not a
planned activity. It seems very likely that this activity is performed based on the astronauts’ knowledge that
mission control is interested in knowing how the SEQ Bay and the LM have withstood the long travel to the
Moon. It is therefore a very important piece of information that the LMP communicates to Mission Control at
this point.

Next, the LMP is ready to start raising the door. To do this he needs to grab the lanyard ribbon with which to
pull open the door of the SEQ Bay. This means he must know where the lanyard ribbon is to pick-up the
ribbon. He then walks back with the ribbon. He needs to tighten the ribbon to have enough leverage to pull
the ribbon. Meanwhile, the CDR is standing close by and is watching the LMP, ready to help in case it is
needed. Even though the offload plan does not specify any activity for the CDR at this moment, it is logical
to infer that the CDR’s objective is to closely watch what is happening just in case something happens. This
is an activity in and of itself. The CDR would not do anything else even though he could. It seems that the
two astronauts always know what high-level activity the other is performing. This means they are always
ready to help each other.

After the SEQ Bay door is all the way open, the LMP lets the lanyard ribbon drop to the lunar surface.

I created this narrative, based on my analysis of the available mission data. Based on this short description
of what is happening and what makes the two astronauts do what they do, we can list those elements in the
context that are most important to include in the model of work practice of the astronauts.

• The SEQ Bay area location near the LM where this all takes place.

• The SEQ Bay and the fact that the SEQ Bay is part of the LM located in the SEQ Bay area location.

• The fact that the exterior of the LM and SEQ Bay are in good condition.

• The two ALSEP packages and the fact that they are located inside the SEQ Bay.

• The door of the SEQ Bay, and that it is closed.

• The lanyard ribbon with which to open the SEQ Bay door.

• The fact that both astronauts detect each other’s activity.

• The fact that the LMP needs to carry the lanyard ribbon, and thus must know where this ribbon is
located for him to pick it up.

• The fact that after the LMP has completed the activity of opening the door, the SEQ Bay door is open.

• The fact that after the SEQ Bay door is open the lanyard ribbon’s location is the lunar surface, because
the LMP lets it fall to the surface.

• The fact that both astronauts are noticing all these events and become aware of them, and react to
them appropriately.

The challenge is to include these independent context elements into the model. Being able to include these
elements in the model is what makes a Brahms model different from the sequential model of Figure 6-25. A
sequential model, such as Figure 6-25, can only be executed in the pre-specified order, and does not allow
for variations based on context. However, work practice is not the rigid execution of a pre-specified activity
sequence. In practice, the sequence of activities depends on the situation. Is the door already open? Are the

131

packages inside the SEQ Bay or are they already on the ground, et cetera? In the next section, I will
describe how these contextual and situational elements are included in the model.

6.6.3 Execut ing the OffloadingAlsep w ork frame

In this section, I describe the execution of the OffloadingAlsep workframe (Figure 6-26). The
OffloadingAlsep workframe is the highest-level workframe (see Figure 6-23) in the AlsepOffload group (see
Figure 6-24). Both LunarSurfaceAstronaut agents (LMP and CDR) inherit this workframe, and
independently, can execute this workframe in order to start the ALSEP offload.

Figure 6-26. AlsepOffloading workframe

6.6.3.1 Variable bindings and preconditions

In order for the agents to execute a workframe (or thoughtframe) all preconditions of the workframe must
evaluate to true. The Brahms scheduler will test each precondition and match the precondition to the beliefs
of the agent. If there is a belief that matches the precondition, the precondition evaluates to true. The
AlsepOffloading workframe in Figure 6-26 uses three variables within the preconditions to bind to objects
and agents in the model. The first variable, vlcoms (i.e. voice-loop communicators), is used to match to the
list of all agents (a “collectall” variable) who are members of the group LmVoiceLoop (see the
“communicationType” precondition), except for the agent itself (see the “not” precondition). This variable is
passed as a parameter to the AlsepOffload activity, where it is used to communicate to all the agents who
are listening to the voice loop (see section 6.7). The second variable, pagt, is used to bind to the partner of
the agent in the “partner” precondition. In case the agent executing the workframe (i.e. current) is the CDR,
pagt is bound to the LMP agent (i.e. AlBean). In case the agent executing the workframe is the LMP, pagt is
bound to the CDR agent (i.e. PeteConrad). This is because the LMP agent, AlBean, has an initial-belief

(the partner of current = PeteConrad),

workframe OffloadingAlsep {
 repeat: false;
 variables:
 collectall(LmVoiceLoop) vlcoms;
 forone(LunarSurfaceAstronaut) pagt;
 forone(EMUSuit) emusuit;

 detectables:
 detectable DetectPartnerActivity {
 when (whenever)
 detect((the currentActivity of pagt = the currentActivity of pagt));
 }

 detectable DetectCoolingLevel {
 when (whenever)
 detect((the coolingLevel of emusuit = value));
 }

 detectable NoticeAlsepPkg1LocationChange {
 when (whenever)
 detect((the objectLocation of AlsepPkg1 = anylocation));
 }

 detectable NoticeAlsepPkg2LocationChange {
 when (whenever)
 detect((the objectLocation of AlsepPkg2 = anylocation));
 }

 when (knownval(the currentConceptualActivity of current = AlsepOffload) and
 not(the name of current = the name of vlcoms) and
 knownval(the communicationType of vlcoms = LmVoiceLoop) and
 knownval(the partner of current = pagt) and
 knownval(current contains emusuit))
 do {
 AlsepOffload(vlcoms, pagt);
 }
}

132

while the CDR agent, PeteConrad, has an initial-belief

(the partner of current = AlBean).

For each of these two agents the precondition matches, and the pagt variable gets bound to the matched
agent. The third variable, emusuit, is bound to the EMUSuit object of the current agent in the “contains”
precondition.

All the above-mentioned preconditions are not used to actually guard the workframe from firing. These are
all preconditions that are used to bind the variables to the appropriate objects and agents. The only real
guard for the workframe is the “currentConceptualActivity” precondition. Not until the agent has the belief
that his current (conceptual) activity is to offload the ALSEP, will this workframe fire. This shows that writing
workframe preconditions has all the similar precondition control characteristics, such as the ordering, as
writing preconditions for production rules in traditional expert systems (Clancey 1983), (Clancey 1988) and
(Clancey 1992).

6.6.3.2 Detectables

The workframe in Figure 6-26 contains four detectables that are active as long as the agent is executing the
AlsepOffload activity within the workframe (this is due to the “whenever” condition in each detectable). All
four detectables have a “continue” action part (this is the default action of a detectable). This means that all
the detectables are defined in the workframe so that the agent executing the workframe will detect any of
the facts that match the detect-conditions, while performing the AlsepOffload activity without disrupting the
activity itself. This makes it possible for the agent to notice certain facts in the world and react to them,
because the facts turn into beliefs for the agent. This allows for the following reactive behavior on the part of
the agent:

• The DetectPartnerActivity detectable makes sure that during the ALSEP offload activity the CDR
and LMP are always aware of the activity their partner is performing. This enables the agent to
react to their partner’s activity. There are multiple reasons for modeling that the astronauts on the
lunar surface are always aware of this. The first one is that their activities are well choreographed
and trained, and the second reason is that it is part of the NASA policy that there is a “buddy
system” for EVA work performed by astronauts. This “buddy system” is a safety precaution. This
way there is always someone who can help out. This means that the two lunar surface astronauts
where very much in tune with what their partner was doing, even if they would be working on their
own activity.

• The DetectCoolingLevel detectable models the fact that both astronauts are always aware of the
cooling-level of their space suit. The fact that the astronauts are wearing their space suit makes this
obvious. This detectable allows the agents to react to the cooling-level, and chance the level of
cooling accordingly.

• The NoticeAlsepPkg1(2)LocationChance detectables speak for themselves. Whenever the location
of either ALSEP package is changed, the agent will notice this, and can react accordingly. This is
used to simulate the fact that when one of the agents lowers the ALSEP package from the SEQ
Bay, both agents will become aware of the fact that the ALSEP package has changed its location
from the SEQ Bay to the SEQ Bay area (i.e. the lunar surface). This belief is used to start/stop the
activities for offloading the actual packages

6.6.3.3 Workframe exectution

Following is a description of how Brahms executes the AlsepOffloading workframe during simulation of both
the AlBean and the PeteConrad agent. The workframe is executed at time t=0 for both agents. This means
that both agents are executing an instance of the workframe (Workframe Instantiation or WFI) at the same
time. I’ll show the WFI for both agents by repeating the workframe from Figure 6-26, but then showing the
bindings of the variables in preconditions, consequences, detectables, and activity parameters. Figure 6-27
and Figure 6-28 show the WFI for the agents AlBean and PeteConrad respectively.

133

Figure 6-27. AlsepOffloafing WFI for agent AlBean

workframe OffloadingAlsep {
 repeat: false;
 variables:
 collectall(LmVoiceLoop) vlcoms; => (PeteConrad, LmComCircuit)
 forone(LunarSurfaceAstronaut) pagt; => PeteConrad
 forone(EMUSuit) emusuit; => BeanEmuSuit

 detectables:
 detectable DetectPartnerActivity {
 when (whenever)
 detect((the currentActivity of PeteConrad = the currentActivity of PeteConrad));
 }

 detectable DetectCoolingLevel {
 when (whenever)
 detect((the coolingLevel of BeanEmuSuit = value));
 }

 detectable NoticeAlsepPkg1LocationChange {
 when (whenever)
 detect((the objectLocation of AlsepPkg1 = anylocation));
 }

 detectable NoticeAlsepPkg2LocationChange {
 when (whenever)
 detect((the objectLocation of AlsepPkg2 = anylocation));
 }

 when (knownval(the currentConceptualActivity of AlBean = AlsepOffload) and
 not(the name of AlBean = the name of (PeteConrad, LmComCircuit)) and
 knownval(the communicationType of (PeteConrad, LmComCircuit) = LmVoiceLoop) and
 knownval(the partner of AlBean = PeteConrad) and
 knownval(AlBean contains BeanEmuSuit))
 do {
 AlsepOffload((PeteConrad, LmComCircuit), PeteConrad);
 }
}

134

Figure 6-28. AlsepOffloafing WFI for agent PeteConrad

The next two sections describe how the CDR and LMP agents are both performing the AlsepOffload
activity, and in doing so collaborating in opening the SEQ Bay door.

6.6.4 Performing the AlsepOffload ac t ivity

After the firing of the OffloadingAlsep workframe both agents execute the AlsepOffload composite activity
(see Figure 6-29). For each agent, the simulation engine changes the agent Activity-Context Tree (ACT)
based on the workframes and thoughtframes in the composite activity that execute. An ACT consists of
WFI’s and the current activity context of the selected workframe41. In this section, I will show how the
simulation engine scheduler schedules the activities for each of the lunar surface astronaut agent. To do
this, I first provide the source code of the workframes of the AlsepOffload composite activity. Next, I will
show the ACT for both the AlBean and the PeteConrad agent for two simulation events (steps). I will show
the change in the ACTs as the beliefs of the agents and the world-facts change over time, due to the
workframe execution and the agent’s reasoning, interaction with other agents/objects and their environment.

41 Only one workframe instantiation can be fired at any time, which means that there is always only one current activity and therefore only
one current activity-context.

workframe OffloadingAlsep {
 repeat: false;
 variables:
 collectall(LmVoiceLoop) vlcoms; => (AlBean, LmComCircuit)
 forone(LunarSurfaceAstronaut) pagt; => AlBean
 forone(EMUSuit) emusuit; => ConradEmuSuit

 detectables:
 detectable DetectPartnerActivity {
 when (whenever)
 detect((the currentActivity of AlBean = the currentActivity of AlBean));
 }

 detectable DetectCoolingLevel {
 when (whenever)
 detect((the coolingLevel of BeanEmuSuit = value));
 }

 detectable NoticeAlsepPkg1LocationChange {
 when (whenever)
 detect((the objectLocation of AlsepPkg1 = anylocation));
 }

 detectable NoticeAlsepPkg2LocationChange {
 when (whenever)
 detect((the objectLocation of AlsepPkg2 = anylocation));
 }

 when (knownval(the currentConceptualActivity of PeteConrad = AlsepOffload) and
 not(the name of PeteConrad = the name of (AlBean, LmComCircuit)) and
 knownval(the communicationType of (AlBean, LmComCircuit) = LmVoiceLoop) and
 knownval(the partner of PeteConrad = AlBean) and
 knownval(PeteConrad contains ConradEmuSuit))
 do {
 AlsepOffload((AlBean, LmComCircuit), AlBean);
 }
}

135

Figure 6-29. Workframes within the composite AlsepOffload activity

1. STEP 1: time t = 0

For each Lunar Surface Agent, the scheduler checks the preconditions of all the workframes and thoughtframes in
the AlsepOffload activity, based on the agent’s current belief set.

AlBean:

Current Belief Set:
t=0 => BELV: The currentConceptualActivity of AlBean = AlsepOffload
t=0 => BELV: The agentLocation of AlBean = Surveyor Crater
t=0 => BELV: The agentLocation of PeteConrad = Surveyor Crater
t=0 => BELV: The agentLocation of DickGordon = Yankee Clipper
t=0 => BELV: The agentLocation of EdGibson = MissionControlCenter
t=0 => BELV: The partner of AlBean = PeteConrad
t=0 => BELV: SEQBay contains AlsepPkg1
t=0 => BELV: SEQBay contains AlsepPkg2
t=0 => BELV: SEQBay contains OffloadChecklistDecal
t=0 => BELV: SEQBay contains Pkg1LanyardRibbons
t=0 => BELV: SEQBay contains Pkg2LanyardRibbons
t=0 => BELV: SEQBay contains SEQBayDoorLanyardRibbons
t=0 => BELV: AlBean contains BeanEMUSuit
t=0 => BELV: AlBean contains LmpCuffCheckList
t=0 => BELV: BeanEMUSuit contains BeanHasselblad70mm
t=0 => BELV: PeteConrad contains ConradEMUSuit
t=0 => BELV: PeteConrad contains CdrCuffCheckList
t=0 => BELV: ConradEMUSuit contains ConradHasselblad70mm

Precondition Matching:
workframe MovingToSEQBay:

Prec: not(the agentLocation of current = SEQBayArea)
TRUE, based on BELV: The agentLocation of AlBean = Surveyor Crater

workframe OpeningSEQBayDoor
Prec: knownval(the agentLocation of current = SEQBayArea
FALSE, based on BELV: The agentLocation of AlBean = Surveyor Crater
Prec: knownval(the door of SEQBay = closed)
FALSE, based on NO belief about the door of SEQBay

workframe MovingToSEQBay {
 repeat: false;
 detectables:
 detectable DetectSEQBayDoor {
 when (100)
 detect((the door of SEQBay = value));
 }
 when (not(the agentLocation of current = SEQBayArea))
 do {
 conclude((the currentActivity of current = MoveActivity), bc:100, fc:100);
 Move(SEQBayArea, 5, 1);
 conclude((the nextActivity of current = OpenSEQBayDoorActivity), bc:100, fc:0);
 }
}

workframe OpeningSEQBayDoor {
 repeat: false;
 variables:
 collectall(AlsepPackage) alseppkgs;

 when (knownval(the agentLocation of current = SEQBayArea) and

knownval(the door of SEQBay = closed) and
not(the objectLocation of alseppkgs = SEQBayArea))

 do {
 conclude((the currentActivity of current = OpenSEQBayDoorActivity), bc:100, fc:100);
 OpenSEQBayDoor(vlcoms);
 conclude((the door of SEQBay = open), bc:100, fc:100);
 }
}

136

Prec: not(the objectLocation of alseppkgs = SEQBayArea)
TRUE, based on NO belief about the location of AlsepPkg1 and AlsepPkg2

Activity-Context Tree:

Figure 6-30. AlBean's Step 1 Activity-Context Tree

PeteConrad:

Current Belief set:
t=0 => BELV: The currentConceptualActivity of PeteConrad = AlsepOffload
t=0 => BELV: The agentLocation of PeteConrad = SurveyorCrater
t=0 => BELV: The agentLocation of AlBean = SurveyorCrater
t=0 => BELV: The agentLocation of DickGordon = YankeeClipper
t=0 => BELV: The agentLocation of EdGibson = MissionControlCenter
t=0 => BELV: The partner of PeteConrad = AlBean
t=0 => BELV: SEQBay contains AlsepPkg1
t=0 => BELV: SEQBay contains AlsepPkg2
t=0 => BELV: SEQBay contains OffloadChecklistDecal
t=0 => BELV: SEQBay contains Pkg1LanyardRibbons
t=0 => BELV: SEQBay contains Pkg2LanyardRibbons
t=0 => BELV: SEQBay contains SEQBayDoorLanyardRibbons
t=0 => BELV: AlBean contains BeanEMUSuit
t=0 => BELV: AlBean contains LmpCuffCheckList
t=0 => BELV: BeanEMUSuit contains BeanHasselblad70mm
t=0 => BELV: PeteConrad contains ConradEMUSuit
t=0 => BELV: PeteConrad contains CdrCuffCheckList
t=0 => BELV: ConradEMUSuit contains ConradHasselblad70mm

Precondition Matching:
workframe MovingToSEQBay:

Prec: not(the agentLocation of current = SEQBayArea)
TRUE, based on BELV: The agentLocation of PeteConrad = SurveyorCrater

workframe OpeningSEQBayDoor
Prec: knownval(the agentLocation of current = SEQBayArea
FALSE, based on BELV: The agentLocation of PeteConrad = SurveyorCrater
Prec: knownval(the door of SEQBay = closed)
FALSE, based on NO belief about the door of SEQBay
Prec: not(the objectLocation of alseppkgs = SEQBayArea)

137

TRUE, based on NO belief about the location of AlsepPkg1 and AlsepPkg2

Activity-Context Tree:

Figure 6-31. PeteConrad's Step 1 Activity-Context Tree

Both agents are executing a move-activity from their current location (i.e. Surveyor Crater) to the
SEQBayArea, as can be seen in Figure 6-30 and Figure 6-31. As the agents move to the new location, the
objects that they are containing (i.e. cuff checklist and EMU suit) are automatically moved with them to the
new location. As the agents arrive in the new location, they detect that the SEQ Bay door is still closed. Also
shown in Figure 6-30 and Figure 6-31, the agents automatically notice (i.e. the engine automatically creates
the beliefs for the agents) the location of all other objects and agents that are also in the new location; i.e.
the location of the other agent, its cuff checklist and EMU Suit, the LM, and the SEQ Bay. Both agents also
detect each other’s current activity, through the DetectPartnerActivity detectable in the AlsepOffload activity.
Lastly, the agents receive a belief about their next activity to open the SEQ Bay door.

When the simulation clock has increased by one, the following (partial) situation exists:

2. STEP 2: time t = 1

For each Lunar Surface Agent, the scheduler checks the preconditions of all the workframes and thoughtframes in
the AlsepOffload activity, based on the agent’s current belief set.

AlBean:

Current Belief Set:
t=1 => BELV: The currentActivity of AlBean = OpenSEQBayDoorActivity
t=1 => BELV: The nextActivity of AlBean = OpenSEQBayDoorActivity
t=1 => BELV: The door of SEQBay = closed
t=1 => BELV: The currentActivity of PeteConrad = MoveActivity
t=1 => BELV: The objectLocation of SEQBay = SEQBayArea
t=1 => BELV: The objectLocation of LM = SEQBayArea
t=1 => BELV: The agentLocation of AlBean = SEQBayArea
t=1 => BELV: The objectLocation of BeanEMUSuit = SEQBayArea
t=1 => BELV: The objectLocation of LmpCuffCheckList = SEQBayArea

138

t=1 => BELV: The agentLocation of PeteConrad = SEQBayArea
t=1 => BELV: The objectLocation of ConradEMUSuit = SEQBayArea
t=1 => BELV: The objectLocation of CdrCuffCheckList = SEQBayArea
t=1 => BELV: The currentActivity of AlBean = MoveActivity
t=0 => BELV: The currentConceptualActivity of AlBean = AlsepOffload
t=0 => BELV: The agentLocation of DickGordon = YankeeClipper
t=0 => BELV: The agentLocation of EdGibson = MissionControlCenter
t=0 => BELV: The partner of AlBean = PeteConrad
t=0 => BELV: SEQBay contains AlsepPkg1
t=0 => BELV: SEQBay contains AlsepPkg2
t=0 => BELV: SEQBay contains OffloadChecklistDecal
t=0 => BELV: SEQBay contains Pkg1LanyardRibbons
t=0 => BELV: SEQBay contains Pkg2LanyardRibbons
t=0 => BELV: SEQBay contains SEQBayDoorLanyardRibbons
t=0 => BELV: AlBean contains BeanEMUSuit
t=0 => BELV: AlBean contains LmpCuffCheckList
t=0 => BELV: BeanEMUSuit contains BeanHasselblad70mm
t=0 => BELV: PeteConrad contains ConradEMUSuit
t=0 => BELV: PeteConrad contains CdrCuffCheckList
t=0 => BELV: ConradEMUSuit contains ConradHasselblad70mm

Precondition Matching:
workframe MovingToSEQBay:

Prec: not(the agentLocation of current = SEQBayArea)
FALSE, based on BELV: The agentLocation of AlBean = SEQBayArea

workframe OpeningSEQBayDoor
Prec: knownval(the agentLocation of current = SEQBayArea
TRUE, based on BELV: The agentLocation of AlBean = SEQBayArea
Prec: knownval(the door of SEQBay = closed)
TRUE, based on BELV: The door of SEQBay = closed
Prec: not(the objectLocation of alseppkgs = SEQBayArea)
TRUE, based on NO belief about the location of AlsepPkg1 and AlsepPkg2

Activity-Context Tree:

As the move-activity in Step 1 (Figure 6-30) ends, in the next clock-tick (t=1) the ACT for agent AlBean
changes. The agent is still within the OffloadAlsep activity, because there are still workframes that are in the
working-state. The MovingToSEQBay workframe has finished executing, its preconditions are false, and its
repeat-variable has the value “false”. Therefore, the working WFI is finished and stops. However, the
preconditions of the OpeningSEQBayDoor workframe have become true in the same clock-tick (t=1), and a
new working WFI for this workframe is created (see Figure 6-32). Next, the composite activity
OpenSEQBayDoor in this WFI gets executed. Consequently, the preconditions of all workframes in it are
checked. It turns out that for agent AlBean, the preconditions of two of the three workframes evaluate to
“true”. This means that WFI’s are created for both the RaiseSEQBayDoor and
CommunicateReadyToOffload workframes, and their state becomes “available”. Since there can only be
one WFI working at that level in the ACT, the engine solves the conflict by comparing the priorities of the two
available WFI’s. The priority of a WFI is equal to the priority of the highest activity priority within it. In this
case, the priority of the RaiseSEQBayDoor WFI is zero (0) and that of the CommunicateReadyToOffload
WFI is ten (10). Consequently, the CommunicateReadyToOffload WFI becomes the working WFI, and its
first activity Talk the current activity, i.e. the agent’s activity that is being executed.

139

Figure 6-32. AlBean's Step 2 Activity-Context Tree

Also shown in Figure 6-32 are the detectables in the workframes OffloadingAlsep and
CommunicateReadyToOffload firing in step 2 (t=1). However, in both cases the beliefs are not created until
t=2, as a result of detecting the facts at t=1. This occurs at t=2 and not t=1, due to the clock-based
simulation engine. The current activity Talk starts execution at t=1. This means that all the detectables in the
working WFI’s are checked at t=1. The beliefs are not created until the next clock-tick, t=2.42

PeteConrad:

Current Belief Set
t=1 => BELV: The currentActivity of PeteConrad = WatchOpeningSEQBayDoorActivity
t=1 => BELV: The currentActivity of PeteConrad = OpenSEQBayDoorActivity
t=1 => BELV: The nextActivity of PeteConrad = OpenSEQBayDoorActivity
t=1 => BELV: The door of SEQBay = closed
t=1 => BELV: The currentActivity of AlBean = MoveActivity
t=1 => BELV: The fieldOfVision of PeteConrad = AlsepPackageInSeqBay
t=1 => BELV: The objectLocation of SEQBay = SEQBayArea
t=1 => BELV: The objectLocation of LM = SEQBayArea
t=1 => BELV: The agentLocation of AlBean = SEQBayArea
t=1 => BELV: The objectLocation of BeanEMUSuit = SEQBayArea
t=1 => BELV: The objectLocation of LmpCuffCheckList = SEQBayArea
t=1 => BELV: The agentLocation of PeteConrad = SEQBayArea
t=1 => BELV: The objectLocation of ConradEMUSuit = SEQBayArea
t=1 => BELV: The objectLocation of CdrCuffCheckList = SEQBayArea
t=1 => BELV: The currentActivity of PeteConrad = MoveActivity
t=0 => BELV: The currentConceptualActivity of PeteConrad = AlsepOffload
t=0 => BELV: The agentLocation of DickGordon = YankeeClipper
t=0 => BELV: The agentLocation of EdGibson = MissionControlCenter
t=0 => BELV: The partner of PeteConrad = AlBean
t=0 => BELV: SEQBay contains AlsepPkg1
t=0 => BELV: SEQBay contains AlsepPkg2
t=0 => BELV: SEQBay contains OffloadChecklistDecal
t=0 => BELV: SEQBay contains Pkg1LanyardRibbons
t=0 => BELV: SEQBay contains Pkg2LanyardRibbons
t=0 => BELV: SEQBay contains SEQBayDoorLanyardRibbons
t=0 => BELV: AlBean contains BeanEMUSuit
t=0 => BELV: AlBean contains LmpCuffCheckList

42 In our new Java-based discrete event simulation engine the beliefs will be created at the same clock-tick, i.e. t=1.

140

t=0 => BELV: BeanEMUSuit contains BeanHasselblad70mm
t=0 => BELV: PeteConrad contains ConradEMUSuit
t=0 => BELV: PeteConrad contains CdrCuffCheckList
t=0 => BELV: ConradEMUSuit contains ConradHasselblad70mm

Precondition Matching:
workframe MovingToSEQBay:

Prec: not(the agentLocation of current = SEQBayArea)
FALSE, based on BELV: The agentLocation of PeteConrad = SEQBayArea

workframe OpeningSEQBayDoor
Prec: knownval(the agentLocation of current = SEQBayArea
TRUE, based on BELV: The agentLocation of PeteConrad = SEQBayArea
Prec: knownval(the door of SEQBay = closed)
TRUE, based on BELV: The door of SEQBay = closed
Prec: not(the objectLocation of alseppkgs = SEQBayArea)
TRUE, based on NO belief about the location of AlsepPkg1 and AlsepPkg2

Activity-Context Tree:

As the PeteConrad agent also comes into the SEQBayArea location, he also starts working on the
OpenSeqBayDoor activity. Potentially the agent can execute the same workframes as AlBean. However,
due to the belief-set of the agent PeteConrad, it will fire the WatchingOpeningSEQBayDoor workframe,
which therefore becomes the working WFI.

Figure 6-33. PeteConrad's Step 2 Activity-Context Tree

6.6.5 View ing the simulat ion results

In this section I show the results of the simulation of the OpenSEQBayDoor activity, as described in the
previous sections. Figure 6-34 shows the ACTs of the AlsepOffload activity performed by both the AlBean
and the PeteConrad agent, as described in section 6.6.4, as well as the communication between the two
agents. While performing the AlsepOffload composite activity, both agents are within the OpenSEQBayDoor
activity. While AlBean is performing the activities within the CommunicateReady and the
RaisingSEQBayDoor workframe, the PeteConrad agent is performing the activities within the
WatchingOpenSEQBayDoor workframe. The grain-size of the simulation is one second. This means that
the simulation engine changes the ACT for every agent and object every second of simulated time. We can
therefore say that the simulation is a second by second model of the work practice of the lunar surface
astronauts. Figure 6-34 also shows the location the agent was in when performing the activity. As an

141

overlay, the dotted arrows show the communication of beliefs between agents AlBean and PeteConrad.
The direction of the arrows show the direction in which the beliefs are being communicated, while the little
square box at the start of the arrow shows the agent that is performing the communication.

Figure 6-34 is a screen shot from the AgentViewer application43. The AgentViewer application takes as
input a Brahms Simulation History database44. This history database contains the historical situation-specific
model data of a particular simulation run. The AgentViewer application creates a graphical representation of
the activity of agents and objects during a simulation.

Figure 6-34. AlsepOffload activity agent timeline

Grouping a number of important data about the activity of the agent during the simulation into an agent
workframe-activity hierarchy shows the ACT of an agent or object, at any time during the simulation. Each
agent’s ACT consists of a number of “bars.” Each bar is an object that can be manipulated in the
AgentViewer.

At the top of each agent’s ACT there is the location bar. The location bar shows the movement of the agent
throughout its activities. When an agent changes location the color of the location bar changes45. In Figure
6-34 both agents start in the same initial location This is the Apollo 12 LandingSite area (Surveyor Crater).
You can see that the next location both agents are in is the SEQBayArea location.

The next bar in the agent’s ACT is the time-line bar. This bar shows the simulation time. Figure 6-34 shows
that the AlsepOffload activity starts just after 8:31:30 AM (in fact the simulation clock starts at time 8:31:32
AM). Each thin white line in the time-line bar shows a 5-second interval. Consequently, Figure 6-34 shows
an activity interval of about 50 seconds (from 8:31:30 AM until about 8:32:23 AM.

43 The AgentViewer application is a stand-alone Visual Basic application we developed for viewing the results of a simulation.
44 The history database is a complex relational database containing the simulation data preserving their relationships.
45 An agent does not effectively change its location until the simulation engine has finished a move activity and consequently positions the
agent into the new location. The agent’s location during the move activity stays unchanged, even though the agent is moving, and should
thus not be in any location. Brahms is not modeling the movement of agents during the execution of a move-activity.

142

The third bar is the agent’s name bar, with the name of the agent and an agent icon). This bar shows which
agent or object46 is being displayed

The fourth and final bar is the workframe-activity bar. This is the bar that shows the execution of the
workframes, activities, and thoughtframes for the agent. Workframes are represented as blue bars that start
with the letters “wf”, for workframe, and the name of the workframe (if it fits within the graphics block).
Underneath a workframe bar there can either be a flesh-colored bar, or a green-colored bar. A flesh-colored
bar represents a composite activity, and starts with the letters “ca”, for composite activity. A green-colored
bar is a primitive-, move-, communicate-, or create-object activity. These are always the lowest level
activities. Each type of primitive activity is indicated by a different shade of green. Other than a color
indication; a primitive activity is indicated by the letters “pa”, for primitive activity; a move activity by the
letters “mv”, for move; a communicate activity by the letters “cw”, for communicating-with; a create-object
activity by the letters “co”, for create-object. When the size of the graphics block is large enough to contain
the name of the activity it is shown as well. If not, the name is shown when the user moves the mouse over
the activity or workframe box.

6.7 VOICE-LOOP COMMUNICATION

One of the most important aspects of work practice is the way people communicate. The communication to
and from the Apollo Lunar Surface was made possible by the Extra-Vehicular Communication System
(EVCS). The EVCS was a communication relay system that communicated voice from the astronauts via
their EMU suits to the LM and via the LM, using a S-Band antenna, to mission control. The voice of the
CapCom was communicated back to the LM and the astronauts via the same system (see Figure 6-35).
This way the lunar surface astronauts and CapCom were in constant two-way communication. The CMP
and CapCom had a similar communication system via the CM. The two lunar surface astronauts where
operating their communication system in dual mode, which meant that they were always able to hear each
other. However, the CMP was not in direct communication with the lunar surface astronauts, and was
therefore not always able to hear them.

In this section I describe how the EVCS, or as I have named it, the voice-loop communication has been
modeled in Brahms.

6.7.1 Communicat ion delay

Conversational overlaps are a normal part of human dialog, and humans are pretty well apt to deal with this
phenomenon. However, the communication delay from Earth to the Moon is significantly larger than the
face-to-face or phone communication on Earth. The one-way delay, to Earth and to the Moon, is one and a
quarter (1.25) second. This means a minimum of two and a half (2.5) seconds round-trip communication
delay. If one of the astronauts made an utterance, the CapCom would hear the utterance one-and-a-quarter
second later. If the CapCom would respond immediately, the astronauts would not hear this response until
one and a quarter second later, which means a total of, at minimum, two and a half seconds.

46 Objects have a different object icon.

143

Figure 6-35. Extra-Vehicular Communication System

During the Apollo missions the communication delay sometimes lead to problematic communication
patterns, as is shown in the example from Apollo 17 from the section "Journal Preparation and Structure" in
the Apollo LSJ (Jones 1997).

In the following example, we imagine CapCom Bob Parker giving Gene Cernan instructions on
parking the Rover. Before Cernan hears Parker, he starts to make a comment about where he is
parked. He then stops talking, listens to Parker (who doesn't stop talking), responds, and then
continues with his comment.

Parker: Gene, just a reminder that we want a Rover (garbled)...

Cernan: Bob, we've stopped next to...(Hears Parker)

Parker: ...(heading) of 045; and, when you get out, we'll need readouts.

Cernan: (Responding to Parker) Okay, Bob. We've parked next to one of the fresh craters that shows
up on the map.

Generally, when someone's utterance ends with ellipses and his next utterance begins with ellipses,
the reader should infer that the speaker kept talking under the overlapping remark. When someone's
utterance ends with ellipses but his next utterance does not begin with ellipses, the reader should infer
either a break in thought or a pause to listen. Unintelligible dialog is indicated by the editorial comment
"garbled". Unintelligible dialog is often associated with overlapping conversations and in this
illustration, on the continuation of Parker's utterance I have indicated the likely missing word. “

Although in this example Eric Jones is referring to the transcription as done for the Apollo LSJ, the fact of
the matter is that if one wants to model the communication utterances of the astronauts and their impact on
work practice, we have to model the one and a quarter delay for each communication event.

6.7.2 Modeling the communicat ion to Earth

The voice-loop in context of the Apollo missions is the inter-communication system between the astronauts
on the Moon and the CapCom at MSC in Houston.

There is a significant difference between voice-loop communication and face-to-face (f-2-f) communication.
First, and foremost, f-2-f communication is bounded to geographical location of the agents. This means that
the agents have to be in the same location to be able to engage in a f-2-f communication activity. This is
referred to as Same Time/Same Place (STSP) communication (Chapter 3.2.4.4). In voice-loop
communication there is no restriction on the geographical location of the engaging agents. The agents can
be in any location, indeed even on Earth and on the Moon.

144

Another difference is the fact the in a voice-loop communication there is no need to “go to” somebody
before a communication can take place. This is similar to a phone communication (Same Time/Different
Place (STDP) communication). However, different from a phone communication, there is no need to “call”
someone before the communication can start. Therefore, a voice-loop communication is a combination of f-
2-f and phone communication, it is a STSP/DP communication form.

To model the communication delay over the EVCS, I have developed a voice-loop communication model
that includes the LM communication circuit as an additional agent with behavior. When a lunar surface
agent makes an utterance (i.e. performs a communication transfer), this utterance is communicated to his
partner and to the LM communication circuit agent. The LM communication circuit agent (LmComCircuit)
communicates the utterance to the CapCom agent with a delay of one second47. The result is that the
CapCom agent will receive the communicated belief a second (a clock-tick) later, while the partner on the
lunar surface will receive the belief instantaneous, i.e. at the moment of the communication.

Figure 6-36 shows how the voice-loop communication model lets the lunar surface agent AlBean
communicate to both his partner PeteConrad and CapCom EdGibson that he is ready to start with the
offload activity. First, the agent that speaks, AlBean in this case, has to have a belief about what needs to be
spoken. Figure 6-36 shows this belief about the speechAct attribute being created in the
CommunicateReadyToOffload workframe:

conclude((the speechAct of current = ReadyToOffloadAlsep));

The agent AlBean can now communicate this belief in the Talk communicate-activity:

Talk(vlcoms, start, OpenSEQBayDoorActivity, 10, 8);

This Talk activity transfers the belief at the start of the activity to all the agents bound to the vlcoms variable
(PeteConrad and LmComCircuit in this case). The Talk activity is part of the VoiceLoopCommunicator group
shown in Figure 6-37. Every member of the VoiceLoopCommunicator group, which the AlBean agent (as
well as the PeteConrad and LmComCircuit agents) is a member of, inherits this Talk activity and will
therefore be able to communicate its current belief about the speechAct attribute. Consequently, both the
PeteConrad and the LmComCircuit agent receive AlBean’s belief about the speechAct attribute. Next, the
LmComCircuit agent performs the SendComToEarth activity, which actually transfers the speechAct belief it
just received from AlBean to the agents bound to the vlagts variable.

SendComToEarth(AlBean, vlagts);

The vlagts variable is bound to just the EdGibson agent (since he is the only agent with the
communicationType equal to “MscVoiceLoop,” meaning he is the only agent listening to the voiceloop in
MSC. The SendComToEarth activity, shown in Figure 6-36, has a duration of one second and transfers the
speechAct belief at the end of the activity. Consequently, this describes the communication delay from the
Moon to Earth. For longer delays one would simply increase the duration of SendComToEarth activity,
making this a general model for voice-loop communication with communication delay.

47 The Brahms clock grain-size cannot be set to 1.25 seconds, but has to be set to an integer number.

145

Figure 6-36. Voice-loop communication via LmComCircuit

6.7.3 The voice-loop library model

This voice-loop behavior is something that we want to re-use in other modeling efforts. I therefore developed
this behavior as a library model that can be re-used over and over again. To do this we need to abstract the
functionality of the voice-loop into separate functional groups. In this section, I describe the design of the
voice-loop library model as it is shown working in Figure 6-36.

We can abstract the workings of the voice-loop system into two separate groups. First, there is a group of
agents that can communicate over a voice-loop together. These agents are all members of the
VoiceLoopCommunicator group. The VoiceLoopCommunicator group in turn is a member of the more
abstract Communicator group. This group specifies those agents that can communicate in one way or
another with each other, be it using a voice-loop, a telephone, e-mail, et cetera. There are three subgroups
of the VoiceLoopCommunicator group, namely the LmVoiceLoop, the CmVoiceLoop, and the
MscVoiceLoop group.

ComCircuit:
workframe SendingLmpComToEarth {
 repeat: true;
 variables:
 collectall(MscVoiceLoop) vlagts;
 foreach(LunarModulePilot)lmp;
 when (knownval(the earthCom of lmp = true) and
 knownval(the groupMembership of lmp = "LunarModulePilot") and
 knownval(the communicationType of vlagts = MscVoiceLoop))
 do {
 SendComToEarth(lmp, vlagts);
 conclude((the earthCom of lmp = false), bc:100, fc:0);
 }
}

AlsepOffloadGroup:
workframe CommunicateReadyToOffload {
 repeat: false;
 detectables: …
 when (knownval(the groupMembership of current = "LunarModulePilot"))
 do {
 conclude((the speechAct of current = ReadyToOffloadAlsep));
 Talk(vlcoms, start, OpenSEQBayDoorActivity, 10, 8);
 …
 …
 conclude((the nextActivity of current = sRaiseSEQBayDoorActivity));
 }
}

146

Then there is a group of agents that represent the communication circuits for each voice-loop. This is the
ComCircuit group. This group has two member agents, namely one for the CM voice-loop, CmComCircuit,
and one for the LM voice-loop, LmComCircuit. These two agents represent the communication circuits that
create the delay of the communication between Earth and the Moon. The reason for modeling these as a
group with agents, as opposed to a class with objects, is because we need these communication circuit
agents to react to the communication transfers of beliefs from the “talking” agent. Although objects can
receive and communicate beliefs, they cannot react to the beliefs they receive (objects only react to facts).
All in all, it makes things easier from a modeling standpoint to model the communication circuits as agents,
and since Brahms does not prescribe when to use agents versus objects this is a perfectly fine decision.
The group hierarchy of the voice-loop model is presented in Figure 6-37.

Figure 6-37. Voice-loop library model group hierarchy

6.8 OBJECT INTERACTION

We live in a world with objects. We look at them, touch them, and use them in our every day lives. When
people work they use tools to accomplish what needs to be done. Interacting with objects in our
environment is something so natural that we almost take it for granted when we consider how we do things.
If we take a closer look at the work practice level, we need to include the way people interact with objects to
describe what they do. On the moon the astronauts were together. However, they had artifacts with them,
and objects that they needed to work on, and tools to use in their work. In this section, I describe how in
Brahms we can model the interaction between objects and agents. I show the astronauts taking
photographs and describe the model of the activities of the agent, and how the object it uses in these
activities reacts and the way they both interact.

6.8.1 Lunar surface photography

Imagine taking a photograph. What do you do? What do you need? What does the camera do? Is it you or
the camera that creates the photo? As I described before, all the tasks of the astronauts were planned and
well trained. However, taking photographs was an acceptation to that rule. As it turns out, the Apollo

147

photographs were one of the most important scientific data returned to Earth. Some photographs were
planned, but most were not, as is shown in the following example.

Figure 6-38. NASA picture AS12-47- 6913

Figure 6-38 shows a photograph that Al Bean took of CDR Pete Conrad, when he was lowering ALSEP
Package-1 to the lunar surface. How did he do it? It is a subtle point, but it shows the collaboration between
the two astronauts through the use of the photo camera.

116:32:48 Bean: Sure do. (Pause) Here it (probably the first package) comes.

116:32:53 Conrad: Coming right out.

116:32:54 Bean: And just about right. Riding right out on the boom, Houston. Sure looks pretty.

116:33:02 Gibson: (Making a mis-identification) Roger, Pete. We copy. (Long Pause)

116:33:36 Bean: (Wanting to take a picture) Look at me, Pete. (Pause) It’s a good shot, babe.
The LM and everything’s reflecting in your visor. (Pause)

[Al’s photos AS12-47- 6913 (**) and 6914 (**) show Pete using a tape to guide the first of the ALSEP
packages out of the SEQ Bay. Photo 47-6915 (**) was probably taken late in the ALSEP off-load.]

148

Figure 6-39. Al Bean taking two photographs of Pete Contrad

Figure 6-39 shows what happened during the simulation of the activity of taking this picture. First, it is
important to realize how Al Bean decides to take a picture, and how this is modeled in Brahms. If we look at
the utterance of Al Bean, we get some clues as to how this interaction happened. Al Bean says: “The LM
and everything’s reflecting in your visor.” I interpret this as that the beautiful reflections in Pete Conrad’s
visor of his EMU suit made him want to take a picture (see the beautiful reflection in Figure 6-38). You can
see in Figure 6-39 that the ConradEMUSuit object creates the fact that there is a reflection from its visor. At
that moment, agent PeteConrad performs the activity LoweringPkgToSurface. Agent AlBean detects the
reflecting visor fact, while watching agent PeteConrad. This detection interrupts agent AlBean’s activity, and
makes him perform the activity GetCommandersAttention. This activity represents the communication of Al
Bean at time 116:33:36, where he says: “Look at me, Pete.” This communication is shown in Figure 6-39 by
the first arrow. After this activity, agent AlBean starts the TakingPhotograph workframe shown in Figure 6-39
and described in Figure 6-40.

149

First of all, taking a photograph is something that is not related specifically to the ALSEP Offload activity.
Therefore, the TakingPhotograph workframe is not defined in the AlsepOffloadGroup group. Instead, it is
part of all possible activities for members of the LunarSurfaceAstronaut group, because every lunar surface
astronaut can take photographs at any moment. It is therefore that the agent AlBean interrupts the
AlsepOffload activity to start the TakingPhotograph activity.

Figure 6-40. Taking a photograph

After he has taken the photographs, he continues with the interrupted AlsepOffload activity (see the small
vertical four lines in Figure 6-39, at the beginning and end of the OffloadingAlsep workframe of agent
AlBean). Figure 6-40 describes the interaction between the agent and a PhotoCamera object in order for
the agent to take a photograph (this numbered list refers to the numbers in Figure 6-40):

1. After agent AlBean starts the workframe TakingPhotograph, due to the fact that it beliefs that the
number of photos to take is smaller than the number he has taken (see the precondition), it is simulated
that the agent pushes the shutter release button on the camera. This is represented by the creation of
the belief and fact

(AlBean PushesShutterReleaseButtonOf BeanHasselblad70mm)

The creation of this fact triggers the PhotoCamera object BeanHasselblad70mm to perform the
OpenAndCloseShutter workframe, due to the fact that its preconditions are now satisfied.

2. Next, the camera object performs the CreateImageOnFilm create-object activity. On the left side of
Figure 6-39 this dynamically-created object is shown as a NasaPicture object (AS12-47-691x). This
actually represents the photo in Figure 6-38. After this activity, the camera object creates three facts;
first, it creates the fact that the photo object has been created. Secondly, it creates the facts that it has
taken a photo and that the agent AlBean stopped pushing the shutter release button on the camera.
These last two facts are detected by agent AlBean, who is still performing the TakingPhotograph activity
(arrows 2a and 2b in Figure 6-40). Arrow 2b shows that the agent stops the TakeThePicture activity by
performing a complete action in the ReleaseShutter detectable, simulating that the agent has pushed
the shutter button and has taken the picture.

1

2a

2b

3

4a

4b

150

3. Arrow 3, at the same time, shows that the agent fires the thoughtframe PhotoTaken. This thoughtframe
increases the agent's belief about the number of photos it has taken.

4. Last, but not least, arrows 4a and 4b, make sure that the agent takes the right number of photographs.
In the example in Figure 6-39, the agent takes two photographs, one after the other.

This example shows a general model for taking pictures. The only thing the agent needs to start out with is
its camera contained on his EMU suit. Later on in the ALSEP Offload activity, during the offload of the
second package, the PeteConrad agent actually takes three photos of AlBean while he is lowering object
AlsepPkg2 to the ground, using the ConradHasselblad70mm PhotoCamera object (see Figure 6-41).

Figure 6-41. The PeteConrad agent taking photographs

Figure 6-42 shows the three actual photographs Pete Conrad took.

Figure 6-42. Photographs AS12-47-6783, 84, and 85 by Pete Conrad

A Brahms limitation

This example shows one of the limitations of a Brahms simulation. Although we can represent and simulate
the taking of photographs, as well as the camera actually creating the NasaPicture objects, Brahms cannot
show the sightlines of the camera, and that of the agents. The picture objects created do not include a

151

representation of what was captured on film (shown by the three photos in this example). The only way we
could possibly represent this is to create beliefs that represent the scene being captured and “store” these
beliefs in the NasaPicture object.

Not being able to model the line of sight of agents means that the model does not include whether the
astronauts could actually see each other and/or the objects during their activities. Noticing other people
and/or objects is often constrained by the line of sight. In Brahms, we can only model the detection of facts,
based on the detectable being active and the existence of the fact in the world. However, in the real world
the detection of certain facts depends on whether we can “observe the fact” through our field of vision, such
as seeing someone in distress. Not being able to model the field of vision limits us in constraining the
detection of facts based on the sightlines of the agent.

6.9 VERIFICATON AND VALIDATION

In this section, I describe the verification and validation (V & V) process I have followed to test the accuracy
of the Apollo 12 ALSEP model. First, I will talk about V & V as a process and describe its elements, and
some of its issues. Then, I will show in some detail the V & V steps I have followed and the results of this
process in this experiment. Using this V & V process, I can say something about the accuracy of the model
and my hypothesis about Brahms as a modeling and simulation language for describing a work practice.

To clarify the issues involved, I define the concepts verification, validation, and to be complete, credibility as
follows:

• Verification is the process whereby the modeler asks if the model is performing as it was designed. In
this step in the V & V process, the objective is to determine if the logic of the computer model correctly
implements the assumptions made in the conceptual model.

• Validation is the process whereby the modeler asks how accurately the model is representing reality.
That is, is it a good model of the intended work system?

• A credible model is one that the client accepts as being valid enough to use in making decisions. That
is, is it a useful model for the task at hand? It should be noted that in this experiment we do not have a
client that will make such a credibility judgment.

6.9.1 The purpose of verificat ion and validat ion

An important part of modeling and simulation is the V & V of the model and the results of the simulation.
Without a thorough V & V there is no ground in having any confidence in the model and the results of the
simulation. Although it is important to realize that it is impossible to prove that a model is a general valid
model (Robinson 1999). The reason for this is the fact that:

1. A model is only certified as valid with respect to its purpose. For instance, a model that has been
created for the purpose of predicting the future state of a system might not be valid as a prescriptive
model of the future system.

2. There are different interpretations of the real world possible. Depending on the worldview, or
Weltanschaüng, is a different interpretation of the real world and therefore, of the model and its validity
(Checkland and Scholes 1990).

3. The data used to develop the model may be inaccurate. Even if that is not the case, it should be
realized that the data used and the data generated by the simulation are but a small data sample.
Therefore, they can only be seen as a probabilistic answer and not a definitive one.

The conclusion is that, although in theory a model is either valid or invalid, in practice it is not easy and often
not possible to prove that a model is valid. Therefore, we have to think in terms of the confidence we can
place in the model. The V & V of the model in this experiment is not one of demonstrating that the model is
correct, but instead it is a process of falsification, i.e. demonstrating that the model is incorrect (Robinson

152

1999). In so doing, the purpose of V & V is to increase the confidence in the model, even though we might
find inconsistencies and problems with the model according to the real-world data.

6.9.2 The verificat ion and validat ion process

Many authors have described the process of a successful simulation (Law and Kelton 1991) (Kleindorf et al.
1998) (Banks et al. 1996) (Robinson 1994). All of them mention a series of processes that need to be
followed. The high-level processes are shown in Figure 6-43, which is borrowed from (Robinson 1999). A
simulation study first starts with understanding the real world, as well as the problem to be tackled. In this
Brahms study, the real world is the Apollo 12 ALSEP Offload, with as the problem to be tackled, to test if we
can describe the work practices of the lunar surface astronauts in a Brahms simulation. When the real world
is sufficiently understood the modeling activity starts, and a conceptual model is described. For this study, I
described the model as a qualitative model using a modeling approach called World Modeling (Sierhuis and
Selvin 1996). After this, the model was coded into a computer model, in this case the Brahms language.
When the model is complete, experiments are run to develop solutions to the real-world problem being
handled. In this case, a greater understanding of the real world was obtained. In real-world projects it is
hoped that the solutions found in the experiments can be implemented in the real world, or that the better
understanding of the problem will lead to better decision making. In this experiment there has been no
attempt to implement the model or change the real world based on the understanding, simply because this
was not the purpose.

Even though there is a natural sequence in following these steps, it is obvious that the actual process is not
strictly sequential, and that several iteration through the steps are necessary. This was also the case in this
effort. First, there was no implementation phase based on the outcome of this study. Secondly, there were a
number of cycles through the conceptual model, computer model and solution/understanding phase that
were mostly driven by the validation and verification of the models with the real-world data. Even though this
study did not end with an implementable solution in the real world, the process as depicted in Figure 6-43
still holds.

Figure 6-43. Simulation model verification and validation in the modeling process (borrowed from (Robinson 1999))

In the next sections, I will describe the activities of the three phases, conceptual model, computer model,
and solution/understanding and the validation and verification methods used in each of these phases.

153

6.9.3 Data validat ion

As is shown in Figure 6-43, data validation is important at every step of the simulation process, because at
each step in the process data is used. The data I used are all original NASA records of the actual Apollo
missions. Table 6-4 lists all data sources that have been used in this case study. Since the Apollo missions
are part of world history the facts and data are well known to the world and are therefore undisputed. By
using the original lunar videos, as well as the transcripts of the original conversations of the astronauts, and
the original photographs, mission reports and press releases, the validity of the data is very high. It can thus
be said that, if the simulation data is validated against the original mission data, and it can be shown that the
outcome is correct in relation to this data, the validity of the simulation model is high.

Table 6-4. Data sources used during experiment

Data Source Data Type

Apollo Lunar Surface Journal Transcriptions of actual astronaut voice loop

recordings + mission photographs.

Apollo 14, 15 & 16 Video Tapes Video Recordings of the actual Apollo

missions from NASA.

Apollo 12 ,14, 15 & 16 Press Kits Copies of the actual Apollo Press Kits from

the Apollo missions, published by NASA.

6.9.4 Conceptual model validat ion

I started the modeling effort by creating a conceptual model of the Apollo 12 ALSEP Offload. The method
used is called Compendium, and is described in (Sierhuis and Selvin 1996) (Selvin and Sierhuis 1999b)
(Selvin and Sierhuis 1999a) (Selvin et al. 2001). The discussion of this method falls outside of this thesis.
Figure 6-44 shows the Raise SEQ Bay Door activity described in the conceptual model. To model this
activity, I used the voice loop transcription data from the Apollo LSJ (see Figure 6-45), as well as the Apollo
video of the Apollo 1448 mission. The voice loop data is modeled as the communication attribute in the
model. By reading and listening to the communication, matching this to the mission plan, and validating this
with the video, I was able to analyze who performed this activity (see Figure 6-45), and where in the voice
loop transcription the astronaut was starting and ending this activity. The approach I used was to identify the
activity duration based on communication sequences. The astronaut was performing the activity during the
first utterance and the last utterance of a communication sequence. By using the timestamps in the Apollo
LSJ, I calculated the total time of the activity (see Figure 6-47). I also represented where the agents were
located while performing this activity, as well as what objects (artifacts) the astronaut was touching or using
during this activity.

By analyzing the transcription of the voice loop data this way, I have represented and validated each activity
of the agents. After this process was completed, the conceptual model had to be coded in the Brahms
language.

48 Due to a unfortunate problem with the camera, there is no video tape of the Apollo 12 ALSEP Offload.

154

Figure 6-44. The conceptual model

The purpose of the conceptual model validation is to determine that the scope and level of detail of the
proposed model is sufficient, and that all assumptions are correct (Robinson 1999). To describe this
validation, let me take a step back and restate the problem I addressed in this study. The problem in this
study was that of showing that the Brahms modeling and simulation language is powerful enough to
describe the work practice of the Apollo 12 lunar surface astronauts during the ALSEP Offload activity. The
level of model detail that is needed to test this hypothesis is given by the definition of what to include in a
model of work practice (see chapter 3.2).

155

Figure 6-45. Voice loop transcription data from the Apollo LSJ Figure 6-46. Voice loop transcription matched to activities

Figure 6-47. Voice loop activity time analysis

If we take as a given the aspects of work practice from chapter 3.2, then we can validate that these aspects
are indeed included in the model. Therefore, the validation method I used for the conceptual model was to
analyze the important aspects of modeling work practice, as described in the theory, and to make sure that
the conceptual model included all of them. Table 6-5 lists the aspects that were to be included in the model,
as well as how these aspects are made operational in the coded model:

156

Table 6-5. Aspects of modeling work practice

Aspect of Work Practice Model

Communities of Practice

This aspect is incorporated in the model by modeling the
roles and functional groups of the agents as groups with
behavior in the model. People who belong to certain CoP
are represented as agents being members of the groups,
inheriting the common behavior of the group members.

Activities

The behavior of all agents and artifacts is described in terms
of primitive activities taking time, and composite activities
decomposed into lower-level activities, and the lowest-level
into primitive activities.

Collaboration

Collaboration is an emergent aspect of the model that is
shown in the output data of the simulation. By describing the
activities of agents, and the interaction and constraints that
make each agent perform an activity based on activities of
other agents, shows that agents are collaborating together.

Communication
The model includes all the speech acts from the real voice
data. Activities are sometimes dependent on whether these
speech acts are performed and received.

Real world artifacts
For each activity the artifacts that are used or touched in the
activity are represented in the model. Relationships between
activities and artifacts are represented.

Geography and Movement

For each activity, the location where the activity is performed
is represented. Agents move from location to location, and
performance of an activity is sometimes dependent on being
in the location or noticing other agents and/or artifacts in a
location.

6.9.5 Computer model verificat ion

The next phase in the modeling process is the design and implementation of the Brahms model source
code. In this phase, the modeler needs to translate the activities, groups, agents, classes and objects
represented in the conceptual model into the Brahms language. To do this, the modeler needs to be
proficient in the Brahms language, and specifically in the multiagent and activity programming concepts in
Brahms. For first time Brahms modelers this is a painstaking process, and is similar to the compile-debug
cycle in traditional programming languages, such as C++ or Java.

Figure 6-48. Brahms compile-debug cycle

Figure 6-48 shows the modeling cycle, which first continues until the complete model can be compiled
without syntax errors by the Brahms compiler. However, verifying the model is more than getting the
Brahms compiler to compile the model without syntax errors. Although this is of course a first and important
step in the process, the most important step is to compare the “functioning” of the model with the conceptual
model. The model validation and verification steps are driving the Brahms model development process,
shown in Figure 6-49

Debugging Modeling

Compiling

157

Figure 6-49. Brahms model development cycle

The functioning of the model is visually verified using the AgentViewer application. The AgentViewer is a
separate Brahms application that uses the simulation history data to display a 2-dimensional graphical time-
line view of the activities of agents and objects. The timeline figures in this and other subsequent chapters
are all screenshots from selected agents and objects in the AgentViewer. Using the AgentViewer
application the modeler can investigate the simulation run.

Figure 6-50. AgentViewer application

Figure 6-50 shows the AgentViewer. Using this application the end-user can select which agents and
objects to view in the time-line view, and investigate the exact behavior of those agents and objects during
the simulation (see a-l explanations in Figure 6-50):

a. Using the menu-bar, the end-user can parse the simulation history data into a history database, and
open a history database for viewing.

a. Menu Toolbar

b. Agent/Object TreeView

c. Communications

d. Location

e. Time Line

f. Tool Tip

g. Activity Context Tree

h. Touch Object Line

i. Selected Workframe

k. Selected Activity
j. Workframe Body

l. Activity Time

m. Workframe

n. Composite Activity

o. Primitive Activity

158

b. When the database is opened all the agents and objects are loaded into the tree view. Using the tree
view, the end-user can select which agents and/or objects (s)he wants to view in the time-line view.

c. By selecting to view the agent/object communication, the (blue) arrows show all the communication
activities, and the direction of the communication (sender and receivers). The communicated beliefs are
also accessible by clicking on the square at the top of the sender side of the communication arrow.

d. For each agent/object the ”current” location is shown. When the agent/object moves to a new location, it
is shown as a change in the location name and color.

e. The time-line can show the time in different time-intervals, therewith zooming in and out.

f. The tool-tip pops up when the mouse is moved over “hot spots”. The hot spots are those areas where
more information is available than can be shown on the screen. By moving the mouse over those areas
the hidden information pops up in a tool-tip, such as the name of a workframe or activity.

g. The Activity-Context Tree is the central piece of the agent/object time-line. It shows the workframe and
activities hierarchy of the agent or object.

h. The touch-object line is a (yellow) line that is shown when the agent/object is using certain objects in its
activity. “Touch objects” are used to calculate the time those objects are used in activities.

i. The explanation facility view is used to display more detailed information about the execution of
workframes. By clicking on any workframe (light blue in color), an explanation facility window is opened
for the workframe at hand.

j. By selecting the “Active” tab in the explanation facility view, the executed statements in the workframe
body are shown.

k. You can select the statements in the workframe body to get more info.

l. When you select a statement in the body of the workframe, the total time the activity was active is
shown. Using the other tabs in this view, you can find out the exact time the workframe became
available, as well as the exact time it became active and ended.

m. Workframes are situated-action rules that execute activities. The top of a Activity-Context tree is always
a workframe. You can recognize a workframe by the “wf:” symbol, followed by the name of the
workframe. When the zoom-level is too high to contain the name of the workframe it is left out of the
display. Using the tool-tip the user can find out the name.

n. Composite Activities are executed by workframes, and contain lower-level workframes. You can
recognize Composite Activities by the “ca:” symbol followed by the name of the activity. When the
zoom-level is too high to contain the name of the activity it is left out of the display. Using the tool-tip the
user can find out the name.

o. Primitive Activities are executed by workframes, and are always at the bottom of the Activity-Context
Hierarchy. You can recognize Primitive Activities by the following symbols, depending on the type of
primitive activity: “pa:” (for a primitive activity), “mv:” (for a move activity), “cw” (for a communicate
activity), “co:” (for a create object activity), followed by the name of the activity. When the zoom-level is
too high to contain the name of the activity it is left out of the display. Using the tool-tip the user can find
out the name.

Using this AgentViewer I have visually inspected the simultaneous behavior of the agents and objects, and
compared the expected behavior from the conceptual model with the actual behavior during the simulation.

159

6.9.6 Experimentat ion validat ion

Comparing the model output to data from the real system is the most objective and scientific method of
validation. Of course, this type of validation can only be performed if there is a real system, and real-world
data that correspond to the simulation parameters. In this descriptive modeling experiment there was a real
system back in the Apollo days. That system does not exist anymore, but what is most important is the fact
that there is historical data available to validate our model.

I describe two types of quantitative data validation of the simulation output data of the Apollo 12 model,
based on the historical data from the Apollo missions:

1. Validate the simulated activity times and duration with the activity times and duration derived from the
timestamps in the Apollo 12 communication transcript from the Lunar Surface Journal (Jones 1997).

2. Validate the simulated voice loop communication with the voice loop recordings from the actual mission,
which are transcribed in the same Apollo 12 communication transcript (Jones 1997).

6.9.6.1 White-box versus black-box validation

We consider two types of real-world data validation, white-box and black-box validation. The model
verification described in section 6.9.5 is considered a white-box validation. Validating the simulated activity
times with the timing of the activities based on the transcript of the voice loop communication is a white-box
validation. The second validation, that of the actual voice loop data, is a black-box validation.

White-box validation is a micro validation of the content of the model. In a white-box validation we try to
validate the model by investigating the model content in detail. The purpose of this type of validation is to
ensure that the content of the model is true to the real world. The use of a graphical visualization and
spreadsheet tools are very appropriate in this type of validation.

Figure 6-51. Black-box validation: comparison with the real system (from (Robinson 1994))

In a black-box validation we are not looking inside the model, but we are validating the overall behavior of
the model with the output of prespecified real-world data. In this type of validation we need to validate that
when we specify input data to the simulation model that is similar to that of the real system, the output data
from the simulation should be relatively similar to that of the real system as well. This is a validation of the
alternative hypothesis H1 (Figure 6-51).

6.9.6.2 Validate activity times

To validate the timing and duration parameters of the simulation model, we measure the activity times of the
individual activities performed by each astronaut. Initially I had identified the activities of the astronauts
based on the Apollo 12 communication transcripts (see Figure 6-45). Based on this and the fact that each
communication utterance in the transcript is timestamped with the actual mission clock at MSC, I was able
to calculate the ground-estimated time (GET) start and end times of the activity. From this the total activity
time could be calculated (Figure 6-47). Here I am only showing the validation of the first three high-level

160

activities (Table 6-6). This is only in the interest of space, and I hope that with this example the reader is
satisfied and can infer that the same holds for the other activities.

Table 6-6. Calculated activity times based on real-world data

Activity Start GET End GET
Total
Time

? from
ALSEP
Offload
Begin

Performer

Open SEQ Bay Door 116:31:34 116:32:22 00:00:48 0:00:00 LMP

Remove PKG-1 116:32:22 116:33:53 00:01:31 0:00:48 CDR

Remove PKG-2 116:33:53 116:34:44 00:00:51 0:02:19 LMP

 Total 0:03:10
(190 sec)

An issue is the fact that the start and end times of the activities were chosen based on a thorough reading of
the Lunar Surface Journal transcriptions, books and reports on the Apollo 12 mission, as well as the videos
of the ALSEP Offload activities in subsequent missions. The choices I made are subjective to my own
interpretation, as well as that of Erik Jones, the editor and creator of the Apollo Lunar Surface Journal
(Jones 1997). It might well be possible that someone else would make a different interpretation of the timing
based on the same data. Although this may be the case, it should not have much influence on the outcome
of this study, since the goal of this validation is in context of the objective of the experiment. As mentioned
before, the objective is to show that with Brahms we can describe the work practice of a real human activity
system. We can still make a judgment on this, regardless of the fact that the subjectivity of the modeler is
unavoidable in a modeling activity.

Table 6-7. Activity times for LMP Al Bean from simulation history database

DoneByID DisplayText Start49 Start SET50 End End SET TotalTime Status
ALBEAN OpenSEQBayDoor 1 8:31:34 49 8:32:22 48 COMPLETED

ALBEAN RemovePkg1 49 8:32:22 53 8:32:26 4 INTERRUPTED

ALBEAN ChangeEMUSuitCooling 53 8:32:26 58 8:32:31 5 COMPLETED

ALBEAN RemovePkg1 58 8:32:31 124 8:33:37 66 INTERRUPTED

ALBEAN TakingPhotograph 124 8:33:37 137 8:33:50 13 COMPLETED

ALBEAN RemovePkg1 137 8:33:50 140 8:33:53 3 COMPLETED

ALBEAN RemovePkg2 140 8:33:53 191 8:34:44 51 COMPLETED

 Total 190

49 The times in the Start, End, and TotalTime columns are in seconds.
50 The times in the Start Simulation Elapsed Time (SET) and End SET are in the format h:mm:ss.

161

Figure 6-52. Al Bean's RemovePkg1 and RemovePkg2 activities

The activity times from Table 6-7 are the result of the emergent performance of lower-level activities of Al
Bean, as can be seen in Figure 6-52. The timing of the composite activities from Table 6-7 are based on the
cumulative times of the lower-level primitive activities performed as part of these composite activity.

Table 6-7 shows that Al Bean interrupts the RemovePkg activities twice to perform activities that are not
necessarily part of the high-level AlsepOffload composite activity. The ChangeEMUSuitCooling activity is an
activity that can be performed at the moment the astronaut feels too warm or too cold. Performing this
activity is an interruption of the AlsepOffload activity and its underlying subactivities that are being performed
at that moment. Consequently, the current RemovePkg1 activity will continue after the
ChangeEMUSuitCooling activity is finished. You can see this represented in both Table 6-7 and Figure
6-52. Table 6-8 and Figure 6-53 show the activities for Pete Conrad. Pete Conrad does not perform the
ChangeEMUSuitCooling activity (he is too busy offloading the package!), but he is interrupting his
RemoveAlsepPkg2 activity taking three photographs while Al Bean is lowering the second ALSEP package.

Table 6-8. Activity times for CDR Pete Conrad from simulation history database

DoneByID DisplayText Start Start SET End End SET TotalTime Status
PETECONRAD OpenSEQBayDoor 1 8:31:34 50 8:32:23 49 COMPLETED

PETECONRAD RemovePkg1 50 8:32:23 140 8:33:53 90 COMPLETED

PETECONRAD RemovePkg2 140 8:33:53 170 8:34:23 30 INTERRUPTED

PETECONRAD TakingPhotograph 170 8:34:23 189 8:34:42 19 COMPLETED

PETECONRAD RemovePkg2 189 8:34:42 191 8:34:44 2 COMPLETED

 Total 190

Figure 6-53. Pete Conrad's RemovePkg1 and RemovePkg2 activities

From Table 6-6, Table 6-7 and Table 6-8 it can be seen that the timing for both the AlBean and PeteConrad
agents are similar as the timing data from the Apollo LSJ. With this verification the white-box validation of
the model is completed, and we can state that the computer model content (i.e. the Brahms model) is a
valid implementation of the conceptual model, which in turn is based on the Apollo 12 data.

162

6.9.6.3 Subtracting communication delay

The times, as shown in Table 6-6, present the following small but significant validation issue. The times
based on the actual voice transcriptions are the mission times as they were measured by mission control.
Since the activities are those of the lunar surface astronauts being performed on the moon, the actual times
that the astronauts spoke the words transcribed in the Apollo LSJ documents would have had to be one and
a quarter (1.25) second earlier. This is because there was a one and a quarter second delay between earth
and moon communications (see section 6.7.1 about communication delay).

The start and end GET times are not the actual start and end times of the activities performed on the moon.
Although the total activity time stays the same, to be correct, the activities of the astronauts need to start one
and a quarter second earlier. To get to this point, I followed a two-step validation process:

1. Validation of the simulated activity times by making the times match up exactly with those measured on
earth, shown in Table 6-6. The result of this validation was shown in Table 6-7 and Table 6-8.

2. After the simulation model is validated according to (1), we transpose the simulation times to include the
earth/moon delay. Because only the start time is different, we can simply start the simulation clock
earlier. This results in the activities of the astronauts starting at the actual start time, and thus in
communication utterances arriving at mission control at the time measured by the GET clock. The result
for agent AlBean is shown in Table 6-9

There is an issue with the capability of the simulation engine only being able to have an integer clock-grain-
size. This means that we cannot simulate the one and a quarter second delay. The closest we can get is to
have a clock-grain-size of one (1) second. Therefore, the delay I have been able to introduce in the
simulation is one second. The numbers that have consequently been generated are still off by a quarter
(0.25) of a second. However, this is a consistent error rate, and thus could easily be subtracted from the
generated numbers.

Table 6-9. Activity times for LMP Al Bean including communication delay

DoneByID DisplayText Start Start SET End End SET TotalTime Status
ALBEAN OpenSEQBayDoor 1 8:31:33 49 8:32:21 48 COMPLETED

ALBEAN RemovePkg1 49 8:32:21 53 8:32:25 4 INTERRUPTED

ALBEAN ChangeEMUSuitCooling 53 8:32:25 58 8:32:30 5 COMPLETED

ALBEAN RemovePkg1 58 8:32:30 124 8:33:36 66 INTERRUPTED

ALBEAN TakingPhotograph 124 8:33:36 137 8:33:49 13 COMPLETED

ALBEAN RemovePkg1 137 8:33:49 140 8:33:52 3 COMPLETED

ALBEAN RemovePkg2 140 8:33:52 191 8:34:43 51 COMPLETED

 Total 190

6.9.6.4 Validate output with real-world data

Next is the black-box validation. The purpose is to validate that the simulation can recreate the
communication utterances by the astronauts exactly and at the same ground-elapsed time as the data from
the Apollo LSJ. I show this validation of the model for the OpenSEQBayDoor activity as described in section
6.5.3. For ease of the reader, I repeat here the activity/communication table for the OpenSEQBayDoor
activity.

163

Table 6-10. OpenSEQBayDoor activity with communication

LMP CDR

Communicate Ready To Offload Watching Opening SEQ Bay Door
activity Communication communication activity

Talk
116:31:34 Bean: Okay. And
we’ll off-load the ALSEP.
(Garbled).

Watch Opening
SEQ Bay Door

116:31:39 Conrad: Nope.
(Pause)

Talk

Talk
116:31:42 Bean: We ought to
be able to move out with this
thing.

Watch Opening
SEQ Bay Door

Inspect SEQ
Bay 116:31:44 Conrad: Okay. Talk

Talk
116:31:48 Bean: The
experiment bay looks real
good.

Watch Opening
SEQ Bay Door

 116:31:49 Conrad: Yup. Talk

Raising SEQ Bay Door Watch Opening
SEQ Bay Door

activity Communication Watch Opening
SEQ Bay Door

Grab Lanyard
Ribbons

116:31:50 Bean: The LM
exterior looks beautiful the
whole way around. Real good
shape. Not a lot that doesn’t
look the way it did the day we
launched it.

Watch Opening
SEQ Bay Door

Walk Back To
Pull Ribbons

Tight

Watch Opening
SEQ Bay Door

Pull Lanyard
Ribbons

116:32:02 Conrad: (Possibly
pulling a lanyard to open the
SEQ bay doors) Light one.
(Pause)

Talk

Talk

116:32:12 Bean: Okay. Here
we go, Pete. Ohhhhh, up they
go, babes. One ALSEP.
(Pause)

Watch Opening
SEQ Bay Door

Pull Lanyard
Ribbons

116:32:22 Conrad: There it
is.

Talk

Table 6-10 shows the subactivities of the OpenSEQBayDoor activity. The objective of this black-box
validation is to have the simulation generate the exact communication utterance for each agent, at the exact
time specified in. Of course, the same issue exists regarding the measurement of the time in GET and the
communication delay to/from the moon. It should again be realized that the times in Table 6-10 are times
measured by MSC, and are therefore the times that the CapCom agent heard the utterance over the voice
loop, thus one and a quarter second later than the time the lunar surface astronauts uttered the words.

After having validated the activity times from the previous section, I changed the model to include the
communication utterances specifically for this validation. To generate the exact utterance, the agent creates
the utterance as a belief right before it communicates the belief in the Talk activity.

164

Figure 6-54. Workframe with communication utterance from Apollo LSJ

Figure 6-54 shows the rewritten CommunicateReadyToOffload activity including the communication
utterances. For each utterance there is a belief created for the speech attribute for the LMP agent (i.e.
AlBean). This speech attribute signifies the actual speech-utterance of the agent.

Figure 6-55. Talk activity to validate communication

Next, the Talk communicate-activity actually communicates the speech belief to appropriate agents (Figure
6-55). Running the simulation again with this added communication, first and foremost, does not change the
behavior of the agents. The end-result of the simulation is the same, as can be seen in Figure 6-56, but
Table 6-11 shows that the simulation generates the actual voice loop communication transcription
consistent with that in the Apollo LSJ.

The data in Table 6-11 is compiled from the history database. The data shows the communication of the
speech attribute from the LmComCircuit agent. This is the agent that simulates the communication delay
from/to the moon (see section 6.7, explaining the voice loop model). Therefore, the time this agent relays
the communication should be equal to the GET from the Apollo LSJ. This is shown in the last two columns.
The second to last column shows the simulated elapsed time (SET), which is the time from the simulation.
The last column shows the ground-elapsed time (GET) as it is recorded at MSC, and is shown in the Apollo
LSJ.

workframe CommunicateReadyToOffload {
[detectable deleted]
 when (knownval(the groupMembership of current = "LunarModulePilot"))
 do {
 //communication from transcription
 conclude((the speech of current = "Okay. And we'll off-load the ALSEP. (Garbled)."), bc:100, fc:0);
 conclude((the speechAct of current = ReadyToOffloadAlsep), bc:100, fc:0);
 Talk(vlcoms, start, OpenSEQBayDoorActivity, 10, 8);
 //end validation

 //communication from transcription
 conclude((the speech of current = "We ought to be able to move out with this thing."), bc:100, fc:0);
 Talk(vlcoms, start, OpenSEQBayDoorActivity, 0, 1);
 //end validation

 InspectSeqBay(0, 4);

 //communication from transcription
 conclude((the speech of current = "The experiment bay looks real good."), bc:100, fc:0);
 conclude((the speechAct of current = the exteriorAppearance of SEQBay), bc:100, fc:0);
 Talk(vlcoms, end, OpenSEQBayDoorActivity, 0, 1);
 //end validation

 conclude((the nextActivity of current = sRaiseSEQBayDoorActivity), bc: 100, fc: 0);
 }
}

communicate Talk(Communicator agt, symbol whn, Activity act, int pri, int maxd) {
 priority: pri;
 max_duration: maxd;
 resources: act;
 with: agt;
 about: send(the speech of current = value),
 send(the speechAct of current = value);
 when: whn;
}

165

Figure 6-56. Voice loop communication for OpenSEQBayDoor activity

Table 6-11. Agent speech communication validation

Agent FrameName Attribute
Name

Value
(from Apollo 12 LSJ)

Start
Time

Speech at
SET

Speech at
GET
(from

Apollo 12
LSJ)

LMCOMCIRCUIT
SendingAlBean
ComToEarth

speech "Okay. And we'll off-load the
ALSEP. (Garbled)."

0:00:02 8:31:34 116:31:34
LMCOMCIRCUIT SendingPeteConrad

ComToEarth
speech "Nope."

0:00:07 8:31:39 116:31:39
LMCOMCIRCUIT SendingAlBean

ComToEarth
speech "We ought to be able to

move out with this thing."
0:00:10 8:31:42 116:31:42

LMCOMCIRCUIT SendingPeteConrad
ComToEarth

speech "Okay."
0:00:12 8:31:44 116:31:44

LMCOMCIRCUIT SendingAlBean
ComToEarth

speech "The experiment bay looks
real good."

0:00:16 8:31:48 116:31:48
LMCOMCIRCUIT SendingPeteConrad

ComToEarth
speech Yup.

0:00:17 8:31:49 116:31:49
LMCOMCIRCUIT SendingAlBean

ComToEarth
speech "The LM exterior looks

beautiful the whole way
around. Real good shape.

Not a lot that doesn't look the
way it did the day we

launched it."

0:00:18 8:31:50 116:31:50

LMCOMCIRCUIT SendingPeteConrad
ComToEarth

speech "Light one."
0:00:30 8:32:02 116:32:02

LMCOMCIRCUIT SendingAlBeanCom
ToEarth

speech "Okay. Here we go, Pete.
Ohhhhh, up they go, babes.

One ALSEP."
0:00:40 8:32:12 116:32:12

LMCOMCIRCUIT SendingPeteConrad
ComToEarth

speech "There it is."
0:00:50 8:32:22 116:32:22

166

The data from Table 6-11 shows that the simulation, indeed, generates the communication transcription
from the Apollo LSJ, herewith validating the output of the simulation model. This concludes the validation of
the model. In the next section some conclusions will be discussed.

6.10 CONCLUSION

In conclusion, I restate the research questions that needed to be answered, and show that indeed these
questions are answered in this experiment. These questions are operationalized in the Apollo 12 ALSEP
domain, and this operationalization is implemented in a Brahms model of the domain. The goal of this
experiment was to investigate the use of the Brahms-language in order to describe an existing work
practice. The challenge was to investigate if our theory of modeling work practice, implemented in the
Brahms language, would be sufficient to describe the work practice in the chosen domain. The research
questions were:

1. How can we represent the people, things, and places relevant to the domain?

2. How can we represent the actual behavior of the people, second by second, over time?

3. How can we show which of the tools and artifacts are used when, and by whom to perform certain
activities?

4. How can we include the communication between co-located and distributed people, as well as the
communication tools used, and the effects of these communication tools on the practice?

Table 6-12 shows how these questions were implemented in the Brahms model. The first column shows a
more detailed instantiation of the research questions. The second column shows the operationalization
based on the Apollo 12 mission. The third column shows how this is implemented in the Brahms model,
thus answering the question in the first column.

Table 6-12. Answering the research questions

Research Question Operationalization in Apollo 12
ALSEP Offload

Implementation in Brahms
Model

How to represent people? The astronauts Al Bean, Pete
Conrad on the moon, CapCom Ed
Gibson, and CMP Dick Gordon

Agents AlBean, PeteConrad,
EdGibson, and DickGordon

How to represent
Communities of Practice?

The different organizational roles of
Commander, Lunar Module Pilot,
Capsule Communicator, and
Command Module Pilot. Also, the
functional roles of “being an
astronaut on the moon” and
“offloading the ALSEP.”

Hierarchy of different roles as
groups of agents;
ApolloAstronaut, CDR, LMP,
CMP, CapCom,
LunarSurfaceAstronaut,
AlsepOffloadGroup

How to represent artifacts? The artifacts that are used and are
important during the lunar surface
activity of the two astronauts on the
Moon; the LM, SEQ Bay, ALSEP
packages, Lanyard Ribbons,
Booms, Photo cameras, Space
Suits, etc.

Class hierarchy representing
types of objects, and objects
being instances of classes to
represent specific artifacts in the
world; LM, SEQBay, AlsepPkg1,
AlsepPkg2,
Pkg1LanyardRibbons,
Pkg2LanyardRibbons, etc.

How to represent places? The areas where the astronauts are
located, Mission Control, the
Command Module, and the areas

Type of areas as area definitions.
Representing the Apollo 12
Geography model as the World

167

Command Module, and the areas
on the moon where the astronauts
are working to offload the ALSEP,
such as the area in front of the SEQ
Bay, etc.

Geography model as the World
area, containing the areas Moon,
PlanetEarth, and LunarOrbit.
Next, the separate areas part of
the Moon. Mission Control is part
of PlanetEarth, and the
CommandModule area is part of
the LunarOrbit area.

How to represent location
of people and artifacts?

The lunar surface astronauts are
located on the Moon, the CapCom
is located in Mission Control, and
the CMP is located in the
Command Module.

Using the initial_location attribute
in agents and objects. Each
agent and object is given an initial
location at the beginning of the
simulation. From that moment on
agents and objects have
locations, which means they are
located in an area and can move
to other areas when needed.

How to represent actual
behavior over time?

During the mission the astronauts
are always performing activities.
While the CDR and LMP are
offloading the ALSEP packages the
CapCom is listening on the
voiceloop, etc.

The agent’s real-life activities are
represented as different types of
Brahms activities that take time.
Composite activities decomposed
into primitive activities,
communicate activities, and move
activities. Behavior of objects,
such as the astronaut’s space suit
and photo camera is also
represented as activities. Next,
the activities are executed as part
of workframes, constrained by the
agent’s beliefs acquired or
changed over time.

How to represent the use
of tools and artifacts?

The lunar surface astronauts use
tools to perform activities, such as
the use of the lanyard ribbons to
lower the ALSEP packages from
the SEQ Bay.

The use of tools and artifacts in
activities is represented using the
resources attribute. Also, the
generation and detection of facts
represent the interaction or use of
an artifact in an activity by an
agent. The generation of facts is
a representation of the actual
physical interaction with the
artifact being used in the activity.
For example, in the taking a
photograph activity the agent is
using the PhotoCamera object.

How to represent
communication?

The communication between the
lunar surface astronauts on the
moon, the CapCom in Mission
Control, and the communication
between CapCom and CMP.

Communication is represented as
an activity. During this activity
beliefs are communicated to/from
agents. All the communication
between the astronauts is
represented as timed activities
communicating speechacts, i.e.
the speechact is represented as
the value of the attribute

168

speechact communicated as a
belief from one agent to another.

How to represent
communication tools?

The Apollo astronauts where on a
communication voiceloop circuit
with each other and CapCom at
Mission Control. The
communication time delay between
Earth and the Moon was 1.25
seconds.

Voiceloop communication is
represented as a communicate-
activity, communicating with
agents of the group
VoiceLoopCommunicator. To
represent the time delay in the
communication a LmComCircuit
agent represents the voiceloop
circuit through which the
communication is send to/from
Earth to the Moon. Both the
agents on Earth and on the Moon
communicate through this
LmComCircuit agent.

In this Apollo 12 ALSEP Offload experiment I was able to represent the intricate detail of the human
activities and collaboration using the Brahms language. The fact that the model generates all the
communication between the astronauts, including the timing of the communication, shows that the Brahms
Language is powerful enough to model and simulate the work practice of the astronauts on the Moon and
on Earth. Of course the level of collaboration is shown in terms of the activities each agent is performing, as
well as the location of the agents, the artifacts the agent is using at that moment, and the use of artifacts in
the activity. It has been shown that the research questions posted are answered satisfactory. Therefore we
can say that the hypothesis is proven, and that with Brahms we are able to describe an existing work
practice.

This concludes the first of three experiments to show that Brahms is a sufficient language for modeling and
simulating work practice. In the next experiment I will show that with Brahms we can predict the future
activity behavior of agents, based on a model of the work practice.

