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6. CASE STUDY 1: APOLLO 12 ALSEP-OFFLOAD 

In this chapter, I report on the results of the descriptive modeling case study (Sierhuis 2000) (Sierhuis et al. 
2000a) (Sierhuis et al. 2000c) (Sierhuis et al. 2000d). A descriptive model is an abstraction of an existing or 
historical system, and preserving the relations between system states—system morphism. I describe the 
development of a Brahms model and simulation of the ALSEP Offload activity that was part of the ALSEP 
instrument deployment during the Apollo 12 Lunar mission.  

This chapter is divided into a number of sections that could be read or skipped independent of the other 
sections. Section 6.1 gives a short introductory description of the ALSEP Offload task that the astronauts 
performed during the Apollo 12 mission. Sections 6.2, 6.3, and 6.4 should be read together. They describe 
the design of the agent-, object-, and geographical models of the Brahms model. Section 6.5 describes the 
design of the activity model. Section 6.6 describes the behavioral model. This section describes how the 
workframes of an agent are executed, and explains the relationship between time, beliefs, workframes, 
activities and detectables during the simulation of the model. Section 6.7 describes how the communication 
between the lunar surface astronauts, as well as the lunar surface astronauts and the Capcom agent in 
mission control is simulated. Included in the communication model is the simulation of the communication 
time delay between the Moon and the Earth. Section 6.8 describes in more detail how we can model the 
interaction between people and artifacts. I describe this by explaining how we can model the interaction with 
a photo camera, while performing the activity of taking a photograph. Section 6.9 describes the process of 
verifying and validating the Apollo 12 ALSEP Offload model. In this section I describe how the Brahms 
model and simulation is verified and validated against the available historical Apollo 12 data. Last, section 
6.10 describes my conclusions for this case study. 

Goals and Objectives 

The goal of this experiment was to investigate the use of the Brahms-language in order to describe an 
existing work practice. The challenge I faced in this experiment was to investigate if the theory of modeling 
work practice, implemented in the Brahms language (Chapter 4), is sufficient to describe the work practice 
in the chosen domain. The objectives of this first experiment were: 

1. Being able to represent the people, things, and places relevant to the domain. 

2. Represent the actual behavior of the people, second by second, over time. 

3. Show which of the tools and artifacts are used when, and by whom to perform activities. 

4. Include the communication between co-located and distributed people, as well as the communication 
tools used, and the effects of these communication tools on the practice. 

The domain I chose for this experiment is the work practice of the Apollo 12 astronauts in the deployment of 
the Apollo Lunar Surface Experiments Package (ALSEP) on the Moon. The reasons for choosing this 
domain are the following: 

1. The work performed by the astronauts requires unique and highly skilled individuals. The complexity of 
the work to be described is high enough to argue that if we can model this type of work practice within 
Brahms, we can model most other work practices as well. 

2. The ALSEP deployment process is performed by a relatively small number of people. This has a 
positive impact on the modeling and simulation effort, in terms of the time it takes to develop the model, 
as well as the time it takes to simulate the model. 

3. The ALSEP deployment work is distributed over the people involved, and is collaborative in nature. 
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4. There is no work product “flowing” through the work process. This means that this type of work is not 
easily represented in a workflow model. Being able to model this type of work in Brahms supports the 
argument for developing Brahms. 

5. In order to develop a descriptive model of an existing work practice, we need to have access to a 
significant amount of data about the actual work. This often means a long observational and/or 
ethnographical study of the participants. This takes an enormous amount of effort and is a grounded 
research process in and of it self. However, the Apollo project has been well documented by NASA and 
numerous institutions, and writers (Compton 1989) (Wilhelms 1993) (Chaikin 1994) (Godwin 1999). 
Specifically, there is a significant library of video and audiotapes taken during the actual missions 
(NASA 1972)]. This allows us to develop, verify and validate our models using independent data from 
the real events. 

6. Although a Human Mission to Mars is not an official NASA supported activity at this point in time, more 
and more researchers in and outside of NASA are informally studying what it would take to have 
humans go to Mars and do scientific work for an extended period of time. We know very little about how 
people can or should work on Mars. The only reference point we have about humans working on extra-
terrestrial planets is the work that humans did on the Moon during the Apollo project. Developing 
models of the work practices on the Moon might allow us to extrapolate these models and investigate 
people working on Mars, before we can physically go there. 

7. There is, to certain extent, a real possibility that before we will go to Mars we will first go back to the 
Moon. The reasons to do this might be of a scientific or a commercial nature. Regardless of the reason 
to go back to the Moon, a model that describes the existing, but mostly forgotten work practices for 
deploying instruments on the Moon is self-evident. 

6.1 APOLLO 12 AND THE ALSEP OFFLOAD 

One of the biggest objectives of the Apollo 12 mission was to deploy the Apollo Lunar Surface Experiments 
Package (ALSEP). It would be the first time to deploy the ALSEP on the moon. The earlier Apollo 11 
mission only deployed a preliminary version, called the EASEP (Early Apollo Surface Experiment Package). 
The ALSEP consisted of a number of independent scientific instruments that were to be deployed on the 
moon. The instruments were data collection devices for different scientific experiments about the moon’s 
internal and external environment. By deploying similar ALSEP instruments over multiple Apollo missions 
(A12, 14, 15, 16 and 17), the ALSEP deployments created an array of data gathering instruments at 
different locations on the lunar surface. Table 6-1 shows a list of deployed instruments by mission. 

Table 6-1. ALSEP experiments for Apollo missions 

 A 12 A 13 A 14 A 15 A 16 A 17 
Passive Seismic Experiment (PSE) X (X)32 X X X  
Active Seismic Experiment (ASE)   X  X  
Suprathermal Ion Detector Experiment (SIDE) X  X X   
Solar-Wind Spectrometer X   X   
Lunar Surface Magnetometer (LSM) X   X X  
Cold Cathode Gage (CCG) X (X) X X   
Charged Particle Lunar Environment Experiment (CPLEE)  (X) X    
Solar Wind Spectrometer (SWS)    X   
Heat Flow Experiment (HFE)  (X)  X (X) X 
Lunar Ejecta and Meteorites Experiment (LEAM)      X 
Lunar Seismic Profiling Experiment (LSPE)      X 
Gravimeter, Lunar Surface (LSG)      X 
Lunar Atmosphere Composition Experiment (LACE)      X 

To deploy the ALSEP on the lunar surface, the astronauts had to accomplish three high-level tasks. First, 
they had to offload the ALSEP from the Lunar Module (LM). Second, they had to traverse with the ALSEP 
packages to the deployment area, away from the LM. Third, they had to deploy each ALSEP instrument 
onto the surface. In this chapter, I discuss the development of a work practice model for the first task, the 
ALSEP Offload. 
                                                      
32 The round brackets mean that these were planned experiments that failed to be deployed properly. 
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Figure 6-1. SEQ Bay and RTG Cask located on the side of the LM 

All the ALSEP instruments and tools, used for deployment, were stored on two sub-pallets (“packages”) in 
the Scientific Equipment Bay (SEQ Bay) during flight. Figure 6-1 shows the SEQ Bay located on the LM, on 
the opposite side of the ladder from which the astronauts descended to the lunar surface. 

The offload consisted of a number of specified (sub-)activities that were trained extensively and assigned to 
each of the astronauts. The order in which these tasks were to be performed, and whether the Lunar 
Module Pilot or the Commander was to perform the task, i.e. the plan, was the same for all five missions. 
Figure 6-2 shows the plan and start-time for the Apollo 12 ALSEP Offload. 

 

Figure 6-2. Apollo 12 Surface Checklist 47 for the ALSEP Offload 

The order in which the astronauts were to perform their tasks was pre-specified and trained. In other words, 
offloading the ALSEP was a highly choreographed collaborative activity performed by two astronauts 
working in parallel. 

However, even though this high-level task was planned and choreographed up front, the plan did not 
include the situational variations, the actual communication and collaborative activities between the 
astronauts, and the communication between and coordination of activities by the Manned Spaceflight 
Center (MSC) in Houston. MSC, also known as Mission Control, kept track of where the astronauts were on 
the plan, solving unplanned problems, and monitoring and communicating life support status for the 
astronauts. Central in this collaborative activity is the person who played the role of Capsule Communicator 
(CapCom). The CapCom was the “voice” of Houston and the only person in direct communication with the 
astronauts. This communication happened through the voice-loop (see section 6.7 on modeling the voice-
loop). 
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The work practice of the ALSEP Offload, or any work practice for that matter, consists of more than the 
sequence and distribution of tasks. What constitutes the practice of the ALSEP Offload is the way the actual 
plan is carried out; The situational activities of the collaborators, the way they react to their environment, the 
way they communicate, what is said, the way they “know” how to do their tasks given the situation. It is 
situated action (Suchman 1987). A choreographed play “executed” during the performance, planned and 
trained, but always different.  

In the next sections, I will describe how the ALSEP Offload work is modeled in a model of work practice. 
The model is not a model of the problem-solving knowledge of each individual involved in this task. Instead, 
it is a model of the behavior of the individuals. It describes how the collaboration, coordination, and 
communication between the three individuals happen, and make this a fluent event. The activities of one 
individual are like the movements of a musician in a symphony orchestra. The communication between 
individuals is like the interleaved notes that seem to “tell” each musician what to play next. The artifacts and 
tools are like the instruments of the musician. The environment of the Moon and Mission Control is like the 
symphony hall. The Brahms “symphony” that is being played is planned and scored on a piece of paper (i.e. 
the astronaut’s checklist). The orchestra has trained the piece many times (i.e. the astronaut training on 
Earth). However, what comes out in the performance is due to their practice, the concert hall (i.e. the Moon), 
and the way they play together that specific evening (i.e. EVA 1 on Apollo 12). 

6.2 THE AGENT MODEL 

One of the most relevant design issues for any Brahms model is the design of the agents and the groups 
they belong to. The Agent Model describes to which groups the agents belong and how these groups are 
related to each other.  

Designing an Agent Model is similar to the design of an Object Model in object-oriented design (Rumbaugh 
et al. 1998). Just as the class-hierarchy in an Object Model, we need to design the group-hierarchy in the 
Agent Model. As a rule of thumb, we identify the communities of practice of which the agents in the model 
are members, and abstract them to a common denominator for all agents. All agents are members of this 
abstract group. The most abstract group is called the Base Group. This group exists in the Brahms Base 
library. It contains all attribute and relation definitions that are needed by default, such as the name of the 
agent, the group membership relation, and the location of the agent. We specialize this group, until we have 
identified all the similarities and differences between the agents. It should be noted, again, that groups and 
agents can be members of multiple groups. 

Figure 6-3 shows the Agent Model design. We start with defining our agents. Each agent represents a 
person in our domain, e.g. Ed Gibson, Pete Conrad, Al Bean, and Dick Gordon. We generalize the 
community all four agents belong to as the group of ApolloAstronauts.  



 

109 

 
Figure 6-3. Apollo Agent Model design 

The Capsule Communicator (CapCom) was always an astronaut. In the case of Apollo 12, Ed Gibson was 
a civilian chosen with the fourth group of astronauts in 1965. The role of the CapCom was to be the only 
person in Mission Control to talk directly to the astronauts. Dick Gordon, the CommandModulePilot (CMP), 
was a Navy Captain chosen with the third group of astronauts in 1963. The role of the CMP was to fly the 
Command Module (CM), named “Yankee Clipper”, circling in orbit around the moon while the Lunar Module 
(LM), named “Intrepid”, was on the moon. Pete Conrad, the Apollo 12 Commander (CDR), also a Navy 
Captain, was chosen with the second group of astronauts in 1962. Last, the LunarModulePilot (LMP) Al 
Bean, who was also in the Navy, was chosen with the third group of astronauts in 1963.  

I represent the role of each of the astronauts as a group. This way I can represent role specific attributes 
and activities at the group level. The AlsepOffloadGroup is a functional group in the sense that it does not 
specify a specific role, but a task of the agent. This group represents all work activities and attributes that 
have to do with the ALSEP Offload task in one group. This way the group represents the community of 
agents that can perform the ALSEP Offload task. For Apollo 12, both the CDR and the LMP trained for the 
ALSEP Offload activities, and both of them could, if necessary, perform the ALSEP Offload task by 
themselves, and therefore belong to the group ALSEPOffloadGroup. Thus, the Commander and 
LunarModulePilot groups are members of the group AlsepOffloadGroup. Since both the CDR and the LMP 
were working on the surface there are tasks that both astronauts needed and/or could perform. The ALSEP 
Offload task was one of them, but there were others as well. All the activities that needed to be performed 
by all astronauts on the lunar surface are represented in the LunarSurfaceAstronaut group. Such activities 
include taking photographs and changing the cooling of their space suit. In conclusion, we can describe the 
group hierarchy of Apollo astronauts in three sub-groups, CapCom, CommandModulePilot, and 
LunarSurfaceAstronaut. The LunarSurfaceAstronaut group has the AlsepOffload group as a subgroup, 
which in turn is subdivided into the subgroups Commander and LunarModulePilot.  
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Figure 6-4 shows the Brahms source code of the group and agent definitions, as shown in Figure 6-3. 

Figure 6-4. Brahms source code of the agent model 

Figure 6-5 shows the Agent Model in the Brahms Model Builder. The Brahms Model Builder application 
allows the modeler to create and compile the Brahms model. Figure 6-5 shows the group and agent 
hierarchy compiled from the source code in Figure 6-4. Each group has a number of “folders” underneath it. 
Each folder is a different category of model elements for the group. The “Member Groups” folder contains all 
the subgroups that are a member of the group. The “Member Agents” folder contains all agents that are 
members of the group. The rectangles around the groups and agents are not part of the GUI, but are added 
for clarification purposes, so that the reader can easily identify them in the figure. The colors show the 
different group-levels. At the top, in black, you see the BaseGroup. All the other groups are a subgroup of 
the BaseGroup group, and are therefore shown in the “Member Group” folder. The yellow rectangles show 
the four agents, while the other colors show the intermediate groups in the group hierarchy (the colors are 
only visible in a color reprint). 

// Groups 
group BaseGroup { … } 
 
group ApolloAstronaut memberof BaseGroup { … } 
 
group CapCom memberof ApolloAstronaut { … } 
 
group LunarSurfaceAstronaut memberof ApolloAstronaut { … } 
 
group CommandModulePilot memberof ApolloAstronaut { … } 
 
group AlsepOffloadGroup memberof LunarSurfaceAstronaut { … } 
 
group Commander memberof AlsepOffloadGroup { … } 
 
group LunarModulePilot memberof AlsepOffloadGroup { … } 
 
// Agents 
agent PeteConrad memberof Commander { … } 
 
agent AlBean memberof LunarModulePilot { … } 
 
agent DickGordon memberof CommandModulePilot { … } 
 
agent EdGibson memberof CapCom { … } 
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Figure 6-5. Agent Model in the Brahms Model Builder 
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6.3 THE OBJECT MODEL 

After the Agent Model, the next model that needs to be designed is the Object Model. In this model we 
design the class-hierarchy of all the domain objects. Figure 6-6 shows the Object Model design in UML 
(Rumbaugh et al. 1998) for the Apollo 12 domain objects and artifacts. As with the Agent Model, the root-
class of the class hierarchy is the class BaseClass. All other classes and objects inherit from this BaseClass 
class. 

 

Figure 6-6. Apollo Object Model design 

The objects with the dotted arrows pointing up represent the object instances of a class. The solid arrows 
show the built-in contains relation. This relation represents objects contained in other objects. This relation 
has a pre-defined semantic meaning, which is discussed in section 6.4.4.  

The objects with the dotted arrows pointing up represent the object instances of a class. The solid arrows 
show the built-in contains relation. This relation represents objects contained in other objects. This relation 
has a pre-defined semantic meaning, which is discussed in section 6.4.4.  

Figure 6-7 shows the Brahms model source code for the LM and SEQBay objects. Both the LM and 
SEQBay objects are instances of the class BaseClass. Besides representing the corresponding artifacts on 
the Apollo 12 mission, the source code also specifies the initial location of these objects within the 
Geography Model (see section 6.4). Both objects are located in the SEQBayArea area. Furthermore, the 
objects declare the attributes with which we can describe the different aspects of these objects. Although we 
could describe any number of aspects of an object, such as the color, height, et cetera, we only declare 
those attributes that are relevant. To model the fact that the astronauts inspect the LM and the SEQ Bay’s 
exterior appearance after the landing, we declare the attribute exteriorAppearance as a type symbol 
attribute. Using this attribute we can represent the state of the exterior of these objects. Both the LM and the 
SEQBay objects have an initial fact describing the state of their exterior appearance after the landing on the 
moon as an initial fact for the simulation, e.g.  

(the exteriorAppearance of current = SEQBayExteriorLooksGood).  
 

The status of the door of the SEQBay is modeled with the door attribute of type symbol that can have a 
value of closed or open. The door is in the initial state (i.e. an initial fact) of being closed, e.g. (the door of 
current = closed). This represents the door of the SEQ Bay being closed at the start of the ALSEP offload. 
Next, we model the objects that are located within the LM and SEQ Bay. This is represented with the 
contains relation (see Figure 6-6). This relation is declared in the BaseClass class, and inherited by the LM 
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and SEQBay objects. The fact that the SEQBay is located on the outside of the LM is represented as an 
initial fact in the LM object, i.e.  

(current contains SEQBay).  

The object LM represents the Apollo 12 Lunar Module, named Intrepid. This is the Lunar Module in which 
the astronauts landed in Surveyor cater. For this model the only relevant object that is part of the LM and 
that is relevant for the ALSEP Offload is the SEQBay, positioned on the outside of the LM. The SEQBay 
contains a number of artifacts that are relevant during the ALSEP offload activity. These artifacts are also 
modeled as Brahms objects in the model (see Figure 6-7 and Figure 6-8). 

Figure 6-7. Apollo 12 LM and SEQ Bay Brahms objects 

First, there are the LanyardRibbon objects. These objects are used to open the SEQBay door 
(SEQBayDoorLanyardRibbons) and lower the ALSEP packages (Pkg1LanyardRibbons and 
Pkg2LanyardRibbons), respectively. The lanyard ribbons are rope-like artifacts the astronauts pull on to 
open the door and lower the packages. The two main objects are the ALSEP packages, AlsepPkg1 and 
AlsepPkg2. These are the packages the astronauts have to lower from the SEQ Bay and position on to the 
lunar surface. The SEQ Bay also contains booms (SEQBayBooms). These artifacts are rail extension 
structures at the top of the SEQ Bay. When the astronaut pulls on the package lanyard ribbons, the ALSEP 
package comes out attached to the booms. The packages are automatically released from the booms, after 
which the astronaut slowly lowers them to the lunar surface by releasing the tension on the lanyard ribbons. 
The last artifact of interest in the SEQ Bay is the OffloadChecklistDecal object. This is the decal that is 
shown in Figure 6-2, and is a decal that shows the activities and their order for offloading the ALSEP. It is 
there as a reminder for the astronauts. 

Figure 6-8 shows the objects mentioned above, as well as the objects that are contained in each of them. 
One last interesting note to make is that of the pippin objects. Pippins were used to fasten objects to the 
ALSEP packages and other artifacts. The HTC (Hand Tool Carrier) object is fastened on AlsepPkg2 with 
five pippins. The fact that the pippins fasten the HTC is modeled by having them be contained in both the 
AlsepPkg2 object and in the HTC object. Removing the HTC from AlsepPkg2 means to first “remove” the 
pippin objects from both the HTC and the AlsepPkg2 objects, before the HTC object can be removed from 
the AlsepPkg2 object. 

// Apollo 12 objects 
object LM instanceof BaseClass { 
 display: “Intrepid”; 
 location: SEQBayArea; 
 attributes: 
  public symbol exteriorAppearance; 
 initial_facts: 
  (the exteriorAppearance of current = LmExteriorLooksGood); 
  (current contains SEQBay); 
} 
 
object SEQBay instanceof BaseClass { 
 location: SEQBayArea; 
 attributes: 
  public symbol door; 
  public symbol exteriorAppearance; 
 initial_facts: 
  (the exteriorAppearance of current = SEQBayExteriorLooksGood); 
  (the door of current = closed); 
  (current contains AlsepPkg1); 
  (current contains AlsepPkg2); 
  (current contains OffloadChecklistDecal); 
  (current contains SEQBayDoorLanyardRibbons); 
  (current contains Pkg1LanyardRibbons); 
  (current contains Pkg2LanyardRibbons); 
  (current contains SEQBayBooms); 
} 
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Figure 6-8. Apollo 12 contained artifacts 

Now that the agents and artifacts are represented, the next section describes the geography model in which 
the agents and artifacts are located during the simulation. 

6.4 THE GEOGRAPHY MODEL 

In Brahms we model geographical locations using two concepts, area-definitions and areas. Area-definitions 
are user-defined types of areas. Areas are instances of area-definitions. Thus an area is an instance of a 
specific location in the real world that is being modeled. Furthermore, areas can be part-of other areas. With 
this representation scheme we can represent any location at any level of detail. 

For the Apollo 12 ALSEP Offload activity, the following locations are important; Earth, the Manned-Space 
Center (MSC), the Moon, the Apollo 12 landing-site (“Surveyor Crater”), the area where the SEQ Bay is 
located, the ALSEP deployment area, an area away from the SEQ Bay to place artifacts after offloading, 

// Apollo 12 objects 
object SEQBayDoorLanyardRibbons instanceof LanyardRibbons { } 
 
object Pkg1LanyardRibbons instanceof LanyardRibbons { } 
 
object Pkg2LanyardRibbons instanceof LanyardRibbons { } 
 
object AlsepPkg1 instanceof AlsepPackage { 
 initial_facts: 
  //carries objects 
  (current contains DRT); 
  (current contains FTT); 
  (current contains UHT1); 
  (current contains UHT2); 
} 
 
object AlsepPkg2 instanceof AlsepPackage {  
 initial_facts: 
  //carries objects 
  (current contains PipPin1); 
  (current contains PipPin2); 
  (current contains PipPin3); 
  (current contains PipPin4); 
  (current contains PipPin5); 
  (current contains HTC); 
} 
 
object HTC instanceof Tool { 
 initial_facts: 
  //carries objects 
  (current contains PipPin1); 
  (current contains PipPin2); 
  (current contains PipPin3); 
  (current contains PipPin4); 
  (current contains PipPin5); 
} 
 
object PipPin1 instanceof PipPin { } 
object PipPin2 instanceof PipPin { } 
object PipPin3 instanceof PipPin { } 
object PipPin4 instanceof PipPin { } 
object PipPin5 instanceof PipPin { } 
 
object DRT instanceof Tool { } //Dome Removal Tool 
 
object FTT instanceof Tool { }  //Fuel Transfer Tool 
 
object UHT1 instanceof Tool { } //Universal Handling Tool 
 
object UHT2 instanceof Tool { } 
 
object OffloadChecklistDecal instanceof BaseClass { } 
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and last, the lunar orbit and the Command Module (“Yankee Clipper”). Figure 6-9 shows the geography 
model design. 

 
Figure 6-9. Apollo Geography Model design 

Figure 6-10 shows the Brahms source code of the area definitions (areadef) and area objects (area). The 
area definition types used to represent the area-instances are World, City and Building. 

Figure 6-10. Geography Model Brahms source code 

areadef World { } 
areadef City { } 
areadef Building { } 
 
area ApolloGeography instanceof World { } 
 
// back on Earth! 
area PlanetEarth instanceof City partof ApolloGeography { } 
area MissionControlCenter instanceof Building partof PlanetEarth { } 
 
// on the Moon!! 
area Moon instanceof City partof ApolloGeography { } 
area LunarOrbit instanceof City partof ApolloGeography { } 
area SEQBayArea instanceof Building partof Moon { } 
area AwayFromTheSEQBayArea instanceof Building partof Moon { } 
area AlsepDeploymentArea instanceof Building partof Moon { } 
 
// Apollo 12 Geography 
area CommandModule instanceof Building partof LunarOrbit { 
 display: "Yankee Clipper"; 
} 
area LandingSite instanceof Building partof Moon { 
 display: "Surveyor Crater"; 
} 
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It does not seem logical to give the area-definitions the names “World”, “City”, and “Building,” and indeed it is 
not. The reason for this is the limitation of the current Brahms simulation engine33. The current engine only 
accepts three types of areas, namely World, City and Building. Also, in the current engine there can only be 
one world-area. This limitation stems from the fact that our initial designed use of Brahms was for work 
practice models for the type of work that is performed within buildings, such as the more traditional office-
work. This creates an obvious limitation in our representational needs for this extra-terrestrial work domain. 
First, the work happens in two different worlds, namely on Earth and on the Moon. We therefore would like 
to create two world-areas in our model. However, because of the current limitation of the engine we need to 
create the Earth and the Moon as type city-areas, being part of one world. We therefore create one world-
area called ApolloGeography. This area represents the total “world” for our simulation. An area of type 
World can contain only areas of type City, therefore the Earth and Moon are areas of type City. Now we 
have our two planets—Earth and Moon—represented as cities. Secondly, the work on the Moon does not 
happen within buildings. However, we can only represent areas within a city-area as a type Building area. 
Thus, the Moon, being of type City, can only have areas of type Building located within it. We therefore 
represent the locations in which the astronauts perform their work as building-areas. A third “city” is created 
namely the orbit of the Command Module around the Moon. Since we are not concerned about the location 
of the Command Module with respect to the Moon and the Earth, we represent the orbit as a city-area within 
our world. The reason for this is that the Command Module Pilot “lives” within this area. It is therefore easier 
to locate the Command Module Pilot within his “building” location. 

The geographical areas are hierarchically represented as instances of Buildings, which are part of Cities, 
which in turn are part of the World. This leads to the Compiled Geography Model as represented in Figure 
6-1134. 

 
Figure 6-11. Apollo 12 ALSEP compiled Geography Model 

                                                      
33 We have re-implementing the engine in Java. 
34 Figure 6-11 is a part screen capture from the Brahms Builder application. 
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6.4.1 Init ial locat ions 

Each agent and object has an initial location in one of the lowest-level areas, (CommandModule, 
AwayFromTheSEQBayArea, AlsepDeploymentArea, LandingSite, SEQBayArea, or MissionControlCenter). 
Initial locations are locations in which an agent or object is placed during the initialization phase of the 
simulation. This way each agent and object starts out being located in a geographical location (an area). To 
define an initial location for an agent the modeler uses the location attribute at the group or individual agent 
level. Figure 6-12 shows the initial location for each agent. 

Figure 6-12. Agent initial location 

6.4.2 Movement  

Agents and objects can move from one area to another. Moving from one location to another removes the 
agent from the starting location and moves the agent to the new location. This is accomplished by having 
the agent perform a move-type activity. The time the activity is active (i.e. the activity duration-time) 
determines how long it takes the agent to move from location A to location B. Figure 6-13 shows an 
example of a move-activity.  

Figure 6-13. Move activity source code 

The move-activity Moving starts in the area the agent is located at the moment the move-activity gets 
activated, and ends at the new area location given by the loc parameter. When both agents, PeteConrad 
and AlBean, perform the activity Moving(SEQBayArea, 0, 5) they both move independently from the 
LandingSite area (Surveyor Crater), their initial location, to the SEQBayArea in 5 seconds, as shown in 
Figure 6-14. 

move Moving(Building loc, int pri, int dur) { 
priority: pri; 
max_duration: dur; 
resources: MoveActivity; 
location: loc; 

} 

agent PeteConrad memberof Commander { 
 location: LandingSite; 
… 
} 
agent AlBean memberof LunarModulePilot { 
 location: LandingSite; 
… 
} 
agent DickGordon memberof CommandModulePilot { 
 location: CommandModule; 
… 
} 
agent EdGibson memberof CapCom { 
 location: MissionControlCenter; 
… 
} 
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Figure 6-14. Pete Conrad and Al Bean moving to the SEQBayArea 

Figure 6-15 gives a from-above view of the LM landing site and the ALSEP Offload Area of activity (the 
SEQBayArea in the model) from the Apollo 14 Press Kit (NASA 1971). 

 

Figure 6-15. Apollo 14 Landing site and ALSEP Offload area of activity 

6.4.3 Detec t ing agents and objec ts 

As both agents arrive at their new location area they will immediately detect facts about the location of other 
agents and objects that are also in the area they arrive at. The simulation engine automatically creates 
beliefs for the agent from the facts about other objects and agents that are in the same location. The agents 
already in that location will get the belief that the agent that arrived is now also in the location. This way, 
agents will always notice other agents and objects that are in the location the same area. 
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Figure 6-16. Pete Conrad's location beliefs 

Figure 6-16 shows the beliefs and facts of the PeteConrad agent in the Brahms Builder application. By 
opening a simulation history database35 the modeler can investigate what happened during a specific 
simulation run. Figure 6-16 shows all the beliefs the agent PeteConrad received and the facts it created 
during the specific simulation run. The columns show the time the agent created the belief or fact, the type 
(belief/fact) and how it was created (Created by). The (red) rectangle shows the location beliefs agent 
PeteConrad received at time one second into the simulation, created by the simulation engine (Created By: 
ENGINE). The agent received these beliefs due to the move activity Moving that moved the agent from the 
LandingSite area to the SEQBayArea. As you can see in Figure 6-16, at the moment the PeteConrad agent 
arrived at the SEQBayArea location it noticed (i.e. received the beliefs) that Al Bean, his EMU space suit 
and cuff checklist, the LM and the SEQBay, and he himself are all in the SEQBayArea location. Figure 6-16 
also shows other beliefs and facts of the PeteConrad agent. The Created By column shows who or what 
created the belief/fact for the agent. ENGINE means that the simulation engine created the belief/fact, 
CONSEQUENCE shows that a consequence in a workframe or thoughtframe of the agent created the 
belief/fact. DETECTABLE shows a detectable in a workframe created the belief. The name of an agent or 
object in the column shows that that agent or object communicated the belief to the agent. 

6.4.4 Containment  relat ion 

During this case study I ran into a Brahms language limitation. To model the movement of agents and 
objects correctly I had to add the notion of containment to the language (see Figure 6-6). An agent or object 
can “carry” other agents and objects. Consequently, when an agent or object moves locations all the objects 
or agents that are “carried” by the moving agent or object should also move to the new location.  

This is best explained with a simple example from the domain. As shown by the contains-relation in the 
object model in Figure 6-6, the lunar surface astronauts carry their EMU suit and their cuff checklist. As the 
astronauts move from location to location we want these carried objects to move with them, without having 
to specify this moving behavior separately for these objects. Instead, to accomplish this automatically we 
specified a built-in semantic relation called contains. 

                                                      
35 a Microsoft® Access database 
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When the simulation engine executes a move-activity for an agent (or object) it first checks which objects or 
agents the moving agent contains. The simulation engine checks this by finding existing facts of the form: 

Fact:   ( [moving agent-or-object]  contains  [contained agent-or-object] ) 
 

For every such fact the contained agent-or-object is moved as well. To simulate that an agent or object is no 
longer containing another object or agent the above containment-fact needs to be negated: 

Fact:   ( [moving agent-or-object]  contains  [contained agent-or-object]  is false ) 
 

Such a negation undoes the containment, and the previously contained agent or object will not be moved in 
case the agent or object moves.  

Following is a small example of the use of the containment relation in the Apollo 12 model. Consider the 
following scenario; while the LMP agent is offloading an ALSEP package from the SEQ Bay, the CDR agent 
needs to move the first ALSEP package (AlsepPkg1) out of the way, so that the LMP can put the second 
ALSEP package down. Figure 6-17 shows the source code of the activity. 

Figure 6-17. Moving contained object source code 

In step 1, the agent “picks up” the object AlsepPkg1. This is modeled by creating a contains-relation fact 
(fc:100). A belief is also created for the agent (bc:100), because it is obvious that the agent knows he picked 
up the object. Next, in step 2, he performs a move-activity that moves both him and the contained objects to 
the AwayFromTheSEQBayArea area. Then, in step 3, the agent “sets down” the AlsepPkg1 object. This is 
modeled by negating the previously created containment fact and belief. Last, step 4 moves the agent, and 
its current contained objects, back to the SEQBayArea area. Consequently, the AlsepPkg1 object remains 
in the AwayFromTheSEQBayArea area. 

Figure 6-18 shows the simulation output of the execution of the MovingPkg1OutOfTheWay workframe 
described above36. The focus in the picture is on the area within the (red) rectangle. The picture shows the 
activity time-line of the CDR (agent PeteConrad) and that of the ALSEP package (AlsepPkg1) being moved. 
It can be seen that agent PeteConrad is performing step 2 and step 4 from Figure 6-17. The two rectangle 
boxes with the text “mv:”37 and “mv: Move” in it, show the duration of the two move activities. It can be seen 
that after step 2 (rectangle with text “mv:”) the location of both the agent PeteConrad and the object 
AlsepPkg1 has changed from the SEQBayArea area to the AwayFromTheSEQBayArea area38. After agent 
PeteConrad has performed step 4 (rectangle with text “mv: Move”), only agent PeteConrad (and its 
contained objects not shown in Figure 6-18) has moved back to the SEQBayArea area. Consequently, due 
to step 1 and step 3 (the creation and negation of the containment fact), not shown in the figure but 
executed nonetheless, object AlsepPkg1 has been moved out of the way. 

                                                      
36 Figure 6-18 is a screen dump of the AgentViewer tool that shows the result of a simulation. This interface is described in section 6.9.5, 
as well as the loose insert that is provided. 
37 Due to a lack of space in the rectangle, the name of the move activity “MovePkgOutOfTheWay” is not shown. 
38 Figure 6-18 only shows the “Away” text in the agent location bar, again, because of space limitation for the complete text string. 

1. conclude((current contains AlsepPkg1), bc:100, fc:100); 
 

2. MovePkgOutofTheWay(AlsepPkg1, AwayFromTheSEQBayArea, 100, 5); 
 

3. conclude((current contains AlsepPkg1 is false), bc:100, fc:100); 
 

4. Move(SEQBayArea, 10, 5); 
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Figure 6-18. Moving contained object simulation 

6.5 THE ACTIVITY MODEL 

In this section, I describe the ALSEP Offload activities that are performed on the lunar surface, and I 
describe the Brahms model of the Apollo 12 ALSEP Offload. This model represents a part of the work 
practice of the Apollo 12 lunar surface astronauts as they performed the ALSEP Offload activity. As shown 
in section 6.2, there are four people relevant to the Apollo 12 ALSEP Offload; the lunar surface astronauts; 
Pete Conrad the Commander (CRD), Al Bean the Lunar Module Pilot (LMP), as well as Ed Gibson the 
Capsule Communicator (CapCom), and Dick Gordon the Command Module Pilot (CMP).  

There are three separate areas where these four people are located during the Apollo ALSEP Offload 
activity (described in section 6.4). The CapCom sits in the Mission Control Center (MCC) located in the 
Manned Spaceflight Center in Houston, Texas39. His main function is to listen to and communicate directly 
over the voice-loop with the astronauts. The CDR and LMP are the astronauts on the lunar surface and are 
located at or near the area of the SEQ Bay, which is located on the backside of the Lunar Module (LM) 
“Intrepid”. The CMP is orbiting around the moon in the Command Module (CM) “Yankee Clipper.” The main 
characters in the ALSEP Offload activity are CDR Pete Conrad, and the LMP Al Bean. Their work activities 
were planned and trained according to the ALSEP Offload checklist (see Figure 6-2).  

Figure 6-19 shows that although the sequence of removing ALSEP packages during the mission was 
planned, there were more activities performed in practice. After the LMP identified that it is time to start the 
ALSEP Offload, he walks to the SEQ Bay and picks up the SEQ Bay door lanyard from outside of the SEQ 
Bay, and uses it to pull the SEQ Bay door open. The CDR is watching the LMP opening the door, and is not 
as is suggested in the plan “doing-nothing”. Once the SEQ Bay door is open, the CDR grabs the lanyard for 
lowering the first ALSEP package. He walks back from the SEQ Bay with the lanyard in his hand. 
Meanwhile, the LMP is warm and decides to lower the temperature in his EMU suit (Extra-vehicular Mobile 
Unit suit, i.e. his space suit). The CDR pulls the lanyard to move the first ALSEP package from the SEQ Bay 
and lowers it to the ground. While the CDR is performing this activity, the LMP is watching him. When the 
LMP sees a nice reflection in the CDR’s helmet visor he decides to take a couple of photographs of the 
CDR. After the CDR has lowered the first ALSEP package to the surface, it is the LMP’s turn to get the 
second ALSEP package out of the SEQ Bay (compare Figure 6-2 and Figure 6-19). The LMP performs the 
same activities as the CDR to lower the second ALSEP Package to the lunar surface. While lowering the 
second ALSEP package, it is the CDR who is watching the LMP. However, when the LMP is lowering the 

                                                      
39 During the Apollo days the NASA center in Houston was called the Manned Spaceflight Center (MSC). Today it is referred to as 
Johnson Space Center (JSC). 
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package the CDR notices that the first ALSEP package is in the way, and mentions that he will take the first 
package and carry it away from the SEQ Bay area. Once he has done that, and is back at the SEQ Bay, he 
will take three photographs. One photograph of the first ALSEP package as he placed it away from the SEQ 
Bay, and two more photographs of the LMP lowering the second ALSEP package from the SEQ Bay. 
During these activities of the two astronauts on the lunar surface the CapCom is listening to the 
conversation of the astronauts. 

CDR LMP

Watching LMP Open SEQ Bay Door

Remove PKG 1 Watching CDR

Change EMU Suit Cooling

Taking Photographs

Watching LMP Remove PKG 2
Moving PKG 1 Out Of The Way

Taking Photographs

 
Figure 6-19. Activities in practice 

There were activities that the astronauts performed that were not planned or trained. This has to do with the 
nature of what happens in practice, and is precisely what we want to capture in the model, since it defines 
how the work actually happened, i.e. the work in practice. 

6.5.1 Data sources 

I have identified the similarities and differences between the planned activities and the real performed 
activities during the mission by studying the transcribed data of the communications between the CDR, LMP 
and CapCom from the Apollo Lunar Surface Journal (Jones 1997). These communication transcriptions 
have been my major source of data for the Apollo 12 mission. Another source of information has been the 
Apollo 12 Press Kit (NASA 1969) and the Apollo 12 NASA Mission Reports (Godwin 1999). Unfortunately, 
there is no video data for the Apollo 12 ALSEP Offload available. This is due to the fact that an unforeseen 
problem with the TV camera lens and the bright sun on the Moon left the TV camera incapacitated from the 
beginning of the first EVA, right before the ALSEP Offload. Nevertheless, an accurate account of what 
happened during the ALSEP Offload can be derived from the second by second verbal communication 
between the astronauts, in combination with the mission plans. Also, there is video data available from the 
Apollo 14 ALSEP Offload activities. Although the specifics are somewhat different, the opening of the SEQ 
Bay door and lowering the ALSEP packages are similar, and the video is therefore a good source for filling 
in the gaps found in the transcribed communication data. Furthermore, the mission photographs are 
available as well, and provide some extra visual data. 

6.5.2 The Apollo 12 ALSEP offload model 

To reiterate, the goal of this modeling experiment is to describe the work activities of the lunar surface 
astronauts of the Apollo 12 mission as they are offloading the two ALSEP packages from the SEQ Bay. The 
hypothesis is that with Brahms we can describe (model and simulate) the work practice of these Apollo 
astronauts. 

The data paints an accurate picture of the two lunar surface astronauts communicating. However, the data 
does not provide an accurate description of the activities of the LMP and CDR. Although the data provides 
some of the communication from the CapCom and the CMP, there is no detail data of the activities of the 
CapCom and the CMP. However, I will show that the model proofs the hypothesis, by accurately modeling 
and simulating the work practice of the Apollo 12 lunar surface astronauts during the ALSEP Offload, while 
including, where possible, some of the activities of the CapCom and the CMP. 
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The model describes the activities listed in Figure 6-2: Open SEQ Bay Door, Remove PKG-1, Remove 
PKG-2, Deploy Hand Tool Carrier, Unstow Cask Tools, Stow Booms, Unstow Universal Handling Tools, 
and Close SEQ Bay Door. The activity start- and end-times are computed from the Apollo Lunar Surface 
Journal (see Table 6-2) (Jones 1997). 

Table 6-2. ALSEP Offload activity timetable 

Activity Performer GET Begin Time GET End Time Total Time 
1. Open SEQ Bay Door  LMP 116:31:34 116:32:22 0:00:48 

2. Remove PKG-1  CDR 116:32:22 116:33:53 0:01:31 

3. Remove PKG-2 LMP 116:33:53 116:34:44 0:00:51 

4. Deploy Hand Tool Carrier  LMP 116:34:44 116:38:46 0:04:02 

5. Unstow Cask Tools  LMP 116:34:44 116:36:25 0:01:41 

6. Stow Booms  CDR 116:34:44 116:36:25 0:01:41 

7. Unstow UHT CDR 116:34:44 116:36:25 0:01:41 

8. Close SEQ Bay Door  CDR 116:36:25 116:36:49  0:00:24 

Figure 6-20 shows the activities Table 6-2 in the Brahms model. The model is viewed within a tree-view. 
Figure 6-20 shows the AlsepOffload Group in the Groups folder of the Apollo 12 Model. The parent groups 
of a group are positioned under the Parent Groups folder. The parent group of the AlsepOffload group is the 
LunarSurfaceAstronaut group (see also Figure 6-3), which means that the AlsepOffload group inherits all 
elements from that group. The subgroups of a group are positioned under the Member Groups folder. The 
subgroups are the Commander and LunarModulePilot groups, according to the design of the Agent Model 
(see Figure 6-3). The PeteConrad agent is a member of the Commander group, while the AlBean agent is a 
member of the LunarModulePilot group. Consequently, both the PeteConrad and AlBean agent inherit all 
the model elements defined in the AlsepOffload group, as well as all model elements inherited by the 
AlsepOffload group from its parent groups. This means that both agents can theoretically perform all the 
ALSEP offload activities. In reality this was also the case, since both astronauts trained the ALSEP offload 
activities together on Earth many times before the mission. If, for some reason, one astronaut would not be 
able to perform his planned activity, the other could perform it for him. This was shown in later missions, 
when some activities where performed by the astronaut who was not planned to perform the activity (e.g. 
during the ALSEP Offload on the Apollo 15 mission). 
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Figure 6-20. The Brahms ALSEP Offload group and activities model 

The ALSEP offload activities from Table 6-2 are modeled as sub-activities of the AlsepOffload composite-
activity, and can be seen in Figure 6-20 under the Activities Folder of the AlsepOffloadGroup. In the next 
sections, I will describe these activities in more detail, and will explain the Brahms model accordingly. 

6.5.3 The open SEQ Bay door ac t ivity 

The ALSEP Offload starts at 116 hours 31 minutes and 34 seconds ground-elapsed time (GET)40, with the 
LMP announcing that they’re starting the offload of the ALSEP (see Table 6-2 and Figure 6-21). The next 
activity is for the LMP to open the SEQ Bay door. In this section, I describe how I modeled this activity in 
Brahms, based on the available Lunar Surface Journal data (Jones 1997). Figure 6-21 is the transcription 
from the actual voice loop communication between the CDR and the LMP during the opening of the SEQ 
Bay door (Jones 1997, Apollo 12 ALSEP Off-load). 

116:31:34 Bean: Okay. And we’ll off-load the ALSEP. (Garbled).  

116:31:39 Conrad: Nope. (Pause)  

116:31:42 Bean: We ought to be able to move out with this thing.  

116:31:44 Conrad: Okay.  

116:31:48 Bean: The experiment bay looks real good.  

116:31:49 Conrad: Yup.  

116:31:50 Bean: The LM exterior looks beautiful the whole way around. Real good shape. Not a lot that doesn’t look the way it 
did the day we launched it.  

                                                      
40 The ground-elapsed time (GET) was the time clock in Houston that was started at the moment of launch. 
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116:32:02 Conrad: (Possibly pulling a lanyard to open the SEQ bay doors) Light one. (Pause)  

116:32:12 Bean: Okay. Here we go, Pete. Ohhhhh, up they go, babes. One ALSEP. (Pause)  

[They have raised the doors that cover the cavity where the ALSEP packages are stowed.] 

116:32:22 Conrad: There it is. 

Figure 6-21. Apollo 12 LSJ: ALSEP Offload transcription (Jones 1997) (with permission) 

There are three high-level (sub)activities that one can identify in this OpenSEQBay activity. First, there is a 
communication to MSC in Houston that they are ready to offload the ALSEP. This is the communication 
starting at 116:31:34. The issue to solve for the modeler is when this activity ends and the next activity 
begins. From the CDR communication at 116:32:02 we can infer that this is the time that the LMP actually 
opens the SEQ Bay door by pulling at the SEQ Bay door lanyard ribbons. So, we could start the activity of 
raising the SEQ Bay door around that time. However, from the video of the Apollo 14 ALSEP Offload it can 
be shown that before the LMP can pull the lanyard ribbons he has to grab them from the SEQ Bay, walk 
back until the ribbons are tight, and only then pull the ribbons to raise the SEQ Bay door. These activities 
have to happen before 116:32:02. 

Table 6-3 shows the activities and sub-activities of the Open SEQ Bay Door activity for both LMP and CDR, 
mapped onto the communication transcribed in the Apollo LSJ. The actual names of the activities and sub-
activities are more or less arbitrary, and conceptualize the modeler’s interpretation of the observations of the 
Apollo 12 communication data and the Apollo 14 video data. However, these data and observations are 
strong evidence that these are the actual activities that are performed during the OpenSEQBay activity. 



 

126 

Table 6-3. Open SEQ Bay door activity 

LMP CDR 

Communicate Ready To Offload Watching Opening SEQ Bay Door 
Activity Communication Communication Activity 

Communicate 
Open Door 

116:31:34 Bean: Okay. And 
we’ll off-load the ALSEP. 
(Garbled). 

 Watch Opening 
SEQ Bay Door 

Inspect SEQ 
Bay 

 116:31:39 Conrad: Nope. 
(Pause)  

 
116:31:42 Bean: We ought to 
be able to move out with this 
thing. 

  

  116:31:44 Conrad: Okay.  

 
116:31:48 Bean: The 
experiment bay looks real 
good. 

  

  116:31:49 Conrad: Yup.  
Raising SEQ Bay Door   

Activity Communication   

Grab Lanyard 
Ribbons 

116:31:50 Bean: The LM 
exterior looks beautiful the 
whole way around. Real 
good shape. Not a lot that 
doesn’t look the way it did 
the day we launched it. 

  

Walk Back To 
Pull Ribbons 

Tight 
   

Pull Lanyard 
Ribbons 

 
116:32:02 Conrad: 
(Possibly pulling a lanyard 
to open the SEQ bay 
doors) Light one. (Pause) 

 

 

116:32:12 Bean: Okay. Here 
we go, Pete. Ohhhhh, up 
they go, babes. One ALSEP. 
(Pause) 

  

  116:32:22 Conrad: There it 
is.  
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6.6 THE BEHAVIORAL MODEL 

The activities from Table 6-3 are implemented in the Brahms model as the OpenSEQBayDoor composite-
activity. Figure 6-22 shows this activity, its sub-activities and workframes. 

 
Figure 6-22. The OpenSEQ BayDoor composite-activity, sub-activities, and workframes 

Each (sub)activity is “executed” by a workframe, which means that when an agent executes the workframe 
the activity is performed within the context of that workframe. As the first activity during the ALSEP offload, 
the CDR and LMP start walking to the area of the SEQ Bay. Walking to the SEQ Bay area to start opening 
the SEQ Bay door is modeled by the Move activity, seen at the top of Figure 6-22. Now that we defined the 
sub-activities and workframes of the OpenSeqBayDoor activity the question is; how do the CDR and LMP 
agents start this activity during the simulation? Figure 6-23 shows the workframes of the AlsepOffload 
activity that both agents can execute to offload the ALSEP. 

The first workframe to fire—the highest-level workframe, but lowest in Figure 6-23—is the OffloadingAlsep 
workframe, which executes the AlsepOffload activity. Executing the AlsepOffload activity enables all the 
workframes, shown in Figure 6-22, it to potentially fire for the agent. Each of these workframes will execute 
lower-level activities, which are subsumed by the higher-level AlsepOffload activity. 

 
Figure 6-23. The AlsepOffload workframes 
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We can represent the relationship between workframes executing activities, containing other workframes 
that execute activities, etc, in a workframe-activitiy subsumption hierachy as shown in Figure 6-24. 

WF: OffloadingAlsep

ACT: AlsepOffload

WF: DeployingHTC WF: MovingToSEQBay WF: OpeningSEQBayDoor

ACT: Move ACT: OpenSEQBayDoor

WF:
RemovingAlse

pPkg1

WF: CommunicateReadyToOffload WF: RaisingSEQBayDoor WF: WatchingOpeningSEQBayDoor

z

ACT: CommunicateOpenDoor ACT: InspectSeqBay

ACT: GrabLanyardRibbons ACT: WalkBackToPullRibbonsTight ACT: PullLanyardRibbons

ACT: WatchOpeningSEQBayDoor

 

Figure 6-24. AlsepOffload workframe-activity subsumption hierarchy 

Only one primitive activity can be active at any given time (i.e. at any clock-tick). This means that the order 
in which workframes at the same level in the hierarchy fire depends on two things; first, the conditions of the 
workframe that are to be matched to the beliefs of the agent, and second, the priority of the activities within 
the workframes. 

6.6.1 Represent ing the w ork  contex t  

Figure 6-25 represents the parallel sequential order of the activities of the CDR and LMP from Table 6-3 
and Figure 6-22. However, Figure 6-25 does not represent how the CDR and LMP came to do what they 
did. The question is not if we can describe the sequential activities of each of the astronauts, but rather, 
what makes the astronauts do what they do at each moment in time. What influence does the specific 
Apollo 12 situation have on when and how they do things? What influence do they have on each other’s 
activity? Are they merely executing the OpenSeqBayDoor plan? Or, are they deciding what to do based on 
their personal knowledge of that plan? If so, we can represent the knowledge of the plan for each individual 
agent, and be done. This is the traditional knowledge-based systems approach, in which we represent the 
knowledge “inside people’s heads” as production rules. However, what makes Al Bean know that he needs 
to open the door now, and what makes Pete Conrad know that he has to just watch the commander. What 
makes them react?  

As much as it has to do with their knowledge of the plan for opening the SEQ Bay door, e.g. the steps that 
they have to go through, it is also a function of the situation, i.e. the situation specific context which they are 
part of. To start the opening door activity they not only need to know what is the right activity to be 
performing at that moment (according to the plan), but they also need to know that they need to go to the 
SEQ Bay. To go to the SEQ Bay they need to know where the SEQ Bay is. Once they are at the SEQ Bay, 
they can see if the door of the SEQ Bay is already open or not. They need to know that the ALSEP 
packages are located inside the SEQ Bay, and where the lanyard ribbons are located, et cetera. All this has 
to do with the context of the Apollo 12 mission. 
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Figure 6-25. Open SEQ Bay door activity sequence model 

In Brahms, we model context using three different modeling concepts. First, we model the geographical 
places at which people perform the work we are interested in (see the section on the Geographical Model, 
section 6.4). Second, we model all the objects and artifacts that are important in the work. In the case of 
opening the SEQ Bay door, we model the LM, the SEQ Bay, the ALSEP packages, as well as the lanyard 
ribbon used to pull open the SEQ Bay door (see the section on the Object Model, section 6.3). Third, we 
model the state of the world in terms of facts that can be detected by our agent astronauts. For example, 
when the astronauts walk over to the SEQ Bay, they immediately detect the state of the SEQ Bay door; is it 
open or closed? They notice the location of all objects in their surroundings. These are the world-facts that 
trigger the agents to react in certain ways, given the activity they are currently performing. For example, Al 
Bean would not always open the SEQ Bay door when he comes to the SEQ Bay and notices that the door 
is closed. He will only do this when he is in the activity of offloading the ALSEP, in particular when his next 
activity is to open the door. This is where the plan interacts with the situation specific context. 

Why does Pete Conrad watch the LMP? What makes him perform that activity? His plan does not say to 
perform that activity (see Figure 6-2). Rather, this activity is a reaction on the LMP’s activity of opening the 
door during the ALSEP Offload. It is the collaboration between the two astronauts that makes Pete Conrad 
watch his partner. He sees his partner grabbing the lanyard ribbons. He therefore knows what activity his 
partner is performing. It is a reaction to the situation and the context, as well as the fact that he is done 
performing his previous activity. 

Figure 6-25 does not represent this context. The influence the context has on the sequence of the activities 
within Figure 6-25 determines the transitions. The interesting parts of Figure 6-25 are the transitions 
between the activities. What makes the model go from one state to another? This is what we want to 
uncover in the understanding of the work practice of the ALSEP offloading. 

6.6.2 A narrat ive descript ion of w hat  happens in prac t ice 

Following is my interpretation of what happened during the opening of the SEQ Bay door and why the LMP 
and CDR do what they do: 

When they are ready to offload the ALSEP, they first have to walk over to the SEQ Bay, 

Once they arrive at the SEQ Bay, the two astronauts can see the SEQ Bay and can immediately notice that 
the door of the SEQ Bay is still closed. Of course, they both know that the SEQ Bay contains the two 
ALSEP packages, and since they are in the activity of offloading the packages they first need to open the 
door. 
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This triggers them to start the activity of opening the SEQ Bay door, and since the Apollo 12 ALSEP Offload 
plan states that the LMP, Al Bean, is to open the SEQ Bay door, he is the one that announces that they will 
now start with the ALSEP offload. 

Since the LMP is the one who is to perform the activity of opening the SEQ Bay door, he is taking the first 
action and the next activity that is performed is the LMP inspecting the SEQ Bay. However, this is not a 
planned activity. It seems very likely that this activity is performed based on the astronauts’ knowledge that 
mission control is interested in knowing how the SEQ Bay and the LM have withstood the long travel to the 
Moon. It is therefore a very important piece of information that the LMP communicates to Mission Control at 
this point. 

Next, the LMP is ready to start raising the door. To do this he needs to grab the lanyard ribbon with which to 
pull open the door of the SEQ Bay. This means he must know where the lanyard ribbon is to pick-up the 
ribbon. He then walks back with the ribbon. He needs to tighten the ribbon to have enough leverage to pull 
the ribbon. Meanwhile, the CDR is standing close by and is watching the LMP, ready to help in case it is 
needed. Even though the offload plan does not specify any activity for the CDR at this moment, it is logical 
to infer that the CDR’s objective is to closely watch what is happening just in case something happens. This 
is an activity in and of itself. The CDR would not do anything else even though he could. It seems that the 
two astronauts always know what high-level activity the other is performing. This means they are always 
ready to help each other. 

After the SEQ Bay door is all the way open, the LMP lets the lanyard ribbon drop to the lunar surface. 

I created this narrative, based on my analysis of the available mission data. Based on this short description 
of what is happening and what makes the two astronauts do what they do, we can list those elements in the 
context that are most important to include in the model of work practice of the astronauts. 

• The SEQ Bay area location near the LM where this all takes place. 

• The SEQ Bay and the fact that the SEQ Bay is part of the LM located in the SEQ Bay area location. 

• The fact that the exterior of the LM and SEQ Bay are in good condition. 

• The two ALSEP packages and the fact that they are located inside the SEQ Bay. 

• The door of the SEQ Bay, and that it is closed. 

• The lanyard ribbon with which to open the SEQ Bay door. 

• The fact that both astronauts detect each other’s activity. 

• The fact that the LMP needs to carry the lanyard ribbon, and thus must know where this ribbon is 
located for him to pick it up. 

• The fact that after the LMP has completed the activity of opening the door, the SEQ Bay door is open. 

• The fact that after the SEQ Bay door is open the lanyard ribbon’s location is the lunar surface, because 
the LMP lets it fall to the surface. 

• The fact that both astronauts are noticing all these events and become aware of them, and react to 
them appropriately. 

The challenge is to include these independent context elements into the model. Being able to include these 
elements in the model is what makes a Brahms model different from the sequential model of Figure 6-25. A 
sequential model, such as Figure 6-25, can only be executed in the pre-specified order, and does not allow 
for variations based on context. However, work practice is not the rigid execution of a pre-specified activity 
sequence. In practice, the sequence of activities depends on the situation. Is the door already open? Are the 
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packages inside the SEQ Bay or are they already on the ground, et cetera? In the next section, I will 
describe how these contextual and situational elements are included in the model. 

6.6.3 Execut ing the OffloadingAlsep w ork frame 

In this section, I describe the execution of the OffloadingAlsep workframe (Figure 6-26). The 
OffloadingAlsep workframe is the highest-level workframe (see Figure 6-23) in the AlsepOffload group (see 
Figure 6-24). Both LunarSurfaceAstronaut agents (LMP and CDR) inherit this workframe, and 
independently, can execute this workframe in order to start the ALSEP offload. 

Figure 6-26. AlsepOffloading workframe 

6.6.3.1 Variable bindings and preconditions 

In order for the agents to execute a workframe (or thoughtframe) all preconditions of the workframe must 
evaluate to true. The Brahms scheduler will test each precondition and match the precondition to the beliefs 
of the agent. If there is a belief that matches the precondition, the precondition evaluates to true. The 
AlsepOffloading workframe in Figure 6-26 uses three variables within the preconditions to bind to objects 
and agents in the model. The first variable, vlcoms (i.e. voice-loop communicators), is used to match to the 
list of all agents (a “collectall” variable) who are members of the group LmVoiceLoop (see the 
“communicationType” precondition), except for the agent itself (see the “not” precondition). This variable is 
passed as a parameter to the AlsepOffload activity, where it is used to communicate to all the agents who 
are listening to the voice loop (see section 6.7). The second variable, pagt, is used to bind to the partner of 
the agent in the “partner” precondition. In case the agent executing the workframe (i.e. current) is the CDR, 
pagt is bound to the LMP agent (i.e. AlBean). In case the agent executing the workframe is the LMP, pagt is 
bound to the CDR agent (i.e. PeteConrad). This is because the LMP agent, AlBean, has an initial-belief  

(the partner of current = PeteConrad),  

workframe OffloadingAlsep { 
 repeat: false; 
 variables: 
  collectall(LmVoiceLoop) vlcoms; 
  forone(LunarSurfaceAstronaut) pagt; 
  forone(EMUSuit) emusuit; 
 
 detectables: 
  detectable DetectPartnerActivity { 
   when (whenever) 
     detect((the currentActivity of pagt = the currentActivity of pagt)); 
  } 
 
  detectable DetectCoolingLevel { 
   when (whenever) 
     detect((the coolingLevel of emusuit = value)); 
  } 
 
  detectable NoticeAlsepPkg1LocationChange { 
   when (whenever) 
     detect((the objectLocation of AlsepPkg1 = anylocation)); 
  } 
 
  detectable NoticeAlsepPkg2LocationChange { 
   when (whenever) 
     detect((the objectLocation of AlsepPkg2 = anylocation)); 
  } 
 
 when (knownval(the currentConceptualActivity of current = AlsepOffload) and 
            not(the name of current = the name of vlcoms) and  
            knownval(the communicationType of vlcoms = LmVoiceLoop) and 
            knownval(the partner of current = pagt) and 
            knownval(current contains emusuit)) 
 do { 
  AlsepOffload(vlcoms, pagt); 
 } 
} 
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while the CDR agent, PeteConrad, has an initial-belief  

(the partner of current = AlBean).  
 

For each of these two agents the precondition matches, and the pagt variable gets bound to the matched 
agent. The third variable, emusuit, is bound to the EMUSuit object of the current agent in the “contains” 
precondition. 

All the above-mentioned preconditions are not used to actually guard the workframe from firing. These are 
all preconditions that are used to bind the variables to the appropriate objects and agents. The only real 
guard for the workframe is the “currentConceptualActivity” precondition. Not until the agent has the belief 
that his current (conceptual) activity is to offload the ALSEP, will this workframe fire. This shows that writing 
workframe preconditions has all the similar precondition control characteristics, such as the ordering, as 
writing preconditions for production rules in traditional expert systems (Clancey 1983), (Clancey 1988) and 
(Clancey 1992). 

6.6.3.2 Detectables 

The workframe in Figure 6-26 contains four detectables that are active as long as the agent is executing the 
AlsepOffload activity within the workframe (this is due to the “whenever” condition in each detectable). All 
four detectables have a “continue” action part (this is the default action of a detectable). This means that all 
the detectables are defined in the workframe so that the agent executing the workframe will detect any of 
the facts that match the detect-conditions, while performing the AlsepOffload activity without disrupting the 
activity itself. This makes it possible for the agent to notice certain facts in the world and react to them, 
because the facts turn into beliefs for the agent. This allows for the following reactive behavior on the part of 
the agent: 

• The DetectPartnerActivity detectable makes sure that during the ALSEP offload activity the CDR 
and LMP are always aware of the activity their partner is performing. This enables the agent to 
react to their partner’s activity. There are multiple reasons for modeling that the astronauts on the 
lunar surface are always aware of this. The first one is that their activities are well choreographed 
and trained, and the second reason is that it is part of the NASA policy that there is a “buddy 
system” for EVA work performed by astronauts. This “buddy system” is a safety precaution. This 
way there is always someone who can help out. This means that the two lunar surface astronauts 
where very much in tune with what their partner was doing, even if they would be working on their 
own activity. 

• The DetectCoolingLevel detectable models the fact that both astronauts are always aware of the 
cooling-level of their space suit. The fact that the astronauts are wearing their space suit makes this 
obvious. This detectable allows the agents to react to the cooling-level, and chance the level of 
cooling accordingly. 

• The NoticeAlsepPkg1(2)LocationChance detectables speak for themselves. Whenever the location 
of either ALSEP package is changed, the agent will notice this, and can react accordingly. This is 
used to simulate the fact that when one of the agents lowers the ALSEP package from the SEQ 
Bay, both agents will become aware of the fact that the ALSEP package has changed its location 
from the SEQ Bay to the SEQ Bay area (i.e. the lunar surface). This belief is used to start/stop the 
activities for offloading the actual packages 

6.6.3.3 Workframe exectution 

Following is a description of how Brahms executes the AlsepOffloading workframe during simulation of both 
the AlBean and the PeteConrad agent. The workframe is executed at time t=0 for both agents. This means 
that both agents are executing an instance of the workframe (Workframe Instantiation or WFI) at the same 
time. I’ll show the WFI for both agents by repeating the workframe from Figure 6-26, but then showing the 
bindings of the variables in preconditions, consequences, detectables, and activity parameters. Figure 6-27 
and Figure 6-28 show the WFI for the agents AlBean and PeteConrad respectively. 
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Figure 6-27. AlsepOffloafing WFI for agent AlBean 

 

 

workframe OffloadingAlsep { 
 repeat: false; 
 variables: 
  collectall(LmVoiceLoop) vlcoms; => (PeteConrad, LmComCircuit) 
  forone(LunarSurfaceAstronaut) pagt; => PeteConrad 
  forone(EMUSuit) emusuit; => BeanEmuSuit 
 
 detectables: 
  detectable DetectPartnerActivity { 
   when (whenever) 
     detect((the currentActivity of PeteConrad = the currentActivity of PeteConrad)); 
  } 
 
  detectable DetectCoolingLevel { 
   when (whenever) 
     detect((the coolingLevel of BeanEmuSuit = value)); 
  } 
 
  detectable NoticeAlsepPkg1LocationChange { 
   when (whenever) 
     detect((the objectLocation of AlsepPkg1 = anylocation)); 
  } 
 
  detectable NoticeAlsepPkg2LocationChange { 
   when (whenever) 
     detect((the objectLocation of AlsepPkg2 = anylocation)); 
  } 
 
 when (knownval(the currentConceptualActivity of AlBean = AlsepOffload) and 
            not(the name of AlBean = the name of (PeteConrad, LmComCircuit)) and  
            knownval(the communicationType of (PeteConrad, LmComCircuit) = LmVoiceLoop) and 
            knownval(the partner of AlBean = PeteConrad) and 
            knownval(AlBean contains BeanEmuSuit)) 
 do { 
  AlsepOffload((PeteConrad, LmComCircuit), PeteConrad); 
 } 
} 
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Figure 6-28. AlsepOffloafing WFI for agent PeteConrad 

The next two sections describe how the CDR and LMP agents are both performing the AlsepOffload 
activity, and in doing so collaborating in opening the SEQ Bay door. 

6.6.4 Performing the AlsepOffload ac t ivity 

After the firing of the OffloadingAlsep workframe both agents execute the AlsepOffload composite activity 
(see Figure 6-29). For each agent, the simulation engine changes the agent Activity-Context Tree (ACT) 
based on the workframes and thoughtframes in the composite activity that execute. An ACT consists of 
WFI’s and the current activity context of the selected workframe41. In this section, I will show how the 
simulation engine scheduler schedules the activities for each of the lunar surface astronaut agent. To do 
this, I first provide the source code of the workframes of the AlsepOffload composite activity. Next, I will 
show the ACT for both the AlBean and the PeteConrad agent for two simulation events (steps). I will show 
the change in the ACTs as the beliefs of the agents and the world-facts change over time, due to the 
workframe execution and the agent’s reasoning, interaction with other agents/objects and their environment. 

                                                      
41 Only one workframe instantiation can be fired at any time, which means that there is always only one current activity and therefore only 
one current activity-context. 

workframe OffloadingAlsep { 
 repeat: false; 
 variables: 
  collectall(LmVoiceLoop) vlcoms; => (AlBean, LmComCircuit) 
  forone(LunarSurfaceAstronaut) pagt; => AlBean 
  forone(EMUSuit) emusuit; => ConradEmuSuit 
 
 detectables: 
  detectable DetectPartnerActivity { 
   when (whenever) 
     detect((the currentActivity of AlBean = the currentActivity of AlBean)); 
  } 
 
  detectable DetectCoolingLevel { 
   when (whenever) 
     detect((the coolingLevel of BeanEmuSuit = value)); 
  } 
 
  detectable NoticeAlsepPkg1LocationChange { 
   when (whenever) 
     detect((the objectLocation of AlsepPkg1 = anylocation)); 
  } 
 
  detectable NoticeAlsepPkg2LocationChange { 
   when (whenever) 
     detect((the objectLocation of AlsepPkg2 = anylocation)); 
  } 
 
 when (knownval(the currentConceptualActivity of PeteConrad = AlsepOffload) and 
            not(the name of PeteConrad = the name of (AlBean, LmComCircuit)) and  
            knownval(the communicationType of (AlBean, LmComCircuit) = LmVoiceLoop) and 
            knownval(the partner of PeteConrad = AlBean) and 
            knownval(PeteConrad contains ConradEmuSuit)) 
 do { 
  AlsepOffload((AlBean, LmComCircuit), AlBean); 
 } 
} 
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Figure 6-29. Workframes within the composite AlsepOffload activity 

1. STEP 1: time t = 0 

For each Lunar Surface Agent, the scheduler checks the preconditions of all the workframes and thoughtframes in 
the AlsepOffload activity, based on the agent’s current belief set. 

 
AlBean: 
 

Current Belief Set: 
t=0    =>  BELV: The currentConceptualActivity of AlBean = AlsepOffload 
t=0    =>  BELV: The agentLocation of AlBean = Surveyor Crater 
t=0    =>  BELV: The agentLocation of PeteConrad = Surveyor Crater 
t=0    =>  BELV: The agentLocation of DickGordon = Yankee Clipper 
t=0    =>  BELV: The agentLocation of EdGibson = MissionControlCenter 
t=0    =>  BELV: The partner of AlBean = PeteConrad 
t=0    =>  BELV:  SEQBay contains AlsepPkg1 
t=0    =>  BELV:  SEQBay contains AlsepPkg2 
t=0    =>  BELV:  SEQBay contains OffloadChecklistDecal 
t=0    =>  BELV:  SEQBay contains Pkg1LanyardRibbons 
t=0    =>  BELV:  SEQBay contains Pkg2LanyardRibbons 
t=0    =>  BELV:  SEQBay contains SEQBayDoorLanyardRibbons 
t=0    =>  BELV:  AlBean contains BeanEMUSuit 
t=0    =>  BELV:  AlBean contains LmpCuffCheckList 
t=0    =>  BELV:  BeanEMUSuit contains BeanHasselblad70mm 
t=0    =>  BELV:  PeteConrad contains ConradEMUSuit 
t=0    =>  BELV: PeteConrad contains CdrCuffCheckList 
t=0    =>  BELV:  ConradEMUSuit contains ConradHasselblad70mm 
 

Precondition Matching: 
workframe MovingToSEQBay: 

Prec: not(the agentLocation of current = SEQBayArea)  
TRUE, based on BELV: The agentLocation of AlBean = Surveyor Crater 
 

workframe OpeningSEQBayDoor 
Prec: knownval(the agentLocation of current = SEQBayArea 
FALSE, based on BELV: The agentLocation of AlBean = Surveyor Crater 
Prec: knownval(the door of SEQBay = closed) 
FALSE, based on NO belief about the door of SEQBay 

workframe MovingToSEQBay { 
 repeat: false; 
 detectables: 
  detectable DetectSEQBayDoor { 
   when (100) 
    detect((the door of SEQBay = value)); 
  } 
 when (not(the agentLocation of current = SEQBayArea)) 
 do { 
  conclude((the currentActivity of current = MoveActivity), bc:100, fc:100); 
  Move(SEQBayArea, 5, 1); 
  conclude((the nextActivity of current = OpenSEQBayDoorActivity), bc:100, fc:0); 
 } 
} 
 
workframe OpeningSEQBayDoor { 
 repeat: false; 
 variables: 
  collectall(AlsepPackage) alseppkgs; 
 
 when (knownval(the agentLocation of current = SEQBayArea) and 

knownval(the door of SEQBay = closed) and 
not(the objectLocation of alseppkgs = SEQBayArea)) 

 do { 
  conclude((the currentActivity of current = OpenSEQBayDoorActivity), bc:100, fc:100); 
  OpenSEQBayDoor(vlcoms); 
  conclude((the door of SEQBay = open), bc:100, fc:100); 
 } 
} 
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Prec: not(the objectLocation of alseppkgs = SEQBayArea) 
TRUE, based on NO belief about the location of AlsepPkg1 and AlsepPkg2 
 

Activity-Context Tree: 

 

Figure 6-30. AlBean's Step 1 Activity-Context Tree 

PeteConrad: 
 

Current Belief set: 
t=0    =>  BELV: The currentConceptualActivity of PeteConrad = AlsepOffload 
t=0    =>  BELV: The agentLocation of PeteConrad = SurveyorCrater 
t=0    =>  BELV: The agentLocation of AlBean = SurveyorCrater 
t=0    =>  BELV: The agentLocation of DickGordon = YankeeClipper 
t=0    =>  BELV: The agentLocation of EdGibson = MissionControlCenter 
t=0    =>  BELV: The partner of PeteConrad = AlBean 
t=0    =>  BELV:  SEQBay contains AlsepPkg1 
t=0    =>  BELV:  SEQBay contains AlsepPkg2 
t=0    =>  BELV:  SEQBay contains OffloadChecklistDecal 
t=0    =>  BELV:  SEQBay contains Pkg1LanyardRibbons 
t=0    =>  BELV:  SEQBay contains Pkg2LanyardRibbons 
t=0    =>  BELV:  SEQBay contains SEQBayDoorLanyardRibbons 
t=0    =>  BELV:  AlBean contains BeanEMUSuit 
t=0    =>  BELV:  AlBean contains LmpCuffCheckList 
t=0    =>  BELV:  BeanEMUSuit contains BeanHasselblad70mm 
t=0    =>  BELV:  PeteConrad contains ConradEMUSuit 
t=0    =>  BELV: PeteConrad contains CdrCuffCheckList 
t=0    =>  BELV:  ConradEMUSuit contains ConradHasselblad70mm 
 

Precondition Matching: 
workframe MovingToSEQBay: 

Prec: not(the agentLocation of current = SEQBayArea)  
TRUE, based on BELV: The agentLocation of PeteConrad = SurveyorCrater 
 

workframe OpeningSEQBayDoor 
Prec: knownval(the agentLocation of current = SEQBayArea 
FALSE, based on BELV: The agentLocation of PeteConrad = SurveyorCrater 
Prec: knownval(the door of SEQBay = closed) 
FALSE, based on NO belief about the door of SEQBay 
Prec: not(the objectLocation of alseppkgs = SEQBayArea) 
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TRUE, based on NO belief about the location of AlsepPkg1 and AlsepPkg2 
 

Activity-Context Tree: 

 

Figure 6-31. PeteConrad's Step 1 Activity-Context Tree 

Both agents are executing a move-activity from their current location (i.e. Surveyor Crater) to the 
SEQBayArea, as can be seen in Figure 6-30 and Figure 6-31. As the agents move to the new location, the 
objects that they are containing (i.e. cuff checklist and EMU suit) are automatically moved with them to the 
new location. As the agents arrive in the new location, they detect that the SEQ Bay door is still closed. Also 
shown in Figure 6-30 and Figure 6-31, the agents automatically notice (i.e. the engine automatically creates 
the beliefs for the agents) the location of all other objects and agents that are also in the new location; i.e. 
the location of the other agent, its cuff checklist and EMU Suit, the LM, and the SEQ Bay. Both agents also 
detect each other’s current activity, through the DetectPartnerActivity detectable in the AlsepOffload activity. 
Lastly, the agents receive a belief about their next activity to open the SEQ Bay door. 

When the simulation clock has increased by one, the following (partial) situation exists: 

2. STEP 2: time t = 1 

For each Lunar Surface Agent, the scheduler checks the preconditions of all the workframes and thoughtframes in 
the AlsepOffload activity, based on the agent’s current belief set. 

 
AlBean: 
 

Current Belief Set: 
t=1    => BELV: The currentActivity of AlBean = OpenSEQBayDoorActivity 
t=1    =>  BELV: The nextActivity of AlBean = OpenSEQBayDoorActivity 
t=1    =>  BELV: The door of SEQBay =  closed 
t=1    => BELV: The currentActivity of PeteConrad = MoveActivity 
t=1    =>  BELV: The objectLocation of SEQBay = SEQBayArea 
t=1    =>  BELV: The objectLocation of LM = SEQBayArea  
t=1    =>  BELV: The agentLocation of AlBean = SEQBayArea 
t=1    => BELV: The objectLocation of BeanEMUSuit = SEQBayArea 
t=1    => BELV: The objectLocation of LmpCuffCheckList = SEQBayArea 
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t=1    =>  BELV: The agentLocation of PeteConrad = SEQBayArea 
t=1    => BELV: The objectLocation of ConradEMUSuit = SEQBayArea 
t=1    => BELV: The objectLocation of CdrCuffCheckList = SEQBayArea 
t=1    => BELV: The currentActivity of AlBean = MoveActivity 
t=0    =>  BELV: The currentConceptualActivity of AlBean = AlsepOffload 
t=0    =>  BELV: The agentLocation of DickGordon = YankeeClipper 
t=0    =>  BELV: The agentLocation of EdGibson = MissionControlCenter 
t=0    =>  BELV: The partner of AlBean = PeteConrad 
t=0    =>  BELV:  SEQBay contains AlsepPkg1 
t=0    =>  BELV:  SEQBay contains AlsepPkg2 
t=0    =>  BELV:  SEQBay contains OffloadChecklistDecal 
t=0    =>  BELV:  SEQBay contains Pkg1LanyardRibbons 
t=0    =>  BELV:  SEQBay contains Pkg2LanyardRibbons 
t=0    =>  BELV:  SEQBay contains SEQBayDoorLanyardRibbons 
t=0    =>  BELV:  AlBean contains BeanEMUSuit 
t=0    =>  BELV:  AlBean contains LmpCuffCheckList 
t=0    =>  BELV:  BeanEMUSuit contains BeanHasselblad70mm 
t=0    =>  BELV:  PeteConrad contains ConradEMUSuit 
t=0    =>  BELV:  PeteConrad contains CdrCuffCheckList 
t=0    =>  BELV:  ConradEMUSuit contains ConradHasselblad70mm 
 

Precondition Matching: 
workframe MovingToSEQBay: 

Prec: not(the agentLocation of current = SEQBayArea)  
FALSE, based on BELV: The agentLocation of AlBean = SEQBayArea 
 

workframe OpeningSEQBayDoor 
Prec: knownval(the agentLocation of current = SEQBayArea 
TRUE, based on BELV: The agentLocation of AlBean = SEQBayArea 
Prec: knownval(the door of SEQBay = closed) 
TRUE, based on BELV: The door of SEQBay =  closed 
Prec: not(the objectLocation of alseppkgs = SEQBayArea) 
TRUE, based on NO belief about the location of AlsepPkg1 and AlsepPkg2 
 

Activity-Context Tree: 
 

As the move-activity in Step 1 (Figure 6-30) ends, in the next clock-tick (t=1) the ACT for agent AlBean 
changes. The agent is still within the OffloadAlsep activity, because there are still workframes that are in the 
working-state. The MovingToSEQBay workframe has finished executing, its preconditions are false, and its 
repeat-variable has the value “false”. Therefore, the working WFI is finished and stops. However, the 
preconditions of the OpeningSEQBayDoor workframe have become true in the same clock-tick (t=1), and a 
new working WFI for this workframe is created (see Figure 6-32). Next, the composite activity 
OpenSEQBayDoor in this WFI gets executed. Consequently, the preconditions of all workframes in it are 
checked. It turns out that for agent AlBean, the preconditions of two of the three workframes evaluate to 
“true”. This means that WFI’s are created for both the RaiseSEQBayDoor and 
CommunicateReadyToOffload workframes, and their state becomes “available”. Since there can only be 
one WFI working at that level in the ACT, the engine solves the conflict by comparing the priorities of the two 
available WFI’s. The priority of a WFI is equal to the priority of the highest activity priority within it. In this 
case, the priority of the RaiseSEQBayDoor WFI is zero (0) and that of the CommunicateReadyToOffload 
WFI is ten (10). Consequently, the CommunicateReadyToOffload WFI becomes the working WFI, and its 
first activity Talk the current activity, i.e. the agent’s activity that is being executed. 
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Figure 6-32. AlBean's Step 2 Activity-Context Tree 

Also shown in Figure 6-32 are the detectables in the workframes OffloadingAlsep and 
CommunicateReadyToOffload firing in step 2 (t=1). However, in both cases the beliefs are not created until 
t=2, as a result of detecting the facts at t=1. This occurs at t=2 and not t=1, due to the clock-based 
simulation engine. The current activity Talk starts execution at t=1. This means that all the detectables in the 
working WFI’s are checked at t=1. The beliefs are not created until the next clock-tick, t=2.42 

PeteConrad: 
 

Current Belief Set 
t=1    => BELV: The currentActivity of PeteConrad = WatchOpeningSEQBayDoorActivity 
t=1    => BELV: The currentActivity of PeteConrad = OpenSEQBayDoorActivity 
t=1    =>  BELV: The nextActivity of PeteConrad = OpenSEQBayDoorActivity 
t=1    =>  BELV: The door of SEQBay = closed 
t=1    => BELV: The currentActivity of AlBean = MoveActivity 
t=1    => BELV: The fieldOfVision of PeteConrad = AlsepPackageInSeqBay 
t=1    =>  BELV: The objectLocation of SEQBay = SEQBayArea 
t=1    =>  BELV: The objectLocation of LM = SEQBayArea  
t=1    =>  BELV: The agentLocation of AlBean = SEQBayArea 
t=1    => BELV: The objectLocation of BeanEMUSuit = SEQBayArea 
t=1    => BELV: The objectLocation of LmpCuffCheckList = SEQBayArea 
t=1    =>  BELV: The agentLocation of PeteConrad = SEQBayArea 
t=1    => BELV: The objectLocation of ConradEMUSuit = SEQBayArea 
t=1    => BELV: The objectLocation of CdrCuffCheckList = SEQBayArea 
t=1    => BELV: The currentActivity of PeteConrad  = MoveActivity 
t=0    =>  BELV: The currentConceptualActivity of PeteConrad = AlsepOffload 
t=0    =>  BELV: The agentLocation of DickGordon = YankeeClipper 
t=0    =>  BELV: The agentLocation of EdGibson = MissionControlCenter 
t=0    =>  BELV: The partner of PeteConrad = AlBean 
t=0    =>  BELV:  SEQBay contains AlsepPkg1 
t=0    =>  BELV:  SEQBay contains AlsepPkg2 
t=0    =>  BELV:  SEQBay contains OffloadChecklistDecal 
t=0    =>  BELV:  SEQBay contains Pkg1LanyardRibbons 
t=0    =>  BELV:  SEQBay contains Pkg2LanyardRibbons 
t=0    =>  BELV:  SEQBay contains SEQBayDoorLanyardRibbons 
t=0    =>  BELV:  AlBean contains BeanEMUSuit 
t=0    =>  BELV:  AlBean contains LmpCuffCheckList 

                                                      
42 In our new Java-based discrete event simulation engine the beliefs will be created at the same clock-tick, i.e. t=1. 
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t=0    =>  BELV:  BeanEMUSuit contains BeanHasselblad70mm 
t=0    =>  BELV:  PeteConrad contains ConradEMUSuit 
t=0    =>  BELV:  PeteConrad contains CdrCuffCheckList 
t=0    =>  BELV:  ConradEMUSuit contains ConradHasselblad70mm 
 

Precondition Matching: 
workframe MovingToSEQBay: 

Prec: not(the agentLocation of current = SEQBayArea)  
FALSE, based on BELV: The agentLocation of PeteConrad = SEQBayArea 
 

workframe OpeningSEQBayDoor 
Prec: knownval(the agentLocation of current = SEQBayArea 
TRUE, based on BELV: The agentLocation of PeteConrad = SEQBayArea 
Prec: knownval(the door of SEQBay = closed) 
TRUE, based on BELV: The door of SEQBay =  closed 
Prec: not(the objectLocation of alseppkgs = SEQBayArea) 
TRUE, based on NO belief about the location of AlsepPkg1 and AlsepPkg2 
 

Activity-Context Tree: 
 

As the PeteConrad agent also comes into the SEQBayArea location, he also starts working on the 
OpenSeqBayDoor activity. Potentially the agent can execute the same workframes as AlBean. However, 
due to the belief-set of the agent PeteConrad, it will fire the WatchingOpeningSEQBayDoor workframe, 
which therefore becomes the working WFI. 

 

Figure 6-33. PeteConrad's Step 2 Activity-Context Tree 

6.6.5 View ing the simulat ion results 

In this section I show the results of the simulation of the OpenSEQBayDoor activity, as described in the 
previous sections. Figure 6-34 shows the ACTs of the AlsepOffload activity performed by both the AlBean 
and the PeteConrad agent, as described in section 6.6.4, as well as the communication between the two 
agents. While performing the AlsepOffload composite activity, both agents are within the OpenSEQBayDoor 
activity. While AlBean is performing the activities within the CommunicateReady and the 
RaisingSEQBayDoor workframe, the PeteConrad agent is performing the activities within the 
WatchingOpenSEQBayDoor workframe. The grain-size of the simulation is one second. This means that 
the simulation engine changes the ACT for every agent and object every second of simulated time. We can 
therefore say that the simulation is a second by second model of the work practice of the lunar surface 
astronauts. Figure 6-34 also shows the location the agent was in when performing the activity. As an 
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overlay, the dotted arrows show the communication of beliefs between agents AlBean and PeteConrad. 
The direction of the arrows show the direction in which the beliefs are being communicated, while the little 
square box at the start of the arrow shows the agent that is performing the communication.  

Figure 6-34 is a screen shot from the AgentViewer application43. The AgentViewer application takes as 
input a Brahms Simulation History database44. This history database contains the historical situation-specific 
model data of a particular simulation run. The AgentViewer application creates a graphical representation of 
the activity of agents and objects during a simulation. 

 

Figure 6-34. AlsepOffload activity agent timeline 

Grouping a number of important data about the activity of the agent during the simulation into an agent 
workframe-activity hierarchy shows the ACT of an agent or object, at any time during the simulation. Each 
agent’s ACT consists of a number of “bars.” Each bar is an object that can be manipulated in the 
AgentViewer.  

At the top of each agent’s ACT there is the location bar. The location bar shows the movement of the agent 
throughout its activities. When an agent changes location the color of the location bar changes45. In Figure 
6-34 both agents start in the same initial location This is the Apollo 12 LandingSite area (Surveyor Crater). 
You can see that the next location both agents are in is the SEQBayArea location. 

The next bar in the agent’s ACT is the time-line bar. This bar shows the simulation time. Figure 6-34 shows 
that the AlsepOffload activity starts just after 8:31:30 AM (in fact the simulation clock starts at time 8:31:32 
AM). Each thin white line in the time-line bar shows a 5-second interval. Consequently, Figure 6-34 shows 
an activity interval of about 50 seconds (from 8:31:30 AM until about 8:32:23 AM. 
                                                      
43 The AgentViewer application is a stand-alone Visual Basic application we developed for viewing the results of a simulation. 
44 The history database is a complex relational database containing the simulation data preserving their relationships. 
45 An agent does not effectively change its location until the simulation engine has finished a move activity and consequently positions the 
agent into the new location. The agent’s location during the move activity stays unchanged, even though the agent is moving, and should 
thus not be in any location. Brahms is not modeling the movement of agents during the execution of a move-activity. 



 

142 

The third bar is the agent’s name bar, with the name of the agent and an agent icon). This bar shows which 
agent or object46 is being displayed  

The fourth and final bar is the workframe-activity bar. This is the bar that shows the execution of the 
workframes, activities, and thoughtframes for the agent. Workframes are represented as blue bars that start 
with the letters “wf”, for workframe, and the name of the workframe (if it fits within the graphics block). 
Underneath a workframe bar there can either be a flesh-colored bar, or a green-colored bar. A flesh-colored 
bar represents a composite activity, and starts with the letters “ca”, for composite activity. A green-colored 
bar is a primitive-, move-, communicate-, or create-object activity. These are always the lowest level 
activities. Each type of primitive activity is indicated by a different shade of green. Other than a color 
indication; a primitive activity is indicated by the letters “pa”, for primitive activity; a move activity by the 
letters “mv”, for move; a communicate activity by the letters “cw”, for communicating-with; a create-object 
activity by the letters “co”, for create-object. When the size of the graphics block is large enough to contain 
the name of the activity it is shown as well. If not, the name is shown when the user moves the mouse over 
the activity or workframe box. 

6.7 VOICE-LOOP COMMUNICATION 

One of the most important aspects of work practice is the way people communicate. The communication to 
and from the Apollo Lunar Surface was made possible by the Extra-Vehicular Communication System 
(EVCS). The EVCS was a communication relay system that communicated voice from the astronauts via 
their EMU suits to the LM and via the LM, using a S-Band antenna, to mission control. The voice of the 
CapCom was communicated back to the LM and the astronauts via the same system (see Figure 6-35). 
This way the lunar surface astronauts and CapCom were in constant two-way communication. The CMP 
and CapCom had a similar communication system via the CM. The two lunar surface astronauts where 
operating their communication system in dual mode, which meant that they were always able to hear each 
other. However, the CMP was not in direct communication with the lunar surface astronauts, and was 
therefore not always able to hear them. 

In this section I describe how the EVCS, or as I have named it, the voice-loop communication has been 
modeled in Brahms. 

6.7.1 Communicat ion delay 

Conversational overlaps are a normal part of human dialog, and humans are pretty well apt to deal with this 
phenomenon. However, the communication delay from Earth to the Moon is significantly larger than the 
face-to-face or phone communication on Earth. The one-way delay, to Earth and to the Moon, is one and a 
quarter (1.25) second. This means a minimum of two and a half (2.5) seconds round-trip communication 
delay. If one of the astronauts made an utterance, the CapCom would hear the utterance one-and-a-quarter 
second later. If the CapCom would respond immediately, the astronauts would not hear this response until 
one and a quarter second later, which means a total of, at minimum, two and a half seconds. 

                                                      
46 Objects have a different object icon. 
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Figure 6-35. Extra-Vehicular Communication System 

During the Apollo missions the communication delay sometimes lead to problematic communication 
patterns, as is shown in the example from Apollo 17 from the section "Journal Preparation and Structure" in 
the Apollo LSJ (Jones 1997).  

In the following example, we imagine CapCom Bob Parker giving Gene Cernan instructions on 
parking the Rover. Before Cernan hears Parker, he starts to make a comment about where he is 
parked. He then stops talking, listens to Parker (who doesn't stop talking), responds, and then 
continues with his comment.  

Parker: Gene, just a reminder that we want a Rover (garbled)...  

Cernan: Bob, we've stopped next to...(Hears Parker)  

Parker: ...(heading) of 045; and, when you get out, we'll need readouts.  

Cernan: (Responding to Parker) Okay, Bob. We've parked next to one of the fresh craters that shows 
up on the map.  

Generally, when someone's utterance ends with ellipses and his next utterance begins with ellipses, 
the reader should infer that the speaker kept talking under the overlapping remark. When someone's 
utterance ends with ellipses but his next utterance does not begin with ellipses, the reader should infer 
either a break in thought or a pause to listen. Unintelligible dialog is indicated by the editorial comment 
"garbled". Unintelligible dialog is often associated with overlapping conversations and in this 
illustration, on the continuation of Parker's utterance I have indicated the likely missing word. “ 

Although in this example Eric Jones is referring to the transcription as done for the Apollo LSJ, the fact of 
the matter is that if one wants to model the communication utterances of the astronauts and their impact on 
work practice, we have to model the one and a quarter delay for each communication event.  

6.7.2 Modeling the communicat ion to Earth 

The voice-loop in context of the Apollo missions is the inter-communication system between the astronauts 
on the Moon and the CapCom at MSC in Houston. 

There is a significant difference between voice-loop communication and face-to-face (f-2-f) communication. 
First, and foremost, f-2-f communication is bounded to geographical location of the agents. This means that 
the agents have to be in the same location to be able to engage in a f-2-f communication activity. This is 
referred to as Same Time/Same Place (STSP) communication (Chapter 3.2.4.4). In voice-loop 
communication there is no restriction on the geographical location of the engaging agents. The agents can 
be in any location, indeed even on Earth and on the Moon. 
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Another difference is the fact the in a voice-loop communication there is no need to “go to” somebody 
before a communication can take place. This is similar to a phone communication (Same Time/Different 
Place (STDP) communication). However, different from a phone communication, there is no need to “call” 
someone before the communication can start. Therefore, a voice-loop communication is a combination of f-
2-f and phone communication, it is a STSP/DP communication form. 

To model the communication delay over the EVCS, I have developed a voice-loop communication model 
that includes the LM communication circuit as an additional agent with behavior. When a lunar surface 
agent makes an utterance (i.e. performs a communication transfer), this utterance is communicated to his 
partner and to the LM communication circuit agent. The LM communication circuit agent (LmComCircuit) 
communicates the utterance to the CapCom agent with a delay of one second47. The result is that the 
CapCom agent will receive the communicated belief a second (a clock-tick) later, while the partner on the 
lunar surface will receive the belief instantaneous, i.e. at the moment of the communication. 

Figure 6-36 shows how the voice-loop communication model lets the lunar surface agent AlBean 
communicate to both his partner PeteConrad and CapCom EdGibson that he is ready to start with the 
offload activity. First, the agent that speaks, AlBean in this case, has to have a belief about what needs to be 
spoken. Figure 6-36 shows this belief about the speechAct attribute being created in the 
CommunicateReadyToOffload workframe: 

conclude((the speechAct of current = ReadyToOffloadAlsep)); 
 

The agent AlBean can now communicate this belief in the Talk communicate-activity: 

Talk(vlcoms, start, OpenSEQBayDoorActivity, 10, 8); 
 

This Talk activity transfers the belief at the start of the activity to all the agents bound to the vlcoms variable 
(PeteConrad and LmComCircuit in this case). The Talk activity is part of the VoiceLoopCommunicator group 
shown in Figure 6-37. Every member of the VoiceLoopCommunicator group, which the AlBean agent (as 
well as the PeteConrad and LmComCircuit agents) is a member of, inherits this Talk activity and will 
therefore be able to communicate its current belief about the speechAct attribute. Consequently, both the 
PeteConrad and the LmComCircuit agent receive AlBean’s belief about the speechAct attribute. Next, the 
LmComCircuit agent performs the SendComToEarth activity, which actually transfers the speechAct belief it 
just received from AlBean to the agents bound to the vlagts variable.  

SendComToEarth(AlBean, vlagts); 
 

The vlagts variable is bound to just the EdGibson agent (since he is the only agent with the 
communicationType equal to “MscVoiceLoop,” meaning he is the only agent listening to the voiceloop in 
MSC. The SendComToEarth activity, shown in Figure 6-36, has a duration of one second and transfers the 
speechAct belief at the end of the activity. Consequently, this describes the communication delay from the 
Moon to Earth. For longer delays one would simply increase the duration of SendComToEarth activity, 
making this a general model for voice-loop communication with communication delay. 

                                                      
47 The Brahms clock grain-size cannot be set to 1.25 seconds, but has to be set to an integer number. 
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Figure 6-36. Voice-loop communication via LmComCircuit 

6.7.3 The voice-loop library model 

This voice-loop behavior is something that we want to re-use in other modeling efforts. I therefore developed 
this behavior as a library model that can be re-used over and over again. To do this we need to abstract the 
functionality of the voice-loop into separate functional groups. In this section, I describe the design of the 
voice-loop library model as it is shown working in Figure 6-36. 

We can abstract the workings of the voice-loop system into two separate groups. First, there is a group of 
agents that can communicate over a voice-loop together. These agents are all members of the 
VoiceLoopCommunicator group. The VoiceLoopCommunicator group in turn is a member of the more 
abstract Communicator group. This group specifies those agents that can communicate in one way or 
another with each other, be it using a voice-loop, a telephone, e-mail, et cetera. There are three subgroups 
of the VoiceLoopCommunicator group, namely the LmVoiceLoop, the CmVoiceLoop, and the 
MscVoiceLoop group. 

ComCircuit: 
workframe SendingLmpComToEarth { 
 repeat: true; 
 variables: 
  collectall(MscVoiceLoop) vlagts; 
  foreach(LunarModulePilot)lmp; 
 when (knownval(the earthCom of lmp = true) and 
    knownval(the groupMembership of lmp = "LunarModulePilot") and 
    knownval(the communicationType of vlagts = MscVoiceLoop)) 
 do { 
  SendComToEarth(lmp, vlagts); 
  conclude((the earthCom of lmp = false), bc:100, fc:0); 
 } 
} 

AlsepOffloadGroup: 
workframe CommunicateReadyToOffload { 
 repeat: false; 
 detectables: … 
 when (knownval(the groupMembership of current = "LunarModulePilot")) 
 do { 
  conclude((the speechAct of current = ReadyToOffloadAlsep)); 
  Talk(vlcoms, start, OpenSEQBayDoorActivity, 10, 8); 
  … 
  … 
  conclude((the nextActivity of current = sRaiseSEQBayDoorActivity)); 
 } 
} 
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Then there is a group of agents that represent the communication circuits for each voice-loop. This is the 
ComCircuit group. This group has two member agents, namely one for the CM voice-loop, CmComCircuit, 
and one for the LM voice-loop, LmComCircuit. These two agents represent the communication circuits that 
create the delay of the communication between Earth and the Moon. The reason for modeling these as a 
group with agents, as opposed to a class with objects, is because we need these communication circuit 
agents to react to the communication transfers of beliefs from the “talking” agent. Although objects can 
receive and communicate beliefs, they cannot react to the beliefs they receive (objects only react to facts). 
All in all, it makes things easier from a modeling standpoint to model the communication circuits as agents, 
and since Brahms does not prescribe when to use agents versus objects this is a perfectly fine decision. 
The group hierarchy of the voice-loop model is presented in Figure 6-37. 

 

Figure 6-37. Voice-loop library model group hierarchy 

6.8 OBJECT INTERACTION 

We live in a world with objects. We look at them, touch them, and use them in our every day lives. When 
people work they use tools to accomplish what needs to be done. Interacting with objects in our 
environment is something so natural that we almost take it for granted when we consider how we do things. 
If we take a closer look at the work practice level, we need to include the way people interact with objects to 
describe what they do. On the moon the astronauts were together. However, they had artifacts with them, 
and objects that they needed to work on, and tools to use in their work. In this section, I describe how in 
Brahms we can model the interaction between objects and agents. I show the astronauts taking 
photographs and describe the model of the activities of the agent, and how the object it uses in these 
activities reacts and the way they both interact. 

6.8.1 Lunar surface photography 

Imagine taking a photograph. What do you do? What do you need? What does the camera do? Is it you or 
the camera that creates the photo? As I described before, all the tasks of the astronauts were planned and 
well trained. However, taking photographs was an acceptation to that rule. As it turns out, the Apollo 
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photographs were one of the most important scientific data returned to Earth. Some photographs were 
planned, but most were not, as is shown in the following example. 

 

Figure 6-38. NASA picture AS12-47- 6913 

Figure 6-38 shows a photograph that Al Bean took of CDR Pete Conrad, when he was lowering ALSEP 
Package-1 to the lunar surface. How did he do it? It is a subtle point, but it shows the collaboration between 
the two astronauts through the use of the photo camera. 

116:32:48 Bean: Sure do. (Pause) Here it (probably the first package) comes.  

116:32:53 Conrad: Coming right out.  

116:32:54 Bean: And just about right. Riding right out on the boom, Houston. Sure looks pretty.  

116:33:02 Gibson: (Making a mis-identification) Roger, Pete. We copy. (Long Pause)  

116:33:36 Bean: (Wanting to take a picture) Look at me, Pete. (Pause) It’s a good shot, babe. 
The LM and everything’s reflecting in your visor. (Pause)  

[Al’s photos AS12-47- 6913 (**) and 6914 (**) show Pete using a tape to guide the first of the ALSEP 
packages out of the SEQ Bay. Photo 47-6915 (**) was probably taken late in the ALSEP off-load.]  
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Figure 6-39. Al Bean taking two photographs of Pete Contrad 

Figure 6-39 shows what happened during the simulation of the activity of taking this picture. First, it is 
important to realize how Al Bean decides to take a picture, and how this is modeled in Brahms. If we look at 
the utterance of Al Bean, we get some clues as to how this interaction happened. Al Bean says: “The LM 
and everything’s reflecting in your visor.” I interpret this as that the beautiful reflections in Pete Conrad’s 
visor of his EMU suit made him want to take a picture (see the beautiful reflection in Figure 6-38). You can 
see in Figure 6-39 that the ConradEMUSuit object creates the fact that there is a reflection from its visor. At 
that moment, agent PeteConrad performs the activity LoweringPkgToSurface. Agent AlBean detects the 
reflecting visor fact, while watching agent PeteConrad. This detection interrupts agent AlBean’s activity, and 
makes him perform the activity GetCommandersAttention. This activity represents the communication of Al 
Bean at time 116:33:36, where he says: “Look at me, Pete.” This communication is shown in Figure 6-39 by 
the first arrow. After this activity, agent AlBean starts the TakingPhotograph workframe shown in Figure 6-39 
and described in Figure 6-40. 
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First of all, taking a photograph is something that is not related specifically to the ALSEP Offload activity. 
Therefore, the TakingPhotograph workframe is not defined in the AlsepOffloadGroup group. Instead, it is 
part of all possible activities for members of the LunarSurfaceAstronaut group, because every lunar surface 
astronaut can take photographs at any moment. It is therefore that the agent AlBean interrupts the 
AlsepOffload activity to start the TakingPhotograph activity. 

Figure 6-40. Taking a photograph 

After he has taken the photographs, he continues with the interrupted AlsepOffload activity (see the small 
vertical four lines in Figure 6-39, at the beginning and end of the OffloadingAlsep workframe of agent 
AlBean). Figure 6-40 describes the interaction between the agent and a PhotoCamera object in order for 
the agent to take a photograph (this numbered list refers to the numbers in Figure 6-40):  

1. After agent AlBean starts the workframe TakingPhotograph, due to the fact that it beliefs that the 
number of photos to take is smaller than the number he has taken (see the precondition), it is simulated 
that the agent pushes the shutter release button on the camera. This is represented by the creation of 
the belief and fact  

(AlBean PushesShutterReleaseButtonOf BeanHasselblad70mm) 
 

The creation of this fact triggers the PhotoCamera object BeanHasselblad70mm to perform the 
OpenAndCloseShutter workframe, due to the fact that its preconditions are now satisfied. 

2. Next, the camera object performs the CreateImageOnFilm create-object activity. On the left side of 
Figure 6-39 this dynamically-created object is shown as a NasaPicture object (AS12-47-691x). This 
actually represents the photo in Figure 6-38. After this activity, the camera object creates three facts; 
first, it creates the fact that the photo object has been created. Secondly, it creates the facts that it has 
taken a photo and that the agent AlBean stopped pushing the shutter release button on the camera. 
These last two facts are detected by agent AlBean, who is still performing the TakingPhotograph activity 
(arrows 2a and 2b in Figure 6-40). Arrow 2b shows that the agent stops the TakeThePicture activity by 
performing a complete action in the ReleaseShutter detectable, simulating that the agent has pushed 
the shutter button and has taken the picture.  

1 

2a 

2b 

3 

4a 

4b 
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3. Arrow 3, at the same time, shows that the agent fires the thoughtframe PhotoTaken. This thoughtframe 
increases the agent's belief about the number of photos it has taken. 

4. Last, but not least, arrows 4a and 4b, make sure that the agent takes the right number of photographs. 
In the example in Figure 6-39, the agent takes two photographs, one after the other. 

This example shows a general model for taking pictures. The only thing the agent needs to start out with is 
its camera contained on his EMU suit. Later on in the ALSEP Offload activity, during the offload of the 
second package, the PeteConrad agent actually takes three photos of AlBean while he is lowering object 
AlsepPkg2 to the ground, using the ConradHasselblad70mm PhotoCamera object (see Figure 6-41). 

 

Figure 6-41. The PeteConrad agent taking photographs 

Figure 6-42 shows the three actual photographs Pete Conrad took. 

     

Figure 6-42. Photographs AS12-47-6783, 84, and 85 by Pete Conrad 

A Brahms limitation 

This example shows one of the limitations of a Brahms simulation. Although we can represent and simulate 
the taking of photographs, as well as the camera actually creating the NasaPicture objects, Brahms cannot 
show the sightlines of the camera, and that of the agents. The picture objects created do not include a 
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representation of what was captured on film (shown by the three photos in this example). The only way we 
could possibly represent this is to create beliefs that represent the scene being captured and “store” these 
beliefs in the NasaPicture object. 

Not being able to model the line of sight of agents means that the model does not include whether the 
astronauts could actually see each other and/or the objects during their activities. Noticing other people 
and/or objects is often constrained by the line of sight. In Brahms, we can only model the detection of facts, 
based on the detectable being active and the existence of the fact in the world. However, in the real world 
the detection of certain facts depends on whether we can “observe the fact” through our field of vision, such 
as seeing someone in distress. Not being able to model the field of vision limits us in constraining the 
detection of facts based on the sightlines of the agent. 

6.9 VERIFICATON AND VALIDATION 

In this section, I describe the verification and validation (V & V) process I have followed to test the accuracy 
of the Apollo 12 ALSEP model. First, I will talk about V & V as a process and describe its elements, and 
some of its issues. Then, I will show in some detail the V & V steps I have followed and the results of this 
process in this experiment. Using this V & V process, I can say something about the accuracy of the model 
and my hypothesis about Brahms as a modeling and simulation language for describing a work practice. 

To clarify the issues involved, I define the concepts verification, validation, and to be complete, credibility as 
follows: 

• Verification is the process whereby the modeler asks if the model is performing as it was designed. In 
this step in the V & V process, the objective is to determine if the logic of the computer model correctly 
implements the assumptions made in the conceptual model. 

• Validation is the process whereby the modeler asks how accurately the model is representing reality. 
That is, is it a good model of the intended work system? 

• A credible model is one that the client accepts as being valid enough to use in making decisions. That 
is, is it a useful model for the task at hand? It should be noted that in this experiment we do not have a 
client that will make such a credibility judgment. 

6.9.1 The purpose of verificat ion and validat ion 

An important part of modeling and simulation is the V & V of the model and the results of the simulation. 
Without a thorough V & V there is no ground in having any confidence in the model and the results of the 
simulation. Although it is important to realize that it is impossible to prove that a model is a general valid 
model (Robinson 1999). The reason for this is the fact that: 

1. A model is only certified as valid with respect to its purpose. For instance, a model that has been 
created for the purpose of predicting the future state of a system might not be valid as a prescriptive 
model of the future system. 

2. There are different interpretations of the real world possible. Depending on the worldview, or 
Weltanschaüng, is a different interpretation of the real world and therefore, of the model and its validity 
(Checkland and Scholes 1990). 

3. The data used to develop the model may be inaccurate. Even if that is not the case, it should be 
realized that the data used and the data generated by the simulation are but a small data sample. 
Therefore, they can only be seen as a probabilistic answer and not a definitive one. 

The conclusion is that, although in theory a model is either valid or invalid, in practice it is not easy and often 
not possible to prove that a model is valid. Therefore, we have to think in terms of the confidence we can 
place in the model. The V & V of the model in this experiment is not one of demonstrating that the model is 
correct, but instead it is a process of falsification, i.e. demonstrating that the model is incorrect (Robinson 
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1999). In so doing, the purpose of V & V is to increase the confidence in the model, even though we might 
find inconsistencies and problems with the model according to the real-world data. 

6.9.2 The verificat ion and validat ion process 

Many authors have described the process of a successful simulation (Law and Kelton 1991) (Kleindorf et al. 
1998) (Banks et al. 1996) (Robinson 1994). All of them mention a series of processes that need to be 
followed. The high-level processes are shown in Figure 6-43, which is borrowed from (Robinson 1999). A 
simulation study first starts with understanding the real world, as well as the problem to be tackled. In this 
Brahms study, the real world is the Apollo 12 ALSEP Offload, with as the problem to be tackled, to test if we 
can describe the work practices of the lunar surface astronauts in a Brahms simulation. When the real world 
is sufficiently understood the modeling activity starts, and a conceptual model is described. For this study, I 
described the model as a qualitative model using a modeling approach called World Modeling (Sierhuis and 
Selvin 1996). After this, the model was coded into a computer model, in this case the Brahms language. 
When the model is complete, experiments are run to develop solutions to the real-world problem being 
handled. In this case, a greater understanding of the real world was obtained. In real-world projects it is 
hoped that the solutions found in the experiments can be implemented in the real world, or that the better 
understanding of the problem will lead to better decision making. In this experiment there has been no 
attempt to implement the model or change the real world based on the understanding, simply because this 
was not the purpose. 

Even though there is a natural sequence in following these steps, it is obvious that the actual process is not 
strictly sequential, and that several iteration through the steps are necessary. This was also the case in this 
effort. First, there was no implementation phase based on the outcome of this study. Secondly, there were a 
number of cycles through the conceptual model, computer model and solution/understanding phase that 
were mostly driven by the validation and verification of the models with the real-world data. Even though this 
study did not end with an implementable solution in the real world, the process as depicted in Figure 6-43 
still holds. 

 

Figure 6-43. Simulation model verification and validation in the modeling process (borrowed from (Robinson 1999)) 

In the next sections, I will describe the activities of the three phases, conceptual model, computer model, 
and solution/understanding and the validation and verification methods used in each of these phases. 
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6.9.3 Data validat ion 

As is shown in Figure 6-43, data validation is important at every step of the simulation process, because at 
each step in the process data is used. The data I used are all original NASA records of the actual Apollo 
missions. Table 6-4 lists all data sources that have been used in this case study. Since the Apollo missions 
are part of world history the facts and data are well known to the world and are therefore undisputed. By 
using the original lunar videos, as well as the transcripts of the original conversations of the astronauts, and 
the original photographs, mission reports and press releases, the validity of the data is very high. It can thus 
be said that, if the simulation data is validated against the original mission data, and it can be shown that the 
outcome is correct in relation to this data, the validity of the simulation model is high. 

Table 6-4. Data sources used during experiment 

Data Source Data Type 

Apollo Lunar Surface Journal Transcriptions of actual astronaut voice loop 

recordings + mission photographs. 

Apollo 14, 15 & 16 Video Tapes Video Recordings of the actual Apollo 

missions from NASA. 

Apollo 12 ,14, 15 & 16 Press Kits Copies of the actual Apollo Press Kits from 

the Apollo missions, published by NASA. 

6.9.4 Conceptual model validat ion 

I started the modeling effort by creating a conceptual model of the Apollo 12 ALSEP Offload. The method 
used is called Compendium, and is described in (Sierhuis and Selvin 1996) (Selvin and Sierhuis 1999b) 
(Selvin and Sierhuis 1999a) (Selvin et al. 2001). The discussion of this method falls outside of this thesis. 
Figure 6-44 shows the Raise SEQ Bay Door activity described in the conceptual model. To model this 
activity, I used the voice loop transcription data from the Apollo LSJ (see Figure 6-45), as well as the Apollo 
video of the Apollo 1448 mission. The voice loop data is modeled as the communication attribute in the 
model. By reading and listening to the communication, matching this to the mission plan, and validating this 
with the video, I was able to analyze who performed this activity (see Figure 6-45), and where in the voice 
loop transcription the astronaut was starting and ending this activity. The approach I used was to identify the 
activity duration based on communication sequences. The astronaut was performing the activity during the 
first utterance and the last utterance of a communication sequence. By using the timestamps in the Apollo 
LSJ, I calculated the total time of the activity (see Figure 6-47). I also represented where the agents were 
located while performing this activity, as well as what objects (artifacts) the astronaut was touching or using 
during this activity. 

By analyzing the transcription of the voice loop data this way, I have represented and validated each activity 
of the agents. After this process was completed, the conceptual model had to be coded in the Brahms 
language. 

                                                      
48 Due to a unfortunate problem with the camera, there is no video tape of the Apollo 12 ALSEP Offload. 
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Figure 6-44. The conceptual model 

The purpose of the conceptual model validation is to determine that the scope and level of detail of the 
proposed model is sufficient, and that all assumptions are correct (Robinson 1999). To describe this 
validation, let me take a step back and restate the problem I addressed in this study. The problem in this 
study was that of showing that the Brahms modeling and simulation language is powerful enough to 
describe the work practice of the Apollo 12 lunar surface astronauts during the ALSEP Offload activity. The 
level of model detail that is needed to test this hypothesis is given by the definition of what to include in a 
model of work practice (see chapter 3.2). 
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Figure 6-45. Voice loop transcription data from the Apollo LSJ Figure 6-46. Voice loop transcription matched to activities 

 

Figure 6-47. Voice loop activity time analysis 

If we take as a given the aspects of work practice from chapter 3.2, then we can validate that these aspects 
are indeed included in the model. Therefore, the validation method I used for the conceptual model was to 
analyze the important aspects of modeling work practice, as described in the theory, and to make sure that 
the conceptual model included all of them. Table 6-5 lists the aspects that were to be included in the model, 
as well as how these aspects are made operational in the coded model: 
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Table 6-5. Aspects of modeling work practice 

Aspect of Work Practice Model 

Communities of Practice 

This aspect is incorporated in the model by modeling the 
roles and functional groups of the agents as groups with 
behavior in the model. People who belong to certain CoP 
are represented as agents being members of the groups, 
inheriting the common behavior of the group members. 

Activities 

The behavior of all agents and artifacts is described in terms 
of primitive activities taking time, and composite activities 
decomposed into lower-level activities, and the lowest-level 
into primitive activities. 

Collaboration 

Collaboration is an emergent aspect of the model that is 
shown in the output data of the simulation. By describing the 
activities of agents, and the interaction and constraints that 
make each agent perform an activity based on activities of 
other agents, shows that agents are collaborating together. 

Communication 
The model includes all the speech acts from the real voice 
data. Activities are sometimes dependent on whether these 
speech acts are performed and received. 

Real world artifacts 
For each activity the artifacts that are used or touched in the 
activity are represented in the model. Relationships between 
activities and artifacts are represented. 

Geography and Movement 

For each activity, the location where the activity is performed 
is represented. Agents move from location to location, and 
performance of an activity is sometimes dependent on being 
in the location or noticing other agents and/or artifacts in a 
location. 

6.9.5 Computer model verificat ion 

The next phase in the modeling process is the design and implementation of the Brahms model source 
code. In this phase, the modeler needs to translate the activities, groups, agents, classes and objects 
represented in the conceptual model into the Brahms language. To do this, the modeler needs to be 
proficient in the Brahms language, and specifically in the multiagent and activity programming concepts in 
Brahms. For first time Brahms modelers this is a painstaking process, and is similar to the compile-debug 
cycle in traditional programming languages, such as C++ or Java.  

Figure 6-48. Brahms compile-debug cycle 

Figure 6-48 shows the modeling cycle, which first continues until the complete model can be compiled 
without syntax errors by the Brahms compiler. However, verifying the model is more than getting the 
Brahms compiler to compile the model without syntax errors. Although this is of course a first and important 
step in the process, the most important step is to compare the “functioning” of the model with the conceptual 
model. The model validation and verification steps are driving the Brahms model development process, 
shown in Figure 6-49 

Debugging Modeling 

Compiling 
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Figure 6-49. Brahms model development cycle 

The functioning of the model is visually verified using the AgentViewer application. The AgentViewer is a 
separate Brahms application that uses the simulation history data to display a 2-dimensional graphical time-
line view of the activities of agents and objects. The timeline figures in this and other subsequent chapters 
are all screenshots from selected agents and objects in the AgentViewer. Using the AgentViewer 
application the modeler can investigate the simulation run. 

 

Figure 6-50. AgentViewer application 

Figure 6-50 shows the AgentViewer. Using this application the end-user can select which agents and 
objects to view in the time-line view, and investigate the exact behavior of those agents and objects during 
the simulation (see a-l explanations in Figure 6-50): 

a. Using the menu-bar, the end-user can parse the simulation history data into a history database, and 
open a history database for viewing. 

a. Menu Toolbar 

b. Agent/Object TreeView 

c. Communications 

d. Location 

e. Time Line 

f. Tool Tip 

g. Activity Context Tree 

h. Touch Object Line 

i. Selected Workframe 

k. Selected Activity 
j. Workframe Body 

l. Activity Time 

m. Workframe 

n. Composite Activity 

o. Primitive Activity 
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b. When the database is opened all the agents and objects are loaded into the tree view. Using the tree 
view, the end-user can select which agents and/or objects (s)he wants to view in the time-line view. 

c. By selecting to view the agent/object communication, the (blue) arrows show all the communication 
activities, and the direction of the communication (sender and receivers). The communicated beliefs are 
also accessible by clicking on the square at the top of the sender side of the communication arrow. 

d. For each agent/object the ”current” location is shown. When the agent/object moves to a new location, it 
is shown as a change in the location name and color. 

e. The time-line can show the time in different time-intervals, therewith zooming in and out. 

f. The tool-tip pops up when the mouse is moved over “hot spots”. The hot spots are those areas where 
more information is available than can be shown on the screen. By moving the mouse over those areas 
the hidden information pops up in a tool-tip, such as the name of a workframe or activity. 

g. The Activity-Context Tree is the central piece of the agent/object time-line. It shows the workframe and 
activities hierarchy of the agent or object. 

h. The touch-object line is a (yellow) line that is shown when the agent/object is using certain objects in its 
activity. “Touch objects” are used to calculate the time those objects are used in activities. 

i. The explanation facility view is used to display more detailed information about the execution of 
workframes. By clicking on any workframe (light blue in color), an explanation facility window is opened 
for the workframe at hand. 

j. By selecting the “Active” tab in the explanation facility view, the executed statements in the workframe 
body are shown. 

k. You can select the statements in the workframe body to get more info. 

l. When you select a statement in the body of the workframe, the total time the activity was active is 
shown. Using the other tabs in this view, you can find out the exact time the workframe became 
available, as well as the exact time it became active and ended. 

m. Workframes are situated-action rules that execute activities. The top of a Activity-Context tree is always 
a workframe. You can recognize a workframe by the “wf:” symbol, followed by the name of the 
workframe. When the zoom-level is too high to contain the name of the workframe it is left out of the 
display. Using the tool-tip the user can find out the name. 

n. Composite Activities are executed by workframes, and contain lower-level workframes. You can 
recognize Composite Activities by the “ca:” symbol followed by the name of the activity. When the 
zoom-level is too high to contain the name of the activity it is left out of the display. Using the tool-tip the 
user can find out the name. 

o. Primitive Activities are executed by workframes, and are always at the bottom of the Activity-Context 
Hierarchy. You can recognize Primitive Activities by the following symbols, depending on the type of 
primitive activity: “pa:” (for a primitive activity), “mv:” (for a move activity), “cw” (for a communicate 
activity), “co:” (for a create object activity), followed by the name of the activity. When the zoom-level is 
too high to contain the name of the activity it is left out of the display. Using the tool-tip the user can find 
out the name. 

Using this AgentViewer I have visually inspected the simultaneous behavior of the agents and objects, and 
compared the expected behavior from the conceptual model with the actual behavior during the simulation. 
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6.9.6 Experimentat ion validat ion 

Comparing the model output to data from the real system is the most objective and scientific method of 
validation. Of course, this type of validation can only be performed if there is a real system, and real-world 
data that correspond to the simulation parameters. In this descriptive modeling experiment there was a real 
system back in the Apollo days. That system does not exist anymore, but what is most important is the fact 
that there is historical data available to validate our model. 

I describe two types of quantitative data validation of the simulation output data of the Apollo 12 model, 
based on the historical data from the Apollo missions: 

1. Validate the simulated activity times and duration with the activity times and duration derived from the 
timestamps in the Apollo 12 communication transcript from the Lunar Surface Journal (Jones 1997). 

2. Validate the simulated voice loop communication with the voice loop recordings from the actual mission, 
which are transcribed in the same Apollo 12 communication transcript (Jones 1997). 

6.9.6.1 White-box versus black-box validation 

We consider two types of real-world data validation, white-box and black-box validation. The model 
verification described in section 6.9.5 is considered a white-box validation. Validating the simulated activity 
times with the timing of the activities based on the transcript of the voice loop communication is a white-box 
validation. The second validation, that of the actual voice loop data, is a black-box validation. 

White-box validation is a micro validation of the content of the model. In a white-box validation we try to 
validate the model by investigating the model content in detail. The purpose of this type of validation is to 
ensure that the content of the model is true to the real world. The use of a graphical visualization and 
spreadsheet tools are very appropriate in this type of validation. 

 

Figure 6-51. Black-box validation: comparison with the real system (from (Robinson 1994)) 

In a black-box validation we are not looking inside the model, but we are validating the overall behavior of 
the model with the output of prespecified real-world data. In this type of validation we need to validate that 
when we specify input data to the simulation model that is similar to that of the real system, the output data 
from the simulation should be relatively similar to that of the real system as well. This is a validation of the 
alternative hypothesis H1 (Figure 6-51). 

6.9.6.2 Validate activity times 

To validate the timing and duration parameters of the simulation model, we measure the activity times of the 
individual activities performed by each astronaut. Initially I had identified the activities of the astronauts 
based on the Apollo 12 communication transcripts (see Figure 6-45). Based on this and the fact that each 
communication utterance in the transcript is timestamped with the actual mission clock at MSC, I was able 
to calculate the ground-estimated time (GET) start and end times of the activity. From this the total activity 
time could be calculated (Figure 6-47). Here I am only showing the validation of the first three high-level 
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activities (Table 6-6). This is only in the interest of space, and I hope that with this example the reader is 
satisfied and can infer that the same holds for the other activities. 

Table 6-6. Calculated activity times based on real-world data 

Activity Start GET End GET 
Total 
Time 

? from 
ALSEP 
Offload 
Begin 

Performer 

Open SEQ Bay Door  116:31:34 116:32:22 00:00:48 0:00:00 LMP 

Remove PKG-1  116:32:22 116:33:53 00:01:31 0:00:48 CDR 

Remove PKG-2 116:33:53 116:34:44 00:00:51 0:02:19 LMP 

  Total 0:03:10 
(190 sec) 

  

An issue is the fact that the start and end times of the activities were chosen based on a thorough reading of 
the Lunar Surface Journal transcriptions, books and reports on the Apollo 12 mission, as well as the videos 
of the ALSEP Offload activities in subsequent missions. The choices I made are subjective to my own 
interpretation, as well as that of Erik Jones, the editor and creator of the Apollo Lunar Surface Journal 
(Jones 1997). It might well be possible that someone else would make a different interpretation of the timing 
based on the same data. Although this may be the case, it should not have much influence on the outcome 
of this study, since the goal of this validation is in context of the objective of the experiment. As mentioned 
before, the objective is to show that with Brahms we can describe the work practice of a real human activity 
system. We can still make a judgment on this, regardless of the fact that the subjectivity of the modeler is 
unavoidable in a modeling activity. 

Table 6-7. Activity times for LMP Al Bean from simulation history database 

DoneByID DisplayText Start49 Start SET50 End End SET TotalTime Status 
ALBEAN OpenSEQBayDoor 1 8:31:34 49 8:32:22 48 COMPLETED 

ALBEAN RemovePkg1 49 8:32:22 53 8:32:26 4 INTERRUPTED 

ALBEAN ChangeEMUSuitCooling 53 8:32:26 58 8:32:31 5 COMPLETED 

ALBEAN RemovePkg1 58 8:32:31 124 8:33:37 66 INTERRUPTED 

ALBEAN TakingPhotograph 124 8:33:37 137 8:33:50 13 COMPLETED 

ALBEAN RemovePkg1 137 8:33:50 140 8:33:53 3 COMPLETED 

ALBEAN RemovePkg2 140 8:33:53 191 8:34:44 51 COMPLETED 

     Total 190  

                                                      
49 The times in the Start, End, and TotalTime columns are in seconds. 
50 The times in the Start Simulation Elapsed Time (SET) and End SET are in the format h:mm:ss. 
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Figure 6-52. Al Bean's RemovePkg1 and RemovePkg2 activities 

The activity times from Table 6-7 are the result of the emergent performance of lower-level activities of Al 
Bean, as can be seen in Figure 6-52. The timing of the composite activities from Table 6-7 are based on the 
cumulative times of the lower-level primitive activities performed as part of these composite activity. 

Table 6-7 shows that Al Bean interrupts the RemovePkg activities twice to perform activities that are not 
necessarily part of the high-level AlsepOffload composite activity. The ChangeEMUSuitCooling activity is an 
activity that can be performed at the moment the astronaut feels too warm or too cold. Performing this 
activity is an interruption of the AlsepOffload activity and its underlying subactivities that are being performed 
at that moment. Consequently, the current RemovePkg1 activity will continue after the 
ChangeEMUSuitCooling activity is finished. You can see this represented in both Table 6-7 and Figure 
6-52. Table 6-8 and Figure 6-53 show the activities for Pete Conrad. Pete Conrad does not perform the 
ChangeEMUSuitCooling activity (he is too busy offloading the package!), but he is interrupting his 
RemoveAlsepPkg2 activity taking three photographs while Al Bean is lowering the second ALSEP package. 

Table 6-8. Activity times for CDR Pete Conrad from simulation history database 

DoneByID DisplayText Start Start SET End End SET TotalTime Status 
PETECONRAD OpenSEQBayDoor 1 8:31:34 50 8:32:23 49 COMPLETED 

PETECONRAD RemovePkg1 50 8:32:23 140 8:33:53 90 COMPLETED 

PETECONRAD RemovePkg2 140 8:33:53 170 8:34:23 30 INTERRUPTED 

PETECONRAD TakingPhotograph 170 8:34:23 189 8:34:42 19 COMPLETED 

PETECONRAD RemovePkg2 189 8:34:42 191 8:34:44 2 COMPLETED 

    Total  190  

 

 

Figure 6-53. Pete Conrad's RemovePkg1 and RemovePkg2 activities 

From Table 6-6, Table 6-7 and Table 6-8 it can be seen that the timing for both the AlBean and PeteConrad 
agents are similar as the timing data from the Apollo LSJ. With this verification the white-box validation of 
the model is completed, and we can state that the computer model content (i.e. the Brahms model) is a 
valid implementation of the conceptual model, which in turn is based on the Apollo 12 data. 
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6.9.6.3 Subtracting communication delay 

The times, as shown in Table 6-6, present the following small but significant validation issue. The times 
based on the actual voice transcriptions are the mission times as they were measured by mission control. 
Since the activities are those of the lunar surface astronauts being performed on the moon, the actual times 
that the astronauts spoke the words transcribed in the Apollo LSJ documents would have had to be one and 
a quarter (1.25) second earlier. This is because there was a one and a quarter second delay between earth 
and moon communications (see section 6.7.1 about communication delay). 

The start and end GET times are not the actual start and end times of the activities performed on the moon. 
Although the total activity time stays the same, to be correct, the activities of the astronauts need to start one 
and a quarter second earlier. To get to this point, I followed a two-step validation process: 

1. Validation of the simulated activity times by making the times match up exactly with those measured on 
earth, shown in Table 6-6. The result of this validation was shown in Table 6-7 and Table 6-8. 

2. After the simulation model is validated according to (1), we transpose the simulation times to include the 
earth/moon delay. Because only the start time is different, we can simply start the simulation clock 
earlier. This results in the activities of the astronauts starting at the actual start time, and thus in 
communication utterances arriving at mission control at the time measured by the GET clock. The result 
for agent AlBean is shown in Table 6-9 

There is an issue with the capability of the simulation engine only being able to have an integer clock-grain-
size. This means that we cannot simulate the one and a quarter second delay. The closest we can get is to 
have a clock-grain-size of one (1) second. Therefore, the delay I have been able to introduce in the 
simulation is one second. The numbers that have consequently been generated are still off by a quarter 
(0.25) of a second. However, this is a consistent error rate, and thus could easily be subtracted from the 
generated numbers. 

Table 6-9. Activity times for LMP Al Bean including communication delay 

DoneByID DisplayText Start Start SET End End SET TotalTime Status 
ALBEAN OpenSEQBayDoor 1 8:31:33 49 8:32:21 48 COMPLETED 

ALBEAN RemovePkg1 49 8:32:21 53 8:32:25 4 INTERRUPTED 

ALBEAN ChangeEMUSuitCooling 53 8:32:25 58 8:32:30 5 COMPLETED 

ALBEAN RemovePkg1 58 8:32:30 124 8:33:36 66 INTERRUPTED 

ALBEAN TakingPhotograph 124 8:33:36 137 8:33:49 13 COMPLETED 

ALBEAN RemovePkg1 137 8:33:49 140 8:33:52 3 COMPLETED 

ALBEAN RemovePkg2 140 8:33:52 191 8:34:43 51 COMPLETED 

     Total 190  

6.9.6.4 Validate output with real-world data 

Next is the black-box validation. The purpose is to validate that the simulation can recreate the 
communication utterances by the astronauts exactly and at the same ground-elapsed time as the data from 
the Apollo LSJ. I show this validation of the model for the OpenSEQBayDoor activity as described in section 
6.5.3. For ease of the reader, I repeat here the activity/communication table for the OpenSEQBayDoor 
activity. 
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Table 6-10. OpenSEQBayDoor activity with communication 

LMP CDR 

Communicate Ready To Offload Watching Opening SEQ Bay Door 
activity Communication communication activity 

Talk 
116:31:34 Bean: Okay. And 
we’ll off-load the ALSEP. 
(Garbled). 

 
Watch Opening 
SEQ Bay Door 

  
116:31:39 Conrad: Nope. 
(Pause) 

Talk 

Talk 
116:31:42 Bean: We ought to 
be able to move out with this 
thing. 

 
Watch Opening 
SEQ Bay Door 

Inspect SEQ 
Bay  116:31:44 Conrad: Okay. Talk 

Talk 
116:31:48 Bean: The 
experiment bay looks real 
good. 

 
Watch Opening 
SEQ Bay Door 

  116:31:49 Conrad: Yup. Talk 

Raising SEQ Bay Door  Watch Opening 
SEQ Bay Door 

activity Communication  Watch Opening 
SEQ Bay Door 

Grab Lanyard 
Ribbons 

116:31:50 Bean: The LM 
exterior looks beautiful the 
whole way around. Real good 
shape. Not a lot that doesn’t 
look the way it did the day we 
launched it. 

 
Watch Opening 
SEQ Bay Door 

Walk Back To 
Pull Ribbons 

Tight 
  

Watch Opening 
SEQ Bay Door 

Pull Lanyard 
Ribbons 

 

116:32:02 Conrad: (Possibly 
pulling a lanyard to open the 
SEQ bay doors) Light one. 
(Pause) 

Talk 

Talk 

116:32:12 Bean: Okay. Here 
we go, Pete. Ohhhhh, up they 
go, babes. One ALSEP. 
(Pause) 

 
Watch Opening 
SEQ Bay Door 

Pull Lanyard 
Ribbons  

116:32:22 Conrad: There it 
is. 

Talk 

Table 6-10 shows the subactivities of the OpenSEQBayDoor activity. The objective of this black-box 
validation is to have the simulation generate the exact communication utterance for each agent, at the exact 
time specified in. Of course, the same issue exists regarding the measurement of the time in GET and the 
communication delay to/from the moon. It should again be realized that the times in Table 6-10 are times 
measured by MSC, and are therefore the times that the CapCom agent heard the utterance over the voice 
loop, thus one and a quarter second later than the time the lunar surface astronauts uttered the words. 

After having validated the activity times from the previous section, I changed the model to include the 
communication utterances specifically for this validation. To generate the exact utterance, the agent creates 
the utterance as a belief right before it communicates the belief in the Talk activity. 
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Figure 6-54. Workframe with communication utterance from Apollo LSJ 

Figure 6-54 shows the rewritten CommunicateReadyToOffload activity including the communication 
utterances. For each utterance there is a belief created for the speech attribute for the LMP agent (i.e. 
AlBean). This speech attribute signifies the actual speech-utterance of the agent. 

Figure 6-55. Talk activity to validate communication 

Next, the Talk communicate-activity actually communicates the speech belief to appropriate agents (Figure 
6-55). Running the simulation again with this added communication, first and foremost, does not change the 
behavior of the agents. The end-result of the simulation is the same, as can be seen in Figure 6-56, but 
Table 6-11 shows that the simulation generates the actual voice loop communication transcription 
consistent with that in the Apollo LSJ. 

The data in Table 6-11 is compiled from the history database. The data shows the communication of the 
speech attribute from the LmComCircuit agent. This is the agent that simulates the communication delay 
from/to the moon (see section 6.7, explaining the voice loop model). Therefore, the time this agent relays 
the communication should be equal to the GET from the Apollo LSJ. This is shown in the last two columns. 
The second to last column shows the simulated elapsed time (SET), which is the time from the simulation. 
The last column shows the ground-elapsed time (GET) as it is recorded at MSC, and is shown in the Apollo 
LSJ. 

workframe CommunicateReadyToOffload { 
[detectable deleted] 
 when (knownval(the groupMembership of current = "LunarModulePilot")) 
 do { 
 //communication from transcription 
  conclude((the speech of current = "Okay. And we'll off-load the ALSEP. (Garbled)."), bc:100, fc:0); 
  conclude((the speechAct of current = ReadyToOffloadAlsep), bc:100, fc:0); 
  Talk(vlcoms, start, OpenSEQBayDoorActivity, 10, 8); 
 //end validation 
 
 //communication from transcription 
  conclude((the speech of current = "We ought to be able to move out with this thing."), bc:100, fc:0); 
 Talk(vlcoms, start, OpenSEQBayDoorActivity, 0, 1); 
 //end validation 
 
  InspectSeqBay(0, 4); 
 
 //communication from transcription 
  conclude((the speech of current = "The experiment bay looks real good."), bc:100, fc:0); 
  conclude((the speechAct of current = the exteriorAppearance of SEQBay), bc:100, fc:0); 
  Talk(vlcoms, end, OpenSEQBayDoorActivity, 0, 1); 
 //end validation 
 
  conclude((the nextActivity of current = sRaiseSEQBayDoorActivity), bc: 100, fc: 0); 
 } 
} 

communicate Talk(Communicator agt, symbol whn, Activity act, int pri, int maxd) { 
 priority: pri; 
 max_duration: maxd; 
 resources: act; 
 with: agt; 
 about: send(the speech of current = value), 
            send(the speechAct of current = value); 
 when: whn; 
} 
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Figure 6-56. Voice loop communication for OpenSEQBayDoor activity 

Table 6-11. Agent speech communication validation 

Agent FrameName Attribute 
Name 

Value 
(from Apollo 12 LSJ) 

Start 
Time 

Speech at 
SET 

Speech at 
GET 
(from 

Apollo 12 
LSJ) 

LMCOMCIRCUIT 
SendingAlBean 
ComToEarth 

speech "Okay. And we'll off-load the 
ALSEP. (Garbled)." 

0:00:02 8:31:34 116:31:34 
LMCOMCIRCUIT SendingPeteConrad 

ComToEarth 
speech "Nope." 

0:00:07 8:31:39 116:31:39 
LMCOMCIRCUIT SendingAlBean 

ComToEarth 
speech "We ought to be able to 

move out with this thing." 
0:00:10 8:31:42 116:31:42 

LMCOMCIRCUIT SendingPeteConrad
ComToEarth 

speech "Okay." 
0:00:12 8:31:44 116:31:44 

LMCOMCIRCUIT SendingAlBean 
ComToEarth 

speech "The experiment bay looks 
real good." 

0:00:16 8:31:48 116:31:48 
LMCOMCIRCUIT SendingPeteConrad

ComToEarth 
speech Yup. 

0:00:17 8:31:49 116:31:49 
LMCOMCIRCUIT SendingAlBean 

ComToEarth 
speech "The LM exterior looks 

beautiful the whole way 
around. Real good shape. 

Not a lot that doesn't look the 
way it did the day we 

launched it." 

0:00:18 8:31:50 116:31:50 

LMCOMCIRCUIT SendingPeteConrad
ComToEarth 

speech "Light one." 
0:00:30 8:32:02 116:32:02 

LMCOMCIRCUIT SendingAlBeanCom
ToEarth 

speech "Okay. Here we go, Pete. 
Ohhhhh, up they go, babes. 

One ALSEP." 
0:00:40 8:32:12 116:32:12 

LMCOMCIRCUIT SendingPeteConrad
ComToEarth 

speech "There it is." 
0:00:50 8:32:22 116:32:22 
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The data from Table 6-11 shows that the simulation, indeed, generates the communication transcription 
from the Apollo LSJ, herewith validating the output of the simulation model. This concludes the validation of 
the model. In the next section some conclusions will be discussed. 

6.10 CONCLUSION 

In conclusion, I restate the research questions that needed to be answered, and show that indeed these 
questions are answered in this experiment. These questions are operationalized in the Apollo 12 ALSEP 
domain, and this operationalization is implemented in a Brahms model of the domain. The goal of this 
experiment was to investigate the use of the Brahms-language in order to describe an existing work 
practice. The challenge was to investigate if our theory of modeling work practice, implemented in the 
Brahms language, would be sufficient to describe the work practice in the chosen domain. The research 
questions were: 

1. How can we represent the people, things, and places relevant to the domain? 

2. How can we represent the actual behavior of the people, second by second, over time? 

3. How can we show which of the tools and artifacts are used when, and by whom to perform certain 
activities? 

4. How can we include the communication between co-located and distributed people, as well as the 
communication tools used, and the effects of these communication tools on the practice? 

Table 6-12 shows how these questions were implemented in the Brahms model. The first column shows a 
more detailed instantiation of the research questions. The second column shows the operationalization 
based on the Apollo 12 mission. The third column shows how this is implemented in the Brahms model, 
thus answering the question in the first column. 

Table 6-12. Answering the research questions 

Research Question Operationalization in Apollo 12 
ALSEP Offload 

Implementation in Brahms 
Model 

How to represent people? The astronauts Al Bean, Pete 
Conrad on the moon, CapCom Ed 
Gibson, and CMP Dick Gordon 

Agents AlBean, PeteConrad, 
EdGibson, and DickGordon 

How to represent 
Communities of Practice? 

The different organizational roles of 
Commander, Lunar Module Pilot, 
Capsule Communicator, and 
Command Module Pilot. Also, the 
functional roles of “being an 
astronaut on the moon” and 
“offloading the ALSEP.” 

Hierarchy of different roles as 
groups of agents; 
ApolloAstronaut, CDR, LMP, 
CMP, CapCom, 
LunarSurfaceAstronaut, 
AlsepOffloadGroup 

How to represent artifacts? The artifacts that are used and are 
important during the lunar surface 
activity of the two astronauts on the 
Moon; the LM, SEQ Bay, ALSEP 
packages, Lanyard Ribbons, 
Booms, Photo cameras, Space 
Suits, etc. 

Class hierarchy representing 
types of objects, and objects 
being instances of classes to 
represent specific artifacts in the 
world; LM, SEQBay, AlsepPkg1, 
AlsepPkg2, 
Pkg1LanyardRibbons, 
Pkg2LanyardRibbons, etc. 

How to represent places? The areas where the astronauts are 
located, Mission Control, the 
Command Module, and the areas 

Type of areas as area definitions. 
Representing the Apollo 12 
Geography model as the World 
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Command Module, and the areas 
on the moon where the astronauts 
are working to offload the ALSEP, 
such as the area in front of the SEQ 
Bay, etc. 

Geography model as the World 
area, containing the areas Moon, 
PlanetEarth, and LunarOrbit. 
Next, the separate areas part of 
the Moon. Mission Control is part 
of PlanetEarth, and the 
CommandModule area is part of 
the LunarOrbit area. 

How to represent location 
of people and artifacts? 

The lunar surface astronauts are 
located on the Moon, the CapCom 
is located in Mission Control, and 
the CMP is located in the 
Command Module. 

Using the initial_location attribute 
in agents and objects. Each 
agent and object is given an initial 
location at the beginning of the 
simulation. From that moment on 
agents and objects have 
locations, which means they are 
located in an area and can move 
to other areas when needed. 

How to represent actual 
behavior over time? 

During the mission the astronauts 
are always performing activities. 
While the CDR and LMP are 
offloading the ALSEP packages the 
CapCom is listening on the 
voiceloop, etc. 

The agent’s real-life activities are 
represented as different types of 
Brahms activities that take time. 
Composite activities decomposed 
into primitive activities, 
communicate activities, and move 
activities. Behavior of objects, 
such as the astronaut’s space suit 
and photo camera is also 
represented as activities. Next, 
the activities are executed as part 
of workframes, constrained by the 
agent’s beliefs acquired or 
changed over time. 

How to represent the use 
of tools and artifacts? 

The lunar surface astronauts use 
tools to perform activities, such as 
the use of the lanyard ribbons to 
lower the ALSEP packages from 
the SEQ Bay. 

The use of tools and artifacts in 
activities is represented using the 
resources attribute. Also, the 
generation and detection of facts 
represent the interaction or use of 
an artifact in an activity by an 
agent. The generation of facts is 
a representation of the actual 
physical interaction with the 
artifact being used in the activity. 
For example, in the taking a 
photograph activity the agent is 
using the PhotoCamera object. 

How to represent 
communication? 

The communication between the 
lunar surface astronauts on the 
moon, the CapCom in Mission 
Control, and the communication 
between CapCom and CMP. 

Communication is represented as 
an activity. During this activity 
beliefs are communicated to/from 
agents. All the communication 
between the astronauts is 
represented as timed activities 
communicating speechacts, i.e. 
the speechact is represented as 
the value of the attribute 
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speechact communicated as a 
belief from one agent to another. 

How to represent 
communication tools? 

The Apollo astronauts where on a 
communication voiceloop circuit 
with each other and CapCom at 
Mission Control. The 
communication time delay between 
Earth and the Moon was 1.25 
seconds. 

Voiceloop communication is 
represented as a communicate-
activity, communicating with 
agents of the group 
VoiceLoopCommunicator. To 
represent the time delay in the 
communication a LmComCircuit 
agent represents the voiceloop 
circuit through which the 
communication is send to/from 
Earth to the Moon. Both the 
agents on Earth and on the Moon 
communicate through this 
LmComCircuit agent. 

In this Apollo 12 ALSEP Offload experiment I was able to represent the intricate detail of the human 
activities and collaboration using the Brahms language. The fact that the model generates all the 
communication between the astronauts, including the timing of the communication, shows that the Brahms 
Language is powerful enough to model and simulate the work practice of the astronauts on the Moon and 
on Earth. Of course the level of collaboration is shown in terms of the activities each agent is performing, as 
well as the location of the agents, the artifacts the agent is using at that moment, and the use of artifacts in 
the activity. It has been shown that the research questions posted are answered satisfactory. Therefore we 
can say that the hypothesis is proven, and that with Brahms we are able to describe an existing work 
practice. 

This concludes the first of three experiments to show that Brahms is a sufficient language for modeling and 
simulating work practice. In the next experiment I will show that with Brahms we can predict the future 
activity behavior of agents, based on a model of the work practice.  

 

 


