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2. APPROACHES FOR MODELING HUMAN BEHAVIOR 

This chapter describes a number of modeling approaches. It presents a review of existing relevant research 
literature to this thesis. The common theme in all the presented approaches is that of modeling human 
behavior and organization. It starts with a section on business process modeling. This approach is very 
relevant to this research, because it models work processes as sequences of tasks or flows of products in 
organizations. In the next section, the approach that is discussed is cognitive modeling. This approach is 
developed in cognitive science. It is relevant to this research, because we are interested in modeling 
individuals and groups of people, and their ability to act in and reason about their social and physical work 
context. The third section describes a distributed artificial intelligence (DAI) approach. Distributed AI focuses 
on multiple cognitive agents, and is thus relevant to the modeling of groups of people working together. In 
the fourth section, the last approach discussed is that of computational organization theory. This approach is 
relevant, because it also deals with modeling organizations at the agent-level.  

I end this chapter with a conclusion section in which I relate all these modeling approaches to the different 
aspects of work practice mentioned in the first research question. 

2.1 BUSINESS PROCESS MODELING 

One of the most frequently used approaches to modeling human behavior in a business process is 
modeling the workflow through an organization. This modeling approach is often used in business process 
reengineering (BPR). In this chapter, I will describe workflow modeling, and some of its benefits, but more 
importantly I will discuss its weaknesses as they relate to modeling human behavior. I will use the 
SPARKS™ modeling and simulation tool as an example of workflow modeling. However, I argue that all of 
the issues related to SPARKS™ are systemic to workflow modeling in general. 

Workflow modeling is a functional modeling paradigm that models the sequential tasks through which jobs6 
flow in a business process. A workflow model typically describes the transformation of some sort of work 
product. In describing this transformation, workflow models focus on the time and cost parameters in each 
functional transformation—a task. Effectiveness is defined in terms of time and cost; that is, the number of 
jobs that can be processed in a specific time, and the overall cost of processing a job workflow modeling 
has gained significant popularity in the business world, due to the interest in business process re-
engineering to gain more efficiency and cost reduction. 

However, workflow models do not particularly focus on an individual's job performance, nor do they specify 
social and cultural behavior. Resources in workflow models are stochastic variables with specific 
characteristics, such as cost, work schedules, and other kind of parameters that can be measured. People 
are treated (modeled) as statistical resources, just like equipment and automation machines. As I will 
discuss later in this chapter, it is partly because of the limitations of such measurements that workflow 
models provide a very limited representation of how work is done in practice.  

2.1.1 Modeling in business process re-engineering 

The 1990s saw the development of many proprietary BPR methodologies. The idea for BPR was made 
popular in the business community by Hammer and Champy (Hammer and Champy 1993), and Davenport 
(Davenport 1993). The idea behind BPR is that work processes in many companies need to be evaluated, 
streamlined and automated in order to stay profitable and competitive (Scott Morton 1991). An example of a 
BPR methodology is BreakpointBPR™, developed by Coopers & Lybrand (Johansson 1992). 

                                                      
6 The term "job" is defined in section 2.1.2 
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Figure 2-1. Life Cycle Model of Breakpoint BPR™ (borrowed from SPARKS™ training manual) 

Figure 2-1 shows the life cycle model of the Breakpoint BPR™ methodology, and the role that a business 
process modeling and simulation tool plays in this life cycle. The Continuous Improvement Cycle in Figure 
2-1 is primarily based on developing, analyzing, and testing a work process, using a workflow simulation 
tool. As changes to the business process are validated and tested through what-if scenarios in the 
simulation, the process moves to an implementation phase. Continuous improvement happens in the next 
cycle of modeling, where the current work process becomes the process that was just implemented. 
Detailing the methodology is outside the scope of this thesis, however the point to be made is that modeling 
the (current and new) work processes plays a central role in the life cycle of the methodology. Each step of 
the way, decisions about changing the business process are based on, and simulated in, a model. Modeling 
and simulation takes center stage. Design decisions are made based on statistical analysis of the efficiency 
(time and cost) of the simulated business process. The SPARKS™ training manual states: "SPARKS™ is 
[…] a computer-based tool for modeling, simulating and analyzing current business processes, and 
redesigning and implementing alternatives." (C&L 1994). 

There are many uses of workflow modeling and simulation in a BPR project:  

• As an analysis tool for the effectiveness of a business process, and as a way to identify 
opportunities for improvements.  

• To describe the redesign of a business process, and to test and evaluate redesign alternatives. The 
argument is that, if we believe “the numbers” from the simulation are representative of how things 
work in the real world, we can use the model to choose between various alternatives.  

• To analyze the impact of new technology and automation on a business process.  

• To communicate, document, and train personnel about a business process.  

• To manage and control a business process in real time, by implementing the model with workflow 
software technology. 

2.1.2 Components of a w ork flow  simulat ion model 

Figure 2-2 shows the components of a workflow simulation model. The taskflow7 model represents the 
sequential tasks in a work process. The resource model shows the resources (people and artifacts) that are 
performing the task. In the input model one specifies what is “flowing” through the work process. This is the 
work product that is being worked on. Objects are flowing through the model as components of jobs. A job 
(e.g. an order) represents one or more objects that are worked on during the work process. The term job 
does not refer to the work of a person, as in “what is his job.” Instead, a job is an abstract concept that 

                                                      
7 The concepts taskflow and workflow are used synonymously. However, I use taskflow when I speak of a static representation of a task 
sequence, and use workflow when I speak of a dynamic model that incorporates a taskflow, resource, input and timing model. 
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represents the work product being worked on. As such, it has discrete entry and exit criteria, and can be 
seen as the product of the business process. What people in the organization understand as “a job,” 
depends on their role and the tasks they perform in the organization. Some individuals in the organization 
view a job as a physical object, whereas for others it means something conceptual. For example, for people 
working on the job-floor of a manufacturing plant a job is the physical object that they are working on. 
However, for the people in the sales department, a job is a specific customer order represented by a 
customer order form. 

 
Figure 2-2. Components of a workflow model 

A static model is a model that does not change with time, whereas a dynamic model changes over time 
through a simulation. In a static model the input, timing, resource, and taskflow models are not necessarily 
connected. To create a simulation, however, the models need to be interconnected. During a simulation, the 
input model provides the taskflow model with new jobs entering a process. The resource model provides the 
taskflow model with the resource units needed for each individual task. The timing model exists as part of a 
simulation, and provides the definition of the days and schedules used for resources, the times that jobs are 
entering the simulation, and the simulation clock keeping track of the time during the simulation. The output 
model specifies the statistics that are kept during the simulation and can be displayed. 

2.1.2.1 Resource Model 

The resource model defines the individual resources and groups of individual resources. Resources 
represent people or artifacts that perform work. Example resources include a clerk, a manager, a machinist, 
a machine, a drill, a computer, et cetera. The work performed by resources is not defined at the individual 
resource-level, or at the group-level. Instead, the work performed by individual resources is implicitly 
represented by the assignment of the number of resources used in a specific task in the taskflow model. 
Groups are only used to track statistics at the aggregate group level. When all the resources in a group are 
“being consumed” by tasks during a simulation run, the group has an in-box (queue) in which the work is 
kept until resources are available.  

Individual resources in a workflow model do not exhibit individual behavior, neither task nor cognitive. 
Resources are statistical units assigned to tasks, which simply means that performing the task consumes 
the amount of resources specified at the task level. 
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2.1.2.2 Representing work as a taskflow 

In a taskflow model work is represented in functional units, called tasks, through which jobs flow. Tasks 
represent the atomic steps of a process. Tasks are functions taking resources and jobs as input and 
calculating cost output, based on the time it takes to do the task and the cost of the resources for one job. 
Tasks are chained in a sequential flow, represented from left to right in task sequences. A number of special 
task-types enable representing work as a complex directed graph. In this section, I will describe some of the 
representational issues using workflow models. 

2.1.2.2.1 Branches: Modeling different possible flows 
A branch task is used to represent a decision point in a workflow. One specifies, usually in percentages, 
how many jobs will flow up one branch and how many flow down the other branch(es). Joins bring several 
branches of a flow back together into a single flow. Branch tasks and joins allow a modeler to represent the 
different ways a job can flow based on some attribute of the job. For example, the jobs (i.e. orders) flowing 
through the workflow represented in Figure 2-3 have an associated attribute representing the type of order 
form used for the job. In the branch task, this attribute is examined. Figure 2-3 shows the use of a branch 
and a join to represent an error condition.8 

 
Figure 2-3. Modeling error conditions with a branch and a join task 

The example shows an error condition in which the wrong form for an order is used; this happens in 50 
percent of the cases. Thus, 50 percent of the jobs in the simulation will flow down through the task 
TRANSFER-INFO-ONTO-RIGHT-FORM. The two branches come together before the task FAX-FORM-
TO-T.1-CENTER. From here on the jobs will again follow the same flow. Branches are “either-or” paths, and 
a job can only flow down one of the branches. 

2.1.2.2.2 Spawns & Merges: Modeling simultaneous work performed by multiple people 
Modelers often need to represent a situation where more than one person is working on the same job at the 
same time. Sometimes, this is done in isolation; for example, two people in different organizations have to 
perform tasks on the same job independent from each other. When people are working together at the 
same time modeling becomes more complicated, because their work needs to be synchronized. In workflow 
models, these work situations are modeled with a special kind of task, called a spawn task. Figure 2-4 
shows the collaboration between the CO (central office) and the Field organization in troubleshooting and 
fixing a problem, by branching the workflow using the spawn task “co-helps-field.” The example shows the 
two separate tasks done by the two separate organizations at the same time. After the collaboration has 
been completed, the merge task “merge-shoot-trouble” recombines the spawned job. 

                                                      
8 This example, and the following examples, are from the T1 Radical Redesign model in SPARKS™, developed by Dave Torok at 
NYNEX Science & Technology, as part of the T1 Redesign project in 1992. 
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Figure 2-4. Modeling simultaneous work 

A spawn task looks like a branch task, but is semantically different, because there is no decision whether 
the job should go one way or the other. Instead, the job is split—spawned—into two jobs, as if the job is 
flowing through both branches at the same time. Each branch of the spawn is used for representing the 
tasks of a different resource. At the end of the spawn there is a merge task. A merge task merges the split 
jobs together into the job from before the spawn. In this way, the simulation can keep track of the time spent 
by all resources for both workflows. 

 

Figure 2-5. Spawn semantics 

Note that during a simulation the tasks in the spawned flow are not necessarily performed at the same time. 
For example, in Figure 2-4 we might think that the tasks “troubleshoot-and-fix-problem” and “help-shoot-
trouble” would be performed simultaneously. However, this depends on the availability of resources. Let us 
assume there are only two resources in the model. The first resource is assigned to the “troubleshoot-and-
fix-problem.” The second resource is assigned to the “help-shoot-trouble” task. Let us also assume that at 
the moment a job is entering the spawn, the second resource is assigned to a task not shown in Figure 2-4. 
The second part of the spawn-job waits at the “help-shoot-trouble” task until the second resource is 
available. The second resource becomes available after its current task is completed, and the resource can 
start working on the “help-shoot-trouble” task. Consequently, the two tasks are performed in sequence (see 
Figure 2-5). This is not what is conceptually meant with the spawned flow in Figure 2-4. Of course, 
statistically the amount of time that was worked on the two tasks is correct, because the same amount of 
resources work on the tasks. However, the overall duration time for the job will now be longer than it should 
be, because the two tasks are done in sequence instead of in parallel. Remember that conceptually, the 
model is supposed to represent collaboration between two individuals. It would be better if the simulation 
showed that if one of the two resources, needed to accomplish the troubleshooting task, is not available, the 
task does not get accomplished. However, workflow simulations in Sparks™ do not give the modeler control 
over the assignment of resources to tasks, and availability of resources during a simulation. In short, in a 
Sparks™ workflow model there it is not guaranteed that two tasks are actually performed in parallel. There 
is no control over the execution of parallel tasks. This makes it hard to represent collaborative tasks 
between resources. 

2.1.2.2.3 Modeling behavior with delays in the flow 
Sometimes work cannot proceed because of some condition that needs to be met, but cannot be met at 
that moment. For example, when a sales-representative needs to call back a customer because he or she 
needs more information, and the customer does not answer, the job has to wait until the sales 
representative can talk to the customer. In workflow models, such a situation is modeled with a delay task. 
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While in a delay task a job is held and no resources are working on it—the resources are released to work 
on other tasks—while time is continuing. Figure 2-6 shows the example of a delay task, representing a sales 
rep waiting to call back a customer. 

 
Figure 2-6. Modeling job delay 

In order to model the task more accurately, the delay "phone-tag-4" in Figure 2-6 has several delay times 
associated with it: in 30 percent of the cases the delay takes 5 minutes, in 50 percent, 1 hour, and in 20 
percent, 3 hours. Using this distribution of delay times, the model-builder intended to represent the different 
durations before the telephone call actually takes place. This representation of a phone call using delay 
tasks does not represent how phone calls happen in the real world. Phone calls are not planned tasks, but 
are situation dependent. Whether the sales-representative gets a hold of the customer depends on where 
the customer is and what the customer is doing. It will be very difficult to define a realistic distribution 
function for the time it takes for the sales-representative to get a hold of the customer, because it depends 
on the customer's situation. Also, the task of the resource being called (i.e. the customer) is not represented 
at all. It is not possible to associate the customer resource with the “call-back-customer-4” task, because 
resources are not tracked with the order, but with the task. During the simulation it is not known which 
customer resource should be associated with the callback task. This relates to the inherent problem of 
modeling collaborative tasks in a workflow model. Therefore, the model leaves out which customer is being 
called, and the time it takes for the customer to answer the phone call and talk to the representative is not 
taken into account. 

Similar representational issues arise in a number of other cases; “off-task” behaviors, such as having coffee, 
or discussing the win in last night's basketball game (Sachs 1995). How do we represent the delay of a job, 
because the manager suddenly asks the sales-rep for a report on the monthly order figures? In tasks that 
are unrelated to the flow, the resources are not working on a specific job flowing through the process. These 
“off-task” behaviors cannot be modeled explicitly by a workflow representation, because the moment of 
occurrence is not known, and because such tasks do not “touch” the jobs flowing through the model. Work 
consists of many such off-task behaviors. Being interrupted in the task you are doing and resuming it after 
some time is part of every day work practice. We can model interruptions and resumes by adding delay 
tasks, but this is not how things happen in the real world. A delay task means that after the previous task 
there is always some delay. Interruptions, such as a phone call, or going to the bathroom, are serendipitous 
and cannot be modeled by delay-tasks. Not being able to represent this aspect of work means that the 
workflow simulation can never be an accurate reflection of the work practice—what people are actually 
doing. 

2.1.2.3 Input Model 

To simulate work using the workflow paradigm there need to be jobs "flowing" through the model. The 
number of jobs and the time intervals at which these jobs "enter" the model have to be defined up front, and 
monitored by the simulation engine. In SPARKS™ this is done by a special type of task, called a start task. 
Start tasks input jobs of a particular job-type into the task flow model. They specify the type of the job, the 
time intervals the jobs are entered into the task flow (job start times), the number of jobs that will be entered 
(job volume), and the distribution of the number of jobs over the time interval. Job types are used to define 
and categorize different jobs, representing different types of objects processed by the resources in the 
model. For instance, there might be different types of jobs in a customer service department, such as X-type 
jobs representing orders from customer X, being processed by the X-group, and Y-type jobs representing 
orders from customer Y, being processed by the Y-group. By separating jobs into types, the simulation 
engine can gather statistics for each of the job type. 
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2.1.2.3.1 Jobs are conceptual 
A job is an abstract concept of “what is flowing” through the process. For example, an order form is faxed, 
after which the information is put in a database. The database information is used by the billing system, and 
is re-typed into that system. Abstracting different artifacts people are working on during the course of the 
process creates the notion of a job. The transformation from one artifact to another is what makes things 
“flow,” although it is arguable that it is not the artifacts that are “flowing,” but the information contained in the 
artifacts. Consider a piece of paper representing an order form with customer order information. This form is 
faxed to a department and there the clerk enters the information from the faxed form into the companies 
order tracking system. The form stops “flowing” through the process, but the order information, now in the 
computer system, keeps flowing through the process. In most workflow models, the artifacts that make up a 
job are not represented, and therefore, neither are the changes between artifacts, nor the flow of 
information. What is represented is a conceptual object representing the job. This limited representation of 
what constitutes a job makes it difficult to model the context of work. For example, in modeling a “hand-off” 
we would need to model what is being “handed-off”. The form of the artifact that is being handed-off plays 
an important role in how people do the work. For example, it makes a difference whether the order form is 
hand-delivered, or whether the information is sent through Lotus Notes™9. When hand-delivered, there 
could be a two-way conversation around the order. Whatever the impact of this conversation, the point is 
that this conversation is not represented. In other words, it is abstracted away from the actual work practice 
in the organization. By abstracting away the media (i.e. artifacts) of a work product, the context of the work is 
being left out, the information, or wrong information being passed down, is not represented, and neither are 
the actual work activities of the individuals in the organization. This is a severe limitation in using workflow 
models to represent how people actually work. 

2.1.2.4 Output Model 

There are two types of output from simulating a workflow model. The first is showing (using animation) jobs 
flowing through the workflow. The second, and most emphasized in workflow modeling, is the calculation of 
a wide range of statistics at various levels of granularity. There are two categories of statistics; statistics for 
the resources in the model and statistics for the workflow process itself. Most workflow simulation tools allow 
the end user to customize the output model.  

Statistics about the workflow process are used to capture information about the jobs passing through the 
model. These statistics typically include, the number of jobs passing through the model, the time spent on 
the tasks, and the cost associated with the process as it is represented. Statistics also include detailed 
information for each task, such as: the number of jobs arrived at the task, the number of jobs finished by the 
task, and the actual and average task times during the simulation run. 

Resource statistics are used to capture information about resource utilization and costs. There are statistics 
at the individual resource level, as well as at the accumulated group levels. Statistics of this kind include 
utilization of the resource, including percentages, availability of the resources throughout the simulation, and 
the work loads (i.e. backlogs) of the resources. 

2.1.2.4.1 Issues with statistics 
The statistical output of a workflow model is completely dependent on the resource and task data for the 
model. This phenomenon is known as the garbage in, garbage out phenomenon (Banks et al. 1996). 
Because a workflow model is so dependent on the data used to define the cost and time estimates for 
resources and tasks, this problem is real and almost unavoidable, as is illustrated by the statement of the 
model-builder of the T1-redesign model:  

I must put forth a CAUTION statement here! BE SURE that you release statistics to the world wisely 
and with the caveats about the meaning of specific SPARKS data. There are so many assumptions 
built into the model that affect the numbers' applicability to the real world. The best use of the numbers 
is as a relative measure between one SPARKS model of the T.1 process and another model. 
However, there is more and more pressure to use the numbers in an absolute sense, so do so wisely. 
(Torok 1992) 

                                                      
9 Lotus Notes is a trademark of IBM Corporation. 
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The modeler found this warning so important that he repeated it twice in his document about the T.1 
SPARKS™ model. 

Because of the emphasis on the dynamics of jobs in workflow models, instead of the dynamics (i.e. 
behavior) of resources, and because of the limitation in modeling the way people and groups actually work, 
most resource statistics are, therefore, inherently inaccurate. Unfortunately, most of the time there is strong 
pressure from upper levels of management to show "head count" across models, and to map any kind of 
cost savings into head count reduction (Davenport 1995). One has to be careful in basing management 
decisions on simulation model statistics. Data and model verification and validation is one of the most 
important, but at the same time most difficult aspects of simulations (Banks et al. 1996) (Zeigler et al. 2000). 
The goal of the validation process is twofold: 1) produce a model that represents the actual system close 
enough so that it can be used as a substitute, and 2) develop a credible model so that it can be used with 
confidence in decision making. 

I do not want to claim that statistics are completely useless. However, there are so many data related issues 
around the calculation of statistics that the use of a workflow simulation model in a process redesign project 
should always be looked upon with a dose of healthy skepticism. 

2.1.3 Problems w ith w ork flow  

“Work” consists of more than a functional transformation of work products by resources (Sachs 1995; 
Suchman 1987). One just has to think about the informal, circumstantial factors that influence work quality. 
Think about the effects of collaboration, types of hand-offs, geographical location of the people, the 
willingness of people, and sometimes organizations, to work or not work together (“engineering believes that 
they own the company”). All this is missing from a functional view of the work. In this section, I discuss some 
of the problems we have identified using workflow modeling and simulation in work redesign projects at the 
former NYNEX telephone company. I draw from our experiences using the SPARKS™ environment to 
model the current work process and the redesigned work process during two process redesign projects at 
the former NYNEX telephone company (the T1 re-design project (Corcoran 1992), and the BNA re-design 
project). 

2.1.3.1 Data acquisition 

It is very difficult to gather statistically significant and/or valid data for the development of a workflow model. 
This is true for the design of a future work process, but it is even true for the development of a workflow 
model of a current work process. Often, the work process organization does not keep historical data of the 
process. This means that the process analysts will have to gather the time and cost data for job-flow and 
resources. To do this correctly is not an easy task. When there is no data already available one should 
question why this is the case. Most of the time you will find that this is because it is not easy to gather this 
type of data. To do an extensive statistical data analysis of the work process might take longer than the life 
of the project itself. One approach is to do "spot observations" for jobs, tasks and resources. The data that 
one collects with this approach is, most likely, not statistically valid, meaning it is: 

1. Not collected from the correct population, 

2. Collected from incorrect or not representative observations, 

3. Collected from an unreliable source. 

 

2.1.3.2 Biases in simulation data 

When analyzing simulation data, it is important to understand the types of biases that may be incorporated 
in the data from a simulation run (Banks et al. 1996). The two biases that are apparent are the “snap shot” 
bias and the “average vs. bucket” bias.  

The snapshot bias occurs when, during the simulation, the data is examined at a "snapshot" in time. The 
bias occurs when comparing data between two measurement points in the workflow model, such as looking 
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at the difference in average elapsed time. The data is biased, because at any given time the data measured 
at the latter point in the flow does not include the data from jobs that are, at that moment, in between the first 
and the latter point, and therefore have already past the first measured point, but not the second. In other 
words, the data measured at the second point is "lighter" than the data measured at the first point. This bias 
increases when either the elapsed time between the points increases, or the number of jobs measured 
decreases. Therefore, to gain truly accurate difference measures, the simulation should be run for a large 
number of jobs. 

The average vs. bucket bias occurs when the averaged data does not represent the actual distribution at a 
given point. An excellent example of this is shown in the T.1 model for the average elapsed time at the 
completion of the “order-negotiation” process. The average elapsed time was approximately five hours. 
However, a look at the distribution of elapsed times showed 1378 of 1679 orders took under 30 minutes, 
and 301 orders took 24 hours or longer, with absolutely no orders completed between 30 minutes and 24 
hours! This type of bias can occur with any average measure (cost, time, etc.) and is highly dependent on 
the actual work practice that is modeled. This bias can also occur when mixing jobs of different types. 

2.1.3.3 Resource issues 

The workload in a workflow simulation is dependent on the resources available to do the work. For a 
workflow simulator, resources are all the same. The only use of a resource is to balance the workload; i.e. 
the more resources that can be chosen from for a particular job in a task, the more jobs can be done in 
parallel. The type of resource has no influence on the time it takes to finish a task—some tools, such as 
SPARKS™ try to model personal, social and cognitive factors of resources as numerical measures. 
However, these measures are very subjective and unscientific, and can do more harm than good (see 
2.1.3.3.3). The use of types of resources in a model is therefore mostly for the gathering of cumulative 
statistics at the group level. For example, the cost of one type of resource is higher then others. 

2.1.3.3.1 Motivation and culture 
We all know intuitively that experience levels of individuals, as well as culture and work ethics, have impact 
on the work process. In addition, we know intuitively that some groups are more adaptable to change than 
others. So, what happens to the performance of groups when their work is changed? More importantly, can 
we design a new work process with these kinds of factors in mind? These are important issues in the 
redesign of a work process. Workflow models do not include these types of factors. The business 
community starts to realize that the intellectual capital of a company consists of the people, and their work 
practices (Stewart 1997) (Nonaka and Takeuchi 1995). Modeling and simulating the work of an organization 
without taking the capabilities (cognitive, social, and cultural) of the individuals into account leads to work 
process designs that most likely fail to produce the expected results after implementation. In short, the 
change from the current to the future situation impacts the work at a deeper level that cannot be predicted 
by a model of the future work system. 

2.1.3.3.2 Resource approximations 
One dilemma in modeling the resources in a workflow model is the dilemma of how accurate to model the 
resources of an organization. The tasks modeled in a taskflow model are usually just part of the total work of 
an organization. We referred to the work not modeled in a workflow model as "off-task" behaviors. For 
example, the taskflow of the T1 model only represented a part of all the jobs that were being worked on by 
the different organizations in the model. Therefore, if the resources would be modeled very accurately (i.e. 
the number of people working, etc), there would always be enough resources to handle the job-load in the 
simulation model. So, how many resources is a realistic measure? The modeler for the T1 model 
“compressed” the resource model to an approximate number of resources needed to work “full time” on T1 
provisioning jobs. Again, these kinds of approximations make the output of a workflow simulation less valid. 

2.1.3.3.3 Modeling social, cultural and cognitive factors 
The way people work is very much defined by factors other then time and money. For one thing, people 
build relationships in the workplace that influence the way they work. (Suchman 1987) (Wenger 1997). The 
point is that work is not just the flow of jobs through the process, or the flow of information between people 
and systems. Work is about people, their habits, their norms and relationships, their physical environment, 
et cetera. A new design of a work process that is going to be a success when implemented has to consider 
these factors. Efficiency in the workflow does not necessarily come by removing some redundant tasks. 
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Sure, it might help, but maybe the tasks are there for a good reason, and taking them out might actually hurt 
the process. 

Some modeling tools try to model social, cultural and cognitive factors using quantitative measures. For 
example, in SPARKS™ we can model the “diligence” of a resource by specifying in seconds how long the 
resource will work on a task after the time model specifies that it stops working for the day. This way, a 
resource that just started a task that takes thirty minutes, at five minutes to five, and who will normally stop 
working at five o'clock and has a diligence factor of 30 minutes, will finish the task before stopping. Although 
this may sound like a good way to model the flexibility of people, it is not a very realistic way of modeling 
flexibility. It means, for instance, that if the task would take 31 minutes the resource would not be diligent 
enough and stop. How does someone know exactly, to the minute, how long a task will take? This is not 
realistic and not how people do work, even if they have to “punch the clock.” 

2.1.3.3.4 Multi-tasking: interrupt and resume 
Work consists of interruptions, switching to and from different activities; picking up a phone while checking 
the status of a job, answering someone's question while entering data in the order system, et cetera. It is 
hardly ever that we are engaged in just one task at a time. People are masters in “juggling” many tasks at 
once. However, representing the multi-tasking of individual resources in a workflow model is not possible. 
Resources cannot be controlled at an individual level. The workflow simulator schedules the resources. 
Which resource does what and when depends on the number of resources available and the workload (the 
number of jobs flowing through the simulation), and not on a model of the cognitive behavior of the 
resource. 

2.1.3.4 The Turf Coordinator problem 

The TC role was briefly mentioned in the introduction chapter, and is described in more detail in Sachs 
(Sachs 1995). The problem of representing the work associated with this new role in a workflow model was 
one of the driving forces to start our research on a new modeling paradigm for simulating work practice. In 
this section, we describe the problem in more detail. 

In the radical new design of the T1 process, the design team came up with a new concept called a “turf.” 
The city of Manhattan was divided in a number of geographical turfs. Each turf has their own field force that 
covers that specific geographical area and the central offices in that area. In the redesign model, the T1 jobs 
are assigned to a specific turf. Consequently, the field force is now dedicated to a turf. In the model, this 
meant that jobs, as well as the tasks and resources had to be duplicated, making the model more complex 
and more difficult to maintain10. The next big change in the design was the introduction of the TC role. For 
each turf, there is a TC. A TC has end-to-end responsibility for a job. The work associated with this role is 
not what a business manager would call "value added" work. The tasks of a TC are not directly related to 
the flow of jobs through the work process. His or her tasks do not transform the job, but are mostly related to 
the activity of coordinating conversations between the field and the central office. Therefore, most of the 
tasks of the TC have no place in a workflow model. This is best explained with the example of coordinating 
the testing of a T.1 circuit. 

2.1.3.4.1 Coordinating a T.1 circuit test 
One of the identified problems in the old (current) T1 work process was the coordination of testing circuits 
between the central office and the field (the customer premise). Before the concept of a turf and the TC role, 
nobody in the process was specifically assigned to a job. The Trouble Ticketing System (TTS) controlled the 
whole work process. The TTS was designed to eliminate what management felt were “off-task” 
conversations between workers. The TTS was setup with the assumption that any worker can perform a 
specific task for a job, and that the installation, testing and completion of a job did not have to be done by 
one team of workers. It was believed that it is more efficient to break the work up and have people work on 
one specific task in a job. This way, orders could be handled as they come up, and people wouldn't be 
caught in time-consuming troubleshooting. The process worked by sending and receiving “tickets.” Each 
ticket would be dispatched by a central dispatch system. Every time someone had performed a task from a 
ticket, the ticket was sent back to the central dispatch system, which would then send it to another person, 

                                                      
10 In SPARKS™ each task can only be worked on by one resource, selected from one group. Therefore, modeling seven turfs entailed 
creating seven identical process flows. Just as in computer programming, duplication of "code" creates a maintenance overhead. 
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leaving the first person to pick up a new ticket. In practice, this meant that when a worker encountered a 
problem (like not hearing a dial-tone) (s)he would send a trouble-ticket into TTS, and assume that someone 
else would pick up this trouble and fix it. The person who sent the ticket in the first place would then have 
time to pick up the next ticket and start working on a new job. From the worker's perspective, the electronic 
dispatching got in the way of being able to solve problems collaboratively. Unlike problem-solving 
conversations in which two people can discuss a problem and explore the possibilities to solve it, the TTS 
transforms a problem-solving conversation into a number of sequential tickets picked up by an array of 
workers, who do not speak to one another.  

The translation of each turn of talk into a single ticket reduced an effective network of co-workers who 
could troubleshoot together into something like a relay-race, handing-off pieces of work to the next 
runner, creating an aggregate of dissociated workers. It changed a troubleshooting conversation into a 
series of solitary commands disembodied from context. Not only was the conversation––the story line 
of the problem, if you will––lost, so was the work community. (No one knew who else was working on 
the job.) (Sachs 1995) 

Therefore, whenever the technician, installing the T1 line in the field (at the customer premise), had to run a 
test to verify the complete circuit from end to end, (s)he had to send a trouble-ticket to the central office to 
request the test. The tester who would pick-up the ticket would setup the circuit so that the test could be run. 
There was no direct contact between the tester, and the field technician. When the test would go wrong, 
(s)he would have to go through the whole process again, while the second time the ticket might be picked 
up by a different tester.  

In the new design, the TC is an experienced technician whose role is to coordinate the telephone 
communications between, up to five, field technicians installing and testing a circuit. The problems that can 
occur when installing and testing a circuit are unpredictable and of a wide range. The TC needs to know 
whom to contact, and where people are geographically located in order to coordinate getting the right 
people involved. The TC, field technicians, and turf managers meet regularly to identify recurring problems 
and solve them. 

2.1.3.4.2 Modeling the turf coordinator 
The difficulty with modeling the TC in a workflow model has to do with the fact that the work activities of a 
TC are not necessarily identifiable with specific jobs flowing through the process. True, when a TC 
coordinates communication between several people in the field due to a problem that occurred, (s)he is 
working on a job, and the task can be seen as such. However, when this happens is unpredictable and 
cannot be pre-specified in a task sequence. Furthermore, representing a three or more person phone 
conference is not easy, if not impossible, in a workflow model. Representing the coordination of such a 
conference call is so situated that it is even hard to think about pre-specifying the steps that are involved. As 
mentioned before, in a workflow model we cannot specify a specific resource working on a specific job. 
Therefore, the only way such a conference call would be possible is if there are enough resources available 
at that moment in the simulation to work on that specific job. The chances that the right resource, from the 
right location, performs the correct task in the task sequence, is next to null. Modeling a phone conference 
call as a pre-specified sequence of tasks is impossible, since it is unpredictable how such collaboration 
might play out over time.  

All this resulted in the fact that the TC's work hardly showed up in the SPARKS™ model of the radical new 
design. Because of that, it was hard for the design team to justify a full-time person playing the role of a TC. 
The resource statistics of the model did not justify a full-time person. Nonetheless, the design team knew 
that the importance of coordinating the technicians was one of the major factors in the time and cost savings 
of the new design. Although management was very impressed with the time and cost savings of the model, 
the team had a hard time convincing management of the need for a TC. 

This experience led us to start working on a modeling paradigm and modeling tool that would allow the 
representation of coordination activities, such as the TC. Work needs to be represented based on the 
activities that individuals engage in, and the flexibility of people's decisions to change the sequence of these 
activities. Collaboration cannot be pre-specified, but is emergent. The next section discusses the main 
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difference between the emergence of behavior versus the pre-specification of the sequence of tasks, 
possible error situation, and the collaboration between individuals in a work process. 

2.1.3.5 Emergent behavior vs. static taskflows11 

As I have indicated, workflow models typically describe only idealized tasks in transformation of a work 
product. In the following illustration (Figure 2-7), for example, an engineer receives an order form from a 
representative, assigns a circuit loop using a computer tool; later the representative enters more data about 
the order. Figure 2-7 presents an excerpt of a SPARKS™ model for Business Network Architecture (BNA) 
order processing12. 
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UPDAT E- SOP

A SSIGN- LOOP- IN- MA T E
COPY TO REP

ENTER
SOP
DATA

T IRKS:
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Figure 2-7. Order processing in the business network architecture (BNA) organization, showing flow of 
orders from left to right and conditional branching (indicated by arrows hitting a vertical bar). Top section 
shows updates by representatives (BNA-reps) and engineers for customer-not-ready (CNR) and other 
revisions to orders. Lower section shows standard process for handling faxed order from sales center, 
followed by correcting 40% with missing or invalid information by calling the sales representative. After 
validating customer data (center right), orders are handled by circuit allocation process (top). Other 
acronyms (e.g., SOP) are internal databases. 

A critique of this diagram from the perspective of situated action (Suchman 1987) would inquire why order 
processing occurs this way and how it might be improved. Perhaps surprisingly, the figure leaves out what a 
problem-solving (cognitive task) model would typically focus upon. For example, what information does the 
engineer read from the order form and what deductions are required in order to assign the circuit? This 
particular model leaves out how orders are planned and assigned, multi-tasking (the fact that a rep or 
engineer works on several jobs at once before completing them) and how people interrupt and resume their 
work. A cognitive model of the same business process might consider some of these factors, but would 
leave out how people come to be synchronized in a phone conversation, how an engineer might help a 
representative do his job, and broader considerations of how a representative actually spends her day. In 
particular, because interpreting and executing orders can be problematic in unexpected ways, people need 
to improvise in ways that work system designers might not have anticipated: 

Information flow charts show "information" moving in little blocks or triangles moving along arrows to 
encounter specific transformations and directions along the diagram. In reality, it seems, all along the 
arrows as well as at the nodes, that there are people helping this block to be what it needs to be—to 
name it, to put it under the heading where it will be seen as a recognizable variant, deciding whether 
to leave it in or take it out, whom to convey it to. (Wynn 1991) 

                                                      
11 This section is adapted from Clancey, W. J., Sachs, P., Sierhuis, M., and van Hoof, R. (1998). "Brahms: Simulating practice for work 
systems design." International Journal on Human-Computer Studies, 49:831-865. 
12 The BNA project was another business process redesign project within the, by then, Bell Atlantic company. 
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Wynn’s complaint might be viewed as an issue of modeling granularity—she is asking for more details. But 
her broader issue is how people think about work and how they solve problems cannot be reduced to 
information processing tasks and reasoning. Additional concepts are required.  

To analyze the example more precisely, consider what the various branches and joins mean: 

• Proportional mix of different kinds of orders, customers, or services (e.g., the first branch indicates 
how the order comes into the organization, as an update/correction or as an initial faxed order). 

• Hand-off to the next (possibly dependent) step in a functional sequence (especially clear in the 
modeler’s use of a step notation in the top portion of Figure 2-7). 

• Condition of job being processed (e.g., incorrect information, indicated by a branch showing 60% 
correct and 40% requiring troubleshooting). 

• Events that occur during troubleshooting (e.g., receive-a-call or keep-calling-back). 

Although this abstraction is useful, notice that everything in this diagram was specified and connected by the 
modeler. The model essentially leaves out the logistics, how these conditions come to be detected and 
resolved, such that work and information actually flows. What is wanted is a model that includes aspects of 
reasoning found in an information-processing model, plus aspects of geography, agent movement, and 
physical changes to the environment found in a multiagent simulation (Tokoro 1996). The designed flow of 
Figure 2-7 assumes that people are always on the spot, picking up faxes and handing them over to others, 
reviewing the status of database entries on-line, responding to phone calls, et cetera. In reality such 
behavior is an emergent property of the situation; people come together and their work is constrained by the 
environment. A designed work and information flow diagram leaves out the accomplishment of 
synchronization and the effect of juxtaposition of materials, such as the following: 

• Parallel-dependent processing (e.g., in practice, people start a time-consuming step in processing 
order before approval/clearance for doing the work (Dourish 1996)) 

• Cognitive interpretation, social knowledge, and variability (e.g., how do people know that 
information is not correct? How are intra-group variations in how the work is done a resource for 
handling difficult situations, such as the unavailability of a computer system?) 

• Interactional logistics and daily activities (e.g., the steps marked “Receives call” and “Call-back-right 
person” in Figure 2-7 omit the activity of “making the call” in the first place and when it occurs during 
the day. Is a pager and cellular phone used or voice mail at a desk phone?) 

• Informal help and “keeping an eye” on the work (e.g., stepping outside defined roles, especially 
being concerned about the end result even after doing one’s own step in a process). 

By ignoring the movement and transformation of information through human action, especially conversation, 
a designed workflow not only fails to explain how flows actually can happen at all, but leaves out the 
emergent effects of serendipity, such as stumbling on one order while looking for another or bumping into 
someone in the hall and learning about a new organizational priority. 

2.1.4 Discussion 

In this section, I discussed workflow modeling and simulation as a tool for business process re-design 
projects. Although the purpose of a workflow model is to represent the work of people in a work process, I 
have shown the limitations of this paradigm to model and simulate work as it really happens. I discussed the 
problems surrounding the validity of the statistics generated by a workflow simulation. Furthermore, we 
discussed many of the other limitations in representing how people actually work. A workflow model focuses 
on the sequential movement of jobs through process steps; therefore, the paradigm is very limited in 
representing the work from the point of view of a worker. People are seen as statistical resources. The 
representation of the flexible behavior of humans is not possible, and makes workflow models not a realistic 
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representation of how people work. This problem was emphasized by the example of trying to model the TC 
role in the T1 re-design project at NYNEX. Although the work activities of a TC were central to the work 
process, a workflow model was not able to show the “off-task” coordination work of the TC. Therefore, the 
model was a bad representation of the new work design. A simulation of work practice should emphasize: 

• What people actually do, not just official job functions; 

• What people are doing every minute of the day, where they are, and what they are perceiving, not 
just working on one task at a time; 

• The collaboration between two or more agents, such as face-to-face conversations, telephone 
calls, etc, not just communication as a stochastic event; 

• That people have personal identity, and are not interchangeable resources. 

I conclude this review of the workflow model-based paradigm showing in Table 2-1 its limitations to 
represent people’s collaboration, “off-task” behaviors, multi-tasking, interrupted and resumed activities, 
informal interaction, knowledge and geography. 

In the next sections, I describe several agent-based modeling approaches for modeling individual intelligent 
agent behavior. If we want to model the work of a group of individuals, it is obvious that an agent-based 
approach is warranted. 
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Table 2-1. Workflow modeling limitations 
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2.2 COGNITIVE MODELING 

Ever since modern cognitive psychology took form in the 1950s and 1960s, it has focused on aspects of 
understanding human cognition. In the early 1970s, it was Allen Newell who started to work on a unified 
theory of cognition that would address all aspects of cognition. Newell felt that the only way cognitive 
psychology would ever come to a unified theory, it needed to understand from the beginning how all the 
different pieces fit together (Newell 1973b). Newell, at the same time, introduced his answer to this dilemma. 
He described his first production system theory of human cognition. It was a single system that was able to 
perform a diverse set of tasks that occupied cognitive psychology. He described production systems as 
follows (Newell 1973a, pp. 463-464): 

A production system is a scheme for specifying an information processing system. It consists of a set 
of productions, each production consisting of a condition and an action. It has also a collection of data 
structures: expressions that encode information upon which the production system works—on which 
the actions operate and on which the conditions can be determined to be true or false. 

A production system, starting with an initially given set of data structures, operates as follows. That 
production whose condition is true of the current data (assume there is only one) is executed, that is, 
the action is taken. The result is to modify the current data structures. This leads in the next instant to 
another (possibly the same) production being executed, leading to still further modifications. So it 
goes, action after action being taken to carry out an entire program of processing, each evoked by its 
conditions becoming true of the momentarily current collection of data structures. The entire process 
halts either when no condition is true (hence nothing is evoked) or when an action containing a stop 
operation occurs. 

Much remains to be specified in the above scheme to yield a definite information processing system. 
What happens (a likely occurrence) if more than one production is satisfied at once? What is the 
actual scheme for encoding information? What sort of collection of data structures constitutes the 
current state of knowledge on which the system works? What sort of tests are expressible in the 
condition of productions? What sort of primitive operations are performable on the data and what 
collections of these are expressible in the actions of productions? What sort of additional memories 
are available and how are they accessed and written into? How is the production system itself 
modified from within, or is this possible? How much time (or effort) is taken by the various components 
of the system and how do they combine to yield a total time for an entire process. 

Over the years, Newell explored a number of variations on his production system concept, concluding with 
his Soar theory of human cognition (Newell 1990). Right now, there are at least four current and active 
production system theories: Soar (Newell 1990), ACT-R (Anderson 1993), 3CAPS (Just and Carpenter 
1992), EPIC (Meyer and Kieras 1997). All these computational cognitive modeling systems are developed 
as implementations of a theory of cognition. As such, domain specific models of problem-solving tasks that 
are developed in these systems are seen as theoretically valid models of how humans perform problem 
solving. In this chapter, I briefly describe the Soar and ACT-R systems, in order to give a brief overview of 
the field of cognitive modeling. The reason for not describing all four systems, mentioned above is, a) 
because Soar and ACT-R are the best known and mostly used production systems for cognitive modeling, 
and b) to limit the space used to describe the nature of cognitive modeling. 

2.2.1 Soar 

Soar is a general cognitive architecture for developing systems that exhibit problem-solving behavior. 
Researchers all over the world, both from the fields of artificial intelligence and cognitive science, are using 
Soar for a variety of tasks. It has been in use since 1983. 

Soar attempts to approximate rational behavior, using the following guiding design principles (Laird et al. 
1999): 
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• The number of distinct architectural mechanisms should be minimized. Soar has a single 
framework for all tasks and subtasks (problem spaces), a single representation of permanent 
knowledge (productions), a single representation of temporary knowledge (objects with attributes 
and values), a single mechanism for generating goals (automatic subgoaling), and a single learning 
mechanism (chunking). 

• All decisions are made through the application of relevant knowledge at run-time. In Soar, every 
decision is based on the current interpretation of sensory data, the contents of working memory 
created by prior problem solving, and any relevant knowledge retrieved from permanent memory. 

Soar is based on the general hypothesis that all goal-oriented behavior can be viewed as the selection and 
application of operators to a state. A state represents the current problem-solving situation in memory, at a 
specific moment in the problem-solving process. The application of an operator changes the current state to 
a new state, which means that it is changing the representation of the state in memory. A goal (or subgoal) 
is seen as the desired outcome of an operator. Trying to reach its goals, Soar continually applies operators 
selected to achieve a goal. When an operator succeeds or fails, Soar selects the next operator for a subgoal 
of the current goal, or for a new goal. Reaching a goal can be seen as having the system reach a goal-state, 
i.e. the desired representation of objects, attributes, and values. 

Soar has two types of memories for storing the different representational objects of a problem-solving 
process, 

• Working memory contains descriptions of the current situation—the current state—including data 
from sensors, results of intermediate production firings, active goals and operators. Working 
memory is organized into objects. Objects are described in terms of attributes. The current state is 
the total of objects in working memory with their current attribute-values. 

• Long-term (or production) memory contains productions that define how to react to the objects and 
their attributes in working memory. The productions in long-term memory can be thought of as the 
Soar program. 

A Soar program contains the knowledge that is relevant in a particular problem-solving task (or a set of 
tasks), including the knowledge about when to select and apply operators to transform the states of working 
memory in order to achieve its goals. 

2.2.1.1 Problem solving in Soar 

Soar's long-term knowledge is organized around the functions of selecting and applying operators. These 
inherent Soar functions are performed using five distinct types of knowledge, operator proposal, operator 
comparison, operator selection, and operator application. Soar also has generic knowledge about making 
monotonic inferences about the state (i.e. state elaboration). Inferences that result in state changes in 
working memory have an indirect effect on the operator selection and application functions, because new 
state descriptions can cue new operators.  

The knowledge used in the selection and application of operators is represented in terms of production rules 
encoded in the Soar program. Production rules are declarative "if-then" statements. The if-part of the rule is 
called the condition or precondition, and the then-part is called the action or consequence. The execution of 
production rules is referred to as rule firing. A rule matches when its conditions are met based on the current 
state in working memory. At that moment, the rule fires and its actions are executed. Executing actions 
means changing working memory (see Figure 2-8). 
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Figure 2-8. The Soar production system (borrowed from (Newell 1990)) 

Thus, by continuously testing conditions of the rules in long-term memory, matching the rules, based on the 
current state, the current-state of the system changes continuously. This cycle continues until there is a kind 
of equilibrium state between long-term and working memory. This means that the current state does not 
result in firing any of the rules in long-term memory. When this happens, and a specific goal-state has not 
yet been reached (i.e. the operator has not been fully applied), Soar is unable to make further progress and 
reaches an impasse. There are three types of impasses possible: 

1. No operator can be selected, because none is proposed. 

2. No single operator can be selected, because there are multiple operators possible and there is not 
enough knowledge to distinguish between them. 

3. An operator is selected, but there is no additional knowledge to apply the operator. 

When Soar is in an impasse, the architecture creates a substate (i.e. a sub search-space) in which a new 
operator selection-apply cycle can be started, with as the subgoal to resolve the impasse. 

2.2.1.2 Learning in Soar 

Learning is an important part of a theory of cognition. There are many aspects of how learning occurs in 
human cognition that are not well understood today. However, Soar has a primitive notion of learning called 
chunking. Chunking is a form of learning from experience. It is a way to transform specific problem-solving 
scenarios into productions stored into long-term memory for future use. 

A chunk is a newly created production rule. The conditions of the chunk are parameterized working memory 
elements (WME) of a state that lead (through some chain of production firings) to a specific impasse 
resolution. The action of the chunk is the WME that actually resolved the impasse. In other words, chaining 
backwards over the specific WME's that were used to resolve a specific impasse creates the chunk. The 
first WME in this backward-chaining process is the action of the chunk being created. By parameterizing 
(replacing objects by variables) the chunk is made more generically applicable as a production rule in long-
term memory. 

2.2.2 Act -R 

ACT-R is the result of long cognitive science research at Carnegie Mellon University, started in the mid-
seventies with the introduction of the ACT production system (Anderson 1976). Like Soar, ACT-R is a 
theory of cognition trying to deal with the empirical knowledge of human cognition that has evolved in 
cognitive science. ACT-R consists of a theory of the nature of human knowledge, a theory of how this 
knowledge is deployed, and a theory of how this knowledge is acquired (Anderson 1976). ACT-R is also, 
like Soar, a computer system that implements the ACT-R theory. ACT-R can be used to develop computer 
simulations of a wide range of cognitive phenomena in memory, problem solving and skill acquisition. 

The ACT-R theory assumes that there are two types of knowledge, declarative and procedural. Declarative 
knowledge is knowledge that we are aware of and can usually communicate to others. It is sometimes 
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referred to as factual knowledge or axioms. Examples include “George W. Bush is the 43rd president-elect 
of the United States,” and “one plus two is three.” Procedural knowledge is knowledge that we are not 
conscious of, and is applied in our problem solving behavior using our declarative knowledge.  

Declarative knowledge is represented as chunks. Chunks in ACT-R are different from the notion of chunks 
in Soar. In ACT-R, chunks are WME that represent the factual statements in working memory. For example, 
the fact 1 + 2 = 3 is represented as the following chunk (Figure 2-9): 

Figure 2-9. Representation of an ACT-R chunk 

Procedural knowledge in ACT-R, just as in Soar, is represented using production rules. A production rule is 
a condition-action pair. The condition specifies what must be true for the rule to apply, and the action 
specifies a set of things to do if the rule applies. Conditions in a production rule test for the state of the 
current goal and chunks in declarative memory, whereas the actions change the goal state.  

From this brief description of the ACT-R architecture, we can infer that there are many similarities with the 
Soar architecture; ACT-R's declarative and procedural memory is synonymous with Soar's short-term and 
long-term memory, where its declarative and procedural knowledge is similar to Soar's objects in working 
memory and production rules in its long-term memory. The third comparison that holds, although should not 
be seen as a one-to-one comparison, is the similarity between goals in ACT-R, and operators in Soar. 
Goals in ACT-R are held in a separate memory structure, namely the goal-stack. In ACT-R, goal structures 
provide a higher-level organization to control the execution of production rules (relatively similar to operators 
in Soar). 

2.2.2.1 Problem solving in ACT-R 

Problem solving is organized through the current goal, which represents the focus of attention at each step 
in the problem solving procedure. ACT-R is always trying to achieve the goal that is at the top of the goal-
stack. The current goal is pushed onto the stack, and is the next goal to be achieved. When it is done 
achieving a goal it pops the goal of the stack, which means that it will start achieving the next goal on the 
stack (see Figure 2-10). Thus, the goal-stack encodes the hierarchy of intentions that guide the problem-
solving behavior.  

Fact1+2 
 isa ADDITION-FACT 
 addend1 One 
 addend2 Two 
 sum Three 
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Figure 2-10. The ACT-R production system (borrowed from (Anderson and Lebiere 1998)) 

To select a production rule to achieve the current goal, there is a conflict resolution process that chooses 
one production from among the productions that match the current goal. The selected production is 
executed and can result in a transformation of the current goal, possibly resulting in pushing subgoals on 
the goal stack, or popping the current goal of the stack. It can also result in retrieval requests to declarative 
memory, which can be returned to the current goal satisfying it, thus causing popping the current-goal. 
Soar's type of chunking (i.e. production learning) is performed through a process called production 
compilation. Last, execution of a production can result in actions to be taken in the outside world, while 
perception of facts in the outside world can independently create chunks in the declarative memory. This 
last piece is the subject of the next section. 

2.2.2.2 The total cognitive system 

Newell describes a larger system that includes perception and motor behavior as the total cognitive system, 
shown in Figure 2-11 (Newell 1990, pp. 194-195). Here is where we identify a significant difference between 
the ACT-R and Soar systems implemented in software. Although, both theories describe the need for a total 
cognitive system, only ACT-R has implemented such a total system. 

ACT-R has a number of extensions that have been created by different researchers. First, there is a visual 
interface that incorporates ideas on visual attention and perception. This extension implements in software 
the capability of accessing information from a computer screen and dealing with a keyboard and mouse, in 
a similar way human subjects do in psychological experiments. It parses “screens” as humans do and 
enters key-presses and mouse gestures. The data record that is created using this interface is 
indistinguishable from the data record that human subjects create. The visual interface is extended more 
generally to also deal with audition, speech, and other hand gestures. 
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Figure 2-11. The total cognitive system (borrowed from (Newell 1990)) 

2.2.2.3 Human performance models 

The grounding of ACT-R in real experimental data has created the ability for developing models whose 
correspondence to actual cognition can be validated with a subject performing similar experiments in the 
real world. This, in some sense, has created a level of reality in cognitive modeling. ACT-R makes 
predictions about every aspect of the empirical phenomena that are being simulated. For example, in 
simulating memory experiments the ACT-R model predicts not only the correctness of response choices 
and response latency, but also the steps involved in the problem solving process. 

The use of this is mostly relevant in the field of human factors, where the focus of research is on 
understanding the impact of a particular interface design on human performance. 

2.2.3 Discussion 

The home page of the ACT group13 at Carnegie Mellon University states: “The architecture takes the form 
of a computer simulation that is capable of performing and learning from the same tasks worked on by 
human subjects in our laboratories.” This says that ACT-R's main focus is to simulate psychological 
laboratory experiments. The reason for this is the following. Using simulation models of psychological 
experiments that can be done in a laboratory setting with human subjects, the simulation models can be 
validated by comparing the simulation output data with data from these real-life laboratory experiments.  

Thus, the sole purpose of implementing the ACT-R theory into the ACT-R computer simulation system is to 
verify and validate the theory. In other words, the ACT group's method for researching unified theories of 
cognition is through modeling and simulation. I make this point, because of two reasons; 1) I apply a similar 
research method for developing a theory of work practice, and 2) it helps me to show the limitations of ACT-
R (and Soar, for that matter) in applying it for a different research problem, namely the development of a 
theory of work practice. 

                                                      
13 http://act.psy.cmu.edu/ACT/act/actr.html 
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Table 2-2. Limitations of cognitive modeling and simulation 

 Collabora-
tion 

Off-task 
behaviors 

Multi-
tasking 

Interrupt 
and resume 

Informal 
interactions 

Cognitive 
behavior 

Geography 
(location) 

SOAR No 

There is only 

one actor 

No 

Tasks are 

performed 

through 

goal-directed 

reasoning 

No 

Only through 

complex 

goal 

switching 

No 

Goals 

cannot be 

interrupted 

and 

resumed 

No 

There is only 

one actor 

Yes No 

ACT-R No 

There is only 

one actor 

Yes 

The actor 

can react to 

perceptions 

from the 

outside 

world 

No 

Only through 

complex 

goal 

switching 

No 

Goals 

cannot be 

interrupted 

and 

resumed 

No 

There is only 

one actor 

Yes No 

The limitations of applying cognitive modeling architectures to work practice modeling and simulation are 
given in Table 2-2. However, the main reason for being skeptical about using cognitive modeling 
environments, like Soar and ACT-R, for modeling work practice has to do with the level at which cognition is 
modeled. As described in this chapter, using Soar and ACT-R as examples, cognitive models are 
represented at a level that allows the cognitive science researcher to model cognitive cycles in the human 
brain. These cycles have a length of no more than 50-100msec. Even though I have not yet defined what 
needs to be included in a model of work practice, it seems clear that work practice needs to be shown at a 
higher-level of human activity than the low-level cognitive cycles of a person. One of the reasons for 
believing this is because of the scale factor. If we want to model a work practice in an organization of, for 
example, tens of people, it seems obvious that modeling each person in this organization at the level of their 
cognitive cycles would not be useful, even if it would be possible. The objective of a work practice model 
must lie at the level of showing what the total system behavior is. It seems obvious that this should be done 
by modeling each person's activities in the physical world, based on some relatively high-level 
representation of the reasoning behavior of each individual, and the impact this has on the individual's 
action in the physical world. 

The notion of multiple actors or agents being involved in problem solving, and the research into 
organizations of multiple actors is the topic of the next sectrion, in which I will discuss the research field of 
distributed artificial intelligence. 
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2.3 DISTRIBUTED ARTIFICIAL INTELLIGENCE 

I am interested in modeling and theorizing about activities of people. People are inherently social actors and 
we, therefore, must be concerned with the social dimension of action and knowledge. Gasser states that 
classical artificial intelligence (AI) research is largely a-social, meaning that the unit of analysis is a 
computational process with a single locus of control and knowledge (Gasser 1991). Because of this, it has 
been inadequate with dealing with social human behavior. Gasser investigates how contemporary DAI 
deals (and should deal) with the social conception of knowledge, action, and interaction. In (Gasser 1991) 
he makes an argument that distributed artificial intelligence (DAI) is fundamental in the research on how 
agents coordinate their actions, use knowledge about beliefs, and reason about the beliefs and actions of 
other agents. Here, I draw a similarity between the research problems in the DAI literature and the problems 
in simulating work practice.  

The notion of “social” in DAI is in my opinion too limited. The term social in DAI is meant as “more than one.” 
That is, DAI does not concentrate on problem-solving behavior as sitting in the head of a single agent, but 
investigates problem-solving behavior as a distributed multiagent process. As such, the word “social” means 
that there is communication and coordination between multiple agents in a problem-solving task. Detail can 
be found in (Bond and Gasser 1988; Gasser and Hill 1990). However, the definition of “social” is broader, 
and relates more closely to the way the group as a whole acts and interacts in the environment. The notion 
of social conception of knowledge and action is not a new idea. Social psychologist George Mead stated 
(Mead 1934): 

We are not, in psychology, building up the behavior of the social group in terms of behavior of the 
separate individuals composing it; rather we are starting with a given social whole of complex group 
activity, into which we analyze (as elements) the behavior of each of the separate individuals 
composing it. We attempt, that is, to explain the conduct of the individual in terms of organized 
conduct of the social group, rather than to account for the organized conduct of the social group in 
terms of the conduct of the separate individuals belonging to it. For social psychology, the whole 
[society] is prior to the part [the individual], not the part to the whole; and the part is explained in terms 
of the whole, not the whole in terms of the parts. 

The traditional techniques and methods of AI do not include any fundamental social elements. The focus is 
on the individual as the object of knowledge, truth and knowing. Gasser provides a great example of this 
limitation in AI research. The example is centered on the concept of commitment, and provides an excellent 
description of how an individual’s commitment is not just based on his or her individual relativized persistent 
goal (Cohen and Levesque 1990). In contrast, an individual’s commitment is based on an agent’s overall 
participation in many settings (activities) simultaneously (Gerson 1976), exemplified by Gasser’s example 
(Gasser 1991): 

For example, imagine that a Los Angeles industrialist takes off in an airplane from Narita airport, 
bound for California, after formulating preliminary business deals in Tokyo and telephoning her 
associates in Los Angeles. While flying, she is participating in many settings simultaneously: the 
activity in the plane, the ongoing business negotiations in Tokyo and in Los Angeles (where people 
are planning for her arrival and making business judgments while considering her views, even in her 
absence). Her simultaneous involvement in interlocking courses of action in all of these situations 
provides the commitment to her arrival in California. Both she and others balance and trade off her 
involvement in joint courses of action in many different situations. Moreover, whether she makes a 
choice or not, she is committed to landing in LA because the plane is not in her control. Her 
commitments in any of these settings amount to the interaction of many activities of many agents in 
many other settings. Since this multi-setting participation occurs simultaneously in many places, it 
can’t be located simply to where she physically ‘is’. In other words, the notion of commitment is 
distributed because the agent of commitment—‘she’—is a distributed entity. 
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Although this example focuses on the notion of commitment, it is an excellent example of collaboration 
between multiple people in a work system. This example shows the importance of individual participation, 
knowledge, and location in the system as a whole. It shows that resources are not interchangeable, and that 
the work practice cannot be understood without a close investigation of the collaboration between the 
individual agents and the context in which this collaboration takes place. As Gasser states (Gasser 1991): 

[…] since continued participation is distributed and simultaneous, it isn’t based on localized, individual 
choices and goals. 

The next few sections discuss a number of agent-based systems from the field of DAI. None of these 
systems provide a complete solution for dealing with simulating work practice, however they have formed a 
basis for our Brahms multiagent system. 

2.3.1 TacAir-Soar 

In (Tambe et al. 1995) an intelligent agent simulation environment is described for simulating battlefield 
scenarios and the knowledge intensive reasoning of independent pilot-agents. This environment is called 
TacAir-Soar, a kind of virtual world that can be populated with not only humans, but also with intelligent 
automated agents (AI systems). Such synthetic environments provide a new laboratory in which intelligent 
agents can be studied. Intelligent agents can be substituted for humans, such that a large number of entities 
can be used to populate the virtual world. A benefit of such an environment is that artificial agents can 
simplify and speed-up experimentation by providing more control of behavior, repeatability of scenarios, and 
an increased rate of simulation, faster than real-time simulation. 

The goal of TacAir-Soar is the production of behavior that is close enough to that of humans, and to force 
the other entities to interact the same way as they would interact with humans. Although ambitious, they do 
not have to deal with low-level perception and robot control. There is also no verbal interaction between 
opposing entities, and cooperating agents restrict their communication to the details of the current mission. 
TacAir-Soar was to provide synthetic pilots (IFORS) for all the missions in STOW-97 (Simulated Theater of 
War), a large-scale simulation of a tactical exercise that took place in 1997, including fighters, troop 
transports, reconnaissance aircrafts, and helicopters. The set of requirements for the automated pilots 
include: 

• Goal-driven and knowledge-intensive behavior; 

• Conformance to human reaction and limitations; 

• Performance of multiple simultaneous tasks; 

• Episodic memory. 

Pilot agents in TacAir-Soar are created as individual knowledge-based systems within the Soar integrated 
architecture (Laird et al. 1987) (Newell 1990). TacAir-Soar represents a generic automated pilot. 
Specializing it with specific vehicle parameters provided to them during the briefing process creates specific 
automated pilots. These pilot agents then participate in battlefield simulations by flying simulating aircrafts 
provided by ModSAF (Calder et al. 1993), a distributed simulator that has been developed commercially for 
the military.  
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Figure 2-12. Human and Automated Pilots interact with the DIS environment using Distributed Simulators 

TacAir-Soar has been constructed from Soar through the addition of perceptual motor interfaces (in the form 
of C-code) that allow pilots to fly ModSAF planes in the DIS (Distributed Interactive Simulation) environment 
(Thorpe et al. 1989). Each automated pilot is implemented as a Soar agent, interfacing with the simulated 
plane it is flying. To do this, they implemented a cockpit abstraction on top of ModSAF that allows TacAir-
Soar to focus on behaving like a pilot, while ModSAF simulates planes, sensors, and weapons (see Figure 
2-12. 

2.3.1.1 Goal-driven task behavior 

Each automated pilot agent has specific knowledge about tactical air-combat, and is implemented as a Soar 
knowledge base, having independent reasoning behavior. Goal-oriented and knowledge intensive 
behaviors are addressed by the manner in which Soar uses its architecture and knowledge in the process of 
dynamically expanding and contracting a goal hierarchy (Laird et al. 1987). Task switching also arises from 
Soar's decision-making abilities, but then specifically applied to the selection and switching of tasks. Tasks 
(also called goals) are represented as operators in Soar, and are the main foci of its decision-making. Task 
decomposition arises from Soar's ability to automatically generate a new task context when a decision is 
problematic. Task decomposition is achieved by combining task context generation with rules that generate 
preferences about which subtasks are appropriate for parent tasks. Real-time interaction with the DIS 
environment arises from the combination of Soar's incorporation of perception and action within the inner 
loop of its decision making capabilities-thus allowing all decisions to be informed by the current situation 
(and interpretations of it, as generated by rule firings) and the use of ModSAF as the interface to the DIS 
environment.  

2.3.1.2 Conformance to human reaction and limitations 

Reactivity of the individual pilot agents is addressed through a combination of Soar’s use of productions to 
enforce context sensitivity in the representation of the knowledge, and Soar’s decision-making procedure. 
Soar can react to changes by suggesting new goal-operators be pursued at any level in the same goal 
hierarchy, generating preferences among suggested operators. The decision procedure determines what 
changes have to be made to the goal hierarchy. Reactivity is limited to changes from within the decision-
making process, and not from external available cues. 

For example, communication between agents is simulated by the transmission of radio messages via the 
ModSAF simulation substrate, through the DIS network. That is, a discrete event simulates the transmission 
of a radio message between agents. The content of the radio message is received by an agent through the 
ModSAF interface into the working memory of the agent. Agents can react to radio messages through the 
activation of rules in the current task context that can propose new operators to be evaluated. This limits the 
agent to reacting only to radio messages that are relevant in the current context. 
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As a result, one of the limitations of TacAir-Soar in its use for modeling work systems is its inability to react 
to general external cues, other than the ones built in through the ModSAF cockpit abstraction and the DIS 
network. People, on the other hand, constantly react to the state of their external environment, regardless of 
their goal context at that moment. For example, when the telephone rings, people react to it. Depending on 
the activity we are involved in at that moment, we either pick it up, or let our answering machine answer. If 
we’re not in the same location as the telephone, we do not notice the telephone ringing. When we decide to 
pick up the phone, we will most likely engage in a total different task context. This poses a problem for the 
way the Soar decision-making process works. 

2.3.1.3 Performance of multiple simultaneous tasks 

The Soar architecture is inadequate in certain requirements. One requirement that poses an inherent 
problem in modeling social human behavior is the inability of the simultaneous performance of multiple 
tasks. People inherently work on multiple tasks at once. TacAir-Soar agents need to simultaneously execute 
maneuvers to destroy the opponent, survive opponents' weapon firings, as well as interpret opponents' 
actions. The limitation of Soar is that it cannot create multiple goal hierarchies to serve multiple high-level 
tasks. The approach taken in TacAir-Soar to handle this problem is to create operators for simultaneous 
goals as needed, and to add these operators at the bottom of the active goal hierarchy. Although this may 
work, with sufficient care taken, it is not a real solution to the modeling of realistic human behavior. Soar 
interprets “lower” goal operators as being dependent on the higher-level goals, although these lower-level 
goals are supposed to be interpreted as goals for independent tasks. Jones, et al worked on changing the 
architecture to allow “forests” of goal hierarchies (Jones et al. 1994). Covrigaru approached the problem by 
being able to flush the current goal hierarchy whenever a new one needs to be established (Covregaru 
1992). However, these approaches mean a change to the Soar architecture that would allow the dynamic 
compilation of new goal hierarchies. 

2.3.1.4 Episodic memory 

Endel Tulving introduced the term episodic memory (Tulving 1969). The notion of episodic vs. semantic 
memory arises from the central learning tradition of American experimental psychology. Tulving made clear 
that learning of verbal material was tied to a specific episode, i.e. a specific time and context in which the 
learned material was memorized, and thus was associated with. Episodic memory in TacAir-Soar is used 
primarily to support explanation. It is also used to a limited extent during simulation, so that an operator’s 
current actions are interpreted based on its actions in the past. The general constraints are that episodic 
memory should add minimal processing overhead, and it should not substantially increase working memory. 
Episodic memory is a basic characteristic of human cognition, something a unified theory of cognition ought 
to provide for (Newell 1990). This brings tough issues for the Soar architecture especially. The approach 
taken in TacAir-Soar is that the sequence of events is recorded in working memory so that it can be recalled 
accurately. The states in which events occur are stored by committing state changes to long-term memory. 
Long-term memory employs chunking, which allows agents to learn new productions from episodic 
memory. 

This is a point where TacAir-Soar wins over Brahms. Currently, Brahms agents have no significant episodic 
memory. Brahms agents only have a list of “current-beliefs” which is changing constantly. A trace of past 
activities, and states is not memorized. Brahms agents have no long-term memory, nor the ability of 
chunking. This is a future research issue that is closely related to the issue of learning. Although learning is 
an important piece of modeling human behavior, it falls outside the scope of this thesis. I return to a short 
discussion of learning as a topic for future research in the conclusion chapter of this thesis. However, for 
now suffice it to say that the Brahms simulation engine does keep track of all changes to the system, and 
that these historical events are created so that the history of a simulation can be saved in a database, and 
investigated post-simulation. However, at this moment, Brahms agents cannot access these historical 
events. 

2.3.2 Phoenix : simulat ing fire-fight ing in Yellow stone Nat ional Park 

Paul Cohen, et al (Cohen et al. 1989) developed an agent-based simulation environment for simulating how 
fires in Yellowstone National Park are fought. The research objective of the Phoenix project is to understand 
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how complex environments constrain the design of intelligent agents. In contrast to the objectives of this 
research, in which the goal is to understand how work processes are created in terms of the work practices 
of people, the aims of the Phoenix research are more of a technical AI nature: 

• Real-time adaptive planning 

• Approximate scheduling for coordination of multiple planning activities 

• Knowledge representation of plans and measuring progress towards the goals 

They describe the Phoenix environment as follows: 

We began the Phoenix project by designing a real-time, spatially distributed, multi-agent, dynamic, 
ongoing, unpredictable environment. (Cohen et al. 1989) 

Phoenix is a multi-layered system. Figure 2-13 shows the architectural layers. 

organization

agent definition

map

task coordinatorLayer 1

Layer 2

Layer 3

Layer 4

 
Figure 2-13. Phoenix layers 

Layers 1 and 2 implement the environment (i.e. the forest and forest fires), in this case a part of Yellowstone 
National Park. Layer 3 is the agent design layer, which is the layer that creates the cognitive and reflexive 
behavior of the agents. Layer 4 is a model of the organization of multiple fire fighters. 

2.3.2.1 Task coordinator layer 

The task coordinator layer is responsible for creating the illusion of simultaneity among fires, and the agent’s 
physical and internal actions. The task loops over all agents in each clock tick, changing the environment 
and the agent’s actions accordingly. The clock grain size of the Phoenix simulator is 5 minutes. This means 
that the smallest action or change in the environment takes a minimum of 5 minutes of simulated time. You 
can increase the clock grain size to make the simulation more efficient. However, increasing the clock grain 
size will make agents become discordant with the environment, and with each other. When the clock grain-
size becomes too large, it is possible for more than one action for an agent to have taken place in one 
simulation clock-tick. Communications between agents might have been missed, and changes in the 
environment might not have been recorded by the individual agents, leading to a situated-specific model 
that is not in sync with what actually happened in the simulation. 

2.3.2.2 Map layer 

The fire simulator resides in Phoenix’s map layer. A Phoenix map is a composite of a two-dimensional data 
structure in which, for each map coordinate, information is stored about the environment. The environment 
is described as a set of symbolic features found at that specific coordinate on the map. These features 
include values for type of ground cover, elevation, features such as a road, a river, houses, et cetera., and 
the state of the fire at that coordinate (fire intensity). 
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Figure 2-14. Screen display of Phoenix’s situation-specific model (here gray and white indicate forest, which is seen 
hugging a river on the left side; the fire is near the middle (darker gray dots), nearly surrounded by the bulldozers in 
the view on the left). The left pane is the view of the real world, the right pane is the view of the fire boss. 

The process of changing the map (i.e. changing the environment) during each simulation clock-tick is 
parameterized according to these defined concepts (Cohen et al. 1989): 

Fires spread in irregular shapes and at variable rates, determined by ground cover, elevation, 
moisture content, wind speed, and direction, and natural boundaries. For example, fires spread more 
quickly in brush than in mature forest, are pushed in the direction of the wind and uphill, burn dry fuel 
more readily, and so on.... Fire-fighting objects are also accurately simulated; for example, bulldozers 
move at a maximum speed of 40 km/h in transit, 5 km/h traveling cross-country, and 0.5 km/h when 
cutting a fire-line. (p. 34-35) 

The fire itself is implemented as a cellular automaton in which each cell at the boundary of the fire decides 
whether to spread to its neighboring cells. The simulator is generic in the sense that it can be used to 
simulate any type of environment involving maps and needs to simulate changes to the environment, based 
on the changes to the symbolic representation of the environment. 

As is shown in Figure 2-14, the map layer also controls the movement of the agents, such as the bulldozers 
trying to surround the fire and cutting a fire-line, based on the situation-specific description of the terrain. 

2.3.2.3 Agent Design Layer 

Agents have two independent parallel mechanisms for generating actions: a reflexive component, and a 
cognitive component. The reflexive component generates actions for quick changes of direction on the 
order of seconds. The agent's sensors trigger reflexes. For example, when a bulldozer agent is about to 
drive into a fire, a reflex stops it and further reflexes handle the fine tuning of the movement of the agent to 
keep following the road without getting into the fire. Reflexes hardly cost any CPU time, but have no 
memory. They are merely a quick action (i.e. a reflex), based on triggers from the sensors. 

The cognitive component generates and executes lazy skeletal plans, which are stored prescribed action 
sequences that, when executed, are instantiated with situation-specific data (Freed 1998). The cognitive 
component executes plans using a selection process that first decides which action to execute, next it finds 
out how much time is available to execute that action, and last it decides what execution method should be 
used for the action to execute based on the time available. An agent can execute several plans 
simultaneously; for example, when there are multiple fires to combat. The planning process goes as follows 
(Cohen et al. 1989): 

Planning is accomplished by adding a selection action to the timeline to search for a plan to address 
some conditions. Executing the selection action places an appropriate plan action or primitive action 
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on the timeline. If this new entry is a plan action, then it expands into a plan when it is executed by 
putting its subactions onto the timeline with their temporal interrelationships. If it is a primitive action, 
execution instantiates the requisite variables, selects an execution method, and executes it. In 
general, a cognitive agent interleaves actions from the several plans it is working on. (p. 43) 

Just as in TacAir-Soar, plans cannot be interrupted, because saving a state of the world and context 
switching is prohibited in the architecture. Therefore, to change an action the agent has to generate an error 
selection action “deal-with-error.” 

The only way an agent can change its activities (i.e. re-plan) is to view a change as an error condition, and 
try to fix the current plan by expanding it into a kind of error recovery plan. Activities in Phoenix are 
sequential non-interruptible actions. However, the error-conditions in Phoenix are dynamically generated. 
This architecture allows for more flexibility in simulating the work activities of individual agents then workflow 
simulation models. 

The reflexive and cognitive components interact via flags that are set by the reflexive component when 
reflexes execute. Since plans executed by the cognitive component can take several simulation hours to 
complete, the reflexive component takes over and changes the directional behavior of the agent. When the 
cognitive component notices the flag, it might react by changing its plan by calling the “deal-with-error” 
action. A Phoenix agent deals with two time scales requiring micro-actions, such as following a road, and 
cognitive processing, such as route planning. The combination of the reflexive and the cognitive 
components is designed to handle these time-scale mismatches. 

2.3.2.4 Organization Layer 

Agents in Phoenix are centrally organized in a hierarchical organization of fire-fighting agents. There is 
always one coordinating agent for each organization of fire fighters. This agent is called the fire-boss. The 
fire-boss is a purely cognitive agent that coordinates all fire-fighting agents’ activities, scheduling and 
communicating action directives. The fire-boss receives status reports from the fire-fighting agents, including 
fire sightings, position updates, and action completions. The fire-boss has a global view of the fire situation, 
while each fire-fighting agent has a limited individual view of the fire. Based on this global view and the 
updates, the fire-boss chooses global plans from its plan library. It communicates the actions in these plans 
to the agents. When an agent receives a plan, it selects a plan from its own plan library that implements the 
received action. Although the fire-fighting agents and the fire-boss communicate, there is no communication 
amongst the fire-fighting agents (i.e. there is no cross-talking). 

The organization model in Phoenix is very limited, and is not conducive to collaboration amongst the fire 
fighters. The fire-boss orchestrates the work, and is a kind of meta-agent, whose sensors and detectors are 
the fire-fighting agents. It has the overall picture, the size of the fire, weather conditions, and action that 
already have been taken. None of this information is shared across the group of agents. Although this 
seems a good model to represent the TC in the T1 model (see 2.1.3.4)—it allows us to describe the 
coordination work of the TC—it does not allow for the agents in the central office to collaborate on a test with 
the technicians in the field. 

This brings us to the next section in which we discuss the limitations of the Phoenix and TacAir-Soar 
systems in simulating the work practice of humans. 

2.3.3 Discussion 

Both TacAir Soar and Phoenix are multi-intelligent agent environments. The reason for choosing these two 
environments in my description of relevant previous work is that they are on the opposite ends of the 
spectrum, as far as simulating human behavior is concerned. TacAir Soar is based on the Soar architecture. 
Soar was developed as a theory of human cognition, stating that human cognitive processing is symbolic. 
Newell’s claim is that the Soar architecture is representative of how the human cognitive process works. As 
such, TacAir-Soar models pilots at a very fundamental cognitive level. The focus in TacAir Soar is on how 
the reasoning process of combat pilots can be simulated to the level of cognitive reaction times (i.e. human 
performance). The fact that there are multiple agents, simulating multiple pilots flying in a squadron, is to 
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allow for training of individual pilots. The focus is on the individual, and less on the collaboration between 
pilots. For example, it would be hard to simulate one pilot being attacked by an enemy aircraft, and another 
friendly pilot collaborating with this pilot to shake off the enemy aircraft. 

Phoenix, on the other side of the spectrum, simulates a group of fire fighters who together fight a fire, 
coordinated by a fire-boss. At first, it seems that the Phoenix environment simulates collaboration. However, 
when we look closer we see that the fire-fighting agents in Phoenix do not even communicate together, a 
necessary prerequisite if we want to simulate collaboration. It is self evident that real fire fighters 
communicate together to setup strategies, change plans in times of despair, et cetera. A Phoenix agent 
does not represent how a fire fighter fights fires; instead it simulates how distributed lazy skeletal planning 
can be done. It would be very difficult to have a fire-fighting agent select the appropriate plan on the fly when 
suddenly, out of nowhere, a burning tree is falling down on a colleague ten feet away from where it is 
standing. Phoenix agents perform pre-specified plans that are assigned by a coordinating fire-boss agent. 
Because the overall view of the situation by the fire-boss, plans are being selected and agents directed. The 
agents are like robots acting out what the fire-boss instructs them to do, with local reactive behavior 
dependent on the environment they encounter, but independent of the fire-boss. In this sense, fire-fighting 
agents are fighting fires in groups without being aware that they are working in collaboration with other 
agents. An agent might be aware of some other agent, but it does not know what it is doing, and even more 
so, why it is doing what it is doing and that they are actually working together to fight the fire. In comparison 
with TacAir-Soar, Phoenix agents do not simulate the way human cognitive processes happen.  

The goal of Phoenix is to design the right software-agent architecture for the needed agent behaviors and 
environmental characteristics to fight fires. Actually, the Phoenix architecture is a generic simulator for the 
central coordination of distributed agents in a natural environment. As such, the Phoenix environment 
contains all the components that are necessary to design an environment to simulate the work practices of 
individuals and groups. The problem is in the view the developers of Phoenix take in agent cognitive 
behavior. Phoenix, not surprisingly, uses a more classical AI planning approach, i.e. lazy skeletal planning. 

With Table 2-3, I conclude this section on DAI by showing the strengths and limitations of the two reviewed 
systems, TacAir-Soar and Phoenix, in particular with regards to their ability to represent people’s 
collaboration, “off-task” behaviors, multi-tasking, interrupted and resumed activities, informal interaction, 
knowledge and geography. 

Table 2-3. Limitations of Distributed Artificial Intelligence  

 Collabora-
tion 

Off-task 
behaviors 

Multi-
tasking 

Interrupt 
and resume 

Informal 
interactions 

Cognitive 
behavior 

Geography 
(location) 

TacAir-
Soar 

No 

Communica-

tions of radio 

messages. 

Agents are 

not aware of 

each other's 

tasks 

No 

Only high-

level 

goal/tasks of 

the mission 

No No 

When 

contexts are 

switched 

tasks are 

stopped 

No 

Only specific 

goal-directed 

behavior 

Yes Yes 

But, there is 

no separate 

geography 

model 

Phoenix No No Yes Yes No 

 

Varies 

Firefighter 

agents for 

the most part 

are reactive 

agents. The 

fire boss 

agent is a 

deliberative 

Yes 
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agent 

 

2.4 COMPUTATIONAL ORGANIZATION THEORY 

Organizational issues were one of the first issues researched with the help of computational modeling. In 
the fifties, it was Herb Simon and his colleagues March and Cyert, at what was than Carnegie Tech, who 
started using computational modeling to create a behavioral theory of organizations (Simon 1955). 
Computer simulation is becoming a more accepted and indispensable method for organizational research 
and theory building. The need to understand organizational behavior is moving into the realm of detailed 
computational models of people, tasks, dynamic and adaptive ecological systems. Within organization 
theory models, organizations are often too complex to be analyzed by conventional techniques that lead to 
closed-form solutions. Computational organization theory (COT) researchers view organizations as a 
computational system of multiple “distributed” agents that collectively work on organizational tasks, use 
resources, have knowledge, skills, and communication capabilities. In (Carley and Prietula 1994b) and 
(Prietula et al. 1998), different organizational multiagent simulation models are presented as simplified 
descriptions of what happens in real organizations. Although simplified, these models are still sufficiently 
complex to simulate the dynamic behavior of organizations that allows for predictions and theory 
development. There are three basic reasons for using multiagent simulation as one of the main 
technologies in COT research (Carley and Prietula 1994b): 

1. Many models contain non-linearities that cannot be eliminated. In modeling reality the non-linear 
behavior of individual agents and groups are central to the aspect that is being studied. 

2. Differential equations do not deal with the differences of the discrete items in organizations, such as 
the people, tasks, and organization. 

3. Agents in an organization act in parallel and adapt to the behavior of others. The behavior of a 
group is thus recursively defined. Controlling this fine order of agent interaction, and enabling 
agents to adapt is most effectively handled by simulation. Especially, if we are interested in 
investigating the behavior of large groups of agents, it is almost necessary to turn to simulation. 

2.4.1 ACTS theory 

Carley and Prietula, in (Carley and Prietula 1994a), describe an extended model of Bounded Rationality 
(Simon 1955). The model of bounded rationality states that agents in an organization may be rational in 
intent, but less than rational in execution because functional limits on cognition restricts their ability to 
achieve optimality in the pursuit of their goals (Simon 1976). The theory of bounded rationality was 
developed to replace the limited models of agents in theories of economics and organizations with a better 
approximation of the actual capabilities of people’s decision making. The ACTS theory extends the model of 
bounded rationality and incorporates a general process theory of organizations. In the ACTS theory 
organizations are viewed as collections of intelligent agents who are cognitively restricted, task-oriented, 
and socially situated. The ACTS theory extends the model of bounded rationality in two ways: 

1. It replaces the general principles of bounded rationality with a broader perspective of a cognitive 
agent. 

2. It replaces the general notions of environmental constraints with specific environmental 
perspectives, a) the task, and b) the organizational social situation within which the task and the 
agents are situated—situatedness. 

Within ACTS, organizations are build-up of individual intelligent agents whom together perform tasks, 
collaborate, and communicate in a social environment. The agent’s knowledge, which is constantly 
changing, mediates the effect of the task and the social situation on the individual agent (micro-level) and 
organizational behavior (macro-level). Agents and tasks are situated in the organizational environment. 
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ACTS tries to explain such individual and organizational behavior and performance by supporting the 
development of a set of computational models:  

• a cognitive model of an agent,  

• a task model,  

• a model of the social situation. 

At the micro-level, the ACTS theory focuses on how a given organizational design affects the behavior and 
performance of individual intelligent agents whom communicate and reason within a social environment and 
situation. At the macro-level, the ACTS theory focuses on the behavior and performance of groups and 
organizations, given the fact that groups and organizations are comprised of intelligent agents whom are 
socially situated and task-oriented. 

In ACTS theory the actions and decisions of intelligent agents are a function of the agent’s cognitive 
architecture and knowledge (Newell 1990). The mechanisms by which an agent processes information, 
learns and makes decisions are a function of the cognitive architecture of the agent, the (social) position of 
the agent in the organization, and the tasks in which the agent is engaged. Thus, the ACTS theory 
refocuses the attention of the researcher interested in organizations on the details through which the task 
and social environment influence the individual agent and the group performance. 

Many COT researchers use a multiagent version of the Soar system (Laird et al. 1987), because Soar is an 
implementation of a cognitive architecture that simulates the reasoning behavior of an individual. By 
integrating multiple copies of the Soar architecture in a distributed communication environment, a multiagent 
simulation environment for COT research can be created. In the next two sections, I briefly describe two of 
such environments: Plural-Soar, and Team-Soar. 

2.4.2 Plural-Soar 

Plural-Soar models a warehouse where multiple workers fill orders by retrieving items stored in stacks 
located in different places (Carley et al. 1992). In Plural-Soar, each Soar agent runs on a separate 
workstation, with the agents communicating over network connections. Plural-Soar consists of Soar 
production rules that define the agent's task knowledge. The task agents perform involves moving to a 
particular location (the order stack), and after possibly waiting in line, picking the next order from the stack, 
and then determining where the item from the order (in any of the known item stacks) may be in the 
warehouse, and last, moving to the item location to pick up the item to fill the order. Agents have a memory 
of the contents of the item stacks they have encountered. They can also broadcast requests for item 
locations to the other agents. This research focuses on the examination of how different combinations of 
cognitive constraints (such as communication and memory capability) combined with varying organizational 
structures (for example, different sizes) result in different organizational behaviors. 

In subsequent work, adding elements (social knowledge) extended Plural-Soar in order to bring social 
elements of groups to the system (Carley et al. 1993). A social agent is defined by the decreasing 
information processing ability of the agent; omniscient, rational, bounded rational, cognitive, or emotional-
cognitive, and by its knowledge of the social environment; non-social, multiple agents, interactive multiple 
agents, organizational structures, group goals, cultural history (Carley and Newell 1990). This model of a 
social agent was implemented in Plural-Soar in two ways. First, an agent has a social memory about the 
reliability of other agents. Secondly, the reliability of another agent depends on the correctness of previous 
given information by that agent. For instance, if inaccurate information was given by an agent, on the 
location of a specific item, the reliability of that agent is “down graded.”  After two unreliable pieces of 
information, an agent is determined “unreliable,” and no more information form that agent is accepted. Thus, 
while in the first version of Plural-Soar information from other agents was accepted unconditionally, in the 
extended social agent version, communication from other agents is accepted or rejected on the basis of 
“social historical knowledge” of that agent. 
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In order to test the extremes of social behavior they then varied the social characteristics of agents: honesty, 
cooperation, and benevolence. In the study, they measured concepts such as cognitive effort, physical 
effort, communication efforts, and wait time from five different organizations. Conclusions then were drawn 
about the differences in these measures from different types of agents in organizations. 

2.4.3 Team-Soar 

Team-Soar models the decision-making behavior of a team of four commanding officers (CO) from different 
units in a naval carrier group (Kang et al. 1998). The four CO’s are modeled as interconnected individual 
Soar agents. The agents are distributed in a simple authoritarian hierarchical organizational structure, which 
means that there is one leader, the CO of the aircraft carrier, and three equal subordinates, a CO of the 
coastal air defense, a CO of an AWACS air reconnaissance plane, and a CO of an Aegis cruiser. Each 
agent can communicate with all other agents, however the leader controls the team-based problem-solving 
task. The objective of the Team-Soar model is to track an aircraft by radar, and evaluate and decide in a 
team effort a course of action. To make a judgment, a Team-Soar agent first interprets the raw data in terms 
of nine attributes; speed, altitude, size, angle, direction, corridor-status, radar-type, range, and IFF, and 
evaluates them on a scale from one to three. When an agent has made the evaluations, by applying its 
knowledge in terms of Soar production rules, it makes a judgment about which of the seven possible actions 
to recommend (i.e. communicate) to the leader. Recommendations range in degree from ignore (a value of 
zero) to defend (a value of six), with intermediate states of review, monitor, warn, ready, and lock-in. When 
the leader has received the recommendations from all three subordinates, including its own, it makes a 
team decision, based on a team decision scheme, such as majority win or average win. 

Team-Soar uses two types of communication strategies; one-to-one communication and broadcasting. 
One-to-one communication is used when one agent sends a message to another agent. This happens 
when the subordinate agents communicate their decision to the team leader agent. Broadcasting is used to 
send a message to all agents simultaneously. There are four different types of information that can be 
communicated: raw data, evaluations, judgments, and decisions. The raw data are the values of the nine 
attributes. An evaluation is an interpretation of the raw data. A judgment is a team member's 
recommendation on a decision. The decision is the team's final decision made by the team leader. 

By varying the competence model for different agents in terms of domain expertise, meta-knowledge about 
the other agent’s expertise, member judgment, agent type, cooperativeness, and activity, the team 
performance model can be varied and tested. Examples of two studies of team decision-making that have 
been done with Team-Soar are:  

• To examine the relationship of a team decision scheme used and the amount of information 
available to teams with measures of team effectiveness.  

• To explore the relationship of meta-knowledge (knowledge about the knowledge of the other 
agents) and the amount of communicated information with how long it takes for the team to reach a 
decision. 

2.4.4 Discussion 

COT research studies theories of organizational behavior by creating simplified models of real-life 
organizational systems. The objective of such models is not to create a representation of how people really 
perform the work or task; instead the objective is to create a controlled experiment to test a theory. Ironically, 
the researchers that are using a distributed multiagent version of Soar (such as Plural-Soar, and Team-
Soar) argue that they use Soar because it claims to be a computational architecture for human cognition. A 
multiagent Soar architecture provides an implementation of the ACTS theory of distributed human problem 
solving, which allows the experimentation of subsequent theories on human distributed problem solving 
applied to human organizations.  

When we look at the problem domains that are being studied, we can see that these studies involve either a 
very simplified version of a real-life organization (e.g. order fulfillment), or an organization, like the military, 
that works according to very stringent and pre-defined procedures. In contrast, the objective of the research 
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described in this thesis is to create a computational architecture to study the way people work in real-life 
organizations. The focus of the research is on the work practices that exist in a workplace, and not so much 
on the cognitive problem-solving behavior of individual agents, or on the study of optimal organizational 
structures given certain constraints. The computational models that we are after are models that, at the 
micro-level, can describe a person’s daily activities and interactions with his or her environment and others, 
and at the macro-level show an organizational behavior that can be interpreted as the work practice existing 
in that organization. Our models are not meant as an experiment of organizational theory, but instead, as a 
laboratory to study work practices of people in real-life organizations. 

Just as in the previous two chapters, I conclude here as well with a table showing the limitation of COT (see 
Table 2-4). 

Table 2-4. Limitations of Computational Organization Theory  

 Collabora-
tion 

Off-task 
behaviors 

Multi-
tasking 

Interrupt 
and resume 

Informal 
interactions 

Cognitive 
behavior 

Geography 
(location) 

Plural-
Soar 

Yes 

Represented 

as the 

communica-

tion between 

agents to 

help in 

picking items 

from the 

warehouse  

No 

Only high-

level 

goal/tasks of 

picking 

orders 

No No 

When 

contexts are 

switched 

tasks are 

quit 

No 

Agents only 

interact with 

other agents 

about task 

related 

issues 

Yes Yes 

But, no 

geographical 

reasoning 

Team-
Soar 

Yes 

But, only 

represented 

as 

communica-

tion of 

specific 

attributes 

using the 

hierarchical 

organization 

of the CO's 

No 

finding 

values for 

the eight 

variables. 

Agents do 

not decide 

themselves 

what to work 

on 

No 

 

No 

 

No 

 

Yes 

 

No 

Only values 

of the 

variables 

related to the 

location of 

the incoming 

missile 
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2.5 CONCLUSION 

I conclude my description of related work with some general observations about the different modeling and 
simulation tools used in the different research fields. My objective here is to take this back to the research 
topic of this thesis and relate these tools to the requirements for modeling work practice. To do this, I 
generalize the data from Table 2-1, Table 2-2, Table 2-3, and Table 2-4 and give you an overview of the 
analysis. 

Collaboration 

The tools and models described, either do not represent the collaboration between people, or have a limited 
representation. Some of the agent-based models allow for some indirect representation of collaboration 
through hard-wired communication channels and/or communication message content. But, only the 
workflow modeling tool (Sparks) has an explicit form of showing two tasks (using a spawn) being performed 
in parallel. However, due to the actual semantics, this type of parallelism turns out to not always perform 
tasks in parallel. 

In modeling how tasks are performed in real-life organizations, being able to represent collaboration 
between people is a necessity. However, what is meant with collaboration is not immediately clear. What is 
clear is that this is a topic that has not been well defined yet in any of the research fields mentioned here. In 
the theory chapter (chapter 3) I will return to the question of what is meant with collaboration. 

Off-task behaviors 

None of the tools and models that were described represent off-task behaviors. The workflow paradigm has 
a representational limitation in not being able to allow for representing off-task behavior. This is because of 
the constraint on representing only those tasks where work-products are being touched. The other tools and 
models all take a goal-driven approach, and therefore do not allow for tasks outside of the domain goal/task 
hierarchies. ACT-R is the only tool that would allow for the representation of off-task behaviors, by using its 
ability to allow for reactive agent-behavior through input from the outside world. In general, the field of 
cognitive science does not focus on the influence of off-task behavior on the problem-solving capability of 
humans. 

The one observation that can be made from this is that in these research fields there is no explicit focus on 
how people behave in real-life tasks being performed in real-life organizations. If this would be the case, we 
would see a lot more interest in representing the influence of off-task behaviors in the performance of tasks. 
If we want to model how people really work we do need to include the effect of off-task behavior in the 
model, since it is very obvious that people are constantly interrupted by the need to perform tasks that are 
not part of the explicit work. For example, just think about the influence of getting a phone call, while 
performing a task, or the scheduling of group meetings in organizations, and how this impacts the “rhythm” 
of our work. 

Multi-tasking 

By allowing interruption and resuming of tasks we can approximate multi-tasking. Only the Phoenix system 
(chapter 2.3.2) allows for such interleaving of multiple tasks. Only Sparks allows for the execution of actual 
parallel tasks. However, the question is what the meaning is of performing tasks in parallel. In Sparks the 
purpose is for showing percentage of resources being associated with parallel tasks. If we want to represent 
one resource performing two tasks in parallel—driving a car, while being on the phone—we can use a 
spawn of the flow. However, in Sparks it is not possible to associate specific resources with a task. 
Resources are picked from a resource pool. Only if there is one resource in the pool can we be sure that the 
parallel tasks are actually performed by the same resource in parallel. 

Although people can do multiple things in parallel, and we do need to be able to show this, the actual way 
people perform most parallel tasks is by switching between them in very short time intervals. A lazy skeletal 
planning approach, in which the commitment of what task to work on next is delayed as long as possible is 
one approach to allow for this form of multi-tasking. Task-priorities is a way to decide what task to work on 
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next. Most parallel activities can actually be seen as hierarchical. With this I mean that showing someone 
doing two things at once can be represented hierarchically, in the sense that the person is in activity A1.1, 
while also being in activity A1. The on-phone-while-driving example could be thought of as such a 
hierarchical multi-tasking event. 

Interrupt and resume 

As pointed out above, only the Phoenix system allows for interruptions and resuming of tasks through a lazy 
skeletal planning approach. This is an essential part of work practice. We, humans, are constantly 
interrupted in what we are doing. When an interruption happens we do not stop a task we are working on to 
start another unrelated task and restart the original task when we come back to it. We interrupt tasks to 
come back to them where we left off when possible or wanted. This type of reactive, and unplanned 
interrupt and resume behavior is natural, and is part of the reason why we humans are not brittle in our task 
performances. Therefore, if we want to model work practice, the ability to represent interrupted and 
resumed activities is a must. 

Informal interaction 

In none of the tools and models are there representations of informal interaction between agents. Every tool 
and model described represents only the formal organization and tasks. Resources and agents only interact 
when the task being modeled asks for it. In real-life organizations there is an abundance of informal 
interactions between colleagues. For example, having lunch at work with a group of people is an informal 
activity (i.e. no formal work-task is being performed). However, during lunch there could be a lot of work 
related communication going on. Therefore, in modeling work practice it is essential to allow for the 
representation of informal tasks and communications and informal group behavior.  

Cognitive behavior 

There is a sharp distinction between models and tools that do or do not include cognitive behavior. The 
interesting observation to make is that there seems to be an either-or approach to this. I mean, either the 
models are totally reliant on deep cognitive problem-solving behavior, to the point that every cognitive-cycle 
is being represented, or the models are at a level where the cognitive ability of the individual agent is not 
represented at all. 

The question in representing work practice is, what level of cognitive behavior representation is important. It 
seems that the low-level problem-solving behavior of Soar and ACT-R are not necessary relevant in 
showing the relationship between people's activities in a work process. On the other hand, it seems 
important to represent each agent in the process, and the agent's knowledge of when and how to perform 
tasks. 

Geography 

There is a range in the representation of geography in the models and tools described. The range is from no 
representation (in Sparks and Soar) to a simple abstraction (in Phoenix). None of the tools and/or models 
have a very detailed explicit representation of locations and spaces. The only system that has a separate 
geography model (i.e. the map-layer) is the Phoenix system (see chapter 2.3.2.2). In the other models 
and/or tools in which an agent's location is somehow represented, it is done through an indirect 
representation of the agent knowing about location. However, there is no explicit objective representation of 
location and space. 

People's environment impacts their work. In modeling work practice, it is important that we have an explicit 
representation of the location of people and their artifacts. In ACT-R there is an explicit representation of the 
outside world, but this representation is domain specific and is not a part of the ACT-R modeling language. 
If we want a language for work practice modeling we need to have, at minimum, the capability of 
representing the outside world inside the model. 

I end with a comparison between the tools and models in the four research fields. Table 2-5 lists the domain 
dependency, technology, environment, communication-, problem-solving and group interaction model for 
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each human behavior tool and model described. One last interesting observation is that in workflow and 
cognitive modeling research there is a tendency to develop generic modeling tools, while the DAI and COT 
research fields have a tendency to use the tools from the other two fields for developing their models. In 
doing so, the tools are being applied in ways they were not specifically designed for. This leads to 
interesting extensions and changes. What this shows is the benefit of a multi-disciplinary approach to 
science, as well as some of its shortcomings by the mere fact that we can never include or re-use all of the 
theories from other academic fields. 

Table 2-5. Human behavior model comparison 

 Domain 
Dependency 

Technology 
Used 

Environment 
Model 

Communica-
tion Model 

Problem-
Solving 
Model 

Group 
Interaction 
Model 

WFM Sparks General Monte-Carlo 

discrete event 

simulation 

None  None None Fixed (using 

spawns-tasks 

to show 

interaction 

between 

resources) 

Soar General Production 

System 

None None Soar theory of 

cognition 

None CM 

ACT-R General Production 

System 

Fixed  

(using P/M 

interfaces) 

None ACT-R theory 

of cognition 

None 

TacAir-

Soar 

Dependent Multiple Soar 

production 

systems 

Fixed 

(representa-

tion of cockpit 

model using 

ModSAF) 

Fixed agent 

content 

messages 

(through DIS 

network) 

Soar theory of 

cognition 

Fixed (agents 

interface 

though 

simulated 

cockpit in 

ModSAF) 

DAI 

Phoenix Dependent Reactive 

planning (i.e. 

lazy skeletal 

planning) 

Cellular 

automaton 

representation 

layer with low-

level reactive 

behavior to 

environment 

Fixed 

hierarchical 

agent content 

messages 

None No interaction 

between 

agents at the 

same level 

Plural-

Soar 

Dependent Multiple Soar 

production 

systems 

Fixed 

representation 

of the stack 

locations 

Fixed 

communica-

tions of item 

locations 

Soar theory of 

cognition, 

combined w/ 

ACTS theory 

Varied based 

on social 

knowledge 

about other 

agents 

COT 

Team-

Soar 

Totally 

dependent 
Multiple Soar 

production 

systems 

Fixed 

attributes 

representing 

radar 

information for 

aircrafts 

Fixed 

hierarchical 

agent content 

messages 

Soar theory of 

cognition, 

combined w/ 

ACTS theory 

Fixed 

attribute-level 

interaction 

with radar for 

tracking 

aircrafts 


