Self-disclosing

design tools:

A gentle introduction to end-user programming

Chris DiGiano and Mike Eisenberg

Department of Computer Science
University of Colorado at Boulder, CB 430
Boulder, CO 80309-0430
{digi,duck } @cs.colorado.edu

KEYWORDS: cnd-user programming, learning

ABSTRACT

Programmable tools for design offer users an expressive new
medium for their work. but becoming acquainted with the
tool’s language can be a daunting task. To address this
problem, wec present a framework for the design of self-
disclosing tools which provide incremental, situated language
learning opportunities for designers in the context of authen-
tic activity. By way of example, we present Chart ‘n’ Art, a
programmable application for the creation of graphs and
information displays. Chart *n’ Art employs a wide variety of
self-disclosure techniques whose purpose is to introduce users
to the system’s “domain-enriched™ dialect of Lisp.

INTRODUCTION

In the 1950°s and 60's, literary critic and educator I[.A.
Richards published a series of books called Language through
Pictures (Richards., 1973) as a teaching tool for second
language learners. Each page of Richards' book consists of a
picturc and one or morc sentences describing the scene in the
language to be learned. By following the sequence of pictures
and sentcnces from simple to more complex situations, the
rcader is supposed to acquire a basic understanding of the
language. Richards’ pedagogical approach is compelling in
that it enables learners to teach themselves a language at
their own pace simply by observing connections between
images and symbols. His work raiscs an especially inter-
esting—even urgent—question for the arca of computer
science education: Can similar approaches be found to
support the acquisition of programming languages? This
paper outlines one possible mcthod of introducing
programming concepts that not only supports sell-paced
learning as in Language through Pictures, but also situates the
learning experience in authentic activity.

What kind of activity? Our research focuses on the complex
and crecative process of design, since it is designers who can
clearly benefit from the ability to program their tools.
Programming offers designers the opportunity to transcend
the built-in functionality of their software, cmpowering them
to be more creative and expressive users. Tools that combine
a direct manipulation interface with a domain-oriented
language such as the drawing program SchemcPaint
(Eisenberg, 1995) and the multimedia authoring package

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commereial advantage, the copy-
right notice, the title of the publication and its datc appear, and notice ts
given that copyright is by permission of the ACM, Inc. To copy otherwisc,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.

DIS 95 Ann Arbor MI USA © 1995 ACM 0-89791-673-5/95/08..$3.50

189

Director! have been dubbed programmable applications. A
major challenge with programmable applications is infor-
ming designers of the utility of programming and supporting
them in their pursuit of programming expertisc. These issues
are central to the eventual acceptance and creative use of any
application-oriented language, and are in fact the key
problems for the entire ficld of end-user programming
(DiGiano and Eisenberg, 1995).

Although end-user programmable systems represent a bur-

geoning class of software?, support for those users interested
in becoming acquainted with their tool's language is limited.
Few organizations formally support the social channels by
which cxperienced users can communicate the cost and
benefits of programming to colleagues (Gantt and Nardi,
1992; Nardi and Miller, 1991). Furthermore, thc domain
specificity and granularity of many embedded languages
such as Emacs Lisp (Stallman, 1981) are inappropriatc for
beginning users (Nardi, 1993, p. 52). With the exception of
spreadshcet formulas, most end-user languages fail Nardi's
approachability test which says users should be able to

readily employ a languagc after only limited exposure.’

Printed tutorials. on-line tutoring programs,* and training
classes are some of the few support mcchanisms widely
available to users learning programmable tools. These
recsources typically have threcec major drawbacks: 1) they
require a significant time investment, 2) they expect the
learner to process a large amount of information at once, and
3) they cexpect the learner to be able map the topics covered to
his or her particular tasks. Because of the time and effort
required on the part of the user, tutorials and training

'Director and Lingo are a registered trademark of Macro-
media Corporation.

2Microsoft, for instance. has begun integrating its Visual
BASIC language into most of its personal productivity
software including Word and Excel. (Microsoft, Visual
BASIC, Word, and Excel are registered trademarks of
Microsoft Corporation.)

3As a general heuristic, Nardi suggests that *“end-user
programming systems should allow users to solve simple
problems within their domain of interest within a few hours of
use.” (italics in original) (Nardi. 1993, p. 45)

“Experimental intelligent tutoring systems such as the Lisp
Tutor (Anderson, 1985) could hardly be calied “widely
available,” but they do nonctheless suffer from some of the
same problems as traditional on-line tutorials.

classes are usually only a last resort (Gantt and Nardi, 1992;
Nardi and Miller, 1991).

Onc possible response to the deficiencies of traditional
resources for beginning end-user programmers is to cmbed
contextualized programming language learning oppor-
tunities into design tools themselves. Examples of such a
mechanism include context-sensitive on-line help such as
found in Director for its Lingo language and critiquing
systems such as the Lisp Critic (Fischer, 1987). However, both
approaches assume the user has a basic knowledge of
programming: context-sensitive help systems typically
provide information on selected keywords from thc language
(i.e. system- rather than task-indexed), and critics rcact to
programs already being constructed.

SELF-DISCLOSURE

Experience with current resources for
presenting end-user languages suggests several
desiderata for elfective support mechanisms:
namely, such mechanisms must 1) reduce both
time and effort required by the uscr, 2) facilitate
estimation of costs and benefits, 3) minimize

r

File Edit

A e M1 Sneffel

Modify Dimension View Setlings ASE Render Model

the execution of library functions. Users can also enter
coordinate parameters either by typing their values or by
using the mouse to select screen locations. What makes
AutoCAD self-disclosing is that mouse clicks on one of its
extensive toolbars causes the system to disclose the equi-
valent historical command name in the Command window.

AutoCAD disclosures provide designers with a convenient
way to learn its command language. We once interviewed an
experienced architect and graphic designer who had started
using AutoCAD to calculate the perimeter and area of a floor
plan. Her initial approach involved sclecting parts of the
floor plan with the mouse, applying a menu command to find
their points of intersection, and finally using another menu
command to compute perimeter and arca from these points.
When she began with AutoCAD, she had little, if any,
programming experience and certainly no knowledge of the

Special

Yil

:Desktop Folder:Temp:autocal STl

S

prerequisite programming knowledge, and 4) Law

or O

14.2545,2.2989

situate learning in authentic use. In this paper
we describe an approach which—like typical
context-sensitive help—embeds short, situated
learning opportunities into the design tool; but
unlike such help systems, this approach has no
programming knowledge prerequisites. The
technique involves using what has been termed
“self-disclosure™ to gently introduce designers
to programming: that is, the programmable
tool “discloses” elements of its language to
designers as they use it. By way of example, we
present Chart 'n’ Art, a working prototype of a
programmable charting application. Chart 'n’

1 /Y\
182

Art illustrates a variety of techniques for self-

Y

=

disclosurc as a means of introducing its users to
the system’s “‘cnriched” dialect of Lisp.

Before presenting Chart ‘n’ Art itself, we first
illustrate the effective use of self-disclosure
through an anecdote of a professional designer
learning to program; we then characterize both
the type of learning that took place and the
essential system behavior which enabled that
learning. Finally, by way of introducing Chart
'n' Art, we present guidelines for tuning self-
disclosure to best fit the nceds of designers learning
programming for the first time.

LEARNING AN END-USER LANGUAGE:

A CASE STUDY

An example of a self-disclosing programmable tool is the
computer aided design system, AutoCAD,’ shown in Figure
1, which has evolved over the years from a simple command
line-based DOS program to a mouse-driven multiplatform
behemoth. Although users can now interact with the
interface by points and clicks alone, the system still makes its
command line available in a text-only “Command™ window
for backwards compatibility, the entering of exact values, and

5AutoCAD s trademark of Autodesk

Corporaticn.

a rcgistered

_RBECTANG w [di]

Command: _rectang
First corner:
Other corner:

Command: |

190

Figure 1. AutoCAD’s self-disclosing interface. Drawing a rectangle
with the mouse reveals the command _rectangle in the bottom
Command window.

system’s command language. Still, as she started using the
tool’s mousc to click on her drawing and pull down menu
commands she noticed a pattern: each mouse action was
followed by text appearing in a window beneath her drawing.
She soon realized these were commands she could use to
automate her task. It was not long before she learned from
AutoCAD’s printed manuals how to compose the textual
commands into an executable file. Designer had become
programmer.

CHARACTERISTICS OF SELF-DISCLOSING SYSTEMS
Psychologists and linguists might describe the kind of
learning which took place in the AutoCAD anecdote as
learning by observation or incidental learning. The basic theory
of learning by observation is that people notice patterns in
the world from which they can incrementally make useful
generalizations (DeJong, 1983; Gleitman, 1994). In the

AutoCAD anecdote the designer observed that direct
manipulation actions caused their equivalent linguistic
forms to appear in the Command window and from this
began acquiring knowledge about the semantics of specific
AutoCAD commands as well as the general organization of
the language. Users of many spreadsheet programs such as
Excel can learn their system’s formula languages in a similar
way. For example, selecting a column of spreadsheet cells and
clicking the mouse over a summation icon generates an
expression such as =sum(A1:A10) in the last cell of the
column, thus revealing part of the formula language to the
user.

The following three properties characterize self-disclosing
programmable applications which enable language learning
by observation:

1. For every elementary mouse action which has a command
language analog, the system will disclose that expression
to the user.

2 The system will indicate groups of disclosed expressions
connected with a single operation.

3. Had the user entered the most recently disclosed group of
expressions instead of specifying the operation through
direct manipulation, the results would have been
identical.

Consider how AutoCAD fits each property. 1) Mouse actions
for selecting tools, drawing figures, indicating locations, etc.
are translated by AutoCAD into the corresponding
command language expressions which appear in the system’s
Command window. 2) Initiating an operation causes a
command name to appear after the * Command:” prompt.
Subsequent mouse actions then specify the parameters
named in the Command window. Completion of the
operation is indicated by a new Command: prompt. 3) If
users undo their last mouse operation and type the disclosed
expressions which were generated in the Command window,
the effect is a redo.

TUNING SELF-DISCLOSURE FOR LEARNING

Simply by ensuring that a system exhibits the three self-
disclosure properties above, developers can make important
progress towards addressing the issues involved in
introducing an cnd-user language. For example, self-
disclosing systems of this nature provide a partial solution to
the “production paradox” (Carroll and Rosson, 1987), since
learning from disclosures can take place after every mouse
action while the designer is designing. Such self-disclosing
systems also expose designers to some of the possible uses of
programming: at the very minimum, programming expres-
sions used lo imitate direct manipulation actions. Finally,
the use of self-disclosure, as specified by the above properties.
naturally situates learning opportunitics in the context of
authentic design activity. That is, the designer can learn
about programming expressions directly related to the
operations they are currently invoking with the mouse.

Although the thrce-step recipe for sclf-disclosure has
inherent pedagogical strengths, systems that employ
disclosure in this simple way can offer only limited learning

Baily forecast: DRAWING

7, i
S % @ Boulder .
AL ©

Untitied Drawing

b. []

Figure 2. Non-standard diagrams produced by CNA.

opportunities.® For example, although AutoCAD fits each
self-disclosure property, in order to learn about more
complex programming concepts such as expression nesting,
iteration, conditionals, or composition designers must
interrupt their tasks to read the command language
manuals. We belicve the technique can be refined to better
address the needs of designers learning their tool's
application-oriented language. The goal of our research is to
provide guidelines for programmable application developers
which suggest how to tune sclf-disclosure so as to offer a
gentle, but thorough introduction to the fundamentals of
end-user programming.

CHART ‘N’ ART: A SELF-DISCLOSING DESIGN TOOL

Chart 'n’ Art (CNA) is a programmable information
graphics tool we have begun developing in order to test and
refine guidelines for the use of self-disclosure. CNA supports
designers in creating non-standard diagrams such as those
depicted in Figure 2 which could not easily be made with

commercial packages such as DeltaGraph Pro.” Figure 2a is a
weather map which was generated directly from forecast
data. A short function was written so that a new forecast
could be translated to an updated map at the touch of key.
Figure 2b is a reconstruction of a unique time line featured in

61t is doubtful that developers of most cxisting self-disclosing
tools such as AutoCAD and Excel specifically provide
disclosures to help uscrs learn to program them. More likely.
self-disclosurc is employed to inform users of direct
manipulation shortcuts to already known language
constructs (e.g. the summation icon as a short cut for the
sum expression), or, in the case of AutoCAD, to help wean
traditional users off a command line interface.

TDeltaGraph is a registered trademark of DcltaPoint
Corporation.

Diagram Graphics (Nishioka, 1992) depicting the acceleration graphical objects into a drawing, or adjust the attributes of

of information technology. Each figurc represent a human existing graphical clements. Each of the direct manipulation
generation, its color the level of information technology tools mentioned above has a corresponding gobject-maker
available for that generation. Again, a short function was function such as make-rectangle or make-oval.
written, this time to translate essentially a diagram “key” Furthermore, CNA programming expressions can be used as
into a time linc. a computational “adhesive” that connects the (typically

disjoint) worlds of spreadsheet and drawing program by
Like many charting programs such as DeltaGraph, CNA mapping spreadsheet data into graphical clements and vice
combines the functionality of a spreadshect and drawing versa. An example of such a language construct is copy-
package. The spreadsheet is used to maintain a “kit” of data, gobject which designers can use to duplicate a kit element
graphical objects (“gobjects’™), and functions related to some and introduce it into a drawing. Since many CNA expressions
particular diagram or diagram type. The drawing package is affect selected gobjects in a window, there is considcrable
used to construct the actual information displays for the language support for manipulating selections such as
data in the kits. Designers can employ direct manipulation to select-up, select-down, and select-at.

perform standard drawing and spreadsheet operations. As

g

w Ffile Edit Gobject Group Texut LUiew Macro

Bus Schedule: DRAWING- 91

T A

. Traasoript

8AM 9 10 n 12 1PM (moke-line :point—1 '(166 243) :point=2 ‘€197 1563)

{set-color *Light-Blue-Color¥)

Lyons

(moke-line :point-1 '¢198 1562 :point-2 ‘(206 156>)

(set-color *Red-Color*)

(moke-line :point-1 (20?7 155> :point-2 '(228 93)1

(set-color *Light-Blue-Color*)

Boulder

(make=line :point-1 "(229 91) :point-2 "(232 90>

Front Range

(set-color *Red-Color*>

(moke-1ine ‘€245 6?2

Westminster

Deriver \ Language

? (make—line :point-1 (233 89) :

BUS-SCHEBULE

useful
elements

Westminster Denver

Boulder

arrive arrive arrive

depart

({make-line :point-1 ‘(233 89) :point-2 '(245 673>

840 920 931 959

815 1010

(Easier | (Harder]

Figure 3. Chart ‘n’ Art main windows and palettes. The Bus-Schedule window is an instance of a kit which can hold
data, pictures, and procedures for creating the diagrams in a drawing window (top left). The Language window
displays the most recent disclosure and allows users to edit and evaluate expression. The Transcript window
maintains a history of disclosures.

shown in Figure 3. designers can use a tool palette and color Chart 'n’ Art employs self-disclosure to introduce users to
palette to create colored rectangles, ovals, lines, and text the system’s language for producing diagrams. As designers
which are movable and resizable with the mouse. Users can use the direct manipulation tools in CNA, thc system
also employ the mouse to select sprcadsheet cells. Menu discloses related concepts in its language by displaying short
commands arc also considered part of the direct mani- Lisp cxpressions in the bottom pane of Language window.
pulation interface. CNA menus currently offers functions for The upper pane of the Language window is where new
pasting color pictures into drawings or kits and for aligning linguistic commands can be entered into the interpreter. The
graphical objec:s. button labeled with an up-arrow copies disclosures into the

interpreter pane so that the revealed cxpressions can be
The CNA application-oriented language is an extcension of cdited and reinterpreted. Chart ‘n’ Art also maintains a
Lisp designed to support the kind of sophisticated data-to- record of all disclosures in the Transcript window.

picture translations shown in Figure 2. The language can be

In Fi 3 CNA has just discl -1i
usced to create or modify spreadsheet cells, introduce new notigure as just disclosed the =make-line

function in response to the use of the mousec-driven line tool.

192

In CNA nearly every release of the mouse button causes a
Lisp expression to appear in the Language window: changing
colors, creating, moving, resizing gobjects, etc. Chart ‘n’ Art
prints an extra line break in the Transcript window to
visually group disclosed expressions connected with a single
operation. If users undo their last direct manipulation
action, then press the up-arrow button in the Language
window, and then press the return key, the effect is a redo.
Designers can then inspect alternate disclosures using the
Easier and Harder buttons.

LEARNING FROM CHART ‘N’ ART DISCLOSURES

To illustrate learning from CNA disclosures, suppose a
designer wants to create an inverted column chart where
each column grows downward from some fixed height. Such a
graph might be appropriate for plotting icicle growth over
time or the path of a bungee jumper after leaping from a
bridge. How might that designer learn to write a short
program in CNA to create this non-standard graph? Perhaps
she begins her design task by sketching some exemplars in a
drawing window as illustrated in Figure 4. After drawing
cach rectangle using the mouse, CNA discloses the
corresponding make-rectangle command. Multiple

@ File Edit Gobject Group Teut Diew Macro

it

:

i

Language

F Kit-3: DRAWING-134 £
k ?

> /10]

(moke-~rectangle :position ‘(70 239) :size '(12 101))

Figure 4. Learning about make-rectangle after sketching the initial design for an inverted column chart.

% File Edit Gobject Group Teut Uiew Macra

KIT-3

Bungee &

Bungee B 1

= Language

B Bungee C 1

HslH
Kit-3: UORRWING-134
\]
O
O {dolist (gobject (rest (selected-gobjectsi))
~ (filtl-cell
(gobject-value (first (selected-gobjects)))
A I location (gobject-cell-iocation gobjectl))
Easier Harder k
CNAl Idle [&]

.

Figure 5. Learning about dolist from the Fill Down menu command.

193

¢

File Edit Gobject Group Text Uiew Macro

KIT-3

Bungee A

P z oo e 4 g oo lgo
———— | __H}
1 10 20 60 40

Bungee B 1

Bungee C 1

Kit-3: DRAUIING-134

Language ==

? (dolist (gobject (selected-gobjects)>
(make-rectangle
:position (list (* 13 (l-point-x

:size (list 10 (gobject-value gobject)>>

:frame "draeing-134>>| T

(gobject—cell-location
gobject)))
250>

P~

T)

(make-rectangle :size '(10 30> :position ‘(135 2503>

N
e

CNA|

l_

Figure 6. The designer tests her inverted column chart program in the interpreter pane.

make-rectangle disclosures allow her to infer the coordinate
space of the drawing window. Pressing the Harder button
reveals the optional parameters to the make-rectangle
function for indicating such properties as frame (the
gobject’s container) and pen-color.

While expioring CNA's spreadsheet functionality the
designer might encounter further clues into her
programming task. Suppose, for example. she enters some
comparative bungee jumping data into a kit and uses the Fill
Down menu command to replicate the initial value down a
column. Selecting Fill Down {rom the menu causes CNA to
disclose the fill-down command in the Lanpguage
window. As shown in Figure 5, pressing thc Harder button
cventually uncovers the utilitarian dolist form
underlying the filling operation. This disclosure also suggests
how to extract values and coordinates from selected cells
using the gobject-value and gobject-cell-
location functions respectively.

The make-rectangle and dolist disclosurcs allow
the designer to infer the cssential building blocks for a short
program which generates an inverted column chart from
data selected in a sprcadsheet. Figure 6 shows just such a
program as the designer might enter it in the interpreter
panc of the Language window. After selecting the data for
Bungee A and then pressing the return key in the Language
window, CNA rapidly generates an accurate chart.

SELF-DISCLOSURE GUIDELINES
In developing CNA we have identified six guidelines for the
pedagogical use of self-disclosure:

194

Disclosures should be maximally generalizable
Research on learning from examples suggests users can
extrapolate surprisingly detailed and accurate information
about a command language from just a few well-constructed
exemplars (Anderson. 1987; Lewis, 1988; Lcwis, Hair, and
Schoenberg, 1989). To maximize the knowledge which can be
induced from disclosures, programmable applications should
honor certain common user assumptions about the consis-
tency and simplicity of the language interface. Such tools
should, for instance, ensure that every component of the
disclosed expressions has some obvious connection to
components of the action.

As illustrated by the make-rectangle disclosure in the
Language window in Figurec 4, CNA attempts to aid
generalizability by using Lisp keyword parameters such as
:size. The hope is that designers begin to notice that these
keywords are descriptors for parameters which invariably
follow the keywords. Designers can then better predict the
role of cach parameter to a function and make general-
izations about how it could be used.

The system should facilitate experimentation with
disclosures

By allowing designers to easily experiment with disclosures, a
programmable application can reduce the effort required to
use its language and make it more approachable. Systems
can facilitate experimentation by 1) supporting undo in both
the direct manipulation and linguistic modes of interaction,
2) enabling disclosed cxpressions to be easily ecdited and
reinterpreted, so that designers can play with parameter
values, and by 3) allowing disclosed expressions to be easily
composed into new functions.

Currently, CNA users can experiment with disclosures by
sclecting lines in the Language window and pressing the up-
arrow button. This causes the disclosed text to appear in the
interpreter pane at the top of the Language window. In this
pane, designers can optionally change parameters and then
press the return key to exccute the Lisp expression. Users will
also soon bc able to cxperiment with functions composed of
previously disclosed expressions. The Define Function button
in the Transcript window will cause CNA to prompt the user
for a name, then generate a function with that name consis-
ting of the currently selected lines in the Transcript.

Self-disclosure should be scaffolded

The language embedded in a programmable application may
support programming at more than one level; thus,
operations invoked using the mouse might have a number of
corresponding linguistic expressions as shown in Figure 7. In
this casc disclosures should be adapted to the designer's
current programming knowledge in order to avoid presen-
ting material that he or she already knows or that is far
beyond the designer's present competence. This idea of
providing incremental learning support is often called
“scaffolding.” (Bruner, 1975)

Scaffolding in CNA will be accomplished through a simple
mechanism in which the system discloses successively more
complex expressions relating to the same direct manipu-
lation command. Initially, disclosures will be presented in
their “easiest” form, but CNA will monitor requests by the
user for alternate disclosures and adjust the default
presentation accordingly. After a designer has been exposed
to a particular disclosure numecrous times, CNA will attempt
to gradually phase in the presentation of a more complex
onc. Obviously, such a technique oversimplifies the domain
of end-user programming knowledge by measuring complex-
ity along a single dimension. Nonetheless, we belicve our
approach is a practical one and in keeping with the spirit of
self-directed learning since the system will simply suggest
appropriate disclosures, leaving ultimate control to the
designer who can select from alternate representations.

Disclosures should provide coverage of essential
programming concepts

A programmable tool can increase designers’ awareness of
the possible uses for programming by seeding disclosures in
such a way that typical sessions with the system will generate
information covering fundamental language concepts. For
example, if developers know that an average session with
their system involves the use of certain menu commands and
direct manipulation tools, they should attempt to devise
disclosures for each of these mouse actions which cover major
language concepts. Following this guideline rcquires that
developers conduct user studies or walkthroughs (Polson, el
al., 1992) of their system in order to predict the typcs of direct
manipulations users will employ. Similar studies may also be

(choose-color *Purple~Color*)

(choose-color (make-color (color-red 4587685)
(color-green 4587685)
{(color-blue 4587685)))

(choose-color (make-color 17990 0 42405))
{choose~-color 4587685)

Figure 7. Possible feedback for selecting
purple from the color palette.

195

necessary to determine essential programming expressions in
the system’s application-oriented language.

Chart 'n" Art disclosures currently reveal the gobject maker,
mover, and resizer functions, as well as opcrations for
manipulating groups of gobjects and for iterating over kit
cells. We plan to use sclf-disclosure to introduce program-
ming expressions for adjusting thc selection and composing
functions. Studies are planned to detecrmine the most
important programming concepts and to detcrminc patterns
of direct manipulation use in CNA,

Designers should be able to specify operations
through a combination of direct manipulation and
textual commands

A programmablc application should allow designers to use its
application’s language experimentally, without committing
to the exclusive usc of the linguistic mode of interaction. For
example, designers should be able to select a drawing object
with the mouse and then type a command to change the
attributes of that object; thus users can play with the
language without knowing the programming structures for
specifying objccts. The ability to interweave interaction
modes increases the approachability of the language by
allowing users to start empleying it with only limited
programming knowledge. Interweaving also enables
designers to better estimate the effort required for a task
involving some programming, since they are likely to already
have good estimates for the portions of the task involving
direcct manipulation.

Chart 'n’ Art users can combine direct manipulation with
linguistic operations in different ways. For instance, Chart
‘n’ Art supports the ability to select objects with the mouse
and specify the operation on those objects by typing in the
upper pane of the Language window. As shown in Figure 8,
users can also combine interaction modes when making
gobjects. Future versions of the system will allow users to
specify coordinatc parameters to typed expressions by
selecting the screen location with the mouse, as is possible.
with AutoCAD.

Disclosures should be unobtrusive and browsable
Designers do not always have the time to interrupt their
current activity to rcflect on disclosures. Even if they do have
time to attend to disclosures, designers undoubtedly do not
want to have to mcmorize expressions which might seem
useful in the futurec. In combination, these two factors
suggest that disclosures should be both unobtrusive and
browsable: unobtrusive, so that designers are not forced to
pay attention to the linguistic feedback being generated by
the systcm—a common concern with critiquing systems
(Fischer, et al.. 1993)—and browsable, so that designers can
review previously disclosed expressions and learn at their
own pace.

Disclosures in CNA are usually short Lisp expressions
displayed in a small font in the Language window and also in
the scrollablc and resizable Transcript window. If the
designer has a large monitor she can casily move this window
away from the arca of design activity. To facilitate browsing,
we are considering making thumbnail-sized before-and-after
snapshots which appear in the Transcript window beside cach
group of disclosures.

Language

? (choose-color *Green—Color*®)

2 Kit-1:DRAWING-3 =

,.
I
0

or

: Language E=

? (make-oval :size "<(?? 52) :position °*(65 266)1

Kit-1: DRAWING-3 ==

&

Figure 8. Combinations of direct manipulation and linguistic operations which produce a green oval.

CONCLUSIONS

Developers are beginning to realize that by providing a built-
in end-user language they can offer highly functional and
flexible tools without having to anticipate the needs of every
designer. But programming is no panacca for designers; the
reality is that learning an end-user language can be a
daunting task. However, the universal human experience of
learning to speak suggests that—given the right environ-
ment and motivation—humans can master highly complex
linguistic operations; and while there are obvious and
profound differences between natural and formal language
learning, the analogy may nonetheless prove a fruitful one
for introducing designers to programming.

The use of self-disclosure, as specified by our guidelines and
as instantiated in the language learning opportunities in the
CNA prototype system, represent the first step towards a
technical and thcoretical framework for helping designers
become programmers. Preliminary tests with CNA involving
two subjects performing a simple drawing task indicate that
non-Lisp programmers can infer from disclosurcs a subset of
the vocabulary of CNA’s domain-enriched language as well
the basic open-parenthesis-operator-operand-closc-paren-
thesis syntax. Clearly, more thorough assessment and
refinement of self-disclosure mechanisms will be necessary to
validate our approach.

In this context, it is worth addressing the “language
question”—i.e., our potentially controversial choice of Lisp as
the end-user programming language for CNA. There arc
several points to make here. First, we wish to stress that CNA
is designed to support programming “in the small”—a style
of programming in which short, “domain-enriched” expres-
sions accomplish powerful ends within an application. The
same sort of philosophy might arguably be attributed to

languages such as Mathematica8 (in which short procedure
calls accomplish sophisticated mathematical or graphical
tasks).

Viewing end-user programming in this light, there need not
be a sharp division between *‘professional” languages and
“end-user” languages: in many cases, the former may be
tailored for use in a particular application or domain (as
suggested by examples such as Visual BASIC and
AutoCAD's dialect of Lisp). This is not to say that questions
of language learnability should be ignored—but our belief is
that the notion of self-disclosure can lead language designers
to reexamine these questions, focusing on those language
features that lend themselves best to incidental learning.
Finally, the techniques of self-disclosure described in this
paper, while illustrated by a particular Lisp-based system, are
also intended for broad applicability: such tenets as
unobtrusiveness, browsability, coverage, and so forth are
likely to prove useful in applications based on a wide variety
of cnd-user programming languages.

Our belief is that a tool such as CNA offers the potential for
supporting the type of professional education that Schén
(Schon, 1983) writes about—an education of “reflection-in-
action,” of interweaving well-practiced (or near-automatic)
activity with pauses for conscious reflection upon one’s work.
This is a consequence of the tool’s situated presentation of
language concepts: the designer does not have to structure
her activity into artificially distinct periods of language-
learning followed by (almost necessarily impoverished)
language use. Rather, the designer deveclops expertise in the
context of meaningful projects. Moreover, CNA aims for a
more ambitious type of learning than that generally

8Mathematica is a registered trademark of Wolfram
Research, Inc.

associated with context-sensitive help systems: the system is
not limited to informing the user of an important vocabulary
item or alerting her to an immediate syntactic problem.
Instead, the type of learning supported by CNA is a larger-
scale (and longer-term) learning of a new medium. The
distinction that we are after herc is suggested by Norman’s
(Norman, 1993, p. 28) taxonomy of learning, in which
restructuring is distinguished from accretion: whereas the
latter involves learning new particular facts or vocabulary
items within some well-understood general framework (the
type of learning associated with context-scnsitive help), the
former involves the development of that general framework
itself. In the case of CNA, our intent is to provide designers
who have never programmed with a setting in which to adapt
to an entirely new (and, as noted, often intimidating)
medium.

Finally-——stepping back from the particular system discussed
here—self-disclosure may have applications for users other
than designers, to systems other than programmable
applications, and to domains other than programming
language learning. It is possible, for example, that computer
science students could benefit from the use of self-disclosure
when learning new programming languages, perhaps
embedded in interpreters for languages they already know.
Another possibility is that beginning designers could lcarn
design hcuristics from a self-disclosing information graphics
program that revealed presentation techniques while they
chose from high-level charting operations. Self-disclosure
may prove to be a powerful and general strategy for
presenting new knowledge to users performing any number
of computer-based tasks.

ACKNOWLEDGMENTS

We would like to thank Tom Landauer, Clayton Lewis, Jim
Martin, and Nancy Songer for their comments on a draft of
this paper. This rescarch was supported by the National
Science Foundation under grant number RED-9253425.

REFERENCES
Anderson, J.R., and B.J. Reiser (1985). The LISP Tutor. BYTE
10 159-175.

Anderson, J.R. (1987). Causal analysis and inductive
learning. Proceedings of the Fourth International Machine
Learning Conference, 288-299.

Bruner, J. S. (1975). The ontogenesis of language. Journal of
Child Language 2 1-19.

Carroll, J.M., and M.B. Rosson (1987). Paradox of the Active
User. In Interfacing Thought: Cognitive Aspects of Human-
Computer Interaction. Edited by J. M. Carroll. 80-111.
Cambridge, MA: The MIT Press.

Delong. G. (1983). An approach to learning from
obscrvation. Proceedings of the International Machine Learning
Workshop.

DiGiano, Chris, and Mike Eisenberg (1995). Supporting the
end-user programmer as a lifelong learner. Department of
Computer Science, University of Colorado at Boulder.
Report #CU-CS-761-95.

197

Eisenberg, Mike (1995). Programmable Applications:
Interpreter Meets Interface. SIGCHI Bulletin 27 (2): 68-93.

Fischer, G. (1987). A Critic for LISP. In Proceedings of the
10th International Joint Conference on Artificial Intelligence
(Milan, Italy). Edited by J. McDermott. 177-184, Los Altos,

CA: Morgan Kaufmann Publishers.

Fischer, Gerhard, Kumiyo Nakakoji, Jjonathan Ostwald,
Gerry Stahl, and Tamara Sumner (1993). Embedding
Computer-Based Critics in the Contexts of Design. In
Proceedings of ACM INTERCHI'93 Conference on Human
Factors in Computing Systems. 157-164.

Gantt, Michelle, and Bonnie A. Nardi (1992). Gardeners and
Gurus: Patterns of Cooperation among CAD Users. In
Proceedings of ACM CHI'92 Conference on Human Factors in
Computing Systems. 107-117.

Gleitman, Lila R. (1994). The structural sources of verb
meanings. In Language Acquisition: Core Readings. Edited by
P. Bloom. 174-221. Cambridge, MA: The MIT Press.

Lewis, C. (1988). Why and How to Learn Why: Analysis-
Based Generalization of Procedures. Cognitive Science 12 211-
256.

Lewis, Clayton, D. Charles Hair, and Victor Schoenberg
(1989). Generalization, Consistency, and Control. In
Proceedings of ACM CHI'89 Conference on Human Factors in
Computing Systems. 1-5.

Nardi, B.A. (1993). A Small Matter of Programming.
Cambridge. MA: The MIT Press.

Nardi, Bonnie A., and James R. Miller (1991). Twinkling
Lights and Nested Loops: Distributed Problem Solving and
Spreadsheet Dcvelopment. International Journal of Man-
Machine Studies 34 (2): 161-184,

Nishioka, Fumihiko (1992). Diagram Graphics. Tokyo: P*I*E
Books.

Norman, Donald A. (1993). Things that make us smart.
Reading, MA: Addison-Wesley Publishing Company, Inc.

Polson, Peter G., Clayton Lewis, John Riecman, and Cathleen
Wharton (1992). Cognitive Walkthroughs: A Method for
Theory-Based Evaluation of User Interfaces. International
Journal of Man-Machine Studies 36 (5): 741-773.

Richards, 1. A. (1973). English through pictures. New York:
Pocket Books.

Schon, D.A. (1983). The Reflective Practitioner: How
Professionals Think in Action. New York: Basic Books.

Stallman, R.M. (1981). EMACS, the Extensible,
Customizable, Self-Documenting Display Editor. ACM
SIGOA Newsletter 2 (1): 147-156.

