
A
Self-disclosing design tools:

gentle introduction to end-user programming
Chris DiGiano and Mike Eisenberg

Department of Computer Science
University of Colorado at Boulder, CB 430

Boulder, CO 80309-0430
(digi,duck} @cs.colorado.edu

KEYWORDS: end-user programming. learning

ABSTRACT
Programmable tools for design offer users an expressive new
medium for their work, but becoming acquainted with the
tool’s language can be a daunting task. To address this
problem. WC present a framework for the design of self-
disclosing tools which provide incremental. situated language
learning opportunities for designers in the context of authen-
tic activity. By way of example, we present Chat-f ‘II’ At-f, ;1
programmable application for the creation of graphs and
information displays. Chart ‘n’ Art employs a wide variety of
self-disclosure techniques whose purpose is to introduce users
to the system’s “domain-enrich&” dialect of Lisp.

INTRODUCTION
In the 1950’s and 60’s, literary critic and educator I.A.
Richards published a series of books called Latzgmrge fhrough
Pictures (Richards, 1973) as a teaching tool for second
language learners. Each page of Richards’ book consists of a
picture and one or more sentences describing the scene in the
language to be learned. By following the sequence of pictures
and sentences from simple to more complex situations, the
reader is supposed to acquire a basic understanding of the
language. Richards’ pedagogical approach is compelling in
that it enables learners to teach themselves a language at
their own pace simply by observing connections between
images and symbols. His work raises an especially inter-
esting-even urgent-question for the arca of computer
science education: Can similar approaches bc found to
support the acquisition of programming languages? This
paper outlines one possible method of introducing
programming concepts that not only supports self-paced
learning as in Language flrrough Pictures, but also situates the
Icarning expcricnce in authentic activity.

What kind of activity? Our research focuses on the complex
and creative process of design. since it is designers who can
clearly benefit from the ability to program their tools.
Programming offers designers the opportunity to transcend
the built-in functionality of their software, empowering them
to be more crcativc and expressive users. Tools that combine
a direct manipulation interface with a domain-oriented
language such as the drawing program SchemcPaint
(Eisenberg, 1995) and the multimedia authoring package

Permission to make digital/hard copies of all or part of this material fat
pcrsonnl or classroom use is grant& without fee pnlvidcd thal the copies
arc not mndc or distributed for prolit or commercial advantage, the copy-
ri$it notice, the title of the publication and its J:ilc iippcar, and uoLi<c is
glvcn that copyright is by permission of the ACM, Inc. To copy otherwise,
to rcpuhlish. to post on scrvcrs or to redistribute to lists. rcqiiircs spccitic
permission and/or fee.
DIS 95 Ann Arbor MI USA ‘ri 1995 ACM 0-89791-673-5/95/08..$3.50

Director’ have been dubbed programmable applications. A
major challenge with programmable applications is infor-
ming designers of the utility of programming and supporting
them in their pursuit of programming expertise. These issues
are central to the eventual acceptance and creative use of any
application-oriented language, and are in fact the key
problems for the entire field of end-user programming
(DiGiano and Eisenberg. 1995).

Although end-user programmable systems represent a bur-

gconing class of software*. support for those users interested
in becoming acquainted with their tool’s language is limited.
Few organizations formally support the social channels by
which experienced users can communicate the cost and
benefits of programming to colleagues (Gantt and Nardi,
1992; Nardi and Miller, 1991). Furthermore, the domain
specificity and granularity of many embedded languages
such as Emacs Lisp (Stallman. 1981) are inappropriate for
beginning users (Nardi, 1993, p. 52). With the exception of
spreadsheet formulas, most end-user languages fail Nardi’s
approachability test which says users should be able to

readily employ a language after only limited exposure.3

Printed tutorials, on-line tutoring programs,” and training
classes are some of the few support mechanisms widely
available to users learning programmable tools. These
resources typically have three major drawbacks: I) they
require a significant time investment. 2) they expect the
learner to process a large amount of information at once, and
3) they expect the learner to be able map the topics covered to
his or her particular tasks. Because of the time and effort
required on the part of the user, tutorials and training

‘Director and Lingo are a registered trademark of Macro-
media Corporation.

*Microsoft, for instance, has begun integrating its Visual
BASIC language into most of its personal productivity
software including Word and Excel. (Microsoft, Visual
BASIC. Word, and Excel are registered trademarks of
Microsoft Corporation.)

“As a general heuristic, Nardi suggests that “end-user
programming systems should allow users to solve simple
problems within their domain of interest u~iflritz a few hours of
use.” (italics in original) (Nardi. 1993. p. 45)

4Experimental intelligent tutoring systems such as the Lisp
Tutor (Anderson. 1985) could hardly be called “widely
available,” but they do noncthcless suffer from some of the
same problems as traditional on-line tutorials.

189

classes are usually only a last resort (Gantt and Nardi, 1992;
Nardi and Miller. 1991).

One possible response to the deficiencies of traditional
resources for beginning end-user programmers is lo embed
contextualized programming language learning oppor-
tunities into design tools themselves. Examples of such a
mechanism include context-sensitive on-line help such as
found in Director for its Lingo language and critiquing
systems such as the Lisp Critic (Fischer, 1987). However. both
approache,; assume the user has a basic knowledge of
programming: context-sensitive help systems typically
provide information on selected keywords from the language
(i.e. system- rather than task-indexed), and critics react to
programs already being constructed.

SELF-DISCLOSURE
Experience with current resources for
prcscnting end-user languages suggests several
dcsidcrata for effective support mechanisms:
namely. scch mechanisms must I) reduce both
time and effort required by the user, 2) facilitate
estimation of costs and benefits, 3) minimize
prcrequisitc programming knowledge, and 4)
situate learning in authentic use. In this paper
we describe an approach which-like typical
context-scnsitivc help-embeds short. situated
learning opportunities into the design tool; but
unlike such help systems, this approach has no
programming knowledge prerequisites. The
technique involves using what has been termed
“self-disclosure” to gently introduce designers
to programming: that is. the programmable
tool “discloses” elements of its language to
designers as they USC it. By way of example, we
present C/w-t ‘II’ Arr, a working prototype of a
programmable charting application. Chart ‘n’
Art-illustrates a variety of techniques for self-
disclosure as :I means of introducing its users to
the system’s “cnrichcd” dialect of Lisp.

Before presenting Chart ‘n’ Art itself, we first
illustrate the effective use of self-disclosure
through an anecdote of a professional designer
learning to program; WC then charactcrizc both
the type of learning that took place and the
essential system behavior which enabled that
learning. Finally. by way of introducing Chart
‘n’ Art. we present guidelines for tuning self-

the execution of library functions. Users can also ‘enter
coordinate parameters either by typing their values nr by
using the mouse to select screen locations. What makes
AutoCAD self-disclosing is that mouse clicks on one of its
extensive toolbars causes the system to disclose the equi-
valent historical command name in the Command window.

AutoCAD disclosures provide designers with a convenient
way to learn its command language. We once interviewed an
cxpcrienced architect and graphic designer who had started
using AutoCAD to calculate the perimeter and area of a floor
plan. Her initial approach involved selecting parts of the
floor plan with the mouse. applying a menu command to find
their points of intersection, and finally using another menu
command to compute perimeter and &a from these points.
When she began with AutoCAD, she had little, if any,
programming experience and certainly no knowledge of the

command to compute perimeter and &a from these points.
When she began with AutoCAD, she had little, if any,
programming experience and certainly no knowledge of the

File Edit Modify Dimension Uiew Settings RSE Render Model Special

Figure 7. AutoCAD’s self-disclosing interface. Drawing a rectangle Figure 7. AutoCAD’s self-disclosing interface. Drawing a rectangle
with the mouse reveals the command -rectangle in the bottom with the mouse reveals the command -rectangle in the bottom
Command window. Command window.

disclosure to best fit the needs of designers learning
programming for the first time.

LEARNING A.N END-USER LANGUAGE:
A CASE STUDY
An example of a self-disclosing programmable tool is the

computer aided design system, AutoCAD,’ shown in Figure
I, which has evolved over the years from a simple command
line-based DOS program to a mouse-driven multiplatform
behemoth. Although users can now interact with the
interface by points and clicks alone, the system still makes its
command line available in a text-only “Command” window
for backwards compatibility, the entering of exact values, and

5AutoCAD is a registered trademark of Autodesk
Corporation.

system’s command language. Still, as she started using the
tool’s mouse to click on her drawing and pull down menu
commands she noticed a pattern: each mouse action was
followed by text appearing in a window beneath her drawing.
She soon realized these were commands she could use to
automate her task. It was not long before she learned from
AutoCAD’s printed manuals how to compose the textual
commands into an executable file. Designer had become
programmer.

CHARACTERISTICS OF SELF-DISCLOSING SYSTEMS
Psychologists and linguists might describe the kind of
learning which took place in the AutoCAD anecdote as
learning by observation or incidenral learning. The basic theory
of teaming by observation is that people notice patterns in
the world from which they can incrementally make useful
generalizations (DeJong. 1983; Gleitman, 1994). In the

190

AutoCAD anecdote the designer observed that direct
manipulation actions caused their equivalent linguistic
forms to appear in the Command window and from this
began acquiring knowledge about the semantics of specific
AutoCAD commands as well as the general organization of
the language. Users of many spreadsheet programs such as
Excel can learn their system’s formula languages in a similar
way. For example. selecting a column of spreadsheet cells and
clicking the mouse over a summation icon generates an
expression such as =sum(Al:AlO) in the last cell of the
column, thus revealing part of the formula language to the
user.

The following three properties characterize self-disclosing
programmable applications which enable language learning
by observation:

I. For every elementary mouse action which has a command
language analog, the system will disclose that expression
to the user.

2 The system will indicate groups of disclosed expressions
connected with a single operation.

3. Had the user entered the most recently disclosed group of
expressions instead of specifying the operation through
direct manipulation, the results would have been
identical.

Consider how AutoCAD fits each property. I) Mouse actions
for selecting tools. drawing figures, indicating locations, etc.
are translated by AutoCAD into the corresponding
command language expressions which appear in the system’s
Command window. 2) Initiating an operation causes a
command name to appear after the ” Command:” prompt.
Subsequent mouse actions then specify the parameters
named in the Command window. Completion of the
operation is indicated by a new Command: prompt. 3) If
users undo their last mouse operation and type the disclosed
expressions which were generated in the Command window,
the effect is a redo.

TUNING SELF-DISCLOSURE FOR LEARNING
Simply by ensuring that a system exhibits the three self-
disclosure properties above, developers can make important
progress towards addressing the issues involved in
introducing an end-user language. For example, self-
disclosing systems of this nature provide a partial solution to
the “produc[ion paradox” (Carroll and Rosson. 1987), since
learning from disclosures can take place after every mouse
action w&/r rl~e designer is designing. Such self-disclosing
systems also expose designers to some of the possible uses of
programming: at the very minimum, programming expres-
sions used to imitate direct manipulation actions. Finally.
the use of self-disclosure, as specified by the above properties.
naturally situates learning opportunities in the context of
authentic design activity. That is, the designer can learn
about programming expressions directly related to the
operations they are currently invoking with the mouse.

Although the three-step recipe for self-disclosure has
inherent pedagogical strengths. systems that employ
disclosure in this simple way can offer only limited learning

I 7

Figure 2. Non-standard diagrams produced by CNA.

opportunities6 For example, although AutoCAD fits each
self-disclosure property, in order to learn about more
complex programming concepts such as expression nesting,
iteration, conditionals, or composition designers must
interrupt their tasks to read the command language
manuals. We believe the technique can be refined to better
address the needs of designers learning their tool’s
application-oriented language. The goal of our research is to
provide guidelines for programmable application developers
which suggest how to tune self-disclosure so as to offer a
gentle, but thorough introduction to the fundamentals 01
end-user programming.

CHART ‘N’ ART: A SELF-DISCLOSING DESIGN TOOL
Chart ‘n’ Art (CNA) is a programmable information
graphics tool we have begun developing in order to test and
refine guidelines for the use of self-disclosure. CNA supports
designers in creating non-standard diagrams such as those
depicted in Figure 2 which could not easily be made w.ith

commercial packages such as DeltaGraph Pro.’ Figure 2a is a
weather map which was generated directly from forecast
data. A short function was written so that a new forecast
could be translated to an updated map at the touch of key.
Figure 2b is a reconstruction of a unique time line featured in

61t is doubtful that developers of most existing self-disclosing
tools such as AutoCAD and Excel specifically provide
disclosures to help users ,learn to program them. More likely.
self-disclosure is employed to inform users of direct
manipulation shortcuts to already known language
constructs (e.g. the summation icon as a short cut for the
sum expression), or. in the case of AutoCAD, to help wean
traditional users off a command line interface.

‘DeltaGraph is a registered trademark of DeltaPoint
Corporation.

191

Diagram Graphics (Nishiokn, 1992) depicting the acceleration
of information technology. Each figure represent a human
generation., its color the level of information technology
available for that generation. Again, a short function was
written. this time to translate essentially a diagram “key”
into a time line.

Like many charting programs such as DeltaGraph, CNA
combines the functionality of a spreadsheet and drawing
package. The spreadsheet is used to maintain a “kit” of data,
graphical objects (“gobjects”), and functions related to some
particular diagram or diagram type. The drawing package is
used to construct the actual information displays for the
data in the kits. Designers can employ direct manipulation to
perform standard drawing and spreadsheet operations. As

graphical objects into a drawing, or adjust the attributes of
existing graphical elements. Each of the direct manipulation
tools mentioned above has a corresponding gobject-maker
function such as make-rectangle or make-oval.
Furthermore, CNA programming expressions can be used as
a computational “adhesive” that connects the (typically
disjoint) worlds of spreadsheet and drawing program by
mapping spreadsheet data into graphical elements and vice
versa. An example of such a language construct is COPY -
gobject which designers can use to duplicate a kit element
and introduce it into a drawing. Since many CNA expressions
affect selected gobjects in a window, there is considerable
language support for manipulating selections such as
select-up, select-down, and select-at.

Edit Gobject Group TeHt Uiew Mt---
-

Bus Schedule: DRflWIXG-91

8Atl 9

(set-color *Light-Blue-Color*>

(make-line :point-1 ‘(198 156) :point-2 ‘(206 156))

(set-color *Red-Color*>

(make-line :point-1 ‘(207 155) :polnt-2 ‘(228 g3):1

(set-color *Light-Blue-Color*)

(make-line :point-I ‘(229 91) :point-2 ‘(232 90))

(Define functinn 1

/Westminster 1

(make-line :point-I ‘(233 89) :point-2 ‘(245 67))
-----L.-...--...--L---

‘30 931 I959

-----c- -~..&---.-.- I-__-.-i.----.---_.i----...I Ii -
(Harlierj 605 835 1836 jlOI0 I’“” 11030 (Easier]

Figure 3. Chart ‘n’ Art main windows and palettes. The Bus-Schedule window is an instance of a kit which can hold
data, pictures, and procedures for creating the diagrams in a drawing window (top left). The Language window
displays the most recent disclosure and allows users to edit and evaluate expression. The Transcript window
maintains a history of disclosures.

shown in Figure 3. designers can use a tool palette and color
palette to create colored rectangles, ovals, lines, and text
which are movable and rcsizable with the mouse. Users can
also employ the mouse to select spreadsheet cells. Menu
commands arc also considcrcd part of the direct mani-
pulation interface. CNA menus currently offers functions for
pasting color pictures into drawings or kits and for aligning
graphical objec:s.

The CNA a.pplication-oriented language is an extension of
Lisp designed to support the kind of sophisticated data-to-
picture translations shown in Figure 2. The language can be
used to create or modify spreadsheet cells. introduce new

Chart ‘n’ Art employs self-disclosure to introduce users to
the system’s language for producing diagrams. As designers
use the direct manipulation tools in CNA, the system
discloses related concepts in its language by displaying short
Lisp expressions in the bottom pane of Language window.
The upper pane of the Language window is where new
linguistic commands can be entered into the interpreter. The
button labeled with an up-arrow copies disclosures into the
interpreter pane so that the revealed expressions can be
edited and reinterpreted. Chart ‘n’ Art also maintains a
record of all disclosures in the Transcript window.
In Figure 3 CNA has just disclosed the make-li.ne
function in response to the use of the mouse-driven line tool.

192

In CNA nearly every release of the mouse button causes a
Lisp expression to appear in the Language window: changing
colors, creating, moving, resizing gobjects, etc. Chart ‘n’ Art
prints an extra line break in the Transcript window to
visually group disclosed expressions connected with a single
operation. If users undo their last direct manipulation
action, then press the up-arrow button in the Language
window. and then press the return key, the effect is a redo.
Designers can then inspect alternate disclosures using the
Easier and Harder buttons.

LEARNING FROM CHART ‘N’ ART DISCLOSURES
To illustrate learning from CNA disclosures, suppose a
designer wants to create an inverted column chart where
each column grows downward from some fixed height. Such a
graph might be appropriate for plotting icicle growth over
time or the path of a bungee jumper after leaping from a
bridge. How might that designer learn to write a short
program in CNA to create this non-standard graph? Perhaps
she begins her design task by sketching some exemplars in a
drawing window as illustrated in Figure 4. After drawing
each rectangle using the mouse, CNA discloses the
corresponding make-rectangle command. Multiple

& File Edit Gob.iect Group TeHt Uiew Macro

I

D
(make-rectangle :position '(70 259) :size '(12 101)) 4

?T &
a,

[Easier) [Harder]

r

Figure 4. Learning about make-rectangle after sketching the initial design for an inverted column chart.

6 File Edit Gobject Group Text Uiew Macro

Figure 5. Learning about dolist from the Fill Down menu command.

& File Edit Gobiect GrOUD Text Uiew Macro

Bungee A

Bungee B

Bungee C <make-rectangle
:position <list <+ 15 <I-point-x

<gobject-ccl l-location

:size Cl ist 10 <gob.ject-value gobject>>

~,~~~~-q

(make-rectangle :size ‘(lo 30) :position ‘(135 250))

I I’ CNA I

Figure 6. The designer tests her inverted column chart program in the interpreter pane.

make-rectangle disclosures allow her to infer the coordinate
space of the drawing window. Pressing the Harder button
reveals the optional parameters to the make-rectangle
function for indicating such properties as frame (the
gobject’s container) and pen-color.

While expioring CNA’s spreadsheet functionality the
designer might encounter further clues into her
programming task. Suppose. for example. she enters some
comparative bungee jumping data into a kit and uses the Fill
Down menu command to replicate the initial value down a
column. Selecting Fill Down from the menu causes CNA to
disclose the fill-down command in the Language
window. As shown in Figure 5, pressing the Harder button
eventually uncovers the utilitarian dolist form
underlying the filling operation. This disclosure also suggests
how to extract values and coordinates from selected cells
using the gobject-value and gobject-cell-
location fur.ctions respectively.

The make-rectangle and dolist disclosures allow
the designer to infer the essential building blocks for a short
program which generates an inverted column chart from
data selected in a spreadsheet. Figure 6 shows just such a
program as the designer might enter it in the interpreter
pane of the Language window. After selecting the data for
Bungee A and then pressing the return key in the Language
window, CNA rapidly generates an accurate chart.

SELF-DISCLOSURE GUIDELINES
In developing CNA we have identified six guidelines for the
pedagogical use of self-disclosure:

Disclosures should be maximally generalizable
Research on learning from examples suggests users can
extrapolate surprisingly detailed and accurate information
about a command language from just a few well-constructed
exemplars (Anderson. 1987; Lewis, 1988; Lewis, Hair, and
Schoenberg, 1989). To maximize the knowledge which can be
induced from disclosures, programmable applications should
honor certain common user assumptions about the consis-
tency and simplicity of the language interface. Such tools
should, for instance, ensure that every component of the
disclosed expressions has some obvious connection to
components of the action.

As illustrated by the make-rectangle disclosure in the
Language window in Figure 4, CNA attempts to aid
generalizability by using Lisp keyword parameters such as
: size. The hope is that designers begin to notice that these
keywords are descriptors for parameters which invariably
follow the keywords. Designers can then better predict the
role of each parameter to a function and make gene,ral-
izations about how it could be used.

The system should facilitate experimentation with
disclosures
By allowing designers to easily experiment with disclosures. a
programmable application can reduce the effort required to
use its language and make it more approachable. Systems
can facilitate experimentation by I) supporting undo in both
the direct manipulation and linguistic modes of interaction,
2) enabling disclosed expressions to be easily edited and
reinterpreted. so that designers can play with parameter
values, and by 3) allowing disclosed expressions to be easily
composed into new functions.

194

Currently. CNA users can experiment with disclosures by
sclccting lines in the Language window and pressing the up-
arrow button. This causes the disclosed text to appear in the
interpreter pane at the top of the Language window. In this
pane. designers can optionally change parameters and then
press the return key to execute the Lisp expression. Users will
also soon bc able to experiment with functions composed of
previously disclosed expressions. The Define Function button
in the Transcript window will cause CNA to prompt the user
for a name, then generate a function with that name consis-
ting of the currently selected lines in the Transcript.

Self-disclosure should be scaffolded
The language embedded in a programmable application may
support programming at more than one Icvel; thus,
operations invoked using the mouse might have a number of
corresponding linguistic expressions as shown in Figure 7. In
this cnsc disclosures should bc adapted to the designer’s
current programming knowledge in order to avoid presen-
ting material that he or she already knows or that is far
beyond the designer’s present competence. This idea of
providing incremental learning support is often called
“scaffolding.” (Bruner, 1975)

Scaffolding in CNA will be accomplished through a simple
mechanism in which the system discloses successively more
complex expressions relating to the same direct manipu-
lation command. Initially, disclosures will be presented in
their “easiest” form. but CNA will monitor requests by the
user for alternntc disclosures and adjust the default
presentation accordingly. After a designer has been exposed
to a particular disclosure numerous times. CNA will attempt
to gradually phase in the presentation of a more complex
enc. Obviously, such a technique oversimplifies the domain
of end-user programming knowledge by measuring complex-
ity along a single dimension. Nonetheless, we believe our
approach is a practical one and in keeping with the spirit of
self-directed learning since the system will simply suggest
appropriate disclosures, leaving ultimate control to the
designer who can select from alternate representations.

Disclosures should provide coverage of essential
programming concepts
A programmable tool can increase designers’ awareness of
the possible uses for programming by seeding disclosures in
such a way that typical sessions with the system will generate
information covering fundamental language concepts. For
example, if developers know that an average session with
their system involves the use of certain menu commands and
direct manipulation tools, they should attempt to devise
disclosures for each of these mouse actions which cover major
language concepts, Following this guideline requires that
developers conduct user studies or walkthroughs (Polson, et
al., 1992) of their system in order to predict the types of direct
manipulations users will employ. Similar studies may also be

(d-nose-color *Purple-Color*)

(ch.xse-color (make-color (color-red 4587685)
(color-grem 4587685)
(color-blue 4587685)))

(chose-color (make-color 17990 0 42405))

(cl-nose-color 4587685)

Figure 7. Possible feedback for selecting
purple from the color palette.

necessary to determine essential programming expressions in
the system’s application-oriented language.

Chart ‘n’ Art disclosures currently reveal the gobject maker,
mover, and rcsizer functions, as well as operations for
manipulating groups of gobjccts and for iterating over kit
cells. We plan to use self-disclosure to introduce program-
ming expressions for adjusting the selection and composing
functions. Studies are planned to determine the most
important programming concepts and to detcrminc patterns
of direct manipulation use in CNA.

Designers should be able to specify operations
through a combination of direct manipulation and
textual commands
A programmable application should allow designers to use its
application’s language experimentally, without committing
to the exclusive use of the linguistic mode of interaction. For
example, designers should be able to select a drawing object
with the mouse and then type a command to change the
attributes of that object; thus users can play with the
language without knowing the programming structures for
specifying objects. The ability to interweave interaction
modes increases the approachability of the language by
allowing users to start employing it with only limited
programming knowledge. Interweaving also enables
designers to better estimate the effort required for a task
involving some programming, since they are likely to already
have good estimates for the portions of the task involving
direct manipulation.

Chart ‘n’ Art users can combine direct manipulation with
linguistic operations in different ways. For instance. Chart
‘n’ Art supports the ability to select objects with the mouse
and specify the operation on those objects by typing in the
upper pane of the Language window. As shown in Figure 8,
users can also combine interaction modes when making
gobjects. Future versions of the system will allow users to
specify coordinate parameters to typed expressions by
selecting the screen location with the mouse, as is possible
with AutoCAD.

Disclosures should be unobtrusive and browsable
Designers do not always have the time to interrupt their
current activity to reflect on disclosures. Even if they do have
time to attend to disclosures, .designers undoubtedly do not
want to have to memorize expressions which might seem
useful in the future. In combination, these two factors
suggest that disclosures should be both unobtrusive and
browsablc: unobtrusive, so that designers are not forced to
pay attention to the linguistic feedback being gcneratcd by
the system-a common concern with critiquing systems
(Fischer, et al., 1993)-and browsable, so that designers can
review previously disclosed expressions and learn at their
own pace.

Disclosures in CNA are usually short Lisp expressions
displayed in a small font in the Language window and also in
the scrollable and rcsizable Transcript window. If the
designer has a large monitor she can easily move this window
away from the arca of design activity. To facilitate browsing,
we are considering making thumbnail-sized before-and-after
snapshots which appear in the Transcript window beside each
group of disclosures.

195

or

77 52) rposition ‘(65 266>)(

CONCLUSIONS
Deve1oper.s are beginning to realize that by providing a built-
in end-user language they can offer highly functional and
flexible tools without having to anticipate the needs of every
designer. .But programming is no panacea for designers; the
reality is that learning an end-user language can be a
daunting task. However, the universal human experience of
learning to speak suggests that-given the right environ-
ment and motivation-humans can master highly complex
linguistic operations: and while there are obvious and
profound differences between natural and formal language
learning, l.he analogy may nonetheless prove a fruitful one
for introducing designers to programming.

The use of self-disclosure. as specified by our guidelines and
as instantiated in the language learning opportunities in the
CNA prototype system, represent the first step towards a
technical and theoretical framework for helping designers
become programmers. Preliminary tests with CNA involving
two subjects performing a simple drawing task indicate that
non-Lisp programmers can infer from disclosures a subset of
the vocabulary of CNA’s domain-enriched language as well
the basic opcn-parenthesis-operator-operand-closc-paren-
thesis syntax. Clearly, more thorough assessment and
refinement of self-disclosure mechanisms will be necessary to
validate our approach.

In this context, it is worth addressing the “language
question”--i.e.. our potentially controversial choice of Lisp as
the end-user programming language for CNA. There arc
several points to make here. First, we wish to stress that CNA
is designed to support programming “in the small”-a style
of programming in which short, “domain-enriched” cxprcs-
sions accomplish powerful ends within an application. The
same sort of philosophy might arguably be attributed to

Figure 8. Combinations of direct manipulation and linguistic operations which produce a green oval.

languages such as Mathematics* (in which short procedure
calls accomplish sophisticated mathematical or graphical
tasks).

Viewing end-user programming in this light, there need not
be a sharp division between “professional” language:; and
“end-user” languages: in many cases, the former may be
tailored for USC in a particular application or domain (as
suggested by examples such as Visual BASIC and
AutoCAD’s dialect of Lisp). This is not to say that questions
of language learnability should be ignored-but our belief is
that the notion of self-disclosure can lead language designers
to reexamine these questions, focusing on those language
features that lend themselves best to incidental learning.
Finally, the techniques of self-disclosure described in this
paper, while illustrated by a particular Lisp-based system. are
also intended for broad applicability: such tenets as
unobtrusiveness, browsability, coverage, and so forth are
likely to prove useful in applications based on a wide variety
of end-user programming languages.

Our belief is that a tool such as CNA offers the potenti.al for
supporting the type of professional education that Schiin
(SchGn, 1983) writes about-an education of “reflection-in-
action,” of interweaving well-practiced (or near-automatic)
activity with pauses for conscious reflection upon one’s work.
This is a consequence of the tool’s situated presentation of
language concepts: the designer does not have to structure
her activity into artificially distinct periods of Ianguage-
learning followed by (almost necessarily impoverished)
language use. Rather, the designer develops expertise in the
context of meaningful projects. Moreover, CNA aims for a
more ambitious type of learning than that generally

8Mathematica is a registered trademark of Wolfram
Research, Inc.

196

associated with context-sensitive help systems: the system is
not limited to informing the user of an important vocabulary
item or alerting her to an immediate syntactic problem.
Instead, the type of learning supported by CNA is a larger-
scale (and longer-term) learning of a new medium. The
distinction that we are after here is suggested by Norman’s
(Norman, 1993. p. 28) taxonomy of learning, in which
restructuring is distinguished from accretion: whereas the
latter involves learning new particular facts or vocabulary
items within some well-understood general framework (the
type of learning associated with context-sensitive help), the
former involves the development of that general framework
itself. In the case of CNA, our intent is to provide designers
who have never programmed with a setting in which to adapt
to an entirely new (and, as noted, often intimidating)
medium.

Finally-stepping back from the particular system discussed
here-self-disclosure may have applications for users other
than designers. to systems other than programmable
applications, and to domains other than programming
language learning. It is possible, for example, that computer
science students could benefit from the use of self-disclosure
when learning new programming languages, perhaps
embedded in interpreters for languages they already know.
Another possibility is that beginning designers could learn
design heuristics from a self-disclosing information graphics
program that revealed presentation techniques while they
chose from high-level charting operations. Self-disclosure
may prove to be a powerful and general strategy for
presenting new knowledge to users performing any number
of computer-based tasks.

ACKNOWLEDGMENTS
We would like to thank Tom Landauer. Clayton Lewis, Jim
Martin. and Nancy Songer for their comments on a draft of
this paper. This rcscarch was supported by the National
Science Foundation under grant number RED-9253425.

REFERENCES
Anderson. J.R., and B.J. Reiser (1985). The LISP Tutor. BYTE
IO 159-175.

Anderson, J.R. (1987). Causal analysis and inductive
learning. Proceedings of the Fourth Internationul Machine
Learning Conference. 288-299.

Bruner, J. S. (1975). The ontogcncsis of language. Journal of
Child Lunguage 2 I - 19.

Carroll, J.M., and M.B. Rosson (1987). Paradox of the Active
User. In Interfucing Thought: Cognitive Aspects of Humun-
Computer Interaction. Edited by J. M. Carroll. 80-I Il.
Cambridge, MA: The MIT Press.

DeJong. G. (1983). An approach to learning from
observation. Proceedings of the International Machine Learning
Workshop.

DiGiano. Chris, and Mike Eisenberg (1995). Suppor/ing the
end-user progrummer us a lifelong learner. Department of
Computer Science, University of Colorado at Boulder.
Report #CU-CS-761-95.

Eisenberg, Mike (1995). Programmable Applications:
Interpreter Meets Interface. SIGCHI Bulletin 27 (2): 68-93.

Fischer, G. (1987). A Critic for LISP. In Proceedings of the
10th Internutional Joint Conference an Artificial Intelligence
(Milan, Italy). Edited by J. McDermott. 177-184. Los Altos,
CA: Morgan Kaufmann Publishers.

Fischer, Gerhard, Kumiyo Nakakoji, Jonathan Ostwald.
Gerry Stahl. and Tamara Sumner (1993). Embedding
Computer-Based Critics in the Contexts of Design. In
Proceedings of ACM INTERCH1’93 Conference on Human
Fuctors in Computing Systems. 157- 164.

Gantt. Michelle, and Bonnie A. Nardi (1992). Gardeners and
Gurus: Patterns of Cooperation among CAD Users. In
Proceedings of ACM CHl’92 Conference on Human Factors in
Computing Systems. 107-I 17.

Gleitman, Lila R. (1994). The structural sources of verb
meanings. In Language Acquisition: Core Rcudings. Edited by
P. Bloom. 174-221. Cambridge, MA: The MIT Press.

Lewis, C. (1988). Why and How to Learn Why: Analysis-
Based Gcncralization of Procedures. Cognitive Science 12 2 1 I -
256.

Lewis. Clayton, D. Charles Hair, and Victor Schoenberg
(1989). Generalization, Consistency, and Control. In
Proceedings of ACM CH1’89 Conference on Human Factors in
Computing Systems. l-5.

Nardi, B.A. (1993). A Small Mutter of Programming.
Cambridge, MA: The MIT Press.

Nardi, Bonnie A., and Jnmcs R. Miller (1991). Twinkling
Lights and Nested Loops: Distributed Problem Solving and
Spreadsheet Dcvclopment. Internationul Journal of Mun-
Machine Studies 34 (2): I61 - I 84.

Nishioka. Fumihiko (1992). Dingrum Graphics. Tokyo: P*I*E
Books.

Norman, Donald A. (1993). Things that make us srnurt.
Reading, MA: Addison-Wesley Publishing Company, Inc.

Polson. Peter G.. Clayton Lewis, John Ricman. and Cathleen
Wharton (1992). Cognitive Walkthroughs: A Method for
Theory-Based Evaluation of User Interfaces. International
Journal of Man-Machine Studies 36 (5): 741-773.

Richards, I. A. (1973). English through pictures. New
Pocket Books.

Schijn, D.A. (I 983). The Reflective Practitioner:
Professionals Think in Action. New York: Basic Books.

York:

H#Ul

Stallman, R.M. (1981). EMACS. the Extensible.
Customizable. Self-Documenting Display Editor. ACM
SIGOA Newsletter 2 (I): 147- 156.

197

