Prerequisites for a Personalizable User Interface

David R. Karger
MIT CSAIL

Dennis Quan
IBM T. J. Watson Research Center

200 Technology Sq., Cambridge, MA 02139 USA 1 Rogers Street, Cambridge, MA 02142 USA

karger@theory.lcs.mit.edu

ABSTRACT

Interfaces that support customization and can aiaijoidi-
viduals’ specific use patterns may be more effectivan
ones designed to be “one size fits all’. However tdst
whether such interfaces benefit users in actuatyeeg
applications, a lot of underlying application irdtaucture
must be reimplemented to accommodate customizatidn
adaptation. In this paper we discuss Haystack,atgom
for building information applications in which usenter-
face concepts such as commands, views, and widgets
even application data itself is described as a sdmaet-
work, providing a flexible environment for protoipg
notions of customization. Haystack’s data model bast
information that used to be managed by multiplelieaap
tions, meaning that users can use Haystack toaicttevith
their data under a single paradigm, and adaptakalitd
customization capabilities can be provided acrosfiphe
domains at once.

Author Keywords
User interface customization, Semantic Web.

ACM Classification Keywords
H5.m. Information interfaces and presentation (e=fl):
Miscellaneous.

INTRODUCTION

Personalization holds great potential to improvepbes
ability to interact with information: different ppte care
about different information and prefer to examibeamnd
manipulate it in different ways.

Unfortunately, today’s application model throws nymer-
ous obstacles to effective use of personalizatikeatures
that users would like to customize are often hair@advinto
monolithic assemblies of fixed, private data mogdeifor-
mation displays, and operations. Similarly, thebtem of
allowing applications to study their users’ behawand to

dennisg@us.ibm.com

automatically adapt themselves is hindered by & lafc
hooks into the user interfaces of applications.

As a result, providing support for customizatioreaf re-
quires applications to undergo a significant ovalhaa
nontrivial burden for the researcher/developer andim-
possibility for the end user. In addition, a singletivity
performed by a user may involve multiple applicasioyet
the problem of studying cross-application custotiizais
even more daunting because multiple applicationstroa
rewritten to support the same style of customizatio

Enabling effective personalization—both automated an
user-driven—requires a new approach to applicatereld
opment, in which:

e The data model (and not just the data) can bebilgxi
modified at runtime, for example, to reflect nopedp-
erties that might interest a particular user;

e The user interface must flex with the data modad; d
playing information that was not part of the model
when the Ul was first defined; and

* Views (ways of displaying information) and operato
(ways of manipulating information), rather thanrggi
hard-wired in code, must be first class objects$ taa
be examined and modified by end users or by agents
acting on their behalf at runtime.

This reification of data model and interface infation that
has typically been implicitly buried in code is acessary
first step in the design of any richly-customizafystem.

We have built Haystack, a system that effectivegeta the
requirements outlined above [1, 6], depicted inuFegl.
Haystack uses a semantic network model (RDF, alpopu
World Wide Web standard [3]) to uniformly represeand
interconnect all of a user’s information, viewsdawpera-
tions. Haystack's user interface kernel, Ozonegrprets
the semantic network for instructions on how tovehn-
formation and how to let the user manipulate iisTdesign
allows end users as well as researchers to custotinéir
environments by annotating the interface informaiiothe
semantic network. The data model also providestarala
repository of information about the user’s actiomdich
we intend to use as input for machine learning esgérat
will automate some of the customization processtlfar
user.

Haystack - Flight to San Francisco - Eclipse Platform
File Edit Mavigate Search Project Haystack Bun Window Help

=1

o - 3 IO Oe s + ||| ¢ o . iz & | O
Resource | Haystack
Commands 4 Flight to San Frandsco Active Tasks
Commands Y . (b) o — — —
Baok same flight as companion Fli ht to san Fra nCisco i i
b oo a Send this item to
someone
Available views
TE‘w.-:pleoL'e relationships i Weaiber foreonst for destiasiion The fallowing information is required:
Web browser
far .- . g Ttem ke Edit =
Show 4l information E Contacts residing at the destination z "‘;. .
Debug view (a) send:
<@ Bob Smith . " x
Kind of The object itself |Edit =
< Carol McIntire information ;
< Ted Johnson to send:
Redpient: < Caral McIntire
= Fight Information “ John Doe
available for chat
Mame: fight to San Frandsca »
; | e
Airline: ABC Airlines Edit =
e i— ——
Flight number: 123 ()
C
Origin: Boston g Save as an
Departure Bon Dec 15 07:00:00 EST 2003 = operation
time:
The following information is required:
Destination: SF
Arrival time: r"1-:||'- Dec 15 13:00:00 E5T 2003 |x o P —
Taskto & Send this item to
Y save: someans
All Properties
& Standard Properties

Figure 1: Screenshot of Haystack. (a) extensiblesti of operations and views; (b) view of flight withembedded views of compo-
nent objects; (c) creating the curried “Send to Caol and John” operation from the “Send this item tosomeone” operation

A FLEXIBLE DATA MODEL
A customizable user interface is of limited value the
presence of a fixed data model. If certain infoiorathat a

user cares about cannot be expressed in the dadelmo

then no amount of user interface customization lcaip

that user work with such information. Today’'s apations

exhibit two distinct kinds of fixity. Within a sirig applica-
tion, it is often difficulty for a user to extende data model
to reflect, for example, additional attributes loé tinforma-

tion that the developer did not think to include.

Other problems arise when multiple applications re

volved. On the one hand, a user may discover a teed

connect information that is “owned” by differentpdipa-
tions. The incompatible formats and data modelheftwo
applications make it difficult to record such coatiens,
and neither application likely has a user interfdesigned
to show or manipulate such connections. Converseére
are certain data types, such as documents, pemplages-
sages, that are managed by multiple applicatiomsyidis-

tinct models and formats. In such a setting, custations
made by a user of an interface within one appbecatail to
propagate to other applications manipulating theesdata.

The problems outlined above led us to design a comm
unified data representation for all of the inforioata user

works with. We chose a semantic network as a kihd o
“Turing universal” data representation. In a sentanet-
work, arbitrary objects are connected by arbitrbiyary
relations (higher arity relations can be represgbtecreat-
ing intermediate nodes). In order to maximize Hagists
compatibility with other systems, we have choseruse
RDF, a Semantic Web representation standard siugapbyt
the W3C [5]. Using RDF lets Haystack interact “naly”

with sources of RDF such as RSS news feeds.

Like a typical application, Haystack comes withdefault”
data model: for example, it models documents usheg
properties (such as author, title, and body) defiire the
Dublin Core schema [4]. The default schemata coveny
data types, such as e-mails, contacts, MP3 filbstgs

graphs, research papers, and text documents. Sigtpm-
izing the model is easy: any user can define autuiti
document attributes (such as color, current reamtegual-
ity) that are then treated by the system with tmes atten-
tion as the default propertiésHaystack also attempts to
maximize reuse: for example, e-mail messages aeba
class of documents, so they inherit all of the Dul@ore
properties. This means that a user's customizatiothe
document data model propagates to all kinds of chects,
not just those handled by a specific application.

VIEWS

Most applications in use today render informatioomf an
internal data model to some sort of interface. Wnfmately,
many applications only provide one or an extrentiehjted
number of ways for viewing information and canna b
extended with new visualization styles, hamperiagt@mi-
zation. In Haystack, there may be multiglewspresent for
any kind of object, and in fact views can be madifior
created at runtime. In this sense, views are tdeatefirst
class objects in Haystack because a single presenta
mechanism is not monolithically coupled to any jmortof
an application.

Our approach to designing views is driven indinebly the
need to cope with our flexible data model and diyeloy
the desire to support customized information digpla
Much user interface real estate is allocated taltbplay of
objects in their relation to each other. We midbt,exam-
ple, display an iconic tiling of the files in a éatory, indi-
cating a containment relationship. Alternativelye wight
display a list of e-mail messages in rows, usirgginiit col-
umns to present each message’s (relationship seraer,
subject, and date. A calendar view displays in edh a
list of appointments, and an address book has ralatd
format for displaying an individual by listing pregies
such as name, address, phone number, and notesna s
nicely formatted layout. The address itself mayabeom-
plex object with different sub-properties such tased, city,
and country that need to be laid out.

This common phenomenon of using a hierarchicaluag
information to show relationships between and maéto
complex objects motivates an object-oriented apgrda
user interface presentation in which a view of sabgect
X may be created by (i) letting decide which of its proper-
ties and relationships to other objects need tshosvn, (i)
recursively asking the objects requiredXjo create views
of themselves, and (iii) allowing to lay those views out in
a way that indicateX's relation to the viewed object. As a

concrete example, when rendering a mail message w

might consider it important to render the sendes;de so

! Haystack's schemata are themselves representée isemantic
network (using DAML+OIL from the DAML project) so odlifi-
cation of the schema is simply another instanceadifying data
in the semantic network (and is supported by tmeesaser inter-
faces as the rest of the system).

by asking the sender to produce a view of itsetf Hren
laying out that view of the sender somewhere invibes of
the mail message. The sender object, in rendetsdlf,i
may recursively ask the sender’s address to produes-
dering of itself that the sender view could incagie.

Our interface design makes customization much etz
in the traditional application-centric approach.eThiew
production rules for a given object type are defirmnce
and then reused whenever that type of object isvsho
thus, a user can customize the view once and seeutt
tomization whenever its objects are displayed.h&t $ame
time, our delegation approach means that a usastmmi-
zations of one view do not impact any other vievews
treat their contained sub-views opaquely, so chatmsub-
views will be ignored by the containing view. (We dow-
ever provide ways for allowing views to cooperatel ao-
ordinate with each other.)

Furthermore, Haystack’s data model is intentionalk
coupled from the views that are responsible fois@néng
the data. Because views are decoupled from therkyimg
data model, information from multiple applicatiocasn be
brought together in a single presentation. As altesus-
tomizations made to a view remain in effect regessslof
which application the data came from.

For a developer to construct views that are comeutd
customization, Haystack provides a user interfamskit
that enables reusable user interface componers,asulist
views and buttons, to be packaged and assemblédd awit
declarative, HTML-like language. To make customaat
even easier, we attempt to maximize the portiothefview
generation that can be described declarativelydata, as
opposed to imperatively, in code. For example, majgct
views are created simply by laying out some demmat
together with views of related objects, as a madlssage
view might lay out the sender, subject, date, amtiytof the
message. Such views can be declared simply bpdistie
properties to be inspected and the scale and layfotleir
views in the containing view. These annotated Lsts eas-
ily be stored in our semantic network and vieweidgi®ur
standard interfaces; thus user interface custoinizdie-
comes as simple as other data manipulation aetviti

OPERATIONS
In addition to visual customization, command cuskam
tion is another common means for users to persanaln
application to better suit their work patterns. iseastomi-
zation comes in many forms: macros, alteratiorooftltars
nd menus, most recently used lists, etc. The qguésite
or this functionality is an abstraction that alkveom-
mands to be treated as first class objects; thainie can
create custom lists of commands, create composite- c
mands (macros) that specify individual commandshéo
executed in a specific order, and so on. Howevernym
application frameworks do not treat commands as$ €lass
objects, relegating them to code buried in eventlas.

In Haystack, commands are abstracted ioferations
which are composed of two parts. The first pathésmeta-
data that characterizes the types of parameterspieation
accepts, the name of the operation, an icon, étis. Meta-
data is stored in Haystack's semantic network. otieer
part is an implementation written in a programmiag-
guage such as Java.

Treating operations as first class makes supportiagy
forms of customization easy. Since a menu is simaptyl-
lection of commands, displayed in a particular viewiser
can create menus for any desired application byyaqp
the same tools they use to create other collectiopgra-
tions can be annotated by the user with useful nders
about usage, creating a customized help system.

Furthermore, operations can be wired together riaraber

of ways at runtime. In addition to a full-featuredripting
language called Adenine that is useful for madras;stack
provides the ability to partially evaluate (“curjybpera-
tions [2]. For example, the print command in mamg-p
grams provides many options such as number of sppie
double-sided printing, and portrait/landscape mddew-
ever, for a user who wishes to print either sirgitied with

no staples or double-sided with staples, he ornshst re-
configure the options in the dialog box each tiimstead of
requiring a macro to be written, currying allows tiser to
select a set of print options and to save the statiee cus-
tomized command as a new command, say “print doubl
sided with staples”.

LEARNING USERS’ BEHAVIOR

Often users will not be willing or may not understahow
to perform certain customizations, even if they read to
large productivity gains. A natural approach isapply
machine learning techniques in order to make sdntieese
customizations on behalf of the user. To make aated
customization successful, several important eleseme
needed. First, learning algorithms work better wiiegy
are given more training data. Because Haystack lesnab
information from multiple applications to be acaxssrom
a single environment, a learning algorithm onlydset be
hooked into this single environment in order toeske the
user’s behavior over a variety of different sitoas. Addi-
tionally, Haystack makes it easy to obtain trainidata
since invocations of operations, browsing histaryd other
session data are recorded in the data model, pnovid
single abstraction to the feature space of interest

Because Haystack provides a highly expressive matiel,
learning agents inherit a useful facility for redioig obser-
vations. Many problems with agent-driven user ifiatees
arise as a result of insufficient information beimgvided
to the user—i.e., a lack of transparency. For exapyhen
an agent makes a nonsensical recommendation ts, itsier
useful to be able to introspect and/or modify tlyerd's
observations to determine what led to the recomiatgoml
and fix the problem. Haystack's data model fadiitathe
recording of fine-grained observational detailssImeta-

data originating from other sources such as thea’suse
browsing history can be correlated with agents’ own
cordsin situ, providing for more detailed explanations.

A semantic network is a good way not only to ddsxiob-
servations of the user’s behavior but also the losimns
learned. Besides custom tracking structures, csiuris
can also take the form of a view or an operatiar.éxam-
ple, an agent could be tasked with monitoring wiidpkra-
tions are most frequently invoked and create aocustiew
that incorporates them. An agent might also createed
operations based on common usage patterns autathatic
Additionally, when conclusions are stored in thetada
model, users benefit from being able to maniputateclu-
sions using the same tools for manipulating othésrma-
tion because of the uniformity of the semantic rmekarep-
resentation. In essence, learning agents becoragadiata
transforms working against the common semantic otw

SUMMARY

We propose that a number of the barriers to sujpyppter-
sonalization can be lowered by using an applicatiame-
work built on the notion of pervasive customizabililn

particular, Haystack uses its expressive semargioark
data model not only to incorporate various formsndér-

mation but also to model the user interface. Thedant is
that targets for customization need to be treatethatable
data, not immutable code. Information is presemtedsers

eoy an extensible family of views, which are custzatie

and whose specifications are themselves descriealii
data model. Similarly, user interface commands sqeci-
fied in the data model and implemented throughramon
operation abstraction, enabling them to be compaaed
runtime. In addition to facilitating customizatiahruntime,
the notion of “Ul specifications as data” allowseats to
learn about users’ preferences and behavior by torimg
the data model and to potentially offer suggestiongirn
back into the data model.

ACKNOWLEDGMENTS
This work was supported by the MIT-NTT collaboratio
and the MIT Oxygen project.

REFERENCES

1. Quan, D., Huynh, D., and Karger, D. Haystack: Atfetan for
Authoring End User Semantic Web ApplicatioRsoceedings
of Int'l Semantic Web Conf. 2003

Quan, D., Huynh, D., Karger, D., and Miller, R. Us&erface
ContinuationsProceedings of UIST 2003

Resource Description Framework (RDF) Model and &ynt
Specification. http://www.w3.0rg/TR/1999/REC-rdfrdgx-
19990222/.

4. Dublin Core Metadata Initiative. http://dublincarey/.

Berners-Lee, T., Hendler, J., and Lassila, O. “Skenantic
Web” in Scientific AmericapnMay 2001.

Haystack project home page. http://haystack.lcseohit.

