
 1

Prerequisites for a Personalizable User Interface
David R. Karger

MIT CSAIL
200 Technology Sq., Cambridge, MA 02139 USA

karger@theory.lcs.mit.edu

Dennis Quan
IBM T. J. Watson Research Center

1 Rogers Street, Cambridge, MA 02142 USA
dennisq@us.ibm.com

ABSTRACT
Interfaces that support customization and can adapt to indi-
viduals’ specific use patterns may be more effective than
ones designed to be “one size fits all”. However, to test
whether such interfaces benefit users in actual everyday
applications, a lot of underlying application infrastructure
must be reimplemented to accommodate customization and
adaptation. In this paper we discuss Haystack, a platform
for building information applications in which user inter-
face concepts such as commands, views, and widgets and
even application data itself is described as a semantic net-
work, providing a flexible environment for prototyping
notions of customization. Haystack’s data model can host
information that used to be managed by multiple applica-
tions, meaning that users can use Haystack to interact with
their data under a single paradigm, and adaptability and
customization capabilities can be provided across multiple
domains at once.

Author Keywords
User interface customization, Semantic Web.

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
Personalization holds great potential to improve people’s
ability to interact with information: different people care
about different information and prefer to examine it and
manipulate it in different ways.

Unfortunately, today’s application model throws up numer-
ous obstacles to effective use of personalization. Features
that users would like to customize are often hard-wired into
monolithic assemblies of fixed, private data models, infor-
mation displays, and operations. Similarly, the problem of
allowing applications to study their users’ behavior and to

automatically adapt themselves is hindered by a lack of
hooks into the user interfaces of applications.

As a result, providing support for customization often re-
quires applications to undergo a significant overhaul—a
nontrivial burden for the researcher/developer and an im-
possibility for the end user. In addition, a single activity
performed by a user may involve multiple applications, yet
the problem of studying cross-application customization is
even more daunting because multiple applications must be
rewritten to support the same style of customization.

Enabling effective personalization—both automated and
user-driven—requires a new approach to application devel-
opment, in which:

• The data model (and not just the data) can be flexibly
modified at runtime, for example, to reflect novel prop-
erties that might interest a particular user;

• The user interface must flex with the data model, dis-
playing information that was not part of the model
when the UI was first defined; and

• Views (ways of displaying information) and operations
(ways of manipulating information), rather than being
hard-wired in code, must be first class objects that can
be examined and modified by end users or by agents
acting on their behalf at runtime.

This reification of data model and interface information that
has typically been implicitly buried in code is a necessary
first step in the design of any richly-customizable system.

We have built Haystack, a system that effectively meets the
requirements outlined above [1, 6], depicted in Figure 1.
Haystack uses a semantic network model (RDF, a popular
World Wide Web standard [3]) to uniformly represent and
interconnect all of a user’s information, views, and opera-
tions. Haystack’s user interface kernel, Ozone, interprets
the semantic network for instructions on how to show in-
formation and how to let the user manipulate it. This design
allows end users as well as researchers to customize their
environments by annotating the interface information in the
semantic network. The data model also provides a natural
repository of information about the user’s actions, which
we intend to use as input for machine learning agents that
will automate some of the customization process for the
user.

 2

A FLEXIBLE DATA MODEL
A customizable user interface is of limited value in the
presence of a fixed data model. If certain information that a
user cares about cannot be expressed in the data model,
then no amount of user interface customization can help
that user work with such information. Today’s applications
exhibit two distinct kinds of fixity. Within a single applica-
tion, it is often difficulty for a user to extend the data model
to reflect, for example, additional attributes of the informa-
tion that the developer did not think to include.

Other problems arise when multiple applications are in-
volved. On the one hand, a user may discover a need to
connect information that is “owned” by different applica-
tions. The incompatible formats and data models of the two
applications make it difficult to record such connections,
and neither application likely has a user interface designed
to show or manipulate such connections. Conversely, there
are certain data types, such as documents, people, or mes-
sages, that are managed by multiple applications using dis-

tinct models and formats. In such a setting, customizations
made by a user of an interface within one application fail to
propagate to other applications manipulating the same data.

The problems outlined above led us to design a common,
unified data representation for all of the information a user
works with. We chose a semantic network as a kind of
“Turing universal” data representation. In a semantic net-
work, arbitrary objects are connected by arbitrary binary
relations (higher arity relations can be represented by creat-
ing intermediate nodes). In order to maximize Haystack’s
compatibility with other systems, we have chosen to use
RDF, a Semantic Web representation standard supported by
the W3C [5]. Using RDF lets Haystack interact “natively”
with sources of RDF such as RSS news feeds.

Like a typical application, Haystack comes with a “default”
data model: for example, it models documents using the
properties (such as author, title, and body) defined in the
Dublin Core schema [4]. The default schemata cover many
data types, such as e-mails, contacts, MP3 files, photo-

Figure 1: Screenshot of Haystack. (a) extensible list of operations and views; (b) view of flight with embedded views of compo-
nent objects; (c) creating the curried “Send to Carol and John” operation from the “Send this item to someone” operation

(a)

(b)

(c)

 3

graphs, research papers, and text documents. Still, custom-
izing the model is easy: any user can define additional
document attributes (such as color, current reader, or qual-
ity) that are then treated by the system with the same atten-
tion as the default properties.1 Haystack also attempts to
maximize reuse: for example, e-mail messages are a sub-
class of documents, so they inherit all of the Dublin Core
properties. This means that a user’s customization of the
document data model propagates to all kinds of documents,
not just those handled by a specific application.

VIEWS
Most applications in use today render information from an
internal data model to some sort of interface. Unfortunately,
many applications only provide one or an extremely limited
number of ways for viewing information and cannot be
extended with new visualization styles, hampering customi-
zation. In Haystack, there may be multiple views present for
any kind of object, and in fact views can be modified or
created at runtime. In this sense, views are treated as first
class objects in Haystack because a single presentation
mechanism is not monolithically coupled to any portion of
an application.

Our approach to designing views is driven indirectly by the
need to cope with our flexible data model and directly by
the desire to support customized information display.
Much user interface real estate is allocated to the display of
objects in their relation to each other. We might, for exam-
ple, display an iconic tiling of the files in a directory, indi-
cating a containment relationship. Alternatively, we might
display a list of e-mail messages in rows, using distinct col-
umns to present each message’s (relationship to a) sender,
subject, and date. A calendar view displays in each day a
list of appointments, and an address book has a standard
format for displaying an individual by listing properties
such as name, address, phone number, and notes in some
nicely formatted layout. The address itself may be a com-
plex object with different sub-properties such as street, city,
and country that need to be laid out.

This common phenomenon of using a hierarchical layout of
information to show relationships between and internal to
complex objects motivates an object-oriented approach to
user interface presentation in which a view of some object
X may be created by (i) letting X decide which of its proper-
ties and relationships to other objects need to be shown, (ii)
recursively asking the objects required by X to create views
of themselves, and (iii) allowing X to lay those views out in
a way that indicates X’s relation to the viewed object. As a
concrete example, when rendering a mail message we
might consider it important to render the sender; we do so

1 Haystack’s schemata are themselves represented in the semantic
network (using DAML+OIL from the DAML project) so modifi-
cation of the schema is simply another instance of modifying data
in the semantic network (and is supported by the same user inter-
faces as the rest of the system).

by asking the sender to produce a view of itself and then
laying out that view of the sender somewhere in the view of
the mail message. The sender object, in rendering itself,
may recursively ask the sender’s address to produce a ren-
dering of itself that the sender view could incorporate.

Our interface design makes customization much easier than
in the traditional application-centric approach. The view
production rules for a given object type are defined once
and then reused whenever that type of object is shown;
thus, a user can customize the view once and see the cus-
tomization whenever its objects are displayed. At the same
time, our delegation approach means that a user’s customi-
zations of one view do not impact any other view: views
treat their contained sub-views opaquely, so changes to sub-
views will be ignored by the containing view. (We do how-
ever provide ways for allowing views to cooperate and co-
ordinate with each other.)

Furthermore, Haystack’s data model is intentionally de-
coupled from the views that are responsible for presenting
the data. Because views are decoupled from the underlying
data model, information from multiple applications can be
brought together in a single presentation. As a result, cus-
tomizations made to a view remain in effect regardless of
which application the data came from.

For a developer to construct views that are conducive to
customization, Haystack provides a user interface toolkit
that enables reusable user interface components, such as list
views and buttons, to be packaged and assembled with a
declarative, HTML-like language. To make customization
even easier, we attempt to maximize the portion of the view
generation that can be described declaratively, in data, as
opposed to imperatively, in code. For example, many object
views are created simply by laying out some decoration
together with views of related objects, as a mail message
view might lay out the sender, subject, date, and body of the
message. Such views can be declared simply by listing the
properties to be inspected and the scale and layout of their
views in the containing view. These annotated lists can eas-
ily be stored in our semantic network and viewed using our
standard interfaces; thus user interface customization be-
comes as simple as other data manipulation activities.

OPERATIONS
In addition to visual customization, command customiza-
tion is another common means for users to personalize an
application to better suit their work patterns. Such customi-
zation comes in many forms: macros, alteration of toolbars
and menus, most recently used lists, etc. The prerequisite
for this functionality is an abstraction that allows com-
mands to be treated as first class objects; that is, one can
create custom lists of commands, create composite com-
mands (macros) that specify individual commands to be
executed in a specific order, and so on. However, many
application frameworks do not treat commands as first class
objects, relegating them to code buried in event handlers.

 4

In Haystack, commands are abstracted into operations,
which are composed of two parts. The first part is the meta-
data that characterizes the types of parameters the operation
accepts, the name of the operation, an icon, etc. This meta-
data is stored in Haystack’s semantic network. The other
part is an implementation written in a programming lan-
guage such as Java.

Treating operations as first class makes supporting many
forms of customization easy. Since a menu is simply a col-
lection of commands, displayed in a particular view, a user
can create menus for any desired application by applying
the same tools they use to create other collections. Opera-
tions can be annotated by the user with useful reminders
about usage, creating a customized help system.

Furthermore, operations can be wired together in a number
of ways at runtime. In addition to a full-featured scripting
language called Adenine that is useful for macros, Haystack
provides the ability to partially evaluate (“curry”) opera-
tions [2]. For example, the print command in many pro-
grams provides many options such as number of copies,
double-sided printing, and portrait/landscape mode. How-
ever, for a user who wishes to print either single-sided with
no staples or double-sided with staples, he or she must re-
configure the options in the dialog box each time. Instead of
requiring a macro to be written, currying allows the user to
select a set of print options and to save the state of the cus-
tomized command as a new command, say “print double
sided with staples”.

LEARNING USERS’ BEHAVIOR
Often users will not be willing or may not understand how
to perform certain customizations, even if they may lead to
large productivity gains. A natural approach is to apply
machine learning techniques in order to make some of these
customizations on behalf of the user. To make automated
customization successful, several important elements are
needed. First, learning algorithms work better when they
are given more training data. Because Haystack enables
information from multiple applications to be accessed from
a single environment, a learning algorithm only needs to be
hooked into this single environment in order to observe the
user’s behavior over a variety of different situations. Addi-
tionally, Haystack makes it easy to obtain training data
since invocations of operations, browsing history, and other
session data are recorded in the data model, providing a
single abstraction to the feature space of interest.

Because Haystack provides a highly expressive data model,
learning agents inherit a useful facility for recording obser-
vations. Many problems with agent-driven user interfaces
arise as a result of insufficient information being provided
to the user—i.e., a lack of transparency. For example, when
an agent makes a nonsensical recommendation to users, it is
useful to be able to introspect and/or modify the agent’s
observations to determine what led to the recommendation
and fix the problem. Haystack’s data model facilitates the
recording of fine-grained observational details. Also, meta-

data originating from other sources such as the user’s
browsing history can be correlated with agents’ own re-
cords in situ, providing for more detailed explanations.

A semantic network is a good way not only to describe ob-
servations of the user’s behavior but also the conclusions
learned. Besides custom tracking structures, conclusions
can also take the form of a view or an operation. For exam-
ple, an agent could be tasked with monitoring which opera-
tions are most frequently invoked and create a custom view
that incorporates them. An agent might also create curried
operations based on common usage patterns automatically.
Additionally, when conclusions are stored in the data
model, users benefit from being able to manipulate conclu-
sions using the same tools for manipulating other informa-
tion because of the uniformity of the semantic network rep-
resentation. In essence, learning agents become data-to-data
transforms working against the common semantic network.

SUMMARY
We propose that a number of the barriers to supporting per-
sonalization can be lowered by using an application frame-
work built on the notion of pervasive customizability. In
particular, Haystack uses its expressive semantic network
data model not only to incorporate various forms of infor-
mation but also to model the user interface. The key point is
that targets for customization need to be treated as mutable
data, not immutable code. Information is presented to users
by an extensible family of views, which are customizable
and whose specifications are themselves described in our
data model. Similarly, user interface commands are speci-
fied in the data model and implemented through a common
operation abstraction, enabling them to be composed at
runtime. In addition to facilitating customization at runtime,
the notion of “UI specifications as data” allows agents to
learn about users’ preferences and behavior by monitoring
the data model and to potentially offer suggestions in turn
back into the data model.

ACKNOWLEDGMENTS
This work was supported by the MIT-NTT collaboration
and the MIT Oxygen project.

REFERENCES
1. Quan, D., Huynh, D., and Karger, D. Haystack: A Platform for

Authoring End User Semantic Web Applications. Proceedings
of Int’l Semantic Web Conf. 2003.

2. Quan, D., Huynh, D., Karger, D., and Miller, R. User Interface
Continuations. Proceedings of UIST 2003.

3. Resource Description Framework (RDF) Model and Syntax
Specification. http://www.w3.org/TR/1999/REC-rdf-syntax-
19990222/.

4. Dublin Core Metadata Initiative. http://dublincore.org/.

5. Berners-Lee, T., Hendler, J., and Lassila, O. “The Semantic
Web” in Scientific American, May 2001.

6. Haystack project home page. http://haystack.lcs.mit.edu/.

