1

A History of Interaction

It is a truism that computers are becoming faster and more powerful all
the time. They play an ever larger role in our lives, giving us access to
more and more information, being incorporated into more and more of
our devices, and creating whole new forms of interaction and activity
that we would never otherwise have imagined. From desktop computers
to laptops to personal digital assistants, not to mention bank teller
machines, microwave ovens, cellular telephones, and ticket machines, we
encounter computers in all aspects of everyday life. The ever-expanding
province of computation is a commonplace, the topic of a million coffee-
shop conversations, television reports, and newspaper headlines. We talk
about how fast it is changing, but we talk much less about the ways in
which it is not. Many things about computers are not changing at all.
Our basic ideas about what a computer is, what it does, and how it does
it, for instance, have hardly changed for decades. Nor have the difficul-
ties we encounter actually using computers. '
Our experience using computers reflects a trade-off that was made
fifty years ago or more. When computers were first being developed
commercially, they were extremely expensive devices. Computer time
was much more expensive than your time or mine. In that context, effi-
ciency dictated that we minimize the amount of computer time any job
or activity needed, even if that meant burdening the people who wanted
to submit the job. If a rigid, formalized input language was easier for the
system to process, for example, then the cost in people’s time to format
their data in that language was more than offset by the savings in pro-
cessing time that would result. Because most uses of computers were

2 Chapter 1

military and commercial rather than personal, it was hard to disagree
with this sort of economic argument. It gave rise to a model that favors
performance over convenience, and places a premium on the computer’s
time rather than people’s time. This model is still with us today.

However, in light of those commonly observed transformations in
computer power, we are now in a position to reconsider the trade-off,
Arguably, we must. Computers are now so much faster and more power-
ful, giving us access to so much more information that we are simply no
longer able to manage and assimilate it. At the same time, those power-
ful computers spend 95 percent of their time doing absolutely nothing.
Modern personal computers perform very few tasks that use their full
capacity for longer than a second or two. Outside these brief bursts of
activity, most of the time they do nothing at all, generally while we try to
figure out what to make of what just happened or what we want to do
next. ‘

At the same time, we increasingly see computers incorporated into
devices other than the traditional PC sitting on the desk. Computation
is part of your cellular telephone, your microwave oven, your car, and a
host of other technologies. The rise of so-called embedded computing
reflects the fact that computation can be usefully harnessed for more
than just traditional desktop computing. It can also help us as we get up
and move about in the world, which we generally do more of than sit-
ting at desks (or would, if the computers didn’t shackle us to them).
However, this new form of computation exacerbates the effects of the
trade-off between the work that the user and the system do. As I sit at
my desktop computer, it occupies the whole of my attention; but that
would be a terrible idea in a computer I'm using while driving, or
crossing the street, or trying to enjoy a conversation with friends.

These two trends—the massive increase in computational power and
the expanding context in which we put that power to use—both suggest
that we need new ways of interacting with computers, ways that are bet-
ter tuned to our needs and abilities. Over the last few years, research into
Human-Computer Interaction (HCI) has begun to explore ways to con-
trol and interact with a new breed of computer systems. Prototype sys-
tems have been developed; new forms of interaction explored; new
research groups established; new designs developed and tested.

A History of Interaction 3

This book is a contribution to the emerging literature on this new
approach to interacting with computers, one that I call “Embodied
Interaction.” Embodied Interaction 1s interaction with computer systems
that occupy our world, a world of physical and social reality, and that
exploit this fact in how they interact with us.

There are two ways in which the material I want to present in this
book differs from other explorations in HCI. The first difference con-
cerns the set of entities that will appear here. In particular, although
computer interfaces are the general topic, interfaces themselves will not
appear too often. Here, I am more concerned with interaction than I am
with interfaces, and more concerned with computation than T am with
computers. When I say that T am more concerned with interaction than
with interfaces, I mean that I will be dealing with the ways in which
interactive systems are manifest in our environment and are incorpo-
rated into our everyday activities, rather than with the specific design of
one user interface or another. Similarly, when I say that I am more con-
cerned with computation than with computers, I mean that I want to
address the idea of computation per se—of active representations embod-
ied in hardware and software systems—rather than the specific capabili-
ties of systems available at the start of the new millennium. So, gigabytes
and megahertz will not be at issue, but representational power will be.

The second difference is in the way that those topics will be addressed.
In particular, as you might guess on the basis of my concern with interac-
tion and computation, I want to address a set of topics that are more
foundational than technical. This is not a source book of design solu-
tions, or a how-to manual for interface developers—although these prac-
tical matters will certainly arise, and 1 hope that designers will find
something useful here. In fact, the very reason for exploring foundations
is to support the design and evaluation of new systems, tools, and inter-
action modalities. The goal of this foundational exploration is to pro-
ide resources to designers and system developers, by giving them tools
they can use to understand and analyze their designs.

Traditionally, the central component of any account of computation
has been algorithms or procedures—step-by-step models that specify the
sequential behavior of a computer system. In turn, because they are
based on an analogy between mental phenomena and computation,

4 Chapter 1

cognitive science and Al have also predominantly espoused a step-by-
step model of procedural execution. In the last few years, though, this
procedural approach has been challenged by a new conceptualization of
computational phenomena that places the emphasis not on procedures
but on interaction (Wegner 1997). Interactional approaches conceptual-
ize computation as the interplay between different components, rather
than the fixed and prespecified paths that a single, monolithic computa-
tional engine might foliow. These models of computation have more in
common with ecosystems than with the vast mechanisms we used to
imagine. They emphasize diversity and specialization rather than unity
and generality. Perhaps there is, in this, something of the spirit of the
times; perhaps, too, the rise of new computational paradigms such as
parallel systems, object-oriented programming, and Internet-style soft-
ware design is implicated in this change. The change, though, has occurred
across a wide range of areas of computational investigation. It has
affected how we think about computation from a mathematical perspec-
tive, leading to new theoretical accounts of systems such as Hoare’s CSP
(Hoare 1985) or Milner’s work on CCS and the Pi Calculus (Milner
1995, 2000); it has affected how we think about computational models
of mind, as reflected by Minsky’s “Society of Mind” (Minsky 1988),
Agre’s critique of computational reasoning (Agre 1997), or Brooks’s
approach to robotics (Brooks 1999); and it has led to new accounts of
the practice of programming (Stein 1998).

You might think that studies of how people use computers must
always have been built around a model of the world that gives pride of
place to interaction, but in fact HCI has traditionally been built on a
procedural foundation. HCI, from its very beginning, took on the trap-
pings of the traditional computational model and set out its account of
the world in terms of plans, procedures, tasks, and goals. In contrast, the
model of HCI I set out here is one that places interaction at the center of
the picture. By this I mean that it considers interaction not only as what
is being done, but also as how it is being done. Interaction is the means
by which work is accomplished, dynamically and in context.

Some background will help to clarify what this means and to set the
stage for the argument this book will develop. The context is the histori-
cal evolution of the idea of interaction and the technology of HCIL.

A History of Interaction 5

A Historical Model of Interaction

Just as computers have evolved considerably in their short history, so
have styles of human-computer interaction. There are many ways to
conceptualize the history of interaction with computer systems. The
purely technological view, for example, would recount the history of the
input and output devices that have characterized different stages of inter-
face development, and would describe their computational demands. A
political view would consider the movement of ideas from one labora-
tory to another as researchers respond to the demands and interests of
funding agencies and so forth, while an economic view would consider
how user interface development has influenced, and been influenced by,
the growth of the high-tech industry and PC economy. Grudin (1990)
describes the history of interaction as the story of the “computer reach-
ing out,” in which interaction moves from being directly focused on the
physical machine to incorporating more and more of the user’s world
and the social setting in which the user is embedded. Although Grudin’s
analysis is now a decade old, it is interesting to see the ways in which
later trends in HCI design—including some that are of particular interest
in this book—have followed quite closely the directions that he laid out.

I want to explore a slightly different view here, in order to set some
context for the discussion that will follow. In particular, I want to
present the stages in the historical development of user interfaces in
terms of the different sets of human skills they are designed to exploit.
This is not a different history of HCI, of course, but merely a different
telling of the history, with the emphasis in a slightly different place. As is
perhaps appropriate for a discipline that concerns itself as much with
human abilities as with technological opportunities, it draws attention to
the human experience of computation. The are four separate phases of
development to discuss. I characterize them as electrical, symbolic,
textual, and graphical forms of interaction.

Electrical

Today, when we talk of “computers,” we invariably mean digital
devices. The computer as we know it is inescapably bound up with the
ones and zeros of digital logic. It was not always this way. Originally, the

6 Chapter 1

word “computers” referred to human beings—people whose daily work
was the figuring of calculations, such as for producing engineering
tables. However, even when “computers” became electronic devices,
they were not necessarily digital ones. Before digital computers came
analog computers. Analog computers did not rely on the discrete logic
that characterizes modern computing devices; instead, they relied on the
use of standard components such as resistors and capacitors to create
electronic models of continuous natural phenomena (such as wave
motion, the interaction of electronic forces, or the movements of objects
under gravity). Essentially, the analog computer was the apparatus for
laboratory simulations that took place not in the physical world, but in
an analogous electronic reality. To set up a new experiment, the machine
would have to be reconfigured, possibly quite radically, through the
incorporation of new circuits. This task-specificity was shared by the
early digital computers, too. Even after we had made the move from
analog electronics to digital logic, the earliest digital computers were
special purpose devices, designed as automatic calculators to solve spe-
cific problems—often, inevitably, in military domains (such as calculat-
ing missile trajectories or exploring patterns in coded messages).
Although there is some debate about precisely who was the first to make
the move—perhaps Eckert and Mauchley with EDVAC in Philadelphia, or
Williams and Kilburn building the Small-Scale Experimental Machine,
known as “Baby,” at Manchester, or one of the other contenders—what
is generally accepted is that the critical development in digital computing
was that of the stored program computer. In contrast to earlier designs, a
stored program computer is a machine whose operation is not directly
encoded in its circuits, but rather is determined by a sequence of instruc-
tions held in its memory—instructions that can, clearly, be changed or
replaced much more easily than the electrical circuits could be reconfig-
ured. Nonetheless, the first age of computing, around the time that this
transition took place, relied heavily on an understanding of the electron-
ics that made up any given machine. Every machine was a prototype;
every program, uniquely designed for a specific computer (and perhaps
even a specific version or configuration of that computer). What we cur-
rently refer to as “instruction sets”—the set of low-level operations that
processors such as the Pentium or PowerPC can understand—were, at

A History of Interaction 7

that stage in the history of computation, intimately tied to the individual
details of the circuitry of any particular computer. So, even as we made
the transition from hardware configuration to digitally stored programs,
the dominant paradigm for interaction with the computer was elec-
tronic. Entering a new program, even if that program was to be stored
digitally in the memory of the computer, could still bear a remarkable
resemblance to electronic reconfiguration, involving plugboards and
patch cables. Indeed, such programming activity was often accompanied
with the development of new circuits that could extend the operation of
the system. The boundary that we now take for granted between hard-
ware and software was much fuzzier then; interacting with the system,
and developing new programs, relied on a thorough understanding of
the electronic design.

Symbolic

The next stage of development is characterized by the emergence of sym-
bolic forms of interaction. The movement from one stage to another is
not a sudden and clear transition; instead, it is a general trend that
emerges in a number of different ways. We can see it in the basic models
offered for programming systems, which was the primary form of inter-
action between human and computer at a time when “users” as we now
know them did not yet exist.

As the transition from electrical to symbolic approaches gradually took
hold, programming computers came to require less understanding of the
detailed construction of each particular machine, and relied increasingly
on regularized and well-understood capacities that would be available
across a wide range of machines—register files, index registers, accumu-
lators, and so forth. At the same time, the primary form of programs
moved from a numeric form (that is, the “machine language” of raw
instructions that a machine would understand) to other symbolic forms
that were more readily understaridable to human beings. So-called
assembly languages are essentially symbolic forms of machine language,
using mnemonic codes that stand in one-to-one correspondence with the
machine level instructions, so that a sequence of instruction codes such
as “a9 62 82 2¢” is rendered as a symbolic expression such as “movl
(ri+), r2.1

8 Chapter 1

Since assembly languages are simply a different rendering of
machine languages—symbolic forms that describe sets of specific
instructions—they are just as tied as machine languages to particular
systems, although, by this stage, computer systems were being pro-
duced industrially rather than developed as one-off prototypes in lab-
oratories. But they are in no way portable between machines of
different sorts, even today—assembly programs for an Intel processor
yield machine instructions that will run only on Intel processors, and
not on other processors made by Motorola. A further progression
along the symbolic path, though, came with the development of the
early programming languages such as LISP and FORTRAN. Essentially,
these lay down two sets of rules. The first set describes what struc-
tural properties a set of instructions will have to be valid programs—
what rules must be followed when creating something that is a
FORTRAN program rather than simply gibberish. The second describe
how programs can be turned into a set of (machine language)
instructions for the computer to execute. The important point is that,
whereas programs would previously be specified with relation to a
specific machine language (perhaps encoded as assembly instructions,
but stll tied to a particular sort of computer), the programmer’s
activity was now lifted to a more abstract level that was simulta-
neously a more natural form of expression and independent of the
precise details of any specific computer, its implementation and
configuration.

The introduction of programming systems such as assemblers and
programming languages moved computer interaction, then, from an
electronic level to a symbolic one. It introduced a set of symbolic repre-
sentations of computer system operation as the primary modality by
which interaction was conducted. Interestingly, this was also reflected in
the physical interaction with systems. Punched cards, for example, can
be regarded as a primitive form of symbolic interaction, especially
because punched card systems quickly came to incorporate both data
cards (that is, cards that carried information for programs to process)
and control cards (instructing the system to begin and end jobs, etc.) The
control cards, then, provide a symbolic language for controlling the
behavior of the system.

A History of Interaction 9

The reason I want to cast the history of interactive computing in terms
of these different sorts of interaction modalities is that it draws our
attention to the fact that they exploit quite different sets of skills. We are
all highly skilled at various forms of symbolic interaction; language and
communication, for us, are largely symbolic in nature, whether these
symbols take the forms of icons, traffic signs, flags, maps, or marks on
paper. Symbolic interaction is a much more natural and intuitive form of
interaction for us than the electronic form that had previously been nec-
essary; and it allows us to bring to bear a much more powerful set of
intuitions and abilities to the interactive task. So, finding errors in
assembly language programs is much less error-prone than trying to do
the same in machine language; and debugging programs written in
so-called high level languages is easier still (although, as any program-
mer will tell you, it is still the most time-consuming and intricate part of
the process of developing software). We are generally able to exploit a
greater range of skills—visual, cognitive, and so on—as we move from
electrical to symbolic forms of interaction.

Textual

The best-developed form of symbolic interaction with which we are
familiar is, of course, written language and textual interaction. So it is
only natural that symbolic interaction with computers should gradually
extend into the textual domain.

Of course, most of the examples I provided for symbolic interaction
were textual in nature, one way or another. For my purposes, a distinc-
tion can be made between symbolic and textual interaction by looking at
the actual interaction with the computer. So, although programs written
in assembly language are clearly textual, the form in which they arrive at
the computer might not be textual at all, but might be encoded on
punched cards or other symbolic media. However, the modes of interac-
tion with technology are continually shifting as technology develops and
new opportunities present themselves, and before long the primary form
of direct interaction with computers was, indeed, textual interaction, at
teletype machines and video terminals.

When this transition took place, textual interaction was no longer sim-
ply a means to describe computer operations, but became the primary

10 Chapter 1

form of interaction. Arguably, this is the origin of “interactive” computing,
because textual interfaces also meant the appearance of the “interactive
loop,” in which interaction became an endless back-and-forth of instruc-
tion and response between user and system. Even in these days of graph-
ical and virtual reality interfaces, this model is still often the only recourse
for some operations.

One reason that textual interaction remains so powerful is that it
draws not only on the use of textual characters but on how those charac-
ters can be combined into words and sets of words. In other words,
along with textual interaction came a “grammar” of interaction, one that
oroke input text into commands, parameters, arguments, and options.
So, just as the move from electrical to symbolic interaction meant that
interface designers could draw upon a new set of human skills and abili-
ties, so too did textual interaction. Textual interaction can draw on our
linguistic skills, not by letting us simply “talk” to computers (at least,
outside of science fiction films), but rather by drawing on our abilities to
create meaningful sentences by combining elements each of which con-
tributes to the sense of the whole.

The compositional character of textual interaction has proven hard to
replace as interfaces have developed. The value, as we will see, of later
interaction modalities such as graphical user interfaces is that they make
the abstract entities of computation into “real,” individuable objects
supporting direct interaction. However, because our programs are still
constructed in terms of abstract entities, textual interaction still proves
its value by giving us the ability to create instructions that operate in
terms of generalities—loops, conditions, patterns, and more.

The other significant feature of the textual interface paradigm is that it
brought the idea of “interaction” to the fore. Textual interaction drew
upon language much more explicitly than before, and at the same time it
was accompanied by a transition to a new model of computing, in which
a user would actually sit in front of a computer terminal, entering com-
mands and reading responses. With this combination of language use
and direct interaction, it was natural to look on the result as a “conver-
sation” or “dialogue.” These days, this idea of dialogue is central to our
notion of “interaction” with the computer, replacing configuration, pro-
gramming, or the other ideas that had largely characterized the interplay

A History of Interaction 11

between users and systems in the past. So, although the notion of “inter-
action” with computers had important predecessors before this period—
such as Ivan Sutherland’s hugely influential work on Sketchpad (Sutherland
1963)—it was arguably from the paradigm of text-based dialogue that
people drew the idea of “interacting with the machine.” And interacting
was something that we already knew how to do.

Graphical

Probably the most significant transition, in terms of the development of the
user interface models that are familiar to us today, was the transition from
textual to graphical interaction. Graphical interaction developed from the
work of many people, including Sketchpad on the TX-2 (Sutherland 1963),
and the work of Alan Kay and his colleagues at PARC, based in turn on the
developmental psychology of Piaget, Bruner, and others (Kay 1993).

Just as the move from symbolic to textual interaction did more than
simply replace one symbolic language with another, the move from tex-
tual to graphical interaction did not simply replace words with icons,
but instead opened up whole new dimensions for interaction—quite lit-
erally, in fact, by turning interaction into something that happened in a
two-dimensional space rather than a one-dimensional stream of charac-
ters. Traditional textual interaction took place at teletype machines or
serial terminals, where information appeared at the bottom of the screen
and scrolled up to disappear off the top. The user’s input and the sys-
tem’s output together formed a single stream of information, arranged
linearly, character by character. In contrast, graphical interaction is char-
acterized by its use of space; information is spread out over a larger
screen area, so that the locus of action and attention can move around
the screen from place to place or can even be in multiple places simulta-
neously (e.g., in different windows). The task of managing information
becomes one of managing space.

Moving from one-dimensional to two-dimenstonal interaction made it
possible, again, to exploit further areas of human-ability as part of the
interactive experience. These included:

Peripheral Attention Distributing information around a two-dimensional
space allows us to arrange it so that it can be selectively attended to.

12 Chapter 1

For example, many applications divide the screen (or window) into two
areas—a large area taking up most of the space in which the primary
interaction takes place, and a smaller area, at one edge or off to the side,
in which messages are displayed about the current progress of other
tasks, or other ancillary information. My word processor uses this
approach. It has a status bar at the bottom of the screen that shows
when the document is being updated, saved, printed, and so forth and
provides various pieces of information that might be helpful in manag-
ing my activity but are not central to it. By placing them in the periphery,
the application exploits my ability to focus on one area while passively
attending to other activity in the edge of my visual field.

Pattern Recognition and Spatial Reasoning Laying out information in
two dimensions lets us apply the skills we use managing visual informa-
tion in the everyday environment. Actions as simple as walking across
the room or picking up a cup involve spatial reasoning skills, and these
can be exploited in two-dimensional interfaces. In particular, our ability
to recognize patterns in the spatial organization of information provides
new ways to convey information, and opportunities to arrange data ele-
ments so that they convey information as a whole. The same techniques
that allow graphs, charts, and other visual information designs to pro-
vide insight into collections of information can also be exploited when
we move computational information and interaction into a two-
dimensional space.

Information Density Pattern recognition draws upon the way in which
certain arrangements of data can draw attention to patterns and other
items of “meta-information.” In turn, this raises a question of “informa-
tion density.” Some information can be conveyed more succinctly in
graphical form than in lists of numbers or other textual representations.
A picture really can be worth a thousand words; it can often be dis-
played more compactly and apprehended more rapidly than can its
thousand-word equivalent. Of course, there are also forms of informa-
tion for which a textual presentation is either desirable or required, but
graphical interaction has never been purely graphical; instead, it extends
the vocabulary of interaction to incorporate graphical as well as textual

A History of Interaction 13

presentation forms and allows textual information to be presented
within a framework that incorporates graphical elements and two-
dimensional layout.

Visual Metaphors As well as giving new ways to depict data, the
graphical approach can also add value by providing new ways to repre-
sent actions and the context in which actions take place. This leads to
the development of visual metaphors for information management. The
most widespread is the office or desktop metaphor, in which information
management tasks are based around a metaphorical model incorporat-
ing filing cabinets and trashcans, graphically displayed on the screen
along with the basic data elements, and so conveying a sense of the activ-
ities that can be performed over the data. In more recent systems, this
has been extended. General Magic’s “Magic Cap” interface, used a met-
aphorical depiction of an office featuring a desk (along with various
desktop tools), a telephone, and a door open to a world outside; note-
taking applications often feature graphical depictions of notebooks or
index cards; and so on. '
The development of graphical interaction techniques led to a model of
interface design known as direct manipulation, in which these elements
are combined and extended. The fundamental principle in direct manip-
ulation interfaces is to represent explicitly the objects that users will deal
with and to allow users to operate on these objects directly. Uploading a
file to a server by naming it, or even by selecting it from an “open file”
dialog, is not a direct manipulation approach; direct manipulation
would advocate selecting the file icon, dragging it and dropping it onto a
representation of the server. The direct manipulation style of interface
extends the idea of the visual metaphor to a richer model in which the
abstract objects that make up the system’s conceptual model—be they
records, files, connections, servers, transactions, or whatever—are realized
in a metaphorical world that also defines how they interact with each
other. From these separate elements, the designer builds an inhabited
world in which users act. Direct manipulation interfaces exploit and
extend the benefits of graphical interaction. Because the system can be
controlled entirely through the manipulation of on-screen objects, all
opportunities for action are “out in the open.” This eliminates (or, at

14 Chapter 1

least, reduces) the need for long sequences of action, paths that might be
difficult to recognize or hard to follow.

Progress

It has been a long transition from interacting with computers using a
soldering iron to interacting using a mouse. It has been neither smooth
nor planned. Instead, the evolution of interaction models has gone hand
in hand with the evolution of technologies, models of computation, and
perceptions of the roles that computers will play in our lives.

/ Despite the rather chaotic evolution of interaction, it is still possible to
draw out some general trends. The trend I have emphasized here is the
gradual incorporation of a wider range of human skills and abilities.
This allows computation to be made ever more widely accessible to peo-
ple without requiring extensive training, and to be more easily integrated
into our daily lives by reducing the complexity of those interactions. The
“skills and abilities” perspective also offers a model for what sorts of
opportunities new research directions might offer.

New Models for Interactive System Design

Graphical interaction remains the dominant paradigm for interaction
with computers. In 1981 Xerox’s Star was the first personal computer to
ship with the features of a graphical user interface as we recognize them
today—windows, menus, and a mouse—and the Macintosh, three years
later, was the first to ship in volume at an affordable price. Perhaps more
significantly, the release of Macintosh signaled a sea change in the way
in which we interacted with computers. It simply became clear that this
new paradigm was how we would interact with computers from then
on.? Other manufacturers started shipping their machines with mice and
with displays capable of supporting windowed interfaces, and the graph-
ical user interface became the familiar face of computing.

Twenty years later, this is still true. As [write this, there are four com-
puters here in my office, running three different operating systems; but
they all display similar graphical user interfaces comprising windows,
menus, and widgets such as buttons and scroll bars, controlled by a
mouse sitting next to the keyboard. Although the Macintosh is arguably

A History of Interaction 15

the only one that was designed that way from Day 1, the style that it
introduced has remained largely unchallenged. In fact, the graphical
interface predominates even in those areas where its application is more
questionable, from wall-sized electronic whiteboards to small handheld
computers.

However, recent research programs have begun to explore new para-
digms for interaction and interactive system design. Some of these will
be the topics of the next few chapters, but a quick sketch is in order here.

Tangible and Social Approaches to Computing

This chapter opened by discussing how we are increasingly encountering
computation that moves beyond the traditional confines of the desk and
attempts to incorporate itself more richly into our daily experience of the
physical and social world. Each of these areas—physical and social—has
been a focus of research attention.

Work on physical interaction has been a particularly active topic in the
last few years. A variety of terms have been used to encompass the dif-
ferent activities being carried out and concerns being addressed. I use
“tangible computing” here as an umbrella term.?

Tangible computing encompasses a number of different activities. One
general trend is to distribute computation across a variety of devices,
which are spread throughout the physical environment and are sensitive
to their location and their proximity to other devices. In these sorts of
environments, printers and fax machines might advertise their presence
to handheld computers, which can then reconfigure themselves around
the set of services available in the local environment; or tags identifying
individuals might signal their presence to each other so that their wear-
ers can find out which people in a meeting room share their interests, or
even just who the people are. A second trend is to augment the everyday
world with computational power, so that pieces of paper, cups, pens,
ornaments, and toys can be made active entities that respond to their
environment and people’s activities. A toy might know when it has been
picked up and change the computer display to reflect the fact that its
owner is clearly feeling more playful rather than concentrating on work.
Or picking up a piece of paper might cause my computer to show me
related documents or remind me about other things I was working on

16 Chapter 1

when I last worked on it. A third topic of investigation in tangible com-
puting is how these sorts of approaches can be harnessed to create envi-
ronments for computational activity in which we interact directly
through physical artifacts rather than traditional graphical interfaces
and interface devices such as mice. Mice provide only simple informa-
tion about movement in two dimensions, while in the everyday world we
can manipulate many objects at once, using both hands and three dimen-
sions to arrange the environment for our purposes and the activities at
hand. A child playing with blocks engages with them in quite different
ways than we could provide in a screen-based virtual equivalent; so tan-
gible computing is exploring how to get the computer “out of the way”
and provide people with a much more direct—tangible—interaction
experience.

Although perhaps less focused as a research activity than tangible
computing, the last decade or so has also seen increasing attempts to
incorporate understandings of the social world into interactive systems.
By analogy with tangible computing, I refer to this as “social computing.”

Again, it encompasses a range of different activities that are more or
less aligned. One set of activities involves incorporating social under-
standings into the design of interaction itself. That is, it attempts to
understand how the “dialogue” between users and computers can be
seen as similar and dissimilar to the way in which we interact with each
other. Social science offers models of social action and the establishment
of social meaning, which provide insight into the design of interaction
with software systems. At the same time, anthropological and sociologi-
cal approaches have been applied to uncovering the mechanisms through
which people organize their activity, and the role that social and organi-
zational settings play in this process. These investigations have yielded
both prototype systems and generalized understandings of the influence
that social and organizational settings can have on the organization of
activities around computer systems. Finally, here, a third set of investiga-
tions has explored how what we normally consider to be “single-user”
interaction—one person sitting in front of one computer—can be
enhanced by incorporating information about others and the activity of
others. This information can, in turn, assist individuals in exploring the
electronic world of a computer application in the same way that the real

A History of Interaction 17

world reveals to us signs and indications of the activities of others that
can help us find our way around and carry on our actions—whether by
“following the crowd” to find an event, sizing up the clientele when
deciding on a restaurant, or knowing that a hotel is a good place to
catch a taxi.

These are brief sketches of research areas, to be explored in more detail
later on. However, even these overviews show that Human-Computer
Interaction research is responding to the challenges of computation that
inhabits our world, rather than forcing us to inhabit its own.

From Tangible and Social Computing to Embodied Interaction

My reason for viewing the history of interaction as a gradual expansion
of the range of human skills and abilities that can be incorporated into
interaction with computers is that T believe that it provides a valuable
perspective on activities such as tangible and social computing. In partic-
ular, it shows that these two areas draw on the same sets of skills and
abilities. Tangible and social computing are arguably aspects of one and
the same research program.

This is the hypothesis that this book sets out to explore. The rest of the
book will discuss the hypothesis and its implications in more detail, but I
will set the argument out briefly here. It has four parts.

First, I want to argue that social and tangible interaction are based on
the same underlying principles. This is not to deny their obvious differ-
ences, both in the approaches they adopt and the ways in which théy
apply to the design of interactive systems. Nonetheless, they share’some
important elements in common. In particular, they both exploit our
familiarity and facility with the everyday world—whether it is a world of
social interaction or physical artifacts. This role of the everyday world
here is more than simply the metaphorical approach used in traditional
graphical interface design. It’s not simply a new way of using ideas like
desktops, windows, and buttons to make computation accessible.
Instead of drawing on artifacts in the everyday world, it draws on the
way the everyday world works or, perhaps more accurately, the ways we
experience the everyday world. Both approaches draw on the fact that
the ways in which we experience the world are through directly interacting

18 Chapter 1

with it, and that we act in the world by exploring the opportunities for
action that it provides to us—whether through its physical configura-
tion, or through socially constructed meanings. In other words, they share
an understanding that you cannot separate the individual from the
world in which that individual lives and acts.

This comes about in contrast to a narrowly cognitive perspective that,
for some time, dominated the thinking of computer system designers and
still persists to a considerable degree. The positivist, Cartesian “naive
cognitivism” approach makes a strong separation between, on the one
hand, the mind as the seat-ef comsciousness and rational decision mak-
ing, with an abstract model of the world that can be operated upon to -
form plans of action; and, on the other, the objective, external world as a
largely stable collection of objects and events to be observed and manip-
ulated according to the internal mental states of the individual. From
this perspective, a disembodied brain could think about the world just as
we do, although it might lack the ability to affect it by acting in it. In
contrast, the new perspective on which tangible and social computing
rest argues that a disembodied brain could not experience the world in
the same ways that we do, because our experience of the world is inti-
mately tied to the ways in which we act in it. Physically, our experiences
cannot be separated from the reality of our bodily presence in the world;
and socially, too, the same relationship holds because our nature as
social beings is based on the ways in which we act and interact, in real
time, all the time. So, just as this perspective argues that we act in the
world by exploring its physical affordances, it also argues that our social
actions are ones that we jointly construct as we go along. A conversation
between two people is shaped in response to the moment rather than
abstractly planned, in much the same way as a juggler has to respond
dynamically to the way in which each ball falls.

This leads to the second part of my argument, which is that the central
element of this alternative perspective is the idea of embodiment. By
embodiment, I do not mean simply physical reality, although that is
often one way in which it appears. Embodiment, instead, denotes a form
of participative status. Embodiment is about the fact that things are
embedded in the world, and the ways in which their reality depends on
being embedded. So it applies to spoken conversations just as much as to

A History of Interaction 19

apples or bookshelves; but it’s also the dividing line between an apple
and the idea of an apple.

Why is embodiment relevant to these sorts of interactions with com-
puters? It is relevant in at least three ways.

First, the designers of interactive systems have increasingly come to
understand that interaction is intimately connected with the settings in
which it occurs. In adopting anthropological techniques as ways to
uncover the details of work and develop requirements for interactive sys-
tems to support that work, we have begun to realize just how important
a role is played by the environment in which the work takes place.* This
is true of both physical environments and social or organizational ones.
Physical environments are arranged so as to make certain kinds of activ-
ities easier {or more difficult), and in turn, those activities are tailored to
the details of the environment in which they take place. The same thing
happens at an organizational level; the nature of the organization in
which the work takes place will affect the work itself and the ways it is
done. The increasing sensitivity to settings leads naturally to a concern
with how work and interaction are embodied within those settings,
because that embodiment determines how it is that computation and the
setting will fit together.

Second, this focus on settings reflects a more general turn to consider
work activities and artifacts in concrete terms rather than abstract ones.
Instead of developing abstract accounts of mythical users, HCI increas-
ingly employs field studies and observational techniques to stage “encounters”
with real users, in real settings, doing real work. These encounters are
often very revealing, as'thew/skow/‘tilat the ways the work gets done
are not the ways that are’listed in procedural manuals, or even in
the accounts that the people themselves would tell you if you asked.
Attention to detail, to specifics, and to actual cases, leads in turn to
thinking about computation in similar terms. In particular, it leads to a
concern with how interaction is manifest in the interface. Tangible com-
puting reflects this concern by exploring the opportunities for us to man-
ifest computation and interaction in radically new forms, while social
computing seeks ways for interaction to manifest more than simply the
programmer’s abstract model of the task, but also the specifics of how
the work comes to be done. In the real world, where the artifacts through

20 Chapter 1

which interaction is conducted are directly embodied in the everyday
environment, these are all manifested alongside each other, inseparably.
Tangible and social computing are trying to stitch them back together
after traditional interactive system design approaches ripped them apart.

Third, there is a recognition that, through their direct embodiment in
the world we occupy, the artifacts of daily interaction can play many dif-
ferent roles. As an example, consider the revealing studies of the role of
medical record cards in hospitals (Nygren, Johnson, and Henriksson
1992). From a technical perspective, patient record cards are simply car-
riers of well-defined information concerning the patient’s diagnosis and
treatment, and, as embodied on paper, present various problems: they
can be lost, they can be hard to read, and they can only be in one place
at a time. From this perspective, it seems both straightforward and bene-
ficial to replace the paper records with electronic versions. However, in
practice, such straightforward replacements are rarely successful. Studies
of the failure of such systems show that the paper records are more than
simply carriers of information about patients. They carry other impor-
tant information as a result of the way that they are used in the work
of the hospital. For example, handwriting on the forms reveals who
performed different parts of the treatment; wear and tear on the form
indicates heavy use; and the use of pencil marks rather than pen infor-
mally indicates tentative information. To trained eyes, a card conveys
information not just about the patient, but also about the history of
activities over the card and around the patient. It can do this because it
not only represents the world of the patient, but it also participates in
that world—it is an embodied artifact, and it participates in the embod-
ied activities of those administering medical care. So, one relevance of
embodiment for interaction with computational systems is that, for
many tasks, it is relevant to consider how computation participates in
the world it represents. Computation is fundamentally a representa-
tional medium, but as we attempt to expand the ways in which we inter-
act with computation, we need to pay attention to the duality of
representation and participation.

The third element of this book’ argument is that the idea of embodi-
ment as a common foundation points us to other schools of thought.
Embodiment is not a new phenomenon, or a new area for intellectual

A History of Interaction 21

endeavor. In fact, it is a common theme running through much twentieth
century thought. The notion of embodiment plays a special role in one
particular school of philosophical thought, phenomenology.

Phenomenology is primarily concerned with how we perceive, experi-
ence, and act in the world around us. What differentiates it from other
approaches is its central emphasis on the actual phenomena of experi-
ence, where other approaches might be concerned with abstract world
models. Traditional approaches would suggest that we each have an
understanding of the elements of which our world is constructed, and an
abstract mental model of how these concepts are related. We understand
that there are entities we can drink from, and that cups, glasses, and
mugs are examples; we understand that we can sit on things like sofas
and stools, and that people might keep cats and rabbits as house-pets,
but rarely elephants or seals. This information, abstractly encoded in our
heads, guides our actions in the world. Armed with a model of appropri-
ate concepts and relations—an ontology—we can look around us and
recognize what we see. So, the traditional model supposes that when I
encounter a glass of wine, even though I have never seen this particular
one before, I can still recognize it as being a glass of wine because of the
way in which it fits into my model as an instance of the abstract class of
glasses and other drinking vessels.

In contrast, the phenomenologists argue that the separation between
mind and matter, or between what Descartes called the res cogitans and
the res extensa, has no basis in reality. Thinking does not occur sepa-
rately from being and acting. Certainly, there is nothing in our experi-
ence to suppo%eparation. In every case, we encounter them
together, as aspects of the same existence. Consequently, phenomenology
has attempted to reconstruct the relationship between experience and
action without this separation. Rather than the Cartesians’ theory- or
model-driven approach to perception, the phenomenological approach
argues for what we might call a preontological apprehension of the
world. Perception begins with what is experienced, rather than begin-
ning with what is expected; the model is to “see and understand” rather
than “understand and see.”

To say that phenomenology is all about perception is to limit it
unfairly. In addition to perception, it is also concerned with action, with

22 Chapter 1

understanding, and with how these are all related to each other, as part
and parcel of our daily experience as participants in the world. In the
hands of some, such as Alfred Schutz, phenomenology has also been a
tool to understand social action and practice; others such as Wittgenstein,
while not phenomenologists, have developed allied approaches to topics
such as language and meaning. As we will see, these approaches provide
an extensive set of investigations of the questions of presence, embodi-
ment, and action.

In turn, the fourth element of the book’s argument is that we can build
on the phenomenological understandings to create a foundm;p;roach
to embodied interaction. Such a foundation should do two things. First,
it should account for the ways in which social and tangible computing—
and, perhaps, further areas to be defined—are related to each other,
showing how they can be draw upon each other’s work and provide a
unified model for Human-Computer Interaction. Second, it should
inform and support the design, analysis and evaluation of interactive
systems, providing us with ways of understanding how they work, from
the perspective of embodiment.’

This, then, is the four-part hypothesis that this book sets out to
explore: that tangible and social computing have a common basis; that
embodiment is the core element they have in common; that embodiment
is not a new idea, but has been a primary topic for phenomenology; and
that phenomenology and related investigations of embodiment can pro-
vide material for developing a foundation for embodied interaction.

This has all been presented so far in very broad strokes. The chapters
to come will explore the issues in more depth and provide much more
background. The two chapters that follow describe the recent trends in
HCI research that are the starting point for this work. Chapter 2 deals
with tangible computing, while chapter 3 explores social computing.
Each presents both the research and the context in which it emerged.
However, they present tangible and social computing as self-contained;
in chapter 4, we begin to examine how they might be brought together,
and how ideas from phenomenology and other philosophies of presence
and experience can be brought to bear to understand the relationships
between them. Just as chapters 2 and 3 try to introduce the set of ideas
from tangible and social computing that will inform the later discussion,

A History of Interaction 23

so chapter 4 provides an introduction to the phenomenological work
that we will draw upon later. With this background, chapter 5 explores
the notion of embodiment in more depth, drawing out a number of con-
stituent elements whose relationships can be used to analyse interaction
case studies. Chapter 6 builds on this and presents a framework that
arranges these foundational elements to be able to draw on them for
design, and chapter 7 points to some future directions.

2

Getting in Touch

For a device whose fundamental properties have changed so radically over
the past thirty years, the personal computer itself—the familiar beige
box sitting by the desk-——has changed remarkably little.

The personal computer (PC) as we currently know it has its origins in
work carried out at Xerox’s Palo Alto Research Center in the early 1970s.
The forerunner of the modern PC was, arguably, the Alto workstation
developed by researchers there; it pioneered such now-common features
as bitmapped displays with overlapping windows, graphical interfaces
with multiple fonts and pop-up menus, and computers linked together
over local-area networks. Although underpowered by today’s standards
(it was clocked at 6 MHz rather than the many hundreds of today’s PCs),
it nonetheless set the stage for what was to come, and its basic feature set,
built around “the three ‘M’s”—millions of pixels, a megabyte of memory,
and a million instructions per second—is still with us today.

On the other hand, an Alto in those days cost around $16,000 to
build, scarcely affordable enough to put “a computer on every desk,” as
Microsoft would later set out to do. A more affordable option in 1977
(by which time the PARC researchers were working on the Dorado, a
considerably faster and more powerful machine) was the Apple Ii, the
device which, arguably, kick-started the personal computer industry. The
Apple I was powered by a 6502 8-bit processor running at 1.5 MHz. It
had 8 kilobytes of semiconductor memory and stored programs on cas-
sette tape; optional floppy disk drives stored around 150 kilobytes each.
Compare that to the modern personal computer. The laptop computer
on which I’'m writing this is certainly not top-of-the-line; it wasn’t even
top-of-the-line when 1 bought it a year ago. It has a 166 MHz 32-bit

26 Chapter 2

processor, 64 megabytes of memory, and a 13-inch color display and can
store up to 6 Gb on an internal hard disk; and it cost under $4,000.!

Imagine what it would be like if any other technology had undergone
such rapid advances in price/performance. A car would cost a few dollars;
airplanes would travel at hundreds of times the speed of sound; televi-
sions would weigh a few ounces. More to the point, if cars, airplanes,
and televisions had been so radically transformed, they would not be
cars, airplanes, and televisions any more. They would have transformed
themselves into something else altogether.

Computers, though, remain computers. As we enter the twenty-first
century, today’s PC still looks remarkably similar to that of the late
1970s (and perhaps even more like the Alto of the earlier part of that

decade; see figure 2.1). This is not simply a matter of packaging and

Figure 2.1

Xerox’s Alto (1974). This early personal computer is somewhat bulkier than
today’s, but is otherwise very recognizable in form. Reprinted by permission of
Xerox Palo Alto Research Center.

Getting in Touch 27

industrial design, although it is certainly the case that with a few notable
exceptions, we seem to be firmly stuck in an age of beige boxes. My con-
cern is not so much about the boxes themselves as about the relationship
of the user to the box. Despite the fact that computers are so radically
different from the computers of twenty years ago, and that their capabil-
ities are so vastly different, we interact with them in just the same way;
we sit at a desk, watching the screen and typing on the keyboard. If you
were to look at a photograph of people using computers some time over
the last twenty years, their clothes and hairstyle might give you a clue to
the date when the picture was taken, but the style of interaction with the
computer certainly would not.

Similarly, the style of interaction concerns not simply the set of physi-
cal devices (keyboards, screens, and mice) or the set of virtual devices
(dialog boxes, scroll bars, and menus) through which we interact, but
also the ways in which the computer fits into our environments and our
lives. Interaction with screen and keyboard, for instance, tends to
demand our direct attention; we have to look at the screen to see what
we’re doing, which involves looking away from whatever other elements
are in our environment, including other people. Interaction with the key-
board requires both of our hands. The computer sits by the desk and ties
us to the desk, too. So, it is not simply the form of the computer that has
changed remarkably little over the last thirty years; it is also the forms of
computer-based activity and the roles that we imagine computers play-
ing in our everyday lives.

Although this model of everyday computing might be conventional, it
is not inevitable. The rise of the personal computer—and, more broadly,
of personal computing—was an attempt to break away from the then-
dominant paradigm of mainframe computing. Similarly, while personal
computing may now be established as the dominant model, a variety of
alternatives have been explored in the research community; departures
from the world of the conventional PC as radical as the PC was from the
world of the mainframe. In this chapter, [will take a brief tour through
some of the research laboratories where these alternatives are being
explored. In particular, I will focus on an approach that looks at the rela-
tionship between computers on the deskrop and the world in which they
(and we} operate. This is a model of interaction that I refer to as “tangible

28 Chapter 2

computing.” Although it is only lately that the tangible computing para-
digm has become broadly established, its has emerged from a research
program that stretches back over a decade.

Ubiquitous Computing

We begin the tour, ironically enough, in the Computer Science Lab at
Xerox PARC—the same place that gave us the desktop PC. In the 1970s,
Xerox had set up PARC to explore “the architecture of information,”
and the Computer Science Lab, under the guidance of former ARPA
manager Bob Taylor, had delivered what was to become the basic ele-
ments of office information technology in the decades to follow—powerful
personal workstations, laser printers, and shared servers, linked together
on local area networks. Xerox, famously, had failed to recognize its own
future in PARC’s vision, so today’s office technology generally doesn’t
carry a Xerox label (Smith and Alexander 1988).

By the start of the 1990s, the situation was different. PARC’s vision of
the architecture of information had, largely, come to pass; and, in the
opinion of the new manager of the Computer Science Lab, Mark Weiser,
it was time for a new and equally radical vision of the future of technology.

What Weiser proposed was a research program that he dubbed “Ubig-
uitous Computing.” Weiser saw that the development and diffusion of
general-purpose computers, and in particular PC’s, had resulted in a
focus on the computer rather than on the tasks that the computer was
used to accomplish. He argued that ongoing technological develop-
ments, particularly in mobile and low-power devices, would transform
the nature of computers and the way we interact with them. Why deal
with a single, large, expensive computer when you could harness many
tiny, low-cost devices spread throughout the environment? Instead of
always taking work to the computer, why not put computation wherever
it might be needed? Through the technical developments that supported
this new model, he saw an opportunity to turn attention away from the
dominating focus on the computer sitting on the desktop and back to the
applications, and to the artifacts around which those applications were
structured. Weiser’s vision of “ubiquitous computing” was one of com-
putationally enhanced walls, floors, pens, and desks, in which the power

Getting in Touch 29

of computation could be seamlessly integrated into the objects and activ-
ities of everyday life. '

One analogy that Weiser proposed as a way of understanding his
vision for the new role of computation was that of solenoids, the elec-
tronically actuated switches that are part of the fabric of many everyday
technologies. For example, he observed, a modern car has a vast num-
ber of solenoids, invisibly controlling everything from the air condition-
ing to the fuel intake. Solenoids are a critical component of modern
technological design and are used in all sorts of settings. And yet, we
don’t deal directly with solenoids in the way we do with computers. We
don’t have to think about the design of the “human-solenoid interface”;

5

we don’t have programs on “solenoid literacy” in schools; you can’t
take a degree in “solenoid science,” and nobody had to upgrade to
“Solenoids 2000.”

Why have computers and solenoids followed different paths? Various
possibilities present themselves. Perhaps it is because of the nature of
computers as multipurpose devices; or perhaps it is a historical accident,
a feature of how computer technology was introduced into the home
and work environments. And to be sure, there are all sorts of computer
technologies surrounding us that are far more like solenoids than they
are like PCs, such as the computer processors inside my television set,
microwave oven, and car. The difference between my PC and those other
devices is that those other devices are organized around human needs
and functions.

Weiser’s model of ubiquitous computing was also, paradoxically, one
of invisible computers. He argued for a vision of computers in which the
computer had become so ubiquitous that it had, essentially, disappeared.
He proposed that the computer of the twenty-first century would have
proceeded further along the path from the mainframe to the processor in
my microwave oven, and that the intermediate step—the desktop PC—
would be all but gone. However, in this world, although there might be
no more computers as we understand them today, there would certainly
be computation. In fact, there might be a great deal more computation
than there is now. Computational devices would be embedded in all
sorts of technologies, Weiser argued, creating a variety of specialized
devices augmented with computational power. Computers would

30 Chapter 2

disappear into the woodwork; computers would be nowhere to be seen,
but computation would be everywhere.

Computation by the Inch, Foot, and Yard

In the Computer Science Lab at Xerox PARC, Weiser initiated a wide-
ranging research program around his vision of Ubiquitous Computing,
fostering the development of new computational technologies, the infra-
structure necessary to support them, and new application models.
PARC’s ubiquitous computing strategy followed three tracks: they were
known as computation by the inch, the foot and the yard (see figure 2.2).

“Computation by the inch” focused on the development of small
devices, like electronic tags or computational “Post-It” notes. One focus
of attention was the use of devices called “Active badges,” originally
developed at the Olivetti Research Centre in Cambridge, England (Want et
al. 1992). Active badges are devices measuring roughly 1.5 inches square
that are iritended to be worn like normal identity badges. However, they
house some simple electronics and emit a fixed, coded infrared signal
every thirty seconds or so (or whenever a button on the badge is
pressed). These signals are detected by a network of infrared receivers
located in the environment, and which are connected to a computational
server process. Because each badge emits an individual code, and
because its signal will generally only be received by the closest detector,
the server can maintain a map of the location of each badge within the
sensor network, which in turn can locate the badge’s wearer within the
environment.

When people wear active badges, then applications can help make the
environment responsive to their movements. The system can route tele-
phone calls to the current location of the person being called, display rel-
evant information on nearby monitors as they pass by, or customize the
behavior of a computer system to the needs of the person sitting at it. In
Weiser’s model, badges or similar tags could also be attached to books
and other artifacts, so that their location and mutual proximity could
become a resource to computer-based applications.

If computation “by the inch” sought a model of computationally
enhanced Post-It Notes, the computation “by the foot” was concerned
with computationally enhanced pads of paper. The primary focus of this

Getting in Touch 31

Roy Want

(d)

Figure 2.2

Computing by the inch, the foot, and the yard: (@) an active badge, (b) the PARC
Tab, (c) the PARC Pad, and (d) a meeting at the Liveboard. Reprinted by
permission of Xerox Palo Alto Research Center.

32 Chapter 2

area of work was the development and use of computational devices of
about the size and power of recent laptop computers. Laptop computers
were, of course, already widely available at this point, but they tended
(as they still do) to function simply as scaled-down versions of their
desktop cousins. In contrast, the goal of ubiquitous computing research
was not simply on the size and packaging of the devices, but of how they
would fit into a world of everyday activities and interaction. As a result,
research concentrated on other concerns. Examples included stylus-
based interaction, which could eliminate keyboards as the primary
source of interaction, and which could support note-taking and sketch-
ing, and mobile operation, so that devices could be moved from place to
place without interfering with their operation.

Finally, investigations into computation “by the yard” introduced the
opportunity to consider much larger devices. In particular, attention
focussed on wall-sized devices such as the LiveBoard. LiveBoard was a
large-scale display (approximately five feet by three feet) supporting
multiple pens, a sort of computationally enhanced whiteboard. Research-
ers observed how the very physical form of this device was an important
component in structuring interactions with it. On the one hand, the use
of pen input meant that collaborative activities (such as brainstorming in
a meeting) would be implicitly structured by the fact that the board was
large enough for everyone to see at once, but that two people could not
stand in front of the same part of the board or write in the same area at
the same time. On the other hand, the board’s large size also meant that
new interaction techniques would have to be developed; using a scroll
bar or pull-down menu on a board a board five feet wide could be, quite
literally, a pain in the neck.

Discussing each of these components of PARC’s ubiquitous computing
strategy independently can mask the critical integration of the various
facets of the program. None of these devices was intended to operate on
its own. The focus, after all, was on a form of computation more deeply
integrated with the everyday environment, and the everyday environ-
ment is filled with a variety of objects and devices. So it was with the
ubiquitous computing vision. A single user might have, at his or her dis-
posal, tens or more of the inch-sized devices, just as we might have many
Post-It notes dotted around, stuck to computer screens, walls, books,

Getting in Touch 33

and sheets of paper; at the same time, they might also have three or four
foot-sized devices, just as I might have a number of notebooks for differ-
ent topics or projects; but just as I probably only have one or maybe two
whiteboards in my office, there will be fewer of the devices at the larger
scale. What is more, information is expected to be able to move around
between the different devices. Notes that I have prepared on an elec-
tronic pad might be beamed onto the board for group consideration in a
meeting; while action items might be migrated off into a hand-held
device that stores my calendar and to-do list. In the everyday environ-
ment, information continually undergoes transformations and transla-
tions, and we should expect the same in a computationally enhanced
version of that environment such as might be delivered to us by ubiqui-
tous computing.

The Digital Desk

At much the same time as Weiser and his PARC colleagues were develop-
ing the ubiquitous computing program, related activity was going on in
another Xerox lab, in Cambridge, England. FuroPARC had been set up
as a European satellite laboratory of PARC. It was a much smaller lab
(with a research complement of around twenty) with a focus on interdis-
ciplinary research into Human-Computer Interaction and Computer-
Supported Cooperative Work.

EuroPARC was home to a variety of technological developments, but
the particular technology that concerns us here is the Digital Desk,
designed and developed by Pierre Wellner (Wellner 1991; Newman and
Wellner 1992). In common with many people, Wellner had observed
that the “paperless office” envisioned by many in the 1970s and early
1980s had manifestly failed to develop. However, that was not to say
that the development of personal computers, and increasingly net-
worked personal computers, had not caused an massive increase in the
number of digital or online documents that we all have to deal with
everyday. Wellner was concerned with how we could work with both
paper and electronic documents in a much more fluid and seamless way
than is normally the case. The traditional approach to these problems
was either to scan in the paper documents to bring them into the

34 Chapter 2

electronic realm, or to print out the electronic documents to bring them
into the physical realm. By moving across the boundary from online doc-
uments to paper documents and back again, users could take exploit the
advantages of each; the digital malleability and computational power of
electronic documents with the portability, readability, and informal
interaction of paper ones. As many studies have attested, paper has
many properties that are hard to reproduce in the electronic world
(Sellen ‘and Harper 1997; Henderson 1998), while, at the same time,
electronic documents increasingly exploir features (such as animation,
hyperlinks, or interactive elements) that paper documents cannot cap-
ture. So, the move back and forth between electronic and paper forms is
not only inconvenient but also impoverished, since some features always
remain behind. Taking his cue from Weiser’s ubiquitous computing
work, Wellner wondered if there wasn’t a way to combine the two
worlds more effectively by augmenting the physical world with compu-
tational properties.

Wellner’s Digital Desk (figure 2.3) combines elements of each. The
Digital Desk was a physical desktop, much like any other, holding
papers, pens, coffee cups, and other traditional office accoutrements.
However, it was also augmented with some distinctly nontraditional
components. Above the desk were placed a video projector and a video
camera. Both of these were pointed down toward the desktop; the pro-
jector would project images onto the desk, over whatever objects were
lying there, and the camera could watch what happened on the desktop.
These devices were connected to a nearby computer. Image processing
software running on the computer could analyze the signal from the
video camera to read documents on the desk and watch the user’s activ-
ity. At the same time, the computer could also make images appear on
the desk by displaying them via the video projector.

The result was a computationally enhanced desktop supporting inter-
action with both paper and electronic documents (Wellner 1993). Elec-
tronic documents could be projected onto the desktop by the video
projector, but then could be moved around the (physical) desktop by
hand (using the video camera to track the user’s hand movements and
then “moving” the displayed document in coordination). Similarly,
physical documents could be given computational abilities on the same

Getting in Touch 35

Figure 2.3

Wellner’s Digital Desk allowed interaction with paper and electronic documents
on the same desktop. Reprinted by permission of Xerox Research Centre
Europe.

36 Chapter 2

desktop. For example, a paper document containing a list of numbers
could be used as input to a virtual calculator; the computer could use the
camera to “read” the numbers off the printed page, and then project the
result of a calculation over those figures.

Two features of the Digital Desk were critical to its design. The first
was its support for manipulation. In Wellner’s first prototype, one
moved objects around on the desk with one’s fingers; in contrast with
the prevailing approach to interface design, this was really direct manip-
ulation. What’s more, of course, while our computer systems typically
have only one mouse, we have two hands and fen fingers. By tracking
the position and movements of both hands or of multiple fingers, the
Digital Desk could naturally support other behaviors that were more
complicated in traditional systems, such as using both hands at once to
express scaling or rotation of objects. The second critical design feature
was the way in which electronic and physical worlds were integrated. A
document on the digital desk could consist of both physical content
(printed on a page) and electronic content {projected onto it), and print-
ers and cameras allowed material to move from one domain to the other
fluidly so that objects created on paper could be manipulated electroni-
cally. The Digital Desk offered developers and researchers an opportu-
nity to think about the boundary between the physical and virtual
worlds as a permeable one.

While the work-on ubiquitous computing had shown how computa-
tion could be brought out of the “box on the desk” and into the every-
day world, Wellner’s work on the digital desk expanded on this by
considering how, once the real world was a site of computational activ-
ity, the real and electronic worlds could actually work together.

Virtual Reality and Augmented Reality

Weiser and Wellner shared the goal of creating computationally aug-
mented reality. They both attempted to take computation and embed it
in the everyday world. This follows in the trend, outlined earlier, to
expand the range of human skills and abilities on which interaction can
draw. In this case, the abilities to be exploited are those familiar ways in
which we interact with the everyday world; drawing on whiteboards,

Getting in Touch 37

moving around our environments, shuffling pieces of paper, and so on.
One of the interesting feature of these approaches, at the time, was the
way in which they developed in opposition to another major trend—
immersive virtual reality.

Virtual reality (VR) is, at least in the popular consciousness, a technol-
ogy of recent times; it became particularly prominent in the 1990s.
Immersive VR as we know it today came about through the increase in
computer power, and particularly graphics processing, that became
available in the late 1980s, as well as some radical sensor developments
that gave us data gloves and body suits. The technical developments sup-
porting immersive VR became widespread at around the same time as
William Gibson’s notion of “cyberspace”—a technically mediated con-
sensual hallucination in which people and technology interacted—also
entered the popular consciousness. Virtual reality has been around a
good deal longer than that, however. Ivan Sutherland, the father of inter-
active computer graphics, went on to investigate what we now recognize
as virtual reality technology back in the 1960s, and the use of digital
technology to create environments such as flight training simulators is
well-known. Howard Rheingold’s book Virtual Realiry (1992) docu-
ments some of the early history of this seemingly recent technology.

Virtual reality immerses the user in a computationally generated real-
ity. Users don head-mounted displays, which present slightly different
computer-generated images to each eye, giving the illusion of a three-
dimensional space. By monitoring the user’s head movements and
adjusting the image appropriately, this three-dimensional space can be
extended beyond the immediate field of view; the user can move his head
around, and the image moves to match. With appropriating sensing
technologies, the user can enter the virtual space and act within it. A
“dataglove” is a glove augmented with sensors that report the position
and orientation of the hand and fingers to a computer; the hand of the
user wearing the glove is projected as a virtual hand into the same com-
puter-generated three dimensional space that the virtual reality system
generates, so that the user can pick up virtual objects, examine them,
move them around, and act in the space.

The ubiquitous computing program was getting under way at about
the point when virtual reality technology began to make its way out of

38 Chapter 2

research laboratories and into newspaper articles. Both approaches to
the future of computing are based on similarly science-fiction notions;
immersion in a computer-generated reality, on the one hand, and com-
puters in doorknobs and pens on the other. They embody, however, fun-
damentally different approaches to the relationship between computers,
people and the world. In the virtual reality approach, interaction takes
place in a fictional, computer-generated world; the user moves into
that world, either through immersion or, more commonly these days,
through a window onto the world on a computer screen. The world of
interaction is the world of the computer. The ubiquitous computing
approach to interaction—what Weiser dubbed “physical virtuality” and
would become known as augmented reality—does just the opposite. It
moves the computer into the real world. The site of interaction is the
world of the user, not that of the system. That world, in the augmented
reality vision, may be imbued with computation, but the computer itself
takes a back seat.

The Reactive Room

The ubiquitous computing model distributes computation throughout
the environment. All sorts of objects, from walls to pens, might have
computational power embedded in them. For someone concerned with
interaction, this raises one enormous question—how can all this compu-
tation be controlled?

At the University of Toronto, Jeremy Cooperstock and colleagues
explored this question in an environment they called the Reactive Room
(Cooperstock et al. 1995). The Reactive Room was a meeting room sup-
porting a variety of physical and virtual encounters. It grew out of both
the ubiquitous computing perspective and the “media space” tradition,
an approach to supporting collaboration and interaction through a com-
bination of audio, video, and computational technology (Bly, Harrison,
and Irwin 1993). The room was designed to support not only normal,
face-to-face meetings, but also meetings distributed in space (where
some participants are in remote locations) and time {recording meeting
activity to be viewed later by someone else). To that end, it also featured
a shared computer display, for electronic presentations and application-

Getting in Touch 39

based work; a variety of video and audio recorders; and audio and video
units connected to a distributed analog A/V network that could be con-
nected to similar “nodes” in people’s offices, so they could remotely
“attend” meetings.

However, such a complex and highly configurable environment pre-
sented considerable challenges for control and management. To config-
ure the room for any given situation (such as a presentation to be
attended by remote participants), each device in the room would have to
be configured independently, and adjusting the configuration to support
the dynamics of the meeting was even more challenging. The design of
the Reactive Room sought to use ubiquitous computing technology as a
means to manage this problem. The critical move here was to see ubiqui-
tous computing as a technology of context; where traditional interactive
systems focus on what the user does, ubiquitous computing technologies
allow the system to explore who the user is, when and where they are
acting, and so on.

In the case of the reactive room, contextual information could be used
to disambiguate the potential forms of action in which a user might
engage. For example, by using an active badge or similar system, the
room’s control software can be informed of who is in the room and can
configure itself appropriately to them. Similarly, if the room “knows”
that there is a meeting in progress, then it can take that information into
account to generate an appropriate configuration. If a user presses the
“meeting record” button on a VCR, to record a meeting in progress, the
Reactive Room can determine whether or not there are any remote par-
ticipants connected to the audio/video nodes and, if so, ensure that it
adds those signals to the recording. When someone in the room makes
use of the document camera or the projected computer display, the room
software can detect these activities and automatically make the docu-
ment camera view or the computer display available to those people
attending the presentation, either locally or remotely.

In other words, the design of the Reactive Room attempts to exploit
the fact that the people’s activities happen in a context, which can be
made available to the software in order to disambiguate action. Clearly,
of course, the sort of context that can be gathered with current tech-
nology is limited; the Reactive Room would make use of motion in

40 Chapter 2

particular parts of the room, presence and activity as detected using
active badges or pressure sensors, and so on. The other, perhaps most
important, piece of context it made use of was the fact that it was the
Reactive Room. That is, the room was designed for meetings and pre-
sentations, and so much activity in the room could be interpreted as
being appropriate to meetings and presentations. The same sorts of
inferences would probably be inappropriate in other settings, such as a
private office, or a home. The “meeting” context, then, also serves to
disambiguate the user’s-goals.

The Reactive Room demonstrated the way that ubiquitous computing
did not simply move out of the box on the desk and into the environ-
ment but, at the same time, also got involved in the relationship between
the environment and the activities-that took place there. The topic of
“setting-ed” behavior will come back into focus in the next chapter; for
the moment, however, we will continue to explore the development of
tangible computing.

Design Trends

The systems that have been described—the vision of Ubiquitous Com-
puting, and the Digital Desk and Reactive Room prototypes—have been
firmly located in the domain of Computer Science research. However,
“academic science” has by no means been the only contributor to the
development of Tangible Computing. In fact, one striking aspect of the
development of this line of investigation has been the contributions from
the perspectives of art and design. Two pieces that have proved to be
particularly inspirational to a number of researchers in this area were
Durrell Bishop’s Marble Answering Machine, and Natalie Jeremijenko’s
Live Wire.

The Marble Answering Machine was a design exercise undertaken by
Bishop in the Computer-Related Design department at the Royal College
of Art in London (Crampton-Smith 1995). It explored possible approaches
to physical interaction for a telephone answering machine. Rather than
the traditional array of lights and buttons, Bishop’s answering machine
has a stock of marbles. Whenever a caller leaves a message on the
answering machine, it associates that message with a marble from the

Getting in Touch 41

stock, and the marble rolls down a track to the bottom, where it sits
along with the marbles representing previous messages. When the owner
of the machine comes home, a glance at the track shows, easily and dis-
tinctly, how many messages are waiting—the number of marbles arrayed
at the bottom of the track. To play a message, the owner picks up one of
the marbles and drops it in a depression at the top of the answering
machine; because each marble is associated with a particular message, it
knows which message to play. Once the message has been played, the
owner can decide what to do; either return the marble to the common
stock for reuse (so deleting the message), or returning it to the track (sav-
ing it to play again later).

The Marble Answering Machine uses physical reality to model the vir-
tual or electronic world. In Bishop’ design, marbles act as physical
proxies for digital audio messages. By introducing this equivalence, it
also enriches the opportunities for interacting with the device. The prob-
lem of interacting with the virtual has been translated into interacting
with the physical, and so we can rely on the natural structure of the
everyday world and our casual familiarity with it. So, counting the num-
ber of messages is easy, because we can rapidly assess the visual scene;
and operations such as playing messages out of order, deleting messages
selectively, or storing them in a different sequence, all of which would
require any number of buttons, dials, and controls on a normal digital
answering machine, all become simple and straightforward because we
can rely on the affordances of the everyday world.

Natalie Jeremijenko’s piece “Live Wire,” also sometimes known as
“the Dangling String” and described by Weiser and Brown (1996), was
developed and installed at Xerox PARC in 1994 and explored similar
questions of the boundary between the virtual and physical worlds.
Physically, Live Wire was a length of plastic “string” around eight feet
long, hanging from the ceiling at the end of a corridor. Above the ceiling
tiles, the wire was connected to a small stepper motor, which in turn was
connected to a device on the local ethernet. Every time a data “packet”
passed by on the ethernet, the stepper motor would move, and its move-
ments would be passed on to the string. Ethernet, in its classic form, is a
“shared medium” technology—all the traffic, no matter which machine
sends it or which machine is to receive it, travels along the same cable.

42 Chapter 2

The busier the network, the more data packets would pass by, and the
more the stepper motor would move. The ethernet can carry thousands
of packets per second, and so when the network was busy the motor
would whir and the string would spin around at high speed, its loose end
whipping against the wall nearby. »

Others have followed in the footsteps of Bishop and Jeremijenko and
continued to explore the design “space” around these issues of the bor-
ders between physical and virtual worlds. Feather, Scent, and Shaker
(Strong and Gaver 1996) are devices for “simple intimacy.” “Feather”
features a feather that is gently lifted on a column of air, to indicate to its
owner that, perhaps, a photograph of them has been picked up some-
where else; it is designed to convey a sense of fondness across distance.
Scent, similarly, releases a pleasant, sweet smell in similar circumstances
providing an awareness of distant action.

The topic of “awareness” is one that has concerned the developers of
technologies for group working, who want their systems to be able to
support the casual and passive awareness of group activity that cowork-
ers achieve in a shared physical space. Strong and Gaver turn this
around, though, and give us technologies for supporting shared intimacy
rather than shared work. Their pieces are designed to be evocative and
emotive rather than “efficient.” What is particularly interesting about
this group of devices is that they originate not from a technical or scien-
tific perspective, but from a design perspective. The result of this shift in
perspective is that they a reflect a very different set of concerns. It is not
simply that they reflect an aesthetic component where the scientific
developments are marked more by engineering concerns. That is cer-
tainly one part of it, of course; the design examples certainly do reflect a
different set of principles at work. However, there is more than this.

First, the design examples discussed here reflect a concern with com-
munication. What is important is not simply what they do, but what
they convey, and how they convey it; and the communicative function
that they carry is very much on the surface. There is an “at-a-glance
readability” to these artifacts that stands in marked contrast to the
“invisibility” of ubiquitous computing. Second, they reflect a holistic
approach that takes full account of their physicality. The physical nature
of these pieces is not simply a consequence of their design; it is funda-

Getting in Touch 43

mental to it. While it was a tenet of ubiquitous computing, for example,
that the technology would move out into the world, the design pieces
reflect a recognition that the technology is the world, and so its physical-
ity and its presence is a deeply important part of its nature. Third, they
reflect a different perspective on the role of computation, in which com-
putation is integrated much more directly with the artifacts themselves.
In the other examples, while they have aimed to distribute computation
throughout the environment, there has always been a distinct “seam”
between the computational and the physical worlds at the points where
they meet. In these examples, however, the computational and physical
worlds are much more directly connected.

The result is an approach to tangible computing that sees computation
within a wider context. Ubiquitous Computing pioneers saw that, in
order to support human activity, computation needs to move into the
environment in which that activity unfolds. These design explorations
take the next step of considering how computation is to be manifest
when it moves into the physical environment, and recognizing that this
move makes the physicality of computation central.

Tangible Bits

Most recently, perhaps the most prominent site for development of these
ideas has been the Tangible Media group at the MIT Media Lab. A
group of researchers led by Hiroshi Ishii has been exploring what they
call “Tangible Bits,” a program of research that incorporates aspects of
both the Ubiquitous Computing program and the design perspective
explored by people like Jeremijenko.

The term “Tangible Bits” reveals a direct focus on the interface
between the physical and virtual worlds. The rhetoric of the computer
revolution has, pretty consistently, focused on a transition from physical
(the world of atoms) to the virtual (the world of bits). We talk of the
future in terms of “electronic cash” to replace the paper bills and coins
we carry about with us, or we speak of the “paperless office” in which
paper documents have disappeared in favor of electronic documents
stored on servers and displayed on screens. We envision a world in
which we communicate by electronic mail and video conferencing, in

44 Chapter 2

which we read from “e-books,” telecommute over great distances via
digital communication lines, and play in virtual worlds. What these
visions have in common is the triumph of the virtual over the physical.
They suggest that we will overcome the inherent limitations of the every-
day world (such as the need to be in the same place to see each other, or
that a thousand books actually take up real shelf space) by separating
the “information content” from the physical form, distilling the digital
essence and decanting it into a virtual world.

The MIT Media Lab, where Ishii and his colleagues are based, is one
of the most prominent proponents of this vision, especially, perhaps, in
the writings of its founding director, Nicholas Negroponte. His collec-
tion of essays Being Digital (Negroponte 1995), explores the relation-
ship between atoms and bits and how the development and deployment
of Internet technologies is changing that relationship.

The work on Tangible Bits provides some balance to the idea that a
transition from atoms to bits is inevitable and uniformally positive. It is
certainly not defined in opposition to the gradual and ongoing move-
ment of traditionally physical forms into digital media. However, it
observes that while digital and physical media might be nformationally
equivalent, they are not interactionally equivalent. By building informa-

- tion artifacts based on physical manipulation, the Tangible Bits pro-
gramme attempts to reinvest these distilled digital essences with some of
the physical features that support natural interaction in the real world.

metaDESK, Phicons, and Tangible Geospace

Let’s take an example from the work of the Tangible Bits group. The
metaDESK (Ullmer and Ishii 1997) is a platform for tangible interaction.
[t consists of a horizontal back-projected surface that serves as the top of
the physical desk itself; an “active lens,” which is a small flat-panel dis-
play mounted on an arm; a “passive lens,” which is transparent, also
digitally instrumented; and a variety of physical objects called phicons
(for “physical icons”). The metaDESK is shown in figure 2.4.

The functions of the various components of the metaDESK platform
are best seen in terms of an application running on the desk. Tangible
Geospace is a geographical information system augmented with tangible
UI features and running on the metaDESK. It allows users to explore a

Getting in Touch 45

Figure 2.4

Interactions with geographical information on the metaDESK, using phicons, the
passive lens, and the active lens. Reprinted by permission of The MIT Media
Lab.

visualization of a geographical space, such as the area of Cambridge,
Massachusetts, around MIT.

The geographical information, in the form of a two-dimensional map,
is back-projected onto the desk, so that the user seated at the desk can
see it. The user can move and orient the map using phicons. One of the
phicons represents MIT’s Great Dome, and when it is placed on the
desk, the map is adjusted so that the position of the Great Dome corre-
sponds to that of the phicon. As the user moves the phicon, the system
adjusts the map to ensure that the phicon is always aligned with the
point on the map that it represents. By moving the phicon around on the
desk, the user can cause the map to move too, “scrolling” around in the
geographical space. By rotating the phicon on the desk, the user can
cause the map to rotate.

If a second phicon is added to the desk, say one representing the
Media Lab building itself, then another degree of freedom can be con-
strained. The two icons, together, can be used to control the scale of the

46 Chapter 2

map display. If the metaDESK always ensures that the virtual Great
Dome always co-occurs with the Great Dome phicon, and the virtual
Media Lab always co-occurs with the Media Lab phicon, then the user
can control the scale of the map by moving these two phicons closer
together or further apart.

The active and passive lenses can be used to provide access to other
sorts of information. In the Tangible Geospace example, the active lens is
used to view a three dimensional model of the MIT Campus. The active
lens is a computer display mounted on an arm over the desk. It is instru-
mented so that the metaDESK computer system can determine the posi-
tion and orientation of the display. When this information is coordinated
with the current position, scaling, and orientation of the map being dis-
played on the desk, the result is that the active lens can be used to control
a “virtual camera” moving through the geographical space being dis-
played on the metaDESK. When this is combined with a three dimen-
sional model of the campus, then the active lens can be used to give a
three-dimensional viewport onto the two-dimensional map. The illusion
is of “looking through” the lens and seeing a transformed view of the
map underneath.

The passive lens works in a similar way, although it rests on the desk
surface. The passive lens is simply a piece of transparent plastic. As it is
moved around the desk, the computer system can track its current loca-
tion. On the desk area directly underneath the lens, the metaDESK
replaces the map with a view onto a photographic aerial record of the
campus. As before, this is correlated with the current position, scaling,
and orientation of the basic map, as well as the position of the lens. The
effect is that it seems to the user that the lens reveals the photographic
model underneath as it moves across the desk. This is similar to a user
interface technique known as “magic lenses” (Bier et al. 1993), user
interface components that selectively transform the content of interfaces
as they are moved across the screen, although, of course, in the case of
the metaDESK the lens has a physical manifestation.

The Ambient Room
Tangible interfaces such as the metaDESK explore interaction that is sit-
uated in the environment, rather than on a screen. This is even more

Getting in Touch 47

clearly demonstrated by another of the MIT prototypes, called the
Ambient Room (Wisneski et al. 1998).

The Ambient Room is a small office cubicle that has been augmented
with a variety of “ambient displays,” designed to provide peripheral,
background information to the occupant of the room without being
overwhelming or distracting. Examples of ambient displays include pro-
jected light patterns, non-speech sounds, and objects that respond to
changes in air flow.

The information that the Ambient Room conveys is typically informa-
tion about activities in either physical or virtual space, such as the pres-
ence or activity of others, e-mail arriving, people logging in and out, and
so forth. These can be mapped onto the displays available in the room.
For instance, light patterns projected on the wall can respond to the
activities of a networked computer system, conveying information about
network traffic and hence activity in the virtual space; or movements in
a shared project room can be mapped onto subtle sounds in the Ambient
Room so that the occupant can be aware of comings and goings in the
project space. Reminiscent of the Feather, Scent, and Shaker work of
Strong and Gaver, these ambient displays can be used to project the
actions in one space (either physical or virtual) into another; like the
technologies of the Reactive Room, they can also respond to the activity
of the room’s occupant, providing a display that is appropriate to the
context in which they are working.

It is tempting to think of the metaDESK as exploring the potential
for tangible media as input technologies, and the Ambient Room as
exploring their potential for output. To do so, though, would be to
miss an important point, which is that, in the everyday environment,
“input” and “output” are fundamentally interconnected. This is a
critical feature of the tangible media explorations. They should be
characterized not in terms of “input” and “output,” but in terms of
the coordination between phenomena; between activity in a space
and the pattern of light on a wall, or between the movement of
objects on the desk and the information presented there. This sort of
coordination, or coupling, is fundamental to the explorations pre-
sented here; they depend upon it for the causal illusion they want to
maintain.

48 Chapter 2

Iluminating Light and Urp

Two other applications developed in the MIT group echo the Digital
Desk in their creation of mixed physical/virtual environments for task-
" focused work. These are Illuminating Light and Urp, both developed
principally by John Underkoffler (and illustrated in figure 2.5).

Mluminating Light (Underkoffler and Ishii 1998) is a simulation of an
optics workbench, aimed particularly at students of laser holography.
The interface is based on a combination of phicons and a camera/projector
arrangement (which Underkoffler dubs the “I/O Bulb”} similar to that of
the Digital Desk. The application allows users to experiment with and
explore configurations of equipment for laser holography. Real laser
holography is a complex business, conducted using delicate and expen-
sive instruments. Setting up and fine-tuning an experimental configura-
tion can be extremely time-consuming, especially for novices. llluminating
Light allows holographers to simulate the effects of particular configura-
tions and to explore them so as to develop a better intuitive sense for the
interaction of their elements. Phicons represent physical elements such as
lasers, lenses, mirrors, and beam-splitters, while the system provides a
simulation of light paths through the experimental equipment, showing
light emitted by the laser, redirected by mirrors, and so on. As the phi-
cons are moved around a physical surface, the system continually
updates its projection of the simulated light paths to reflect the moment-
by-moment physical configuration. In addition to the simulated light
beams, the system can also provide numerical descriptions of the config-
uration; incidence angles, distances, and so forth. In this way, users can
rapidly explore a variety of configurations and develop an understand-
ing of the consequences of ditferent changes on the set-up.

Urp (Underkoffler and Ishii 1999) is an urban planning workbench in
which physical models of buildings are combined with electronic simula-
tions of features such as air flow, cast shadows, reflectance, and so forth.
The underlying technology is similar to that of Illuminating Light but
applied to a different domain. There are two sorts of phicons used in
Urp. The first represent building structures. By placing these on the
surface, the user can obtain a visualization of the shadows that the
buildings will cast, or the wind patterns around them. Combining
multiple structures allows urban planners and architects to explore the

Getting in Touch 49

Figure 2.5
Mluminating Light (a) and Urp (b) apply tangible interaction techniques to the
domains of optics and urban planning. Reprinted by permission of The MIT

Media Lab.

50 Chapter 2

interactions of wind, reflection, and shadow effects in an urban land-
scape. As with Illuminating Light, real-time tracking of the position and
orientation of these phicons allows the system to update the display con-
tinuously, so that users can move the buildings around or rotate them
until they find a satisfactory arrangement. The second set of phicons act
as controls for the simulation. For example, a “wand” can be used to
change the material of the buildings, so that the computed reflectance
patterns will simulate buildings clad in brick or glass, another controls
the direction of the simulated wind, while a “clock” has hands that can
be moved to specify the time of day and hence the position of the sun for
the shadow simulation. In this way, the simulator’s controls are intro-
duced into the same space that is the focus of the system’s primary input
and output.

Interacting with Tangible Computing

Tangible computing takes a wide range of forms. It might be used to
address problems in highly focused and task-specific work, or in more
passive awareness of activities in the real world or the electronic. It
might attempt to take familiar objects and invest them with computa-
tion, or it might present us with entirely new artifacts that disclose some-
thing of the hidden world inside the software system. The bulk of this
chapter has explored a range of tangible computing systems, but the sur-
vey has been far from comprehensive; indeed, I have said nothing about
whole areas, such as wearable computing and context-based computing,
that are clearly strongly related. My goal, however, was not to provide a
catalogue of tangible computing technologies, but rather to introduce a
sample of the systems that have been developed, and to begin to look for
some common features of their design.

The first of these general issues that we see across a range of cases is
that, in tangible computing, there is no single point of control or interac-
tion. Traditional interactive systems have a single center of interaction,
or at least a small number. Only one window has the “focus” at any
given moment; the cursor is always in exactly one place, and that place
defines where my actions will be carried out. Cursors and window focus
insure that the system always maintains a distinguished component

Getting in Touch 51

within the interface, which is the current locus of interaction. To do
something else, one must move the focus elsewhere. When computation
moves out into the environment, as in the tangible computing approach,
this is lost. Not only is there not a single point of interaction, there is not
even a single device that is the object of interaction. The same action
might be distributed across multiple devices, or, more accurately,
achieved through the coordinated use of those artifacts. Imagine sitting
at your desk to write a note. The writing comes about through the coor-
dinated use of pen, paper, and ink, not to mention the desk itself and the
chair you sit in; you might write on the page with your dominant hand
while your nondominant hand is used to orient the page appropriately.
These are all brought together to achieve a task; you act at multiple
points at once. In the same way, ubiquitous computing distributes com-
putation through the environment, and, at one and the same time, dis-
tributes activity across many different computational devices, which
have to be coordinated in order to achieve a unified effect.

A related issue is how tangible interaction transforms the sequential
nature of interaction at the interface. The single point of control that tra-
ditional interfaces adopt leads naturally to a sequential organization for
interaction—one thing at a time, with each step leading inevitably to the
next. This ordering is used both to manage the interface and to simplify
system development. For instance, “modal” dialog boxes—ones that
will stubbornly refuse to let you do anything else until you click “okay,”
“cancel,” or whatever they need—both structure your interaction with
the computer, and save the programmer from the need to handle the
complexity of worrying about other actions that might transform the
system’s state while the dialog box is displayed. When we move from
traditional models to tangible computing, sequential ordering does not
hold. It is not simply that interaction with the physical world is “parallel”
(a poor mapping of a computational metaphor onto real life), but that
there is no way to tell quite what I might do next, because there are
many different ways in which I might map my task onto the features of
the environment.

These two issues are particularly challenging from a technical per-
spective, because they address the programming models we use to
develop systems, embedded in software toolkits and applications. The

52 Chapter 2

third feature of tangible interaction may, however, provide some relief.
This is the fact that, in tangible design, we use the physical properties
of the interface to suggest its use. This is nothing new; arguably, it is
what product design or other forms of physical design are all about.
Kettles are designed so that we can tell how to safely pick them up;
remote controls are designed to sit comfortably in the hand when ori-
ented for correct use (at least when we’re lucky). What is more, this
sort of design that recognizes the interaction between the physical con-
figuration of the environment and the activities that take place within it
can also be a way to manage the sequential issues raised earlier. For
instance, Gaver (1991}, in his discussion of “sequential affordances”
(which will be presented in more detail in chapter 4), gives the example
of a door handle, which, in its normal position, lends itself naturally to
turning and then, in its turned position, lends itself naturally to pulling;
the whole arrangement helps “guide” one through the sequential pro-
cess of opening the door through careful management of the physical
configuration of the artifact. Taking this approach, designers can create
artifacts that lead users through the process of using them, with each
stage leading naturally to the next through the ways in which the phys-
ical configuration at each moment suggests the appropriate action to
take. The relationship between physical form and possible action can
give designers some purchase on the problems of unbounded parallel
action.

Interacting with tangible computing opens up a new set of challenges
and a new set of design problems. Our understanding of the nature of
these problems is, so far, quite limited, certainly in comparison to the
more traditional interactional style that characterizes most interactive
systems today. The theories that govern traditional interaction have only
limited applicability to this new domain. At the same time, tangible com-
puting has been explored, largely, as a practical exercise. Most proto-
types have been developed opportunistically, driven as much by the
availability of sensor technology and the emergence of new control
devices as by a reasoned understanding of the role of physicality in inter-
action. We have various clues and pointers, but there is no theory of tan-
gible interaction. Why does tangible interaction work? Which features
are important, which are merely convenient and which are simply

Getting in Touch 53

wrong? How does tangible computing mediate between the environment
and the activity that unfolds in it?

This book is about developing answers to these questions. The inter-
pretation that it will offer is one that is concerned not just with what
kind of technology we use, or with what sorts of interactions we can
engage in with that technology, but about what makes those interactions
meaningful to us. From this perspective, the essence of tangible comput-
ing lies in the way in which it allows computation to be manifest for us
in the everyday world; a world that is available for our interpretation,
and one which is meaningful for us in the ways in which we can under-
stand and act in it. That might seem to be quite far removed from look-
ing at application prototypes, reactive rooms, and digital desks. The
path from practice to theory will be easier to see after looking at the sec-
ond aspect of embodied interaction—social computing.

