week 03

Digital Input and Output

RGB LEDs fade with PWM

Digital vs. Analog

Digital signal

Difference between two possible states

"whether or not"

Is the cat on the mat or not?

Analog signal

continuous range of possible states

"how much" or "stronger" "faster" "brighter"

How heavy is the cat that's on the mat?

Digital vs. Analog

Binary vs. continuous signals

- Binary / Digital = "whether or not"
- Continuous / Analog signal = "how much" or "faster," "brighter," etc.

Microcontrollers

4

Microcontrollers

5

Digital vs. Analog

Internally, all microprocessors compute binary: 0 or 1 (0V or 5V) In general, most microprocessors output only binary (0V or 5V) Specifically, Arduino output pins can only be LOW (0V) or HIGH (5V)

Digital Output

Blinking LED

/*	
* Blink	
* The basic Arduino example. * then off for one second, an * depending on your Arduino b * or a built-in resistor so t * * http://www.arduino.cc/en/Tu */	Turns on an LED on for one second, ad so on We use pin 13 because, oard, it has either a built-in LED hat you need only an LED. atorial/Blink
int ledPin = 13;	// LED connected to digital pin 13
void setup()	// run once, when the sketch starts
<pre>{ pinMode(ledPin, OUTPUT); }</pre>	// sets the digital pin as output
void loop()	// run over and over again
digitalWrite(ledPin, HIGH);	// sets the LED on
delay(1000);	// waits for a second
digitalWrite(ledPin, LOW);	// sets the LED off
<pre>delay(1000); }</pre>	// waits for a second

Digital vs. Analog

Two states (binary signal) vs. multiple states (continuous signal)

Can We Do Analog Out?

LED with 23% brightness?

Pulse Width Modulation (PWM)

Most microprocessors can only output binary: LOW (0V) or HIGH (5V) So you fake it with PWM, Pulse Width Modulation It gives you an illusion of analog values, in between LOW and HIGH PWM

100% brightness

PWM

PWM

Pulse Width Modulation (PWM)

Your Arduino board has built in PWM circuits, on pins 3, 5, 6, 9, 10, and 11

Pulse Width Modulation (PWM)

Your Arduino board has built in PWM circuits, on pins 3, 5, 6, 9, 10, and 11

analogWrite(pin, value)

The duty cycle: between 0 and 255

Theory and Practice of Tangible User Interfaces

In Class Exercise

Make a color mixer with RGB LEDs

Exercise with digital input and output, and PWM

Color Mixer with RGB LEDs

Make any colors with Red, Green, and Blue LEDs, except black

In Class Exercise **1. LED Blink** 2. LED Fade **3. Circuit with 3 LEDs** 4. RGB LED Fade 5. Serial RGB LED

Blinking LED (c.f. homework)

In Class Exercise **1. LED Blink** 2. LED Fade **3. Circuit with 3 LEDs** 4. RGB LED Fade 5. Serial RGB LED

LED Fade

In Class Exercise **1. LED Blink** 2. LED Fade **3. Circuit with 3 LEDs** 4. RGB LED Fade 5. Serial RGB LED

Circuit with 3 LEDs

Plug three LEDs, red, green, and blue and make different colors

In Class Exercise **1. LED Blink** 2. LED Fade **3. Circuit with 3 LEDs** 4. RGB LED Fade 5. Serial RGB LED

RGB LED Fade

Slow color fading and mixing

oo Devel	
R0B_fade	6
/* The debugging code assumes Ardwino COD4, as it uses the new Serial.begin()-style	e functions
* Clay Shirky (clay.shirky@nyu.edu)	
*/	
// Dutput	
int gran is 10. // Gran LED, connected to digital min 10	
int bluePin + 11; // Blue LED, connected to digital pin 11	
// Program variables	
int redVal = 255; // Variables to store the values to send to the pins	
int greenVal = 1; // Initial values are Red full, Green and Blue off	
int blueVal = 1;	
int i = 0; // Loop counter	
int wait = 50; // 50ms (.05 second) delay; shorten for faster fades	
int DEBUG = 0; // DEBUG counter; if set to 1, will write values back via serial	
mold setup ()	
pinHode(pedFin, OUTFUT); // sets the pins as output	
pinRode(greenFin, OUTFUT);	
pinNode(bluePin, GUTPUT);	
if (DEDUG) (// If we want to see the pin values for debugging	
Serial.begin(9600); //set up the serial cuput on 0004 style	
1	
)	

Diffuser

Experiment with different materials.

In Class Exercise 1. LED Blink 2. LED Fade **3. Circuit with 3 LEDs** 4. RGB LED Fade 5. Serial RGB LED

Serial RGB

Tell it to mix 50 red, 100 green, and 20 blue... Etc.

Arduino Board

• USB to serial

Serial Monitor

Serial Communication

Serial.begin() Serial.print() Serial.read() e.g., Serial.begin(9600) e.g., Serial.print(colorVal)

Serial RGB

Tell it to mix 50 red, 100 green, and 20 blue... etc.

```
¢
  Serial_RGB_LED_by_Tod
char serInString[100]; // array that will hold the different bytes of the string. 100=100characte
                       // -> you must state how long the array will be else it won't work properly
char colorCode:
int colorVal;
int redPin = 9; // Red LED, connected to digital pin 9
int greenPin = 10; // Green LED, connected to digital pin 10
int bluePin = 11; // Blue LED, connected to digital pin 11
void setup() (
  pinHode(redPin, OUTPUT); // sets the pins as output
  pinMode(greenPin, OUTPUT);
  pinHode(bluePin, OUTPUT);
  Serial.begin(9600);
  analogWrite(redPin, 127); // set them all to mid brightness
  analogWrite(greenPin, 127); // set them all to mid brightness
  analogWrite(bluePin, 127); // set them all to mid brightness
  Serial.println("enter color command (e.g. 'r43') :");
void 1000 () {
  //read the serial port and create a string out of what you read
  readSerialString(serInString);
  colorCode = serInString[0];
  if( colorCode == 'r' || colorCode == 'g' || colorCode == 'b' ) {
    colorVal = atoi(serInString+1);
    Serial.print("setting color ");
    Serial.print(colorCode);
    Serial.print(" to ");
    Serial.print(colorVal);
    Serial.println():
                                         // prints return
    serInString[0] = 0;
                                         // indicates we've used this string
    if(colorCode == 'r')
      analogWrite(redPin, colorVal);
    else if(colorCode == 'g')
      analogWrite(greenPin, colorVal);
    else if(colorCode == 'b')
      analogWrite(bluePin, colorVal);
  delay(100); // wait a bit, for serial data
```

```
¢
 Serial RGB LED by Tod
char serInString[100]; // array that will hold the different bytes of the string. 100-100characte
                       // -> you must state how long the array will be else it won't work properl
char colorCode:
int colorVal;
int redPin = 9; // Red LED, connected to digital pin 9
int greenPin = 10; // Green LED, connected to digital pin 10
int bluePin = 11; // Blue LED, connected to digital pin 11
void setup() (
 pinHode(redPin, OUTPUT); // sets the pins as output
 pinHode(greenPin, OUTPUT);
 pinHode(bluePin, OUTPUT);
  Serial.begin(9600);
  analogWrite(redPin, 127); // set them all to mid brightness
  analogWrite(greenPin, 127); // set them all to mid brightness
  analogWrite(bluePin, 127); // set them all to mid brightness
  Serial.println("enter color command (e.g. 'r43') :");
void loop () {
  //read the serial port and create a string out of what you read
  readSerialString(serInString);
  colorCode = serInString[0];
  if( colorCode == 'r' || colorCode == 'g' || colorCode == 'b' ) {
    colorVal = atoi(serInString+1);
   Serial.print("setting color ");
    Serial.print(colorCode);
   Serial.print(" to ");
    Serial.print(colorVal);
    Serial.println():
                                         // prints return
    serInString[0] = 0;
                                        // indicates we've used this string
    if(colorCode == 'r')
      analogWrite(redPin, colorVal);
    else if(colorCode == 'g')
      analogWrite(greenPin, colorVal);
    else if(colorCode == 'b')
      analogWrite(bluePin, colorVal);
  delay(100); // wait a bit, for serial data
```

```
¢
 Serial_RGB_LED_by_Tod
char serInString[100]; // array that will hold the different bytes of the string. 100-100characte
                       // -> you must state how long the array will be else it won't work properl
char colorCode:
int colorVal;
int redPin = 9; // Red LED, connected to digital pin 9
int greenPin = 10; // Green LED, connected to digital pin 10
int bluePin = 11; // Blue LED, connected to digital pin 11
void setup() (
 pinMode(redPin, OUTPUT);
                             // sets the pins as output
 pinMode(greenPin, OUTPUT);
 pinHode(bluePin, OUTPUT);
  Serial.begin(9600);
  analogWrite(redPin, 127); // set them all to mid brightness
  analogWrite(greenPin, 127); // set them all to mid brightness
  analogWrite(bluePin, 127); // set them all to mid brightness
  Serial.println("enter color command (e.g. 'r43') :");
void 100p () {
  //read the serial port and create a string out of what you read
  readSerialString(serInString);
  colorCode = serInString[0];
  if( colorCode == 'r' || colorCode == 'g' || colorCode == 'b' ) {
    colorVal = atoi(serInString+1);
   Serial.print("setting color ");
    Serial.print(colorCode);
    Serial.print(" to ");
    Serial.print(colorVal);
    Serial.println():
                                         // prints return
    serInString[0] = 0;
                                        // indicates we've used this string
    if(colorCode == 'r')
      analogWrite(redPin, colorVal);
    else if(colorCode == 'g')
      analogWrite(greenPin, colorVal);
    else if(colorCode == 'b')
      analogWrite(bluePin, colorVal);
  delay(100); // wait a bit, for serial data
```

```
¢
 Serial_RGB_LED_by_Tod
char serInString[100]; // array that will hold the different bytes of the string. 100-100characte
                       // -> you must state how long the array will be else it won't work properl
char colorCode:
int colorVal;
int redPin = 9; // Red LED, connected to digital pin 9
int greenPin = 10; // Green LED, connected to digital pin 10
int bluePin = 11; // Blue LED, connected to digital pin 11
void setup() (
 pinHode(redPin, OUTPUT); // sets the pins as output
 pinMode(greenPin, OUTPUT);
 pinHode(bluePin, OUTPUT);
  Serial.begin(9600);
  analogWrite(redPin, 127); // set them all to mid brightness
  analogWrite(greenPin, 127); // set them all to mid brightness
  analogWrite(bluePin, 127); // set them all to mid brightness
  Serial.println("enter color command (e.g. 'r43') :");
void 100p () {
  //read the serial port and create a string out of what you read
  readSerialString(serInString);
  colorCode = serInString[0];
  if( colorCode == 'r' || colorCode == 'g' || colorCode == 'b' ) {
    colorVal = atoi(serInString+1);
   Serial.print("setting color ");
    Serial.print(colorCode);
   Serial.print(" to ");
   Serial.print(colorVal);
    Serial.println():
                                         // prints return
    serInString[0] = 0;
                                        // indicates we've used this string
   if(colorCode == 'r')
      analogWrite(redPin, colorVal);
    else if(colorCode == 'g')
      analogWrite(greenPin, colorVal);
    else if(colorCode == 'b')
      analogWrite(bluePin, colorVal);
  delay(100); // wait a bit, for serial data
```

In Class Exercise **1. LED Blink** 2. LED Fade **3. Circuit with 3 LEDs** 4. RGB LED Fade 5. Serial RGB LED

Homework (due next Tuesday, Feb 8)

Part I: Design a good diffuser for your RGB LEDs

e.g., ping pong ball, styrofoam, mylar, cottons, icecream cone?

Part II: Modify the Serial RGB code for new keyboard input:

- **Basic**: Control the RGB values with multiple key presses (e.g., instead of typing "r127" to set the Red LED to 50% brightness, count how many times the characters "r" "g" "b" were pressed. E.g., press "r" 5 times to get it to 50%, 8 times for 80%, 10 times for 100%, 11 times to go back to 0%, etc.)
- Advanced: Find new ways of controlling the colors of LEDs using the keyboard

Post both parts on the course website (photo, descriptions, code)

Supplement Readings

More on PWM and LED fading: Chapter 6 (p. 112-114) of O'Sullivan and Igoe

More on microcontroller in general: Chapter 4 (p.49-63)

Next Wednesday: Analog Input

Two states (binary signal) vs. multiple states (continuous signal)

