
the	NewSQL	database	you’ll	never	outgrow	

Not	Your	Father’s		
Transac0on	Processing		

	

Michael	Stonebraker,	CTO	
VoltDB,	Inc.	

VoltDB 2

How	Does	This	Fit	into	“Big	Data”?	

! Big	volume	
+  I	have	too	much	data	

! Big	velocity	
+ Data	is	coming	at	me	too	fast	

! Big	variety	
+  I	have	too	many	data	sources	

		

VoltDB 3

High	Velocity	ApplicaJons	

! TradiJonal	transacJon	processing	
! “New”	transacJon	processing	
! High	velocity	ingest	
		

VoltDB 4

TradiJonal	TransacJon	Processing	

! Remember	how	we	used	to	buy	airplane	Jckets	in	the	
1980s	

+ By	telephone	
+ Through	an	intermediary	(professional	terminal	operator)	

! Commerce	at	the	speed	of	the	intermediary	

! In	1985,	1,000	transacJons	per	second	was	considered	
an	incredible	stretch	goal!!!!	

+ HPTS	(1985) 	 		

VoltDB 5

TradiJonal	TransacJon	Processing	

! Workload	was	a	mix	of	updates	and	queries	

! To	an	ACID	data	base	system	
+ Make	sure	you	never	lose	my	data	
+ Make	sure	my	data	is	correct	

! At	human	speed	

! Bread	and	buXer	of	RDBMSs		(OldSQL)	

VoltDB 6

How	has	TP	Changed	in	25	Years?	

The	internet	
+ Client	is	no	longer	a	professional	terminal	operator	
+  Instead	Aunt	Martha	is	using	the	web	herself	

+ Sends	TP	volume	through	the	roof	
+ Serious	need	for	scalability	and	performance	
	

VoltDB 7

How	has	TP	Changed	in	25	Years?	

PDAs	
+ Your	cell	phone	is	a	transacJon	originator	

+ Sends	TP	volume	through	the	roof	
+ Serious	need	for	scalability	and	performance	

Need in some traditional markets
for much higher performance!

VoltDB 8

And	TP	is	Now	a	Much	Broader	Problem	
(New	TP)	
The	internet	enables	a	green	field	of	new	TP	
applicaJons	

	
+ Massively	mulJplayer	games	(state	of	the	game,	leaderboards,	
selling	virtual	goods	are	all	TP	problems)	

+ Social	networking	(social	graph	is	a	TP	problem)	
+ Real	Jme	ad	placement	
+ Real	Jme	couponing	

+ And	TP	volumes	are	ginormous!!	
+ Serious	need	for	speed	and	scalability!	

VoltDB 9

And	TP	is	Now	a	Much	Broader	Problem	

Sensor	Tagging	generates	new	TP	applicaJons	

	
+ Marathon	runners	(fraud	detecJon,	leaderboards)	
+ Taxicab	(scheduling,	fare	collecJon)	
+ Dynamic	traffic	rouJng			
+ Car	insurance	“by	the	drink”	
+ Mobile	social	networking	
	
+ And	TP	volumes	are	ginormous!!	
+ Serious	need	for	speed	and	scalability!	

VoltDB 10

And	TP	is	Now	a	Much	Broader	Problem	

Electronic	commerce	is	here	

	
+ Wall	Street	electronic	trading	
+ Real-Jme	fraud	detecJon	
+ Micro	transacJons	(through	your	PDA)	
	
+ And	TP	volumes	are	ginormous!!	
+ Serious	need	for	speed	and	scalability!	

VoltDB 11

Add	in	High	Velocity	Ingest	
	
	

+ Real	Jme	click	stream	analysis	
+ Most	anything	upstream	from	Hadoop	
+ Or	your	data	warehouse	
+ Real	Jme	risk	assessment	on	Wall	Street	
	
+ And	TP	volumes	are	ginormous!!	
+ Serious	need	for	speed	and	scalability!	

VoltDB 12

In	all	cases…..	

! Workload	is	a	mix	of	updates	and	queries	

! Coming	at	you	like	a	firehose		

! SJll	an	ACID	problem	
+ Don’t	lose	my	data	
+ Make	sure	it	is	correct	

! Tends	to	break		tradiJonal	soluJons	
+ Scalability	problems	(volume)	
+ Response	Jme	problems	(latency)	

VoltDB 13 1
3

VoltDB 13

Put	Differently	

High	velocity	and	you	
You	need	to	ingest	a	firehose	in	real	
Jme	

You	need	to		process,	validate,	enrich		
and	respond	in	real-Jme	(i.e.	update)	

You	oaen	need	real-Jme	analyJcs	
(i.e.	query)	

	

VoltDB 14

Reality	Check	--	Size	

! TP	data	base	size	grows	at	the	rate	transacJons	
increase	

! 1	Tbyte	is	a	really	big	TP	data	base	
! 1	Tbyte	of	main	memory	buyable	for	around	$50K	

+  	(say)	64	Gbytes	per	server	in	16	servers	

! I.e.	Moore’s	law	has	eclipsed	TP	data	base	size	

! If	your	data	doesn’t	fit	in	main	memory	now,	then	
wait	a	couple	of	years	and	it	will…..	

	

VoltDB 15

Reality	Check	--	Performance	

! TPC-C	CPU	cycles	
! On	the	Shore	DBMS	prototype	

! Elephants	should	be	similar	

VoltDB 16

To	Go	a	Lot	Faster	You	Have	to……	

! Focus	on	overhead	
+ BeXer	B-trees	affects	only	4%	of	the	path	length	

! Get	rid	of	ALL	major	sources	of	overhead	
+ Main	memory	deployment	–	gets	rid	of	buffer	pool	

— Leaving	other	75%	of	overhead	intact	
—  i.e.	win	is	25%	

VoltDB 17

SoluJon	Choices	

! OldSQL	
+ Legacy	RDBMS	vendors	

! NoSQL	
+ Give	up	SQL	and	ACID	for	performance	

! NewSQL	
+ Preserve	SQL	and	ACID	
+ Get	performance	from	a	new	architecture	

VoltDB 18

OldSQL	

TradiJonal	SQL	vendors	(the	“elephants”)	

+ Code	lines	daJng	from	the	1980’s		

+ “bloatware”	

+ Mediocre	performance	on	New	TP	

VoltDB 19

The	Elephants		

! Are	slow	because	they	spend	all	of	their	Jme	on	
overhead!!!	

+ Not	on	useful	work	

! Would	have	to	re-architect	their	legacy	code	to	do	
beXer	

VoltDB 20

Long	Term	Elephant	Outlook	

! Up	against	“The	Innovators	Dilemma”	
+  Steam	shovel	example	
+  Disk	drive	example	
+  See	the	book	by	Clayton	Christenson	for	more	details	

!  Long	term	dria	into	the	sunset		
+  The	most	likely	scenario	
+ Unless	they	can	solve	the	dilemma	

	

VoltDB 21

NoSQL	

! Give	up	SQL	
! Give	up	ACID	

VoltDB 22

Give	Up	SQL?	

! Compiler	translates	SQL	at	compile	Jme	into	a	
sequence	of	low	level	operaJons		

! Similar	to	what	the	NoSQL	products	make	you	
program	in	your	applicaJon	

! 30	years	of	RDBMS	experience	
+ Hard	to	beat	the	compiler	
+ High	level	languages	are	good	(data	independence,	less	code,	…)	
+ Stored	procedures	are	good!	

— One	round	trip	from	app	to	DBMS	rather	than	one	one	round	trip	
per	record	

— Move	the	code	to	the	data,	not	the	other	way	around	

VoltDB 23

Give	Up	ACID	

	

! If	you	need	data	consistency,	giving	
up	ACID	is	a	decision	to	tear	your	
hair	out	by	doing	database	“heavy	
liaing”	in	user	code	

! Can	you	guarantee	you	won’t	need	
ACID	tomorrow?	

ACID = goodness, in spite of what these guys say

VoltDB 24

Who	Needs	ACID?	

!  Funds	transfer	
+ Or	anybody	moving	something	from	X	to	Y	
	

! Anybody	with	integrity	constraints	
+ Back	out	if	fails	
+ Anybody	for	whom	“usually	ships	in	24	hours”	is	not	an	
acceptable	outcome	

! Anybody	with	a	mulJ-record	state	
+ E.g.	move	and	shoot	
	

VoltDB 25

Who	needs	ACID	in	replicaJon	

! Anybody	with	non-commutaJve	updates	
+ For	example,	+	and	*	don’t	commute	
	

! Anybody	with	integrity	constraints	
+ Can’t	sell	the	last	item	twice….	
	

! Eventual	consistency	means	“creates	garbage”	

VoltDB 26

NoSQL	Summary	

! Appropriate	for	non-transacJonal	systems	

! Appropriate	for	single	record	transacJons	that	are	
commutaJve	

! Not	a	good	fit	for	New	TP	
! Use	the	right	tool	for	the	job	

Two	recently-proposed	NoSQL	
language	standards	–	CQL	and	
UnQL	–	are	amazingly	similar	to	
(you	guessed	it!)	SQL		

Interes0ng	…	

VoltDB 27

NewSQL	

! SQL	
! ACID	
! Performance	and	scalability	through	modern	
innovaJve	soaware	architecture	

VoltDB 28

NewSQL	

! Needs	something	other	than	tradiJonal	record	level	
locking	(1st	big	source	of	overhead)		

+ Jmestamp	order		
+ MVCC	
+ Your	good	idea	goes	here	

VoltDB 29

NewSQL	

! Needs	a	soluJon	to	buffer	pool	overhead	(2nd	big	
source	of	overhead)	

+ Main	memory	(at	least	for	data	that	is	not	cold)	
+ Some	other	way	to	reduce	buffer	pool	cost	

VoltDB 30

NewSQL	

! Needs	a	soluJon	to	latching	for	shared	data	
structures	(3rd	big	source	of	overhead)	

+ Some	innovaJve	use	of	B-trees	
+ Single-threading	
+ Your	good	idea	goes	here	
	

VoltDB 31

NewSQL	

! Needs	a	soluJon	to	write-ahead	logging	(4th	big	
source	of	overhead)	

+ Obvious	answer	is	built-in	replicaJon	and	failover		
+ New	TP	views	this	as	a	requirement	anyway	

! Some	details	
+ On-line	failover?	
+ On-line	failback?	
+ LAN	network	parJJoning?	
+ WAN	network	parJJoning?	
	
	

VoltDB 32

	A	NewSQL	Example	–	VoltDB		

! Main-memory	storage	

! Single	threaded,	run	Xacts	to	compleJon	

+ No	locking	

+ No	latching	

! Built-in	HA	and	durability	
+ No	log	(in	the	tradiJonal	sense)	

VoltDB 33

Yabut:		What	About	MulJcore?	

! For	A	K-core	CPU,	divide	memory	into	K	(non	

overlapping)	buckets	

! i.e.	convert	mulJ-core	to	K	single	cores	

VoltDB 34

Where	all	the	Jme	goes…	revisited	

Before VoltDB

VoltDB 35

! Runs	a	subset	of	SQL	(which	is	gesng	larger)	

! On	VoltDB	clusters	(in	memory	on	commodity	gear)	

! With	LAN	and	WAN	replicaJon	

! 70X	a	popular	OldSQL	DBMS	on	TPC-C	

! 5-7X	Cassandra	on	VoltDB	K-V	layer	
! Scales	to	384	cores	(biggest	iron	we	could	get	our	
hands	on)	

! Clearly	note	this	is	an	open	source	system!		

Current	VoltDB	Status	

VoltDB 36

Summary	

Old	TP	

OldSQL	for	New	OLTP	 !  Too	slow	
! Does	not	scale	

NoSQL	for	New	OLTP	 !  Lacks	consistency	guarantees	
!  Low-level	interface	

NewSQL	for	New	OLTP	 !  Fast,	scalable	and	consistent	
!  Supports	SQL		

New	TP	

the	NewSQL	database	you’ll	never	outgrow	

Thank	You	

