VOIt the NewSQL database you’ Il never outgrow

Not Your Father s

Transaction Processing

Michael Stonebraker, CTO
VoltDB, Inc.

How Does This Fit into “Big Data” ?

" Big volume

+ | have too much data

= Big velocity

+ Data is coming at me too fast

= Big variety

+ | have too many data sources

VoltDB

High Velocity Applications

" Traditional transaction processing
= “New’ transaction processing

" High velocity ingest

Traditional Transaction Processing

" Remember how we used to buy airplane tickets in the
1980s

= Commerce at the speed of the intermediary

" |n 1985, 1,000 transactions per second was considered
an incredible stretch goall!!ll

Traditional Transaction Processing

=" Workload was a mix of updates and queries

" To an ACID data base system

= At human speed

=" Bread and butter of RDBMSs (OIldSQL)

How has TP Changed in 25 Years?

The internet
+ Client is no longer a professional terminal operator

+ Instead Aunt Martha is using the web herself

+ Sends TP volume through the roof

+ Serious need for scalability and performance

VoltDB

How has TP Changed in 25 Years?

PDAs

+ Your cell phone is a transaction originator

+ Sends TP volume through the roof
+ Serious need for scalability and performance

Need in some traditional markets
for much higher performance!

VoltDB

And TP is Now a Much Broader Problem
(New TP)

The internet enables a green field of new TP
applications

+ Massively multiplayer games (state of the game, leaderboards,
selling virtual goods are all TP problems)

+ Social networking (social graph is a TP problem)
+ Real time ad placement

+ Real time couponing

+ And TP volumes are ginormous!!

+ Serious need for speed and scalability!

VoltDB 8

And TP is Now a Much Broader Problem

Sensor Tagging generates new TP applications

+ Marathon runners (fraud detection, leaderboards)
+ Taxicab (scheduling, fare collection)

+ Dynamic traffic routing

+ Car insurance “by the drink”

+ Mobile social networking

+ And TP volumes are ginormous!!

+ Serious need for speed and scalability!

VoltDB 9

And TP is Now a Much Broader Problem

Electronic commerce is here

+ Wall Street electronic trading
+ Real-time fraud detection

+ Micro transactions (through your PDA)

+ And TP volumes are ginormous!!

+ Serious need for speed and scalability!

VoltDB 10

Add in High Velocity Ingest

VoltDB

+ Real time click stream analysis

+ Most anything upstream from Hadoop
+ Or your data warehouse

+ Real time risk assessment on Wall Street

+ And TP volumes are ginormous!!

+ Serious need for speed and scalability!

11

In all cases.....

=" Workload is a mix of updates and queries
=" Coming at you like a firehose

= Still an ACID problem
+ Don tlose my data

+ Make sure it is correct

=" Tends to break traditional solutions

+ Scalability problems (volume)

+ Response time problems (latency)

VoltDB

12

VoltDB

Put Differently

High velocity and you

v . -

You need to ingest a firehose in real
time

-
s
3
. . *

You need to process, validate, enrich
and respond in real-time (i.e. update)

You often need real-time analytics
(i.e. query)

13

Reality Check -- Size

=" TP data base size grows at the rate transactions
Increase

= 1 Thyte is a really big TP data base
= 1 Tbyte of main memory buyable for around S50K

= |.e. Moore’ s law has eclipsed TP data base size

= |f your data doesn’ t fit in main memory now, then
wait a couple of years and it will.....

Reality Check -- Performance

=" TPC-C CPU cycles
" On the Shore DBMS prototype

= Elephants should be similar

Latching Recovery

24% 2

Useful
Work, 4%

VoltDB

To Go a Lot Faster You Have to......

" Focus on overhead
+ Better B-trees affects only 4% of the path length

= Get rid of ALL major sources of overhead

+ Main memory deployment — gets rid of buffer pool
— Leaving other 75% of overhead intact

— i.e. winis 25%

VoltDB 16

Solution Choices

= OldSQL
+ Legacy RDBMS vendors

= NoSQL
+ Give up SQL and ACID for performance

= NewSQL
+ Preserve SQL and ACID

+ Get performance from a new architecture

VoltDB

17

OldSQL

Traditional SQL vendors (the “elephants”)
+ Code lines dating from the 1980’ s
+ “bloatware”

+ Mediocre performance on New TP

VoltDB

18

The Elephants

" Are slow because they spend all of their time on
overhead!!!

=" Would have to re-architect their legacy code to do
better

Long Term Elephant Outlook

= Up against “The Innovators Dilemma”

" Long term drift into the sunset

NoSQL

= Give up SQL
= Give up ACID

Give Up SQL?

=" Compiler translates SQL at compile time into a
sequence of low level operations

= Similar to what the NoSQL products make you
program in your application

= 30 years of RDBMS experience

+ Hard to beat the compiler
+ High level languages are good (data independence, less code, ...)
+ Stored procedures are good!

— One round trip from app to DBMS rather than one one round trip
per record

— Move the code to the data, not the other way around

VoltDB 22

Give Up ACID

" |f you need data consistency, giving
up ACID is a decision to tear your

hair out by doing database “heavy W" "
lifting” in user code e
=
A N1

= Can you guarantee you won’ t need
ACID tomorrow?

ACID = goodness, in spite of what these guys say

VoltDB

23

Who Needs ACID?

" Funds transfer
+ Or anybody moving something from Xto Y

= Anybody with integrity constraints
+ Back out if fails

+ Anybody for whom “usually ships in 24 hours” is not an
acceptable outcome

= Anybody with a multi-record state
+ E.g. move and shoot

VoltDB

24

Who needs ACID in replication

= Anybody with non-commutative updates
+ For example, + and * don t commute

= Anybody with integrity constraints
+ Can t sell the last item twice....

. 11 7
» Eventual consistency means “creates garbage

VoltDB

25

NoSQL Summary

= Appropriate for non-transactional systems

= Appropriate for single record transactions that are
commutative

=" Not a good fit for New TP
= Use the right tool for the job

Interesting ...
9
Two recently-proposed NoSQL I m confused.
language standards — CQL and No wait...
UnQL — are amazingly similar to Maybe l’rn not.

(you guessed it!) SQL

NewSQL

= 5QL
= ACID

= Performance and scalability through modern
innovative software architecture

NewSQL

" Needs something other than traditional record level
locking (15 big source of overhead)

+ timestamp order
+ MVCC

+ Your good idea goes here

VoltDB

28

NewSQL

= Needs a solution to buffer pool overhead (2" big
source of overhead)

+ Main memory (at least for data that is not cold)

+ Some other way to reduce buffer pool cost

VoltDB

29

NewSQL

=" Needs a solution to latching for shared data
structures (3™ big source of overhead)
+ Some innovative use of B-trees
+ Single-threading

+ Your good idea goes here

VoltDB

30

NewSQL

" Needs a solution to write-ahead logging (4th big
source of overhead)
+ Obvious answer is built-in replication and failover

+ New TP views this as a requirement anyway

= Some details
+ On-line failover?
+ On-line failback?
+ LAN network partitioning?
+ WAN network partitioning?

VoltDB

31

A NewSQL Example — VoltDB

=" Main-memory storage

= Single threaded, run Xacts to completion

" Built-in HA and durability

Yabut: What About Multicore?

" For A K-core CPU, divide memory into K (non

overlapping) buckets

= i.e. convert multi-core to K single cores

Where all the time goes... revisited

Before VoltDB

Locking

Latching
24%

5%

Useful
Work
4%

Useful Work
95%

VoltDB 34

Current VoltDB Status

" Runs a subset of SQL (which is getting larger)

= On VoltDB clusters (in memory on commodity gear)
= With LAN and WAN replication

= 70X a popular OldSQL DBMS on TPC-C

m 5-7X Cassandra on VoltDB K-V layer

= Scales to 384 cores (biggest iron we could get our
hands on)

= Clearly note this is an open source system!

Summary

OIldSQL for New OLTP

®* Too slow
= Does not scale

NoSQL for New OLTP

NewSQL for New OLTP

= Lacks consistency guarantees
= Low-level interface

= Fast, scalable and consistent
= Supports SQL

VoltDB

36

VOIt the NewSQL database you’ Il never outgrow

Thank You

