

2015-10-15- SLIDE 1

IS 257 - Fall 2015

Database Administration: Security
and Integrity

University of California, Berkeley
School of Information

IS 257: Database Management

2015-10-15- SLIDE 2

IS 257 - Fall 2015

Security and Integrity Functions in Database
Administration

•  Review
– JDBC and MySQL
– Python and MySQL

•  Data Integrity
•  Security Management
•  Backup and Recovery

2015-10-15- SLIDE 3

IS 257 - Fall 2015

JDBC Architecture

•  The goal of JDBC is to be a generic SQL
database access framework that works for
any database system with no changes to
the interface code

Oracle MySQL Postgres

Java Applications

JDBC API

JDBC Driver Manager

Driver Driver Driver

2015-10-15- SLIDE 4

IS 257 - Fall 2015

JDBC

•  Provides a standard set of interfaces for
any DBMS with a JDBC driver – using
SQL to specify the databases operations.

Resultset

Statement

Resultset Resultset

Connection

PreparedStatement CallableStatement

DriverManager

Oracle Driver ODBC Driver Postgres Driver

Oracle DB Postgres DB ODBC DB

Application

2015-10-15- SLIDE 5

IS 257 - Fall 2015

JDBC Simple Java Implementation

import java.sql.*;

public class JDBCTestMysqlHarbinger {

 public static void main(java.lang.String[] args) {

 try {
 // this is where the driver is loaded
 Class.forName("com.mysql.jdbc.Driver").newInstance();

 }
 catch (InstantiationException i) {
 System.out.println("Unable to load driver Class");
 return;
 }
 catch (ClassNotFoundException e) {
 System.out.println("Unable to load driver Class");
 return;
 }
 catch (IllegalAccessException e) {

2015-10-15- SLIDE 6

IS 257 - Fall 2015

JDBC Simple Java Impl.

 try {
 //All DB accees is within the try/catch block...
 Connection con = DriverManager.getConnection("jdbc:mysql://localhost

 /ray?user=ray&password=XXXXXXX");
 // Do an SQL statement...
 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT name FROM DIVECUST");

2015-10-15- SLIDE 7

IS 257 - Fall 2015

JDBC Simple Java Impl.
 // show the Results...

 while(rs.next()) {

 System.out.println(rs.getString("Name"));
 System.out.println("");
 }

 // Release the db resources...
 rs.close();
 stmt.close();
 con.close();
 }
 catch (SQLException se) {
 // inform user of errors...

 System.out.println("SQL Exception: " + se.getMessage());
 se.printStackTrace(System.out);
 }

 }
}

2015-10-15- SLIDE 8

MySQLdb

•  MySQLdb is a DB-API for MySQL
•  The basic setup is fairly simple…

– Pip install MySQL-python
– Conda install mysql-python

•  Or, if on harbinger it is already installed
•  To use the interface…

IS 257 - Fall 2015

2015-10-15- SLIDE 9

MySQLdb

IS 257 - Fall 2015

#!/usr/bin/python
import MySQLdb
…
cursor = db.cursor()
Make a string of SQL commands…
sql = "SELECT * FROM DIVECUST"

try:
 # Execute the SQL command in a try/except in case of failure
 cursor.execute(sql)
 # Fetch all the rows in a list of lists.
 results = cursor.fetchall()
 for row in results:
 custno = row[0]
 custname = row[1]
 street = row[2]
 city = row[3]
 state = row[4]
 zip = row[5]
 country = row[6]
 # Now print fetched result
 print "%s : %s, %s, %s, %s %s" % \
 (custname, street, city, state, zip, country)
except:
 print "Error: unable to fetch data"

disconnect from server
db.close()

2015-10-15- SLIDE 10

Can run any SQL…

IS 257 - Fall 2015

#!/usr/bin/python
import MySQLdb
Open database connection
db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method
cursor = db.cursor()

Drop table if it already exist using execute() method.
cursor.execute("DROP TABLE IF EXISTS EMPLOYEE")

Create table as per requirement
sql = """CREATE TABLE EMPLOYEE (
 FIRST_NAME CHAR(20) NOT NULL,
 LAST_NAME CHAR(20),
 AGE INT,
 SEX CHAR(1),
 INCOME FLOAT)"””
cursor.execute(sql)

disconnect from server
db.close()

2015-10-15- SLIDE 11

MySQLdb

IS 257 - Fall 2015

#!/usr/bin/python

import MySQLdb

Open database connection
db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method
cursor = db.cursor()

Prepare SQL query to INSERT a record into the database.
sql = """INSERT INTO EMPLOYEE(FIRST_NAME,
 LAST_NAME, AGE, SEX, INCOME)
 VALUES ('Mac', 'Mohan', 20, 'M', 2000)"""
try:
 # Execute the SQL command
 cursor.execute(sql)
 # Commit your changes in the database
 db.commit()
except:
 # Rollback in case there is any error
 db.rollback()

disconnect from server
db.close()

2015-10-15- SLIDE 12

MySQLdb

IS 257 - Fall 2015

#!/usr/bin/python

import MySQLdb

Open database connection
db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method
cursor = db.cursor()

Prepare SQL query to UPDATE required records
sql = "UPDATE EMPLOYEE SET AGE = AGE + 1
 WHERE SEX = '%c'" % ('M')
try:
 # Execute the SQL command
 cursor.execute(sql)
 # Commit your changes in the database
 db.commit()
except:
 # Rollback in case there is any error
 db.rollback()

disconnect from server
db.close()

2015-10-15- SLIDE 13

IS 257 - Fall 2015

Security and Integrity Functions in Database
Administration

•  Data Integrity (review)
•  Security Management
•  Backup and Recovery

2015-10-15- SLIDE 14

IS 257 - Fall 2015

Data Integrity

•  Intrarecord integrity (enforcing constraints
on contents of fields, etc.)

•  Referential Integrity (enforcing the validity
of references between records in the
database)

•  Concurrency control (ensuring the validity
of database updates in a shared multiuser
environment)

2015-10-15- SLIDE 15

IS 257 - Fall 2015

Integrity Constraints (review)

•  The constraints we wish to impose in order
to protect the database from becoming
inconsistent.

•  Five types
– Required data
– attribute domain constraints
– entity integrity
–  referential integrity
– enterprise constraints

2015-10-15- SLIDE 16

IS 257 - Fall 2015

Required Data

•  Some attributes must always contain a
value -- they cannot have a NULL value

•  For example:
– Every employee must have a job title.
– Every diveshop diveitem must have an order

number and an item number

2015-10-15- SLIDE 17

IS 257 - Fall 2015

Attribute Domain Constraints

•  Every attribute has a domain, that is a set
of values that are legal for it to use

•  For example:
– The domain of sex in the employee relation is
“M” or “F”

•  Domain ranges can be used to validate
input to the database

2015-10-15- SLIDE 18

IS 257 - Fall 2015

Entity Integrity

•  The primary key of any entity:
– Must be Unique
– Cannot be NULL

2015-10-15- SLIDE 19

IS 257 - Fall 2015

Referential Integrity

•  A “foreign key” links each occurrence in a
relation representing a child entity to the
occurrence of the parent entity containing the
matching candidate (usually primary) key

•  Referential Integrity means that if the foreign key
contains a value, that value must refer to an
existing occurrence in the parent entity

•  For example:
–  Since the Order ID in the diveitem relation refers to a

particular diveords item, that item must exist for
referential integrity to be satisfied.

2015-10-15- SLIDE 20

IS 257 - Fall 2015

Referential Integrity

•  Referential integrity options are declared
when tables are defined (in most systems)

•  There are many issues having to do with
how particular referential integrity
constraints are to be implemented to deal
with insertions and deletions of data from
the parent and child tables.

2015-10-15- SLIDE 21

IS 257 - Fall 2015

Insertion rules

•  A row should not be inserted in the
referencing (child) table unless there
already exists a matching entry in the
referenced table

•  Inserting into the parent table should not
cause referential integrity problems

•  Sometimes a special NULL value may be
used to create child entries without a
parent or with a “dummy” parent

2015-10-15- SLIDE 22

IS 257 - Fall 2015

Deletion rules

•  A row should not be deleted from the
referenced table (parent) if there are
matching rows in the referencing table
(child)

•  Three ways to handle this
– Restrict -- disallow the delete
– Nullify -- reset the foreign keys in the child to

some NULL or dummy value
– Cascade -- Delete all rows in the child where

there is a foreign key matching the key in the
parent row being deleted

2015-10-15- SLIDE 23

IS 257 - Fall 2015

Referential Integrity

•  This can be implemented using external
programs that access the database

•  newer databases implement executable
rules or built-in integrity constraints (e.g.
Access and Oracle)

2015-10-15- SLIDE 24

IS 257 - Fall 2015

Enterprise Constraints

•  These are business rule that may affect
the database and the data in it
–  for example, if a manager is only permitted to

manage 10 employees then it would violate
an enterprise constraint to manage more

2015-10-15- SLIDE 25

IS 257 - Fall 2015

Data and Domain Integrity

•  This is now increasing handled by the database.
In Oracle or MySQL, for example, when defining
a table you can specify:

•  CREATE TABLE table-name (
 attr2 attr-type NOT NULL, forbids NULL values
 attrN attr-type CHECK (attrN = UPPER(attrN))

verifies that the data meets certain criteria
 attrO attr-type DEFAULT default_value);

Supplies default values

Remember that not all of these work in all MySQL engines

2015-10-15- SLIDE 26

IS 257 - Fall 2015

Referential Integrity

•  Ensures that dependent relationships in
the data are maintained. In Oracle or
MySQL, for example:

•  CREATE TABLE table-name (
 attr1 attr-type PRIMARY KEY,
 attr2 attr-type NOT NULL,
…, attrM attr-type REFERENCES

tablename(attrname) ON DELETE
CASCADE, …

 These have many additional options…

2015-10-15- SLIDE 27

IS 257 - Fall 2015

Concurrency Control

•  The goal is to support access by multiple
users to the same data, at the same time

•  It must assure that the transactions are
serializable and that they are isolated

•  It is intended to handle several problems
in an uncontrolled system

•  Specifically:
– Lost updates
–  Inconsistent data states during access
– Uncompleted (or committed) changes to data

2015-10-15- SLIDE 28

IS 257 - Fall 2015

No Concurrency Control: Lost updates

•  Read account
balance (balance =
$1000)

•  Withdraw $200
(balance = $800)

•  Write account
balance (balance =
$800)

•  Read account
balance (balance =
$1000)

•  Withdraw $300
(balance = $700)

•  Write account
balance (balance =
$700)

John Marsha

ERROR!

2015-10-15- SLIDE 29

IS 257 - Fall 2015

Concurrency Control: Locking

•  Locking levels
– Database
– Table
– Block or page
– Record
– Field

•  Types
– Shared (S locks)
– Exclusive (X locks)

2015-10-15- SLIDE 30

IS 257 - Fall 2015

Concurrency Control: Updates with X locking

•  Lock account balance
•  Read account balance

(balance = $1000)
•  Withdraw $200 (balance

= $800)
•  Write account balance

(balance = $800)
•  Unlock account balance

•  Read account balance
(DENIED)

•  Lock account balance
•  Read account balance

(balance = $800)
•  etc...

John Marsha

2015-10-15- SLIDE 31

IS 257 - Fall 2015

Concurrency Control: Deadlocks

•  Place S lock
•  Read account

balance (balance =
$1000)

•  Request X lock
(denied)

•  wait ...

•  Place S lock
•  Read account

balance (balance =
$1000)

•  Request X lock
(denied)

•  wait...

John Marsha

Deadlock!

2015-10-15- SLIDE 32

IS 257 - Fall 2015

Concurrency Control

•  Avoiding deadlocks by maintaining tables of
potential deadlocks and “backing out” one side
of a conflicting transaction

•  Normally strict Two-Phase locking (TPL or 2PL)
is used. It has the characteristics that
–  Strict 2PL prevents transactions from reading

uncommitted data, overwriting uncommitted data, and
unrepeatable reads

–  It prevents cascading rollbacks (i.e. having to roll back
multiple transactions), since eXclusive locks (for write
privileges) must be held until a transaction commits

2015-10-15- SLIDE 33

IS 257 - Fall 2015

Transaction Control in ORACLE

•  Transactions are sequences of SQL statements
that ORACLE treats as a unit
–  From the user’s point of view a private copy of the

database is created for the duration of the transaction
•  Transactions are started with SET

TRANSACTION, followed by the SQL
statements

•  Any changes made by the SQL are made
permanent by COMMIT

•  Part or all of a transaction can be undone using
ROLLBACK

2015-10-15- SLIDE 34

IS 257 - Fall 2015

Transactions in ORACLE

•  COMMIT; (I.e., confirm previous transaction)
•  SET TRANSACTION READ ONLY;
•  SELECT NAME, ADDRESS FROM WORKERS;
•  SELECT MANAGER, ADDRESS FROM

PLACES;
•  COMMIT;
•  Freezes the data for the user in both tables before either

select retrieves any rows, so that changes that occur
concurrently will not show up

•  Commits before and after ensure any uncompleted
transactions are finish, and then release the frozen data
when done

2015-10-15- SLIDE 35

IS 257 - Fall 2015

Transactions in ORACLE

•  Savepoints are places in a transaction that you
may ROLLBACK to (called checkpoints in other
DBMS)
–  SET TRANACTION…;
–  SAVEPOINT ALPHA;
–  SQL STATEMENTS…
–  IF (CONDITION) THEN ROLLBACK TO SAVEPOINT

ALPHA;
–  SAVEPOINT BETA;
–  SQL STATEMENTS…
–  IF …;
–  COMMIT;

2015-10-15- SLIDE 36

IS 257 - Fall 2015

Transactions in MySQL

•  START TRANSACTION or BEGIN starts a
transaction block (disables autocommit)

•  COMMIT or ROLLBACK will commit the
transaction block or return to state before the
block was started

•  MySQL may use different underlying database
engines – the InnoDB engine also supports
SAVEPOINT and ROLLBACK TO SAVEPOINT

•  NOTE: This syntax can be used in any of MySQL’s database
engines - but it only WORKS when using the InnoDB engine (which
can be set up when the tables are created)

2015-10-15- SLIDE 37

IS 257 - Fall 2015

Transactions in MySQL (5.0+)

•  START TRANSACTION [WITH CONSISTENT
SNAPSHOT] | BEGIN [WORK]

•  COMMIT [WORK] [AND [NO] CHAIN] [[NO] RELEASE]
•  ROLLBACK [WORK] [AND [NO] CHAIN] [[NO]

RELEASE]
•  SET AUTOCOMMIT = {0 | 1}

•  The START TRANSACTION and BEGIN statement
begin a new transaction. COMMIT commits the current
transaction, making its changes permanent. ROLLBACK
rolls back the current transaction, canceling its changes.
The SET AUTOCOMMIT statement disables or enables
the default autocommit mode for the current connection

2015-10-15- SLIDE 38

IS 257 - Fall 2015

MySQL: Explicit locking of tables
•  LOCK TABLES
 tbl_name [[AS] alias] lock_type
 [, tbl_name [[AS] alias] lock_type] ...

•  lock_type:
 READ [LOCAL] | [LOW_PRIORITY] WRITE

•  UNLOCK TABLES

•  MySQL enables client sessions to acquire table locks
explicitly for the purpose of cooperating with other
sessions for access to tables, or to prevent other
sessions from modifying tables during periods when a
session requires exclusive access to them. A session
can acquire or release locks only for itself. One session
cannot acquire locks for another session or release locks
held by another session.

2015-10-15- SLIDE 39

IS 257 - Fall 2015

Security and Integrity Functions in Database
Administration

•  Data Integrity
•  Security Management
•  Backup and Recovery

2015-10-15- SLIDE 40

IS 257 - Fall 2015

Database Security

•  Views or restricted subschemas
•  Authorization rules to identify users and the

actions they can perform
•  User-defined procedures (with rule systems or

triggers) to define additional constraints or
limitations in using the database

•  Encryption to encode sensitive data
•  Authentication schemes to positively identify a

person attempting to gain access to the
database

2015-10-15- SLIDE 41

IS 257 - Fall 2015

Views

•  A subset of the database presented to
some set of users
– SQL:
 CREATE VIEW viewname AS SELECT

field1, field2, field3,…, FROM table1, table2
WHERE <where clause>;

– Note: “queries” in Access function as views

2015-10-15- SLIDE 42

IS 257 - Fall 2015

Restricted Views

•  Main relation has the form:

Name C_name Dept C_dept Prof C_prof TC

J Smith S Dept1 S Cryptography TS TS

M Doe U Dept2 S IT Security S S

R Jones U Dept3 U Secretary U U

U = unclassified : S = Secret : TS = Top Secret

2015-10-15- SLIDE 43

IS 257 - Fall 2015

Restricted Views

NAME Dept Prof
J Smith Dept1 ---
M Doe Dept2 IT Security
R Jones Dept3 Secretary

NAME Dept Prof
M Doe --- ---
R Jones Dept3 Secretary

S-view of the data

U-view of the data

2015-10-15- SLIDE 44

IS 257 - Fall 2015

Authorization Rules

•  Most current DBMS permit the DBA to
define “access permissions” on a table by
table basis (at least) using the GRANT
and REVOKE SQL commands

•  Some systems permit finer grained
authorization, such as by column (most
use GRANT and REVOKE on variant
views

2015-10-15- SLIDE 45

Grant and Revoke

•  When Database Administrators (DBA) set
up a database, they can specify not only
the users and their logins, but also what
privileges they have for each table (and/or
column) in the database

•  Thus, you could, for example, grant
SELECT on the Salary table for
employees, but not INSERT or UPDATE

IS 257 - Fall 2015

2015-10-15- SLIDE 46

In MySQL

•  GRANT priv_type [(column_list)] [,
priv_type [(column_list)]] ... ON
[object_type] priv_level TO
user_specification [, user_specification] ...
[REQUIRE {NONE | ssl_option [[AND]
ssl_option] ...}] [WITH {GRANT OPTION |
resource_option} ...]

•  E.g. : GRANT SELECT (Name, Street) ON
DIVECUST TO ‘yliu’@’localhost’;

IS 257 - Fall 2015

2015-10-15- SLIDE 47

In MySQL

•  REVOKE priv_type [(column_list)] [,
priv_type [(column_list)]] ... ON
[object_type] priv_level FROM user [,
user] ...

•  REVOKE ALL PRIVILEGES, GRANT
OPTION FROM user [, user] ...

•  E.g.: REVOKE INSERT ON DIVECUST
FROM ‘user’@’server’;

IS 257 - Fall 2015

2015-10-15- SLIDE 48

MySQL Access Privileges
Privilege Column Context

CREATE Create_priv databases, tables, or
indexes

DROP Drop_priv databases, tables, or
views

GRANT OPTION Grant_priv databases, tables, or
stored routines

LOCK TABLES Lock_tables_priv databases
REFERENCES References_priv databases or tables
EVENT Event_priv databases
ALTER Alter_priv tables
DELETE Delete_priv tables
INDEX Index_priv tables
INSERT Insert_priv tables or columns
SELECT Select_priv tables or columns

IS 257 - Fall 2015

2015-10-15- SLIDE 49

MySQL Access Privileges
Privilege Column Context
UPDATE Update_priv tables or columns
CREATE TEMPORARY
TABLES Create_tmp_table_priv tables

TRIGGER Trigger_priv tables
CREATE VIEW Create_view_priv views
SHOW VIEW Show_view_priv views
ALTER ROUTINE Alter_routine_priv stored routines
CREATE ROUTINE Create_routine_priv stored routines
EXECUTE Execute_priv stored routines

FILE File_priv file access on server
host

CREATE TABLESPACE Create_tablespace_priv server administration
CREATE USER Create_user_priv server administration

IS 257 - Fall 2015

2015-10-15- SLIDE 50

MySQL Access Privileges

IS 257 - Fall 2015

Privilege Column Context
PROCESS Process_priv server administration
PROXY see proxies_priv table server administration
RELOAD Reload_priv server administration
REPLICATION CLIENT Repl_client_priv server administration
REPLICATION SLAVE Repl_slave_priv server administration
SHOW DATABASES Show_db_priv server administration
SHUTDOWN Shutdown_priv server administration
SUPER Super_priv server administration
ALL [PRIVILEGES] server administration
USAGE server administration

2015-10-15- SLIDE 51

Security in DB Applications

•  The most common form of security
violation on the web involves an SQL
injection attack on a DB-driven web site

IS 257 - Fall 2015

2015-10-15- SLIDE 52

Security in DB Applications

•  An SQL Injection attack only works when
data provided by users (such as the
contents of a form) is inserted directly into
SQL and submitted to the database
system

•  To avoid this, any input should be cleaned
by
– Removing any SQL reserved characters (like

“’”, “;”, “)”, etc.
– And possibly reserved words like “SELECT”,

“DROP”, “TABLES”, etc.

IS 257 - Fall 2015

2015-10-15- SLIDE 53

Security in DB Applications

•  Some Web Application Servers, like PHP,
include functions to “sanitize” inputs
– For example

•  mysql_real_escape_string($cname)
•  This basically just escapes quotes
•  Input string 'Louis'; DROP TABLE NEWCUST;'
•  Converted query ‘SELECT * FROM DIVECUST D

where D.Name like '%Louis\'; DROP TABLE
NEWCUST;%' ;

IS 257 - Fall 2015

2015-10-15- SLIDE 54

SQL Injection

•  Also, as discussed last week,
parameterized PHP can be used to avoid
executing what should be data

IS 257 - Fall 2015

2015-10-15- SLIDE 55

IS 257 - Fall 2015

Security and Integrity Functions in Database
Administration

•  Data Integrity
•  Security Management
•  Backup and Recovery – introduction (more

next time)

2015-10-15- SLIDE 56

IS 257 - Fall 2015

Database Backup and Recovery

•  Backups
•  Journaling (audit trail)
•  Checkpoint facility
•  Recovery manager

•  Info on Backups, etc. from MySQL docs
http://dev.mysql.com/doc/refman/5.1/en/
backup-and-recovery.html

2015-10-15- SLIDE 57

MySQL Backup Types

•  Physical (Raw) Versus Logical Backups
–  Physical (or Raw) Backups

•  Physical backups consist of raw copies of the directories and
files that store database contents. This type of backup is
suitable for large, important databases that need to be
recovered quickly when problems occur.

–  Logical Backups
•  Logical backups save information represented as logical

database structure (CREATE DATABASE, CREATE TABLE
statements) and content (INSERT statements or delimited-
text files). This type of backup is suitable for smaller amounts
of data where you might edit the data values or table
structure, or recreate the data on a different machine
architecture.

IS 257 - Fall 2015

From: http://dev.mysql.com/doc/refman/5.1/en/backup-types.html

2015-10-15- SLIDE 58

Logical Backup

•  The backup is done by querying the MySQL server to obtain
database structure and content information.

•  Backup is slower than physical methods because the server must
access database information and convert it to logical format.

•  Output is larger than for physical backup, particularly when saved in
text format.

•  Backup and restore granularity is available at the server level (all
databases), database level (all tables in a particular database), or
table level. This is true regardless of storage engine.

•  The backup does not include log or configuration files, or other
database-related files that are not part of databases.

•  Backups stored in logical format are machine independent and
highly portable.

•  Logical backups are performed with the MySQL server running.

IS 257 - Fall 2015

2015-10-15- SLIDE 59

Logical Backups

•  Logical backup tools include the
mysqldump program and the SELECT ...
INTO OUTFILE statement. These work for
any storage engine, even MEMORY.

•  To restore logical backups, SQL-format
dump files can be processed using the
mysql client. To load delimited-text files,
use the LOAD DATA INFILE statement or
the mysqlimport client.

IS 257 - Fall 2015

2015-10-15- SLIDE 60

Logical Backups

•  Mysqldump –p [-X] databasename
tablename(s)

•  Demo of normal and XML output

IS 257 - Fall 2015

2015-10-15- SLIDE 61

Physical Backups

•  The backup consists of exact copies of database directories and
files. Typically this is a copy of all or part of the MySQL data
directory.

•  Physical backup methods are faster than logical because they
involve only file copying without conversion.

•  Output is more compact than for logical backup.
•  Backup and restore granularity ranges from the level of the entire

data directory down to the level of individual files.
•  In addition to databases, the backup can include any related files

such as log or configuration files.
•  Backups are portable only to other machines that have identical or

similar hardware characteristics.
•  Backups can be performed while the MySQL server is not running. If

the server is running, it is necessary to perform appropriate locking
so that the server does not change database contents during the
backup.

IS 257 - Fall 2015

2015-10-15- SLIDE 62

Physical Backups

•  Physical backup tools include file system-level
commands (such as cp, scp, tar, rsync),
mysqlhotcopy for MyISAM tables, ibbackup for
InnoDB tables, or START BACKUP for NDB
tables.

•  For restore, files copied at the file system level
or with mysqlhotcopy can be copied back to
their original locations with file system
commands; ibbackup restores InnoDB tables,
and ndb_restore restores NDB tables.

IS 257 - Fall 2015

