

2015.11.19- SLIDE 1

IS 257 – Fall 2015

MapReduce, HBase, Pig and
Hive

University of California, Berkeley
School of Information

IS 257: Database Management

2015.11.19- SLIDE 2

History of the World, Part 1

•  Relational Databases – mainstay of
business

•  Web-based applications caused spikes
– Especially true for public-facing e-Commerce

sites
•  Developers begin to front RDBMS with

memcache or integrate other caching
mechanisms within the application (ie.
Ehcache)

IS 257 – Fall 2015

2015.11.19- SLIDE 3

Scaling Up

•  Issues with scaling up when the dataset is just
too big

•  RDBMS were not designed to be distributed
•  Began to look at multi-node database solutions
•  Known as ‘scaling out’ or ‘horizontal scaling’
•  Different approaches include:

–  Master-slave
–  Sharding

IS 257 – Fall 2015

2015.11.19- SLIDE 4

Scaling RDBMS – Master/Slave

•  Master-Slave
– All writes are written to the master. All

reads performed against the replicated
slave databases

– Critical reads may be incorrect as writes
may not have been propagated down

– Large data sets can pose problems as
master needs to duplicate data to slaves

IS 257 – Fall 2015

2015.11.19- SLIDE 5

Scaling RDBMS - Sharding

•  Partition or sharding
– Scales well for both reads and writes
– Not transparent, application needs to be

partition-aware
– Can no longer have relationships/joins

across partitions
– Loss of referential integrity across

shards

IS 257 – Fall 2015

2015.11.19- SLIDE 6

Other ways to scale RDBMS

•  Multi-Master replication
•  INSERT only, not UPDATES/DELETES
•  No JOINs, thereby reducing query time

– This involves de-normalizing data
•  In-memory databases (like VoltDB)

IS 257 – Fall 2015

2015.11.19- SLIDE 7

NoSQL

•  NoSQL databases adopted these
approaches to scaling, but lacked ACID
transaction and SQL

•  At the same time, many Web-based
services needed to deal with Big Data (the
Three V’s we looked at last time) and
created custom approaches to do this

•  In particular, MapReduce…

IS 257 – Fall 2015

2015.11.19- SLIDE 8

MapReduce and Hadoop

•  MapReduce developed at Google
•  MapReduce implemented in Nutch

– Doug Cutting at Yahoo!
– Became Hadoop (named for Doug’s child’s

stuffed elephant toy)

IS 257 – Fall 2015

2015.11.19- SLIDE 9

Motivation

•  Large-Scale Data Processing
– Want to use 1000s of CPUs

•  But don’t want hassle of managing things

•  MapReduce provides
– Automatic parallelization & distribution
– Fault tolerance
–  I/O scheduling
– Monitoring & status updates

From “MapReduce…” by Dan Weld

IS 257 – Fall 2015

2015.11.19- SLIDE 10

Map/Reduce

•  Map/Reduce
– Programming model from Lisp
–  (and other functional languages)

•  Many problems can be phrased this way
•  Easy to distribute across nodes
•  Nice retry/failure semantics

From “MapReduce…” by Dan Weld

IS 257 – Fall 2015

2015.11.19- SLIDE 11

Map in Lisp (Scheme)

•  (map f list [list2 list3 …])

•  (map square ‘(1 2 3 4))
–  (1 4 9 16)

•  (reduce + ‘(1 4 9 16))
–  (+ 16 (+ 9 (+ 4 1)))
– 30

•  (reduce + (map square (map – l1 l2))))
From “MapReduce…” by Dan Weld

IS 257 – Fall 2015

2015.11.19- SLIDE 12

Map/Reduce ala Google

•  map(key, val) is run on each item in set
– emits new-key / new-val pairs

•  reduce(key, vals) is run for each unique key
emitted by map()
– emits final output

From “MapReduce…” by Dan Weld

IS 257 – Fall 2015

2015.11.19- SLIDE 13

Programming model

•  Input & Output: each a set of key/value pairs
•  Programmer specifies two functions:
•  map (in_key, in_value) -> list(out_key,

intermediate_value)
–  Processes input key/value pair
–  Produces set of intermediate pairs

•  reduce (out_key, list(intermediate_value)) ->
list(out_value)
–  Combines all intermediate values for a particular key
–  Produces a set of merged output values (usually just one)

From “MapReduce: Simplified data Processing… ”, Jeffrey Dean and Sanjay Ghemawat

IS 257 – Fall 2015

2015.11.19- SLIDE 14

count words in docs

–  Input consists of (url, contents) pairs

– map(key=url, val=contents):
•  For each word w in contents, emit (w, “1”)

–  reduce(key=word, values=uniq_counts):
•  Sum all “1”s in values list
•  Emit result “(word, sum)”

From “MapReduce…” by Dan Weld

IS 257 – Fall 2015

2015.11.19- SLIDE 15

Count, Illustrated
map(key=url, val=contents):

For each word w in contents, emit (w, “1”)

reduce(key=word, values=uniq_counts):
Sum all “1”s in values list
Emit result “(word, sum)”

see bob throw
see spot run

see 1
bob 1
run 1
see 1
spot 1
throw 1

bob 1
run 1
see 2
spot 1
throw 1

From “MapReduce…” by Dan Weld

IS 257 – Fall 2015

2015.11.19- SLIDE 16

Example

•  Page 1: the weather is good
•  Page 2: today is good
•  Page 3: good weather is good.

From “MapReduce: Simplified data Processing… ”, Jeffrey Dean and Sanjay Ghemawat

IS 257 – Fall 2015

2015.11.19- SLIDE 17

Map output

•  Worker 1:
–  (the 1), (weather 1), (is 1), (good 1).

•  Worker 2:
–  (today 1), (is 1), (good 1).

•  Worker 3:
–  (good 1), (weather 1), (is 1), (good 1).

From “MapReduce: Simplified data Processing… ”, Jeffrey Dean and Sanjay Ghemawat

IS 257 – Fall 2015

2015.11.19- SLIDE 18

Reduce Input

•  Worker 1:
–  (the 1)

•  Worker 2:
–  (is 1), (is 1), (is 1)

•  Worker 3:
–  (weather 1), (weather 1)

•  Worker 4:
–  (today 1)

•  Worker 5:
–  (good 1), (good 1), (good 1), (good 1)

From “MapReduce: Simplified data Processing… ”, Jeffrey Dean and Sanjay Ghemawat

IS 257 – Fall 2015

2015.11.19- SLIDE 19

Reduce Output

•  Worker 1:
–  (the 1)

•  Worker 2:
–  (is 3)

•  Worker 3:
–  (weather 2)

•  Worker 4:
–  (today 1)

•  Worker 5:
–  (good 4)

From “MapReduce: Simplified data Processing… ”, Jeffrey Dean and Sanjay Ghemawat

IS 257 – Fall 2015

2015.11.19- SLIDE 20

Data Flow in a MapReduce Program in
Hadoop

•  InputFormat
•  Map function
•  Partitioner
•  Sorting & Merging
•  Combiner
•  Shuffling
•  Merging
•  Reduce function
•  OutputFormat

! 1:many

IS 257 – Fall 2015

2015.11.19- SLIDE 21

Grep

–  Input consists of (url+offset, single line)
– map(key=url+offset, val=line):

•  If contents matches regexp, emit (line, “1”)

–  reduce(key=line, values=uniq_counts):
•  Don’t do anything; just emit line

From “MapReduce…” by Dan Weld

IS 257 – Fall 2015

2015.11.19- SLIDE 22

Reverse Web-Link Graph

•  Map
– For each URL linking to target, …
– Output <target, source> pairs

•  Reduce
– Concatenate list of all source URLs
– Outputs: <target, list (source)> pairs

From “MapReduce…” by Dan Weld

IS 257 – Fall 2015

2015.11.19- SLIDE 23

MapReduce in Hadoop (1)

IS 257 – Fall 2015

2015.11.19- SLIDE 24

MapReduce in Hadoop (2)

IS 257 – Fall 2015

2015.11.19- SLIDE 25

MapReduce in Hadoop (3)

IS 257 – Fall 2015

2015.11.19- SLIDE 26

Fault tolerance

•  On worker failure:
– Detect failure via periodic heartbeats
– Re-execute completed and in-progress map

tasks
– Re-execute in progress reduce tasks
– Task completion committed through master

•  Master failure:
– Could handle, but don't yet (master failure

unlikely)

From “MapReduce: Simplified data Processing… ”, Jeffrey Dean and Sanjay Ghemawat

IS 257 – Fall 2015

2015.11.19- SLIDE 27

Refinement

•  Different partitioning functions.
•  Combiner function.
•  Different input/output types.
•  Skipping bad records.
•  Local execution.
•  Status info.
•  Counters.

From “MapReduce: Simplified data Processing… ”, Jeffrey Dean and Sanjay Ghemawat

IS 257 – Fall 2015

2015.11.19- SLIDE 28

Performance

•  Scan 10^10 100-byte records to extract
records matching a rare pattern (92K
matching records) : 150 seconds.

•  Sort 10^10 100-byte records (modeled
after TeraSort benchmark) : normal 839
seconds.

From “MapReduce: Simplified data Processing… ”, Jeffrey Dean and Sanjay Ghemawat

IS 257 – Fall 2015

2015.11.19- SLIDE 29

More and more mapreduce

From “MapReduce: Simplified data Processing… ”, Jeffrey Dean and Sanjay Ghemawat

IS 257 – Fall 2015

2015.11.19- SLIDE 30

Conclusion

•  MapReduce has proven to be a useful
abstraction

•  Greatly simplifies large-scale
computations at Google

•  Fun to use: focus on problem, let library
deal w/ messy details

From “MapReduce: Simplified data Processing… ”, Jeffrey Dean and Sanjay Ghemawat

IS 257 – Fall 2015

2015.11.19- SLIDE 31

But – Raw Hadoop means code

•  Most people don’t want to write code if
they don’t have to

•  Various tools layered on top of Hadoop
give different, and more familiar, interfaces

•  Hbase – intended to be a NoSQL
database abstraction for Hadoop

•  Hive and it’s SQL-like language

IS 257 – Fall 2015

2015.11.19- SLIDE 32

Hadoop Components

•  Hadoop Distributed File System (HDFS)
•  Hadoop Map-Reduce
•  Contributes

–  Hadoop Streaming
–  Pig / JAQL / Hive
–  HBase
–  Hama / Mahout

IS 257 – Fall 2015

2015.11.19- SLIDE 33

Hadoop Distributed File System

IS 257 – Fall 2015

2015.11.19- SLIDE 34

Goals of HDFS

•  Very Large Distributed File System
– 10K nodes, 100 million files, 10 PB

•  Convenient Cluster Management
– Load balancing
– Node failures
– Cluster expansion

•  Optimized for Batch Processing
– Allow move computation to data
– Maximize throughput

IS 257 – Fall 2015

2015.11.19- SLIDE 35

HDFS Architecture

IS 257 – Fall 2015

2015.11.19- SLIDE 36

HDFS Details

•  Data Coherency
– Write-once-read-many access model
– Client can only append to existing files

•  Files are broken up into blocks
– Typically 128 MB block size
– Each block replicated on multiple DataNodes

•  Intelligent Client
– Client can find location of blocks
– Client accesses data directly from DataNode

IS 257 – Fall 2015

2015.11.19- SLIDE 37

IS 257 – Fall 2015

2015.11.19- SLIDE 38

HDFS User Interface

•  Java API
•  Command Line

– hadoop dfs -mkdir /foodir
– hadoop dfs -cat /foodir/myfile.txt
– hadoop dfs -rm /foodir myfile.txt
– hadoop dfsadmin -report
– hadoop dfsadmin -decommission

datanodename
•  Web Interface

– http://host:port/dfshealth.jsp
IS 257 – Fall 2015

2015.11.19- SLIDE 39

HDFS

•  Very large-scale distributed storage with
automatic backup (replication)

•  Processing can run at each node also
– Bring the computation to the data instead of

vice-versa
•  Underlies all of the other Hadoop

“menagie” of programs

IS 257 – Fall 2015

2015.11.19- SLIDE 40

Introduction to Pig PIG – A data-flow
language for
MapReduce

IS 257 – Fall 2015

2015.11.19- SLIDE 41

MapReduce too complex?

•  Restrict programming model
– Only two phases
– Job chain for long data flow

•  Put the logic at the right phase
–  In MR programmers are responsible for this

•  Too many lines of code even for simple
logic
– How many lines do you have for word count?

IS 257 – Fall 2015

2015.11.19- SLIDE 42

Pig…

•  High level dataflow language (Pig Latin)
– Much simpler than Java
– Simplify the data processing

•  Put the operations at the apropriate
phases (map, shuffle, etc.)

•  Chains multiple MapReduce jobs
•  Similar to relational algebra, but on files

instead of relations

IS 257 – Fall 2015

2015.11.19- SLIDE 43

Pig Latin

•  Data flow language
– User specifies a sequence of operations to

process data
– More control on the processing, compared

with declarative language
•  Various data types are supported
•  ”Schema”s are supported
•  User-defined functions are supported

IS 257 – Fall 2015

2015.11.19- SLIDE 44

Motivation by Example

•  Suppose we have
user data in one file,
website data in
another file.

•  We need to find the
top 5 most visited
pages by users
aged 18-25

IS 257 – Fall 2015

2015.11.19- SLIDE 45

In Pig Latin

IS 257 – Fall 2015

2015.11.19- SLIDE 46

Pig runs over Hadoop

IS 257 – Fall 2015

2015.11.19- SLIDE 47

How Pig is used in Industry

•  At Yahoo!, 70% MapReduce jobs are
written in Pig

•  Used to
– Process web log
– Build user behavior models
– Process images
– Data mining

•  Also used by Twitter, LinkedIn, Ebay,
AOL, etc.

IS 257 – Fall 2015

2015.11.19- SLIDE 48

MapReduce vs. Pig

•  MaxTemperature

Year Temper
ature

Air
Quality …

1998 87 2 …
1983 93 4 ..
2008 90 3 …
2001 89 5 …
1965 97 4 …

SELECT Year,
MAX(Temperature)

FROM Table1

WHERE AirQuality = 0|1|4|5|9

GROUPBY Year

Table1

IS 257 – Fall 2015

2015.11.19- SLIDE 49

In MapReduce

IS 257 – Fall 2015

2015.11.19- SLIDE 50

In Pig

IS 257 – Fall 2015

2015.11.19- SLIDE 51

Wait a mimute

•  How to map the data to records
– By default, one line → one record
– User can customize the loading process

•  How to identify attributes and map them to
schema?
– Delimiters to separate different attributes
– By default tabs are used, but it can be

customized

IS 257 – Fall 2015

2015.11.19- SLIDE 52

MapReduce vs. Pig cont.

•  Join in MapReduce
– Various algorithms. None of them are easy to

implement in MapReduce
– Multi-way join more complicated

IS 257 – Fall 2015

2015.11.19- SLIDE 53

MapReduce vs. Pig cont.

•  Join in Pig
– Various algorithms already available.
– Some of them are generic to support multi-

way join
– Simple to integrate into workflow…

A = LOAD 'input/join/A’;
B = LOAD 'input/join/B’;
C = JOIN A BY $0, B BY $1;
DUMP C;

IS 257 – Fall 2015

2015.11.19- SLIDE 54

Hive - SQL on top of Hadoop

IS 257 – Fall 2015

2015.11.19- SLIDE 55

Map-Reduce and SQL

•  Map-Reduce is scalable
–  SQL has a huge user base
–  SQL is easy to code

•  Solution: Combine SQL and Map-Reduce
–  Hive on top of Hadoop (open source)
–  Aster Data (proprietary)
–  Green Plum (proprietary)

IS 257 – Fall 2015

2015.11.19- SLIDE 56

Hive

•  A database/data warehouse on top of
Hadoop
–  Rich data types (structs, lists and maps)
–  Efficient implementations of SQL filters, joins and

group-by’s on top of mapreduce

•  Allow users to access Hadoop data without
using Hadoop

•  Link:
– http://svn.apache.org/repos/asf/hadoop/

hive/trunk/

IS 257 – Fall 2015

2015.11.19- SLIDE 57

Hive Architecture

HDFS

Hive CLI
DDL Queries Browsing

Map Reduce

SerDe

Thrift Jute JSON
Thrift API

MetaStore

Web UI
Mgmt, etc

Hive QL

Planner Execution Parser Planner

IS 257 – Fall 2015

2015.11.19- SLIDE 58

Hive QL – Join

•  SQL:
INSERT INTO TABLE pv_users
SELECT pv.pageid, u.age
FROM page_view pv JOIN user u ON (pv.userid = u.userid);

pagei
d

useri
d

time

1 111 9:08:01

2 111 9:08:13

1 222 9:08:14

user
id

age gender

111 25 female
222 32 male

pageid age

1 25
2 25
1 32

X =

page_view
user

pv_users

IS 257 – Fall 2015

2015.11.19- SLIDE 59

Hive QL – Join in Map Reduce

key value

111 <1,1>

111 <1,2>

222 <1,1>

key value

111 <2,25>

222 <2,32>

pagei
d

useri
d

time

1 111 9:08:01

2 111 9:08:13

1 222 9:08:14

user
id

age gender

111 25 female

222 32 male

page_view

user

pv_users

Map

key value

111 <1,1>

111 <1,2>

111 <2,25>

key value
222 <1,1>
222 <2,32

>

Shuffle
Sort

page
id

age

1 25

2 25

page
id

age

1 32

Reduce

IS 257 – Fall 2015

2015.11.19- SLIDE 60

Hive QL – Group By

•  SQL:
▪  INSERT INTO TABLE pageid_age_sum
 SELECT pageid, age, count(1)
 FROM pv_users
 GROUP BY pageid, age;

pageid age

1 25
2 25
1 32
2 25

pv_users

pageid age Count

1 25 1
2 25 2
1 32 1

pageid_age_sum

IS 257 – Fall 2015

2015.11.19- SLIDE 61

Hive QL – Group By in Map Reduce

pagei
d

age

1 25
2 25

pv_users

page
id

age Cou
nt

1 25 1

1 32 1

pageid_age_sum

pagei
d

age

1 32
2 25

Map

key value
<1,25

>
1

<2,25
>

1

key value
<1,32

>
1

<2,25
>

1

key value

<1,25
>

1

<1,32
>

1

key value
<2,25

>
1

<2,25
>

1

Shuffle
Sort Reduce

IS 257 – Fall 2015

page
id

age Cou
nt

2 25 2

2015.11.19- SLIDE 62

Beyond Hadoop – Spark

IS 257 – Fall 2015

2015.11.19- SLIDE 63

Spark

•  One problem with Hadoop/MapReduce is
that it is fundamental batch oriented, and
everything goes through a read/write on
HDFS for every step in a dataflow

•  Spark was developed to leverage the main
memory of distributed clusters and to,
whenever possible, use only memory-to-
memory data movement (with other
optimizations

•  Can give up to 100fold speedup over MR
IS 257 – Fall 2015

2015.11.19- SLIDE 64

Spark

•  Developed at the AMP lab here at
Berkeley

•  Open source version available from
Apache

•  DataBrick was founded to commercialize
Spark

•  Related software includes a very-high-
speed Database – SparkDB

•  Next time we will hear a talk (recorded)
from Michael Franklin about BDAS &
Spark

 IS 257 – Fall 2015

