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History of the World, Part 1 

•  Relational Databases – mainstay of 
business 

•  Web-based applications caused spikes 
– Especially true for public-facing e-Commerce 

sites 
•  Developers begin to front RDBMS with 

memcache or integrate other caching 
mechanisms within the application (ie. 
Ehcache) 
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Scaling Up 

•  Issues with scaling up when the dataset is just 
too big 

•  RDBMS were not designed to be distributed 
•  Began to look at multi-node database solutions 
•  Known as ‘scaling out’ or ‘horizontal scaling’ 
•  Different approaches include: 

–  Master-slave 
–  Sharding 
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Scaling RDBMS – Master/Slave 

•  Master-Slave 
– All writes are written to the master. All 

reads performed against the replicated 
slave databases 

– Critical reads may be incorrect as writes 
may not have been propagated down 

– Large data sets can pose problems as 
master needs to duplicate data to slaves 
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Scaling RDBMS - Sharding 

•  Partition or sharding 
– Scales well for both reads and writes 
– Not transparent, application needs to be 

partition-aware 
– Can no longer have relationships/joins 

across partitions 
– Loss of referential integrity across 

shards 
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Other ways to scale RDBMS 

•  Multi-Master replication 
•  INSERT only, not UPDATES/DELETES 
•  No JOINs, thereby reducing query time 

– This involves de-normalizing data 
•  In-memory databases (like VoltDB) 
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NoSQL  

•  NoSQL databases adopted these 
approaches to scaling, but lacked ACID 
transaction and SQL 

•  At the same time, many Web-based 
services needed to deal with Big Data (the 
Three V’s we looked at last time) and 
created custom approaches to do this 

•  In particular, MapReduce… 
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MapReduce and Hadoop 

•  MapReduce developed at Google 
•  MapReduce implemented in Nutch 

– Doug Cutting at Yahoo!  
– Became Hadoop (named for Doug’s child’s 

stuffed elephant toy) 
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Motivation 

•  Large-Scale Data Processing 
– Want to use 1000s of CPUs 

•  But don’t want hassle of managing things 

•  MapReduce provides 
– Automatic parallelization & distribution 
– Fault tolerance 
–  I/O scheduling 
– Monitoring & status updates 

From “MapReduce…” by Dan Weld 
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Map/Reduce 

•  Map/Reduce  
– Programming model from Lisp  
–  (and other functional languages) 

•  Many problems can be phrased this way 
•  Easy to distribute across nodes 
•  Nice retry/failure semantics 
 

From “MapReduce…” by Dan Weld 
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Map in Lisp (Scheme) 

•  (map f list [list2 list3 …]) 

•  (map square ‘(1 2 3 4)) 
–  (1 4 9 16) 

•  (reduce + ‘(1 4 9 16)) 
–  (+ 16 (+ 9 (+ 4 1) ) ) 
– 30 

•  (reduce + (map square (map – l1 l2)))) 
From “MapReduce…” by Dan Weld 
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Map/Reduce ala Google 

•  map(key, val) is run on each item in set 
– emits new-key / new-val pairs 

•  reduce(key, vals) is run for each unique key 
emitted by map() 
– emits final output 

From “MapReduce…” by Dan Weld 
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Programming model 

•  Input & Output: each a set of key/value pairs  
•  Programmer specifies two functions:  
•  map (in_key, in_value) -> list(out_key, 

intermediate_value)  
–  Processes input key/value pair  
–  Produces set of intermediate pairs  

•  reduce (out_key, list(intermediate_value)) -> 
list(out_value)  
–  Combines all intermediate values for a particular key  
–  Produces a set of merged output values (usually just one) 

From “MapReduce: Simplified data Processing… ”, Jeffrey Dean and Sanjay Ghemawat 
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count words in docs 

–  Input consists of (url, contents) pairs 

– map(key=url, val=contents): 
•  For each word w in contents, emit (w, “1”) 

–  reduce(key=word, values=uniq_counts): 
•  Sum all “1”s in values list 
•  Emit result “(word, sum)” 

From “MapReduce…” by Dan Weld 
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Count, Illustrated 
map(key=url, val=contents): 

For each word w in contents, emit (w, “1”) 

reduce(key=word, values=uniq_counts): 
Sum all “1”s in values list 
Emit result “(word, sum)” 

see bob throw 
see spot run 

see  1 
bob  1  
run  1 
see  1 
spot  1 
throw  1 

 
 

bob  1  
run  1 
see  2 
spot  1 
throw  1 

 
 

From “MapReduce…” by Dan Weld 
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Example 

•  Page 1: the weather is good 
•  Page 2: today is good 
•  Page 3: good weather is good. 

From “MapReduce: Simplified data Processing… ”, Jeffrey Dean and Sanjay Ghemawat 
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Map output 

•  Worker 1:  
–  (the 1), (weather 1), (is 1), (good 1). 

•  Worker 2:  
–  (today 1), (is 1), (good 1). 

•  Worker 3:  
–  (good 1), (weather 1), (is 1), (good 1). 

From “MapReduce: Simplified data Processing… ”, Jeffrey Dean and Sanjay Ghemawat 
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Reduce Input 

•  Worker 1: 
–  (the 1) 

•  Worker 2: 
–  (is 1), (is 1), (is 1) 

•  Worker 3: 
–  (weather 1), (weather 1) 

•  Worker 4: 
–  (today 1) 

•  Worker 5: 
–  (good 1), (good 1), (good 1), (good 1) 

From “MapReduce: Simplified data Processing… ”, Jeffrey Dean and Sanjay Ghemawat 
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Reduce Output 

•  Worker 1: 
–  (the 1) 

•  Worker 2: 
–  (is 3) 

•  Worker 3: 
–  (weather 2) 

•  Worker 4: 
–  (today 1) 

•  Worker 5: 
–  (good 4) 

From “MapReduce: Simplified data Processing… ”, Jeffrey Dean and Sanjay Ghemawat 
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Data Flow in a MapReduce Program in 
Hadoop 

•  InputFormat 
•  Map function 
•  Partitioner 
•  Sorting & Merging 
•  Combiner 
•  Shuffling 
•  Merging 
•  Reduce function 
•  OutputFormat 

! 1:many 
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Grep 

–  Input consists of (url+offset, single line) 
– map(key=url+offset, val=line): 

•  If contents matches regexp, emit (line, “1”) 

–  reduce(key=line, values=uniq_counts): 
•  Don’t do anything; just emit line 

From “MapReduce…” by Dan Weld 

IS 257 – Fall 2015 



 
2015.11.19- SLIDE 22

 

Reverse Web-Link Graph 

•  Map 
– For each URL linking to target, … 
– Output <target, source> pairs  

•  Reduce 
– Concatenate list of all source URLs 
– Outputs: <target, list (source)> pairs 

From “MapReduce…” by Dan Weld 
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MapReduce in Hadoop (1) 
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MapReduce in Hadoop (2) 
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MapReduce in Hadoop (3) 
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Fault tolerance 

•  On worker failure:  
– Detect failure via periodic heartbeats  
– Re-execute completed and in-progress map 

tasks  
– Re-execute in progress reduce tasks  
– Task completion committed through master  

•  Master failure:  
– Could handle, but don't yet (master failure 

unlikely) 

From “MapReduce: Simplified data Processing… ”, Jeffrey Dean and Sanjay Ghemawat 
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Refinement 

•  Different partitioning functions. 
•  Combiner function. 
•  Different input/output types. 
•  Skipping bad records. 
•  Local execution. 
•  Status info. 
•  Counters. 

From “MapReduce: Simplified data Processing… ”, Jeffrey Dean and Sanjay Ghemawat 
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Performance 

•  Scan 10^10 100-byte records to extract 
records matching a rare pattern (92K 
matching records) : 150 seconds. 

•  Sort 10^10 100-byte records (modeled 
after TeraSort benchmark) : normal 839 
seconds. 

From “MapReduce: Simplified data Processing… ”, Jeffrey Dean and Sanjay Ghemawat 
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More and more mapreduce 

From “MapReduce: Simplified data Processing… ”, Jeffrey Dean and Sanjay Ghemawat 
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Conclusion 

•  MapReduce has proven to be a useful 
abstraction  

•  Greatly simplifies large-scale 
computations at Google  

•  Fun to use: focus on problem, let library 
deal w/ messy details  

From “MapReduce: Simplified data Processing… ”, Jeffrey Dean and Sanjay Ghemawat 
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But – Raw Hadoop means code 

•  Most people don’t want to write code if 
they don’t have to 

•  Various tools layered on top of Hadoop 
give different, and more familiar, interfaces   

•  Hbase – intended to be a NoSQL 
database abstraction for Hadoop 

•  Hive and it’s SQL-like language  

IS 257 – Fall 2015 



 
2015.11.19- SLIDE 32

 

Hadoop Components 

•  Hadoop Distributed File System (HDFS) 
•  Hadoop Map-Reduce 
•  Contributes 

–  Hadoop Streaming 
–  Pig / JAQL / Hive 
–  HBase 
–  Hama / Mahout 
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Hadoop Distributed File System 
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Goals of HDFS 

•  Very Large Distributed File System 
– 10K nodes, 100 million files, 10 PB 

•  Convenient Cluster Management 
– Load balancing 
– Node failures 
– Cluster expansion 

•  Optimized for Batch Processing 
– Allow move computation to data 
– Maximize throughput  
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HDFS Architecture 
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HDFS Details 

•  Data Coherency 
– Write-once-read-many access model 
– Client can only append to existing files  

•  Files are broken up into blocks 
– Typically 128 MB block size 
– Each block replicated on multiple DataNodes 

•  Intelligent Client 
– Client can find location of blocks 
– Client accesses data directly from DataNode 
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HDFS User Interface 

•  Java API 
•  Command Line 

– hadoop dfs -mkdir /foodir 
– hadoop dfs -cat /foodir/myfile.txt 
– hadoop dfs -rm /foodir myfile.txt 
– hadoop dfsadmin -report 
– hadoop dfsadmin -decommission 

datanodename 
•  Web Interface 

– http://host:port/dfshealth.jsp 
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HDFS 

•  Very large-scale distributed storage with 
automatic backup (replication) 

•  Processing can run at each node also 
– Bring the computation to the data instead of 

vice-versa 
•  Underlies all of the other Hadoop 

“menagie” of programs 
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Introduction to Pig PIG – A data-flow 
language for 
MapReduce 
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MapReduce too complex? 

•  Restrict programming model 
– Only two phases 
– Job chain for long data flow 

•  Put the logic at the right phase 
–  In MR programmers are responsible for this 

•  Too many lines of code even for simple 
logic 
– How many lines do you have for word count? 
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Pig…  

•  High level dataflow language (Pig Latin) 
– Much simpler than Java 
– Simplify the data processing 

•  Put the operations at the apropriate 
phases (map, shuffle, etc.) 

•  Chains multiple MapReduce jobs 
•  Similar to relational algebra, but on files 

instead of relations 
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Pig Latin   

•  Data flow language 
– User specifies a sequence of operations to 

process data 
– More control on the processing, compared 

with declarative language 
•  Various data types are supported 
•  ”Schema”s are supported 
•  User-defined functions are supported 
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Motivation by Example 

•  Suppose we have 
user data in one file, 
website data in 
another file. 

•  We need to find the 
top 5 most visited 
pages by users 
aged 18-25 
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In Pig Latin 
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Pig runs over Hadoop 
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How Pig is used in Industry 

•  At Yahoo!, 70% MapReduce jobs are 
written in Pig 

•  Used to 
– Process web log 
– Build user behavior models 
– Process images 
– Data mining 

•  Also used by Twitter, LinkedIn, Ebay, 
AOL, etc.  
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MapReduce vs. Pig 

•  MaxTemperature 

Year Temper
ature 

Air 
Quality … 

1998 87 2 … 
1983 93 4 .. 
2008 90 3 … 
2001 89 5 … 
1965 97 4 … 

SELECT Year, 
MAX(Temperature) 

FROM  Table1 

WHERE AirQuality = 0|1|4|5|9 

GROUPBY Year 

Table1 
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In MapReduce 
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In Pig 
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Wait a mimute 

•  How to map the data to records 
– By default, one line → one record 
– User can customize the loading process 

•  How to identify attributes and map them to 
schema? 
– Delimiters to separate different attributes 
– By default tabs are used, but it can be  

customized 
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MapReduce vs. Pig cont. 

•  Join in MapReduce 
– Various algorithms. None of them are easy to 

implement in MapReduce 
– Multi-way join more complicated 
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MapReduce vs. Pig cont. 

•  Join in Pig 
– Various algorithms already available. 
– Some of them are generic to support multi-

way join 
– Simple to integrate into workflow… 

A = LOAD 'input/join/A’;  
B = LOAD 'input/join/B’; 
C = JOIN A BY $0, B BY $1; 
DUMP C; 
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Hive - SQL on top of Hadoop 
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Map-Reduce and SQL 

•  Map-Reduce is scalable 
–  SQL has a huge user base 
–  SQL is easy to code 

•  Solution: Combine SQL and Map-Reduce 
–  Hive on top of Hadoop (open source) 
–  Aster Data (proprietary) 
–  Green Plum (proprietary) 
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Hive 

•  A database/data warehouse on top of 
Hadoop 
–  Rich data types (structs, lists and maps) 
–  Efficient implementations of SQL filters, joins and 

group-by’s on top of mapreduce 

•  Allow users to access Hadoop data without 
using Hadoop 

•  Link: 
– http://svn.apache.org/repos/asf/hadoop/

hive/trunk/ 
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Hive Architecture 

HDFS 

Hive CLI 
DDL Queries Browsing 

Map Reduce 

SerDe 

Thrift Jute JSON 
Thrift  API 

MetaStore 

Web UI 
Mgmt, etc 

Hive QL 

Planner Execution Parser Planner 
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Hive QL – Join 

•  SQL: 
INSERT INTO TABLE pv_users 
SELECT pv.pageid, u.age 
FROM page_view pv JOIN user u ON (pv.userid = u.userid); 

pagei
d 

useri
d 

time 

1 111 9:08:01 

2 111 9:08:13 

1 222 9:08:14 

user
id 

age gender 

111 25 female 
222 32 male 

pageid age 

1 25 
2 25 
1 32 

X = 

page_view 
user 

pv_users 
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Hive QL – Join in Map Reduce 

key value 

111 <1,1> 

111 <1,2> 

222 <1,1> 

key value 

111 <2,25> 

222 <2,32> 

pagei
d 

useri
d 

time 

1 111 9:08:01 

2 111 9:08:13 

1 222 9:08:14 

user
id 

age gender 

111 25 female 

222 32 male 

page_view 

user 

pv_users 

Map 

key value 

111 <1,1> 

111 <1,2> 

111 <2,25> 

key value 
222 <1,1> 
222 <2,32

> 

Shuffle 
Sort 

page
id 

age 

1 25 

2 25 

page
id 

age 

1 32 

Reduce 
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Hive QL – Group By 

•  SQL: 
▪  INSERT INTO TABLE pageid_age_sum 
       SELECT pageid, age, count(1) 
       FROM pv_users 
      GROUP BY pageid, age; 

pageid age 

1 25 
2 25 
1 32 
2 25 

pv_users 

pageid age Count 

1 25 1 
2 25 2 
1 32 1 

pageid_age_sum 
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Hive QL – Group By in Map Reduce 

pagei
d 

age 

1 25 
2 25 

pv_users 

page
id 

age Cou
nt 

1 25 1 

1 32 1 

pageid_age_sum 

pagei
d 

age 

1 32 
2 25 

Map 

key value 
<1,25

> 
1 

<2,25
> 

1 

key value 
<1,32

> 
1 

<2,25
> 

1 

key value 

<1,25
> 

1 

<1,32
> 

1 

key value 
<2,25

> 
1 

<2,25
> 

1 

Shuffle 
Sort Reduce 
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Beyond Hadoop – Spark  
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Spark 

•  One problem with Hadoop/MapReduce is 
that it is fundamental batch oriented, and 
everything goes through a read/write on 
HDFS for every step in a dataflow 

•  Spark was developed to leverage the main 
memory of distributed clusters and to, 
whenever possible, use only memory-to-
memory data movement (with other 
optimizations 

•  Can give up to 100fold speedup over MR 
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Spark 

•  Developed at the AMP lab here at 
Berkeley 

•  Open source version available from 
Apache 

•  DataBrick was founded to commercialize 
Spark 

•  Related software includes a very-high-
speed Database – SparkDB  

•  Next time we will hear a talk (recorded) 
from Michael Franklin about BDAS & 
Spark 
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