Database Design:

Logical Models: Normalization

 and The Relational ModelUniversity of California, Berkeley
School of Information
IS 257: Database Management

Announcements

- Assignment 1 due Today
- Assignment 2 (Personal database conceptual model) - due Thursday, Oct. 1

Lecture Outline

- Review
-Conceptual Model and UML
- Logical Model for the Diveshop database
- Normalization
- Relational Advantages and Disadvantages

Lecture Outline

- Review
-Conceptual Model and UML - Logical Model for the Diveshop database
- Normalization
- Relational Advantages and Disadvantages

Class Diagrams

- A class diagram is a diagram that shows a set of classes, interfaces, and/or collaborations and the relationships among these elements.

UML Class Diagram

DIVEORDS
Order No
Customer No
Sale Date
Shipvia
PaymentMethod
CCNumber
No of People
Depart Date
Return Date
Destination
Vacation Cost
CalcTotalInvoice()
CalcEquipment()

Class Name

List of Attributes

Object Diagrams

307:DIVORDS

Order No = 307
Customer No = 1480
Sale Date $=9 / 1 / 99$
Ship Via = UPS
PaymentMethod $=$ Visa
CCNumber $=1234567890$
CCExpDate $=1 / 1 / 01$
No of People $=2$
Depart Date $=11 / 8 / 00$
Return Date $=11 / 15 / 00$
Destination $=$ Fiji
Vacation Cost $=10000$

Associations

- An association is a relationship that describes a set of links between or among objects.
- An association can have a name that describes the nature of this relationship. You can put a triangle next to this name to indicate the direction in which the name should be read.

Associations: Unary relationships

Associations: Binary Relationship

One-to-one

One-to-many

Many-to-many

Associations: Ternary Relationships

Association Classes

Derived Attributes, Associations, and Roles

Derived association

Generalization

Lecture Outline

- Review
- Conceptual Model and UML
- Logical Model for the Diveshop database
- Normalization
- Relational Advantages and Disadvantages

Database Design Process

Logical Model: Mapping to a Relational Model

- Each entity in the ER Diagram becomes a relation.
- A properly normalized ER diagram will indicate where intersection relations for many-to-many mappings are needed.
- Relationships are indicated by common columns (or domains) in tables that are related.
- We will examine the tables for the Diveshop derived from the ER diagram

DiveShop ER Diagram

Customer = DIVECUST

Customer	Name	Street	City	State/Prov	Zip/Postal	Country	Phone	First Conte
1480	Louis Jazd	2501 O'Co	New Orlea	LA	60332	U.S.A.	(902) 555-¢	1/29/95
1481	Barbara W	6344 W.	San Franc	CA	95031	U.S.A.	(415) 555-6	2/2/93
1909	Stephen B	559 N.E.	dianapo	N	46241	U.S.A.	(317) 555-:	1/5/93
1913	Phillip Dav	123 First	Berkeley	CA	94704	U.S.A.	(415) 555-¢	3/9/98
1969	David Burg	320 Montg	Seattle	WA	98105	U.S.A.	(206) 555-i	3/12/99
2001	Mary Riou	1701 Gat	Pueblo	CO	81002	U.S.A.	(719) 555-2	3/15/97
2306	Kim Lopez	14134 NotI	Honolulu	H	96826	U.S.A.	(808) 555-t	1/29/99
2589	Hiram Mar	7233 Mill F	San Franc	CA	94123	U.S.A.	(415) 555-6	2/18/99
3154	Tanya Kule	505 S. Flo	New York	NY	10032	U.S.A.	(212) 555-6	1/30/99
3333	Charles S 6	110 East F	Miller	SD	57362	U.S.A.	(613) 555-4	3/16/98
3684	Lowell Lutz	915 E. Fes	Dallas	TX	75043	U.S.A.	(214) 555-2	2/15/99
4158	Keith Luca	56 South E	Chicago	IL	60542	U.S.A.	(312) 555-6	3/17/98
4175	Karen Ng	2134 Elmh	Klamath F	OR	97603	U.S.A.	(503) 555-4	3/20/99

Dive Order = DIVEORDS

Order No	Customer NSale Date		Ship Via	PaymentMeCcNumber		$\begin{array}{r} \text { CcExpDate } \\ \hline 1 / 1 / 01 \end{array}$	No Of Peopl Depart Date Return DateDestination				VacationCos
307	1480	9/1/99	UPS	Visa	123456789		2	11/8/00	11/15/00	Fiji	10000
310	1481	9/1/99	FedEx	Check			1	4/4/00	4/18/00	Santa Barbz	6000
313	1909	9/1/99	Walk In	Visa	456456456	9/11/00	4	6/27/00	7/11/00	Cozumel	8000
314	1913	9/1/99	FedEx	Check			3	2/7/00	2/14/00	Monterey	6000
317	1969	9/1/99	FedEx	AmEx	432432432	12/31/02	4	5/9/00	5/16/00	Fiji	20000
320	2001	9/1/99	Walk In	Cash			1	10/10/00	10/17/00	Santa Barbz	3000
321	2306	9/1/99	Emery	Master C	1112223334	8/12/00	1	3/15/00	4/12/00	New Jersey	8000
325	2589	9/1/99	Emery	AmEx	332332332	12/10/99	1	3/15/00	4/12/00	New Jersey	8000
326	3333	9/1/99	FedEx	Money O			2	2/10/00	2/17/00	Monterey	4000
327	3684	9/1/99	DHL	Master C	122122321	11/9/99	4	3/10/00	3/23/00	Florida	24000
329	4158	9/1/99	Walk In	Cash			1	5/4/00	5/15/00	Cozumel	1571
330	4175	9/1/99	FedEx	Check			2	7/3/00	7/10/00	Florida	6000
331	5510	9/1/99	FedEx	Money O			6	6/20/00	6/30/00	Santa Barbe	36000
333	5926	9/1/99	DHL	Discover	123123123	12/21/00	2	6/10/00	6/17/00	Fiji	10000

Mapping to Other Models

- Hierarchical
- Need to make decisions about access paths
- Network
- Need to pre-specify all of the links and sets
- Object-Oriented
- What are the objects, datatypes, their methods and the access points for them
- Object-Relational
- Same as relational, but what new datatypes might be needed or useful (more on OR later)

Lecture Outline

- Review
- Logical Model for the Diveshop database
- Normalization
- Relational Advantages and Disadvantages

Normalization

- Normalization theory is based on the observation that relations with certain properties are more effective in inserting, updating and deleting data than other sets of relations containing the same data
- Normalization is a multi-step process beginning with an "unnormalized" relation
- Hospital example from Atre, S. Data Base:

Structured Techniques for Design, Performance, and Management.

Normal Forms

- First Normal Form (1NF)
- Second Normal Form (2NF)
- Third Normal Form (3NF)
- Boyce-Codd Normal Form (BCNF)
- Fourth Normal Form (4NF)
- Fifth Normal Form (5NF)

Normalization

Unnormalized Relations

- First step in normalization is to convert the data into a two-dimensional table
- In unnormalized relations data may repeat within a column

Unnormalized Relation

Patient \#	Surgeon \#	Surg. date	Patient Name	Patient Addr	Surgeon	Surgery	Postop drug	Ig side effects
1111	$\begin{aligned} & 145 \\ & 311 \end{aligned}$	$\begin{aligned} & \text { Jan 1, } \\ & \text { 1995; June } \\ & \text { 12, } 1995 \end{aligned}$	John White	15 New St. New York, NY	Beth Little Michael Diamond	Gallstone s removal; Kidney stones removal	Penicillin, none-	rash none
1234	$\begin{aligned} & 243 \\ & 467 \end{aligned}$	Apr 5, 1994 May $\text { 10, } 1995$	Mary Jones	10 Main St. Rye, NY	Charles Field Patricia Gold	Eye Cataract removal Thrombos is removal	Tetracyclin e none	Fever none
2345	189	$\begin{aligned} & \text { Jan 8, } \\ & 1996 \end{aligned}$	Charles Brown	Dogwood Lane Harrison, NY	David Rosen	Open Heart Surgery	Cephalosp orin	none
4876	145	Nov 5, 1995	Hal Kane	55 Boston Post Road, Chester, CN	Beth Little	Cholecyst ectomy	Demicillin	none
5123	145	$\begin{aligned} & \text { May 10, } \\ & 1995 \end{aligned}$	Paul Kosher	Blind Brook Mamaronec k, NY	Beth Little	Gallstone s Removal	none	none
6845	243	Apr 5, 1994 Dec 15, 1984	Ann Hood	Hilton Road Larchmont, NY	Charles Field	Eye Cornea Replacem ent Eye cataract removal	Tetracyclin e	Fever

UC Berkeley School of Information

First Normal Form

- To move to First Normal Form a relation must contain only atomic values at each row and column.
- No repeating groups
- A column or set of columns is called a Candidate Key when its values can uniquely identify the row in the relation.

First Normal Form

1NF Storage Anomalies

- Insertion: A new patient has not yet undergone surgery -- hence no surgeon \# -- Since surgeon \# is part of the key we can' t insert.
- Insertion: If a surgeon is newly hired and hasn' t operated yet -- there will be no way to include that person in the database.
- Update: If a patient comes in for a new procedure, and has moved, we need to change multiple address entries.
- Deletion (type 1): Deleting a patient record may also delete all info about a surgeon.
- Deletion (type 2): When there are functional dependencies (like side effects and drug) changing one item eliminates other information.

Second Normal Form

- A relation is said to be in Second Normal Form when every nonkey attribute is fully functionally dependent on the primary key.
- That is, every nonkey attribute needs the full primary key for unique identification
- This is typically accomplished by projecting (think splitting) the relations into simpler relations with simpler keys

Second Normal Form

Patient \#	Patient Name	Patient Address
1111	John White	15 New St. New York, NY
1234	Mary Jones	10 Main St. Rye, NY
2345	Charles Brown	Dogwood Lane Harrison, NY
4876	Hal Kane	55 Boston Post Road, Chester,
5123	Paul Kosher	Blind Brook Mamaroneck, NY
6845	Ann Hood	Hilton Road Larchmont, NY
\bar{I}	$\xrightarrow{+}$	

Second Normal Form

Surgeon \#	Surgeon Name
145	Beth Little
189	David Rosen
243	Charles Field
311	Michael Diamond
467	Patricia Gold

Second Normal Form

1NF Storage Anomalies Removed

- Insertion: Can now enter new patients without surgery.
- Insertion: Can now enter Surgeons who haven' t operated.
- Deletion (type 1): If Charles Brown dies the corresponding tuples from Patient and Surgery tables can be deleted without losing information on David Rosen.
- Update: If John White comes in for third time, and has moved, we only need to change the Patient table

2NF Storage Anomalies

- Insertion: Cannot enter the fact that a particular drug has a particular side effect unless it is given to a patient.
- Deletion: If John White receives some other drug because of the penicillin rash, and a new drug and side effect are entered, we lose the information that penicillin can cause a rash
- Update: If drug side effects change (a new formula) we have to update multiple occurrences of side effects.

Third Normal Form

- A relation is said to be in Third Normal Form if there is no transitive functional dependency between nonkey attributes
- When one nonkey attribute can be determined with one or more nonkey attributes there is said to be a transitive functional dependency.
- The side effect column in the Surgery table is determined by the drug administered
- Side effect is transitively functionally dependent on drug so Surgery is not 3NF

Third Normal Form

Patient \#	Surgeon \#	Surgery Date	Surgery	Drug Admin
1111	145	01-Jan-95	Gallstones removal	Penicillin
1111	311	12-Jun-95	Kidney stones removal	none
1234	243	05-Apr-94	Eye Cataract removal	Tetracycline
1234	467	10-May-95	Thrombosis removal	none
2345	189	08-Jan-96	Open Heart Surgery	Cephalosporin
4876	145	05-Nov-95	Cholecystectomy	Demicillin
5123	145	10-May-95	Gallstones Removal	none
6845	243	15-Dec-84	Eye cataract removal	none
6845	243	05-Apr-94	Replacement	Tetracycline

Third Normal Form

Drug Admin	Side Effects
Cephalosporin	none
Demicillin	none
none	none
Penicillin	rash
Tetracycline	Fever

2NF Storage Anomalies Removed

- Insertion: We can now enter the fact that a particular drug has a particular side effect in the Drug relation.
- Deletion: If John White recieves some other drug as a result of the rash from penicillin, but the information on penicillin and rash is maintained.
- Update: The side effects for each drug appear only once.

Boyce-Codd Normal Form

- Most 3NF relations are also BCNF relations.
- A 3NF relation is NOT in BCNF if:
- Candidate keys in the relation are composite keys (they are not single attributes)
- There is more than one candidate key in the relation, and
- The keys are not disjoint, that is, some attributes in the keys are common

Most 3NF Relations are also BCNF - Is this one?

BCNF Relations

Patient \#	Patient Name
1111	John White
1234	Mary Jones
2345	Charles
4876	Hal Kann
5123	Paul Kosher
_. .-	..

Patient \#	Patient Address
1111	15 New St. New York, NY
1234	10 Main St. Rye, NY
2345	Dogwood Lane Harrison, NY
4876	55 Boston Post Road, Chester,
5123	Blind Brook Mamaroneck, NY
	Hilton Road

Fourth Normal Form

- Any relation is in Fourth Normal Form if it is BCNF and any multivalued dependencies are trivial
- Eliminate non-trivial multivalued dependencies by projecting into simpler tables

Fourth Normal Form Example

Restaurant	Pizza Variety	Delivery Area
Zoppo's Pizza	Thick Crust	Berkeley
Zoppo's Pizza	Thick Crust	Albany
Zoppo's Pizza	Thick Crust	Oakland
Zoppo's Pizza	Stuffed Crust	Berkeley
Zoppo's Pizza	Stuffed Crust	Albany
Zoppo's Pizza	Stuffed Crust	Oakland
Domino's	Thin Crust	Oakland
Domino's	Stuffed Crust	Oakland
Xtreme Pizza	Thick Crust	Berkeley
Xtreme Pizza	Thick Crust	Albany
Xtreme Pizza	Thin Crust	Berkeley
Xtreme Pizza	Thin Crust	Albany
\ldots		
Is 257 - Fall 2015		

Fourth Normal Form Example

- Each row indicates that a particular restaurant can delivery a particular kind of pizza to a particular city.
- There are NO non-key attributes because the only key is (Restaurant, Pizza Variety, Delivery Area).
- But, if we assume that the Pizza Varieties for a given Restaurant are the same regardless of the delivery area, then it is NOT in fourth normal form.

Fourth Normal Form Example

- The table features two non-trivial multivalued dependencies on the Restaurant attribute (which is not a superkey)
- These are:
- Restaurant ->> Pizza Variety
- Restaurant ->> Delivery Area
- This leads to redundancy in the table (e.g., we are told three times that Zoppo's has Thick Crust)

Fourth Normal Form Example

- If Zoppo's Pizza starts producing Cheese Crust pizzas then we will need to add multiple rows, one for each of Zoppo's delivery areas
- And there's nothing to stop us from doing this incorrectly by not including each delivery area
- To eliminate these anomalies, the facts about varieties offered can be put in a different table from the facts about delivery areas
- This gives us two tables that are both in 4NF

Fourth Normal Form Example

Restaurant	Pizza Variety
Zoppo's Pizza	Thick Crust
Zoppo's Pizza	Stuffed Crust
Domino's	Thin Crust
Domino's	Stuffed Crust
Xtreme Pizza	Thick Crust
Xtreme Pizza	Thin Crust

Restaurant	Delivery Area
Zoppo's Pizza	Berkeley
Zoppo's Pizza	Albany
Zoppo's Pizza	Oakland
Domino's	Oakland
Xtreme Pizza	Berkeley
Xtreme Pizza	Albany

Fourth Normal Form Example

- But, suppose that the pizza varieties offered by a restaurant sometimes did legitimately vary from one delivery area to another, the original three-column table would satisfy 4NF

Fifth Normal Form

- A relation is in 5 NF if every join dependency in the relation is implied by the keys of the relation
- And if it cannot have a lossless decomposition into any number of smaller tables
- Implies that relations that have been decomposed in previous NF can be recombined via natural joins to recreate the original NF relations

Normalization

- Normalization is performed to reduce or eliminate Insertion, Deletion or Update anomalies.
- However, a completely normalized database may not be the most efficient or effective implementation.
- "Denormalization" is sometimes used to improve efficiency.

Normalizing to death

- Normalization splits database information across multiple tables.
- To retrieve complete information from a normalized database, the JOIN operation must be used.
- JOIN tends to be expensive in terms of processing time, and very large joins are very expensive.

Denormalization

- Usually driven by the need to improve query speed
- Query speed is improved at the expense of more complex or problematic DML (Data manipulation language) for updates, deletions and insertions.

Downward Denormalization

Before:

After:

Customer $\underline{\text { ID }}$ Address Name Telephone
Order
Order No Date Taken Date Dispatched Date Invoiced Cust ID Cust Name

Upward Denormalization

Order
Order No
Date Taken
Date Dispatched
Date Invoiced
Cust ID
Cust Name

Order
$\frac{\text { Order No }}{\text { Date Taken }}$
Date Dispatched
Date Invoiced
Cust ID
Cust Name
Order Price
Order Item Order No Item No Item Price Num Ordered

Using RDBMS to help normalize

- Example database: Cookie
- Database of books, libraries, publisher and holding information for a shared (union) catalog

Cookie relationships

Cookie BIBFILE relation

ACCNO	AUTHOR	TITLE	LOC	PUBID	DATE	PRICE	PAGINATIO ILL		HEIGHT
A003	AMERICAN LIBRARY ASS	ALA BULLETIN	CHICAGO	'04		\$3.00	63 V .	ILL.	26
T082	ANDERSON, THEODORE	THE TEACHING OF MC	PARIS	53	1955	\$10.95	294 P.		22
C024	AXT, RICHARD G.	COLLEGE SELF STUD	BOULDER, CO.	51	"960	\$7.00	X 300 P .	GRAPHS	28
B006	BALDERSTON, FREDERIC	MANAGING TODAYS	SAN FRANCISCO	27	1975	\$6.00	XVI, 307 P .		24
B007	BARZUN, JACQUES	TEACHER IN AMERICA	GARDEN CTY	18	${ }^{1954}$	\$7.00	280 P.		18
B005	BARZUN, JACQUES	THE AMERICAN UNVE	NEW YORK	24	1970	\$5.00	Xl, 319 P .		20
B008	BARZUN, JACQUES	THE HOUSE OF INTEL	NEW YORK	124	1961	\$8.00	VIII, 271 P.		21
B010	BELL, DANIEL	THE COMING OF POS	NEW YORK	109	1976	\$10.00	XXVII, 507 P .		21
B009	BENSON, CHARLES S.	IMPLEMENTING THE LI	SAN FRANCISCO	27	${ }^{1974}$	\$9.00	XVII, 147 P .		24
B012	BERG, NAR	EDUCATION AND JOB:	BOSTON	10	1971	\$12.00	XX 200 P .		21
B011	BERSI, ROBERTM.	RESTRUCTURING THE	WASHINGTON, D.C03		"1973	\$11.00	N, 160P.		23
B014	BEVERIDGE, WILLIAM I.	THE ART OF SCIENTIF	NEW YORK	58	1957	\$14.00	XV, 239 P .		18
B013	BIRD, CAROLINE	THE CASE AGAINST C	NEW YORK	'08	"1975	\$13.00	Xl, 308 P .		18
B016	BISSELL, CLAUDE T.	THE STRENGTH OF Tr	TORONTO	57	1968	\$14.00	VII, 251 P.		21
B017	BLAIR, GLENN MYERS	EDUCATIONAL PSYCH	NEW YORK	130	"1962	\$11.00	678 P.		24
F047	BLAKE, ELIAS, JR.	THE FUTURE OF THE	CAMBRIDGE, MA. ${ }^{02}$		1971	\$14.25	VIII, PP. 539		23
B116	BOLAND, R.J.	CRTICAL ISSUES $\mathbb{N N} \mathbb{N}$	CHICHESTER, ENG'63		"987	\$30.95	XV, 394 P.	ILL.	24
S102	BROWN, SANBORN C., E	SCIENTIFIC MANPOWE	CAMBRIDGE, MAS:29		1971	\$4.00	X, 180 P .		26
B118	BUCKLAND, MICHAEL K.	LIBRARY SERVICES $\mathbb{I N}$	ELMSFORD, NY 70		"1983	\$12.00	Xl, 201 P.	ILL.	23
B018	BUDIG, GENE A.	ACADEMIC QUICKSAN	LINCOLN, NEBRASI37		1973	\$13.00	74 P .		23
C031	CALIFORNA. DEPT. OF	LAW IN THE SCHOOL	MONTCLAIR, N.J. ${ }^{35}$		"1974	\$0.50	N, 87 P.		21
C032	CAMPBELL, MARGARET,	WHY WOULD A GIRL	OLD WESTBURY, 148		1973	\$1.50	V, 114 P.		24
r.n34	C.ARNFGIF C.OMn	R	W/ YORK	30	1974	\$3 50	99 P		24

How to Normalize?

- Currently no way to have multiple authors for a given book, and there is duplicate data spread over the BIBFILE table
- Can we use the DBMS to help us normalize?
- It is possible (but takes a bit more SQL knowledge than has been hinted at so far)
- We will return to this problem later
- But CONCEPTUALLY...

Using RDBMS to Normalize

Create a new table for Authors that includes author name and an automatically incrementing id number (for primary key)
Populate the table using the unique author names (which get assigned id numbers) by extracting them from the BIBFILE...

```
CREATE TABLE AUTHORS (AU_ID INT AUTO_INCREMENT PRIMARY KEY)
```

```
AS SELECT DISTINCT (Author) from BIBFILE;'
```

Create a new table containing a author_id and an ACCNO Populate the new table by matching the Authors and BIBFILE names...

CREATE TABLE AU_BIB (AU_ID INT, ACCNO INT) AS SELECT AUTHORS.AU_ID, BIBFILE.ACCNO FROM AUTHORS, BIBFILE WHERE AUTHORS.Author = BIBFILE.Author;
Drop the Author name column from BIBFILE
ALTER TABLE BIBFILE DROP COLUMN Author

Lecture Outline

- Review
- Logical Model for the Diveshop database
- Normalization
- Relational Advantages and Disadvantages

Advantages of RDBMS

- Relational Database Management Systems (RDBMS)
- Possible to design complex data storage and retrieval systems with ease (and without conventional programming).
- Support for ACID transactions
- Atomic
- Consistent
- Independent
- Durable

Advantages of RDBMS

- Support for very large databases
- Automatic optimization of searching (when possible)
- RDBMS have a simple view of the database that conforms to much of the data used in business
- Standard query language (SQL)

Disadvantages of RDBMS

- Until recently, no real support for complex objects such as documents, video, images, spatial or time-series data. (ORDBMS add -- or make available support for these)
- Often poor support for storage of complex objects from OOP languages (Disassembling the car to park it in the garage)
- Usually no efficient and effective integrated support for things like text searching within fields (MySQL now does have simple keyword searching with index support, but no ranking)

Effectiveness and Efficiency Issues for DBMS

- Our primary focus has been, and will continue to be, on the relational model
- Any column in a relational database can be searched for values
- To improve efficiency indexes using storage structures such as BTrees and Hashing are used
- But many useful functions are not indexable and require complete scans of the the database

Example: Text Fields

- In conventional RDBMS, when a text field is indexed, only exact matching of the text field contents (or Greater-than and Lessthan).
- Can search for individual words using pattern matching, but a full scan is required.
- Text searching is still done best (and fastest) by specialized text search programs (Search Engines) that we will look at more later

Next Week

- (Re)Introduction to SQL
- More on Logical Design/Normalization
- Physical Design

