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Background 
 

The purpose of a chatbot program is generally to simulate conversation and entertain the 
user. More specialized chatbots have been created to assist with particular tasks, such as shopping. 
The golden standard that the general chatbot tries to achieve is to pass the Turing test, which 
means to generate conversation which is indistinguishable from that of a real person. State of the 
art chatbots have not yet reached this goal, which makes this field so interesting to work in.   
 

Most chatbot programs approach the problem with a form of Case Based Reasoning. CBR 
is the process of solving new problems based on the solutions of similar past problems. Of course, 
there are many varieties to CBR, such as how to store past cases and how to determine which cases 
are most similar to a new case. A common implementation is pattern matching, in which the 
structure of the sentence is identified and a stored response pattern is adjusted to the unique 
variables of the sentence. In this implementation, past cases are not explicitly stored. Rather, past 
cases are put into a generalized form. For example, a pattern might be: “I like X” and the 
corresponding response may be “What a coincidence! I like X as well!” where X is variable. 
 

The inadequacies of this type of approach are that responses are frequently predictable, 
redundant, and lacking in personality. Also, there is usually no memory of previous responses, 
which can lead to very circular conversations. Even more complex pattern matching algorithms are 
very limited in the types of responses given, which can lead to uninteresting conversation. 
 

 
Figure 1. ELIZA – a simple pattern matching program 

 
 



 
 

 
Figure 2. ALICE – a more complex pattern matching program 

 
Hypothesis 
 
 If the chatbot was trained on real conversations, rather than just using generalized forms of 
the most common sentence types, I hypothesize the chatbot could generate more interesting 
conversation. This would still be Case Based Reasoning but rather than using generalized data, the 
program would store past conversation explicitly, and mimic a given screen name personality. The 
chatbot would only reply using responses learned from the training corpus, and would thus have 
more emotional and personality content than other chatbots. 
 
Procedure 
 

1. Composing the Training Corpus 
 

a. The training corpus must consist of many conversations involving the username (at 
least 50 conversations, but the more the better) 

 
b. Overly sensitive information (such as addresses, phone numbers, and any other 

unsharable data) should be filtered out. 
 

c. Highly technical conversations should be filtered out. This type of information 
makes for uninteresting conversation. Also most technical conversations are overly 
specific to a particular problem and configuration and could give misleading 
information to someone seeking technical help. A troubleshooting chatbot would be 
better constructed from sorted newsgroup posts or a manual, rather than from 
conversations. 

 



2. Parsing the Training Corpus 
 

a. Extract message content and screen names from the HTML. Example HTML below 
with parts to extract. We call the messages from the screen name we are mimicking 
‘responses’ and the rest of the messages ‘prompts’. 

 
<BODY BGCOLOR="#ffffff"><B><FONT COLOR="#ff0000">Aeschkalet<!-- (11:39:53 
PM)--></B>:</FONT><FONT COLOR="#000000"> wake up d000000000d<BR> 
<B></FONT><FONT COLOR="#0000ff">VIKRUM<!-- (11:41:01 PM)--
></B>:</FONT><FONT COLOR="#000000"> what's hanging, woman<BR> 
<B></FONT><FONT COLOR="#0000ff">VIKRUM<!-- (11:41:11 PM)--
></B>:</FONT><FONT COLOR="#000000"> OH MAN!!! I GOT YOUR NEWYEAR/XMAS 
CARD!!</FONT><BR> 

 
b. Group together consecutive messages from the same screen name 
 
c. Simplify Prompt messages. In instant message conversations, it is common for 

variations of the same base token to be presented in different ways. Vowels are 
commonly elongated to show emphasis, and multiple exclamation points may be 
used in place of just one. These common variations, as well as the casing of the 
prompt words should be normalized as in the examples below. This is to prevent the 
loss of data. For instance, it is unlikely that a user will enter “hahahahaha” with 
precisely 5 ‘ha’s, but the user is very likely to enter two or three ‘ha’s. Therefore 
the prompts in the training data should be normalized, and the user prompts at run 
time should also be normalized, so that the program can generalize to understand 
variations of a base form of a token. Word stemming, however, is not used, since 
variations in how a word is conjugated and whether a noun is plural is very relevant, 
unlike in other NLP problems such as text classification. 

 
i. !!!!!!!???????  -> !? 

ii. Ohhhhhhhhhhhh! -> ohh! 
iii. WhATz uP??     ->     whatz up? 
iv. hahahahaha     ->     haha 

 
d. Break prompts into tokens, omitting stop words and punctuation if desired. Stop 

words for this problem are kept to a minimum, such as words like ‘a’ and ‘the’. 
This is because most common words, such as ‘you’ are still important in 
determining the context of the phrase. The commonality of the word will be taken 
into account in later steps, so the use of a stop list does not really affect the results, 
but it can save some memory use. Also certain punctuation, such as question marks, 
are relevant to the content, so we don’t remove those. 

 
i. Did you take the cat to a vet?  ->  [did, you, take, cat, to, vet, ?] 

 
3. Constructing the Conditional Frequency Distribution 

 
a. I use an instance of ConditionalFreqDist from NLTK-Lite to store the training data 

in a useful format. 



 
Figure 3. NLTK-Lite’s ConditionalFreqDist Data Structure Description 

 
CFDAPI: http://nltk.sourceforge.net/lite/doc/api/nltk_lite.probability-
pysrc.html#ConditionalFreqDist 

 
b. At first we take a simplified approach. If there are N tokens in the prompt for a 

particular response, we assume each of those prompt words was 1/N likely to have 
caused the response. So we insert the response, with weight 1/N, into the Frequency 
Distributions indexed by each prompt word. (If this response already exists in an 
FD, then we just increment its weight by 1/N).  

 
Example: 



 
Figure 4. Constructing the Response CFD Illustration 

 
Now if we receive the query word ‘want’ we can look up our previous responses to that 
word: 
cfd[‘want’]  =>  [(“Can we put mittens on it?”, 1/3), (“Me too, I’m hungry”, 1/3)] 

   
4. Using the Conditional Frequency Distribution 
 

a. Because the example above is so minimal, for the rest of these examples lets 
suppose we start out with a CFD that looks like this: 

----------------------------------------------------------------------------------------------------------- 
cfd[‘i]  =>  [(“Can we put mittens on it?”, 1/3), (“Me too, I’m hungry”, 1/3)] 
   (“That’s’ great”, 1/3), (“Where?”, 1/4), (“Really?”, 1/4)] 
cfd[‘you’] => [(“I’m ok, you?”, 1), (“Not bad”, 1/2), (“been busy lately”, 1/4), 

(“not much.”, 1/4)] 
cfd[‘saw’]  =>  [(“Really?”, 1/4), (“Oh yeah?”, 1/4)] 
cfd[‘kitten’]  =>  [(“Can we put mittens on it?”, 1/3), (“Meow!, 1/3)] 



cfd[‘restaurant’] =>  [(“What kind of food did they have?”, 1/6)] 
------------------------------------------------------------------------------------------------------------ 
b. The first approach I had was to take in a new prompt, create an empty FreqDist of 

responses, and for each token in the prompt, increment all corresponding responses 
by their weights. The response with the maximum weight in the new FD would then 
be the best response. 

 
Simple Example: 
Tokenize(“I saw a kitten in the blue restaurant”) => [‘i’, ‘saw’, ‘kitten’, ‘blue’, ‘restaurant’] 
newFD  =>  FreqDist() 
 
# for each prompt word, add contents to newFD 
----------------------------------------------------------------------------------------------------------- 
cfd[‘i]  =>  [(“Can we put mittens on it?”, 1/3), (“Me too, I’m hungry”, 1/3)] 
   (“That’s’ great”, 1/3), (“Where?”, 1/4), (“Really?”, 1/4)] 
cfd[‘saw’]  =>  [(“Really?”, 1/4), (“Oh yeah?”, 1/4)] 
cfd[‘kitten’]  =>  [(“Can we put mittens on it?”, 1/3), (“Meow!, 1/3)] 
cfd[‘blue’]  =>  [ ] 
cfd[‘restaurant’] =>  [(“What kind of food did they have?”, 1/6)] 
------------------------------------------------------------------------------------------------------------ 
newFd  =>   [(“Can we put mittens on it?”,  1/3 + 1/3 = 2/3), 

(“Really?”,    1/4 + 1/4 = 1/2), 
(“Me too, I’m hungry”,   1/3),  
 (“That’s’ great”,    1/3),  
(“Meow!”,    1/3),  
 (“Where?”,    1/4),  
(“Oh yeah?”,    1/4), 

    (“What kind of food did they have?”, 1/6)] 
 

So the best response to “I saw a kitten in the blue restaurant.” Is “Can we put mittens on it?” 
  

c. The first approach is flawed in that all prompt words are given equal weight, but 
really each word is not equally likely to have caused the response. More common 
words are less indicative of meaning. The solution is to take into account the 
commonality of the word over all conversations. 

i. Divide the weight of the word/response pair by the weight sum over all 
samples for that word 

ii. Rare words are weighted more; using a dynamic scale 
 

Dynamic Example: 
Tokenize(“I saw a kitten in the blue restaurant”) => [‘i’, ‘saw’, ‘kitten’, ‘blue’, ‘restaurant’] 
newFD  =>  FreqDist() 
 
# for each prompt word, add contents to newFD 
----------------------------------------------------------------------------------------------------------- 
cfd[‘i]  =>  [(“Can we put mittens on it?”, 1/3), (“Me too, I’m hungry”, 1/3)] Sum: 3/2 
   (“That’s’ great”, 1/3), (“Where?”, 1/4), (“Really?”, 1/4)] 
cfd[‘saw’]  =>  [(“Really?”, 1/4), (“Oh yeah?”, 1/4)]    Sum: 1/2 
cfd[‘kitten’]  =>  [(“Can we put mittens on it?”, 1/3), (“Meow!, 1/3)]   Sum: 2/3 
cfd[‘blue’]  =>  [ ] 
cfd[‘restaurant’] =>  [(“What kind of food did they have?”, 1/6)]    Sum: 1/6 
------------------------------------------------------------------------------------------------------------ 
 



 
newFd  =>   [(“What kind of food did they have?”,     1/6 / 1/6 =  1),   

(“Can we put mittens on it?”,   1/3 / 3/2  + 1/3 / 2/3 =  13/18), 
(“Really?”,     ¼ / 3/2 + ¼ / ½ =  2/3), 
(“Meow!”,     1/3 / 2/3 =  ½), 
(“Me too, I’m hungry”,    1/3 / 3/2 =  2/9),  
 (“That’s’ great”,     1/3 / 3/2 =  2/9),   
 (“Where?”,     ¼  / 3/2 =  1/6),    
(“Oh yeah?”,    ¼  / 3/2 =  1/6)] 
 

So the best response to “I saw a kitten in the blue restaurant.” Is “What kind of food did they have?” 
 

iii. Notice that what was previously the least likely response is now the most 
likely response, due to the uniqueness of the word ‘restaurant’ and the 
commonality of words like ‘I’ and ‘saw’ in the training corpora. The 
differences are even more pronounced on large corpora where there may 
be hundreds of responses to a particular keyword. 

iv. This change improved the relevancy of responses greatly. 
 

d. To reduce redundancy, we keep a Frequency Distribution (which functions just as a 
quick to index list) of used responses and don’t use them again. For instance, the 
first time the words [I, saw, kitten, restaurant] are the keywords in a prompt, we will 
return the response “What kind of food did they have?”, because that response has 
the highest score. But the next time we encounter a prompt with the same words, we 
will see that the best response has already been used, and so return the next best 
“Can we put mittens on it?”.  

 
e. To speed up computation, I wrote a function saveCFD(cfd, filename) which will 

write the CFD to a text file for storage. It is then quicker to call loadCFD(filename) 
rather than parse all the html data from scratch again. This is useful since new bot 
instances are created frequently when using my program via a CGI script (see part 
7). 

  
5. Handling Cases Without Good Statistical Responses 
 

a. Cases in which we have never before encountered the keywords or else we have 
already used up all good responses (with decent relevancy scores) 

 
b. Try Pattern Matching: If the prompt follows a certain well-known structure, we can 

fabricate a response with a set of rules, similar to the ELIZA and ALICE chatbots. 
 

c. If both the statistical and the pattern matching approaches fail, we then have to 
return a less relevant message. We can randomly do one of the following: 

i. Pick a random message 
ii. Pick a random, less likely to ever be used message (messages toward the 

end of the relevancy lists). This minimizes redundancy. 



iii. Pick a message from a default message list containing things like “I’m 
bored, let’s talk about something else.” or “I don’t know anything about 
that.” to try to get the user to change topics. 

 
6. Putting it on The Web 
 

a. Problem: It is hard to maintain any “memory” such as used responses, the current 
username, etc. using a CGI script. Initially, a new bot was created with every 
message, resulting in no memory whatsoever. 

 
b. Solution:  

i. Write all bot state changes to a file, including used responses. 
ii. Run this file with every prompt message, and reset it when a new 

conversation starts. Note that this is self-modifying code. 
iii. The bot loads the CFD & all state changes from scratch with EVERY call. 

This is a performance hit, but it is worth making the application slower to 
retain memory. 

 

Figure 5. Base code to initialize a bot at the start of a conversation 
 
 
 



 
Figure 5. Auto-modified code to initialize a bot in the middle of a conversation 

 
 

 

 
Figure 6. Chatbots available at: http://ischool.berkeley.edu/~bonniejc/ 

 



Results & Analysis 
 
I conclude that a chatbot which employs both statistical NLP methods as well as heuristic methods, 
such as pattern matching rules, functions more realistically than a chatbot which only uses one 
approach or the other. This is because purely heuristic models, such as ELIZA, tend to reuse 
simple patterns, causing very little variation in response types. Responses are always quite general, 
with little show of emotion in relation to content. While purely statistic models solve this problem 
by introducing real emotional content and response variety, they also introduce new problems such 
as increased randomness and inability to generalize. For instance, they may be well versed in 
discourse about their favorite music, but unable to say anything intelligible about a different type 
of music, simply because no such discourse was likely to be in the training corpora. My solution 
was to try to find a statistically relevant response, but revert to pattern matching responses if none 
could be found. 

 
Other interesting findings: 

1. Adjusting response association weights by the commonality of the keyword improved 
accuracy greatly 

2. Including certain punctuation, such as ? and ! as valid keywords increased response 
accuracy because they significantly change the context of the words (ex. “Can we go to the 
store?” vs. “We can go to the store!”) 

3. Writing good and thorough pattern matching rules is a difficult task, especially since in 
some cases words and verbs need to be inverted. (Ex. “Do you think that I am cool?” 
should reply with something like “Yes, I think that you are cool.”) This is done in the 
perspective() function. 

4. Simplification of prompt text in training and at runtime mitigated information loss as well 
as wasted memory in the cfd (Ex. Reducing multiple vowels and long consonants to two 
only. Ohhhhhhhh -> ohh, etc.) 

5. Of course, bots trained on more data could converse on a wider variety of topics, and took a 
little longer to run. 

6. And of course, bots trained on a certain screen name personality did sound a lot like that 
person with regards to tone and vocabulary, only with more sporadic, random messages 
than usual. 

 
 
Improvements for the Future 
 

Clearly the results will improve with the quality and quantity of training data and the 
sophistication of heuristic rules. Therefore, over time I hope to add to the amount of statistical 
training data as well as develop a more comprehensive set of pattern matching rules.  

 
I also hope to extend memory capabilities throughout a session. Right now, my bots are 

limited to only remembering one username and which responses they have already used. It would 
be fascinating, however, to add the ability to learn more content during conversations. For example, 
a bot could learn to recognize sentences describing close relations to the speaker or what the 
speaker is doing at the moment, and later ask about those people the speaker mentioned, or how 
the previous projects and activities went.  



 
The final improvement I would like to make is to make the application more scalable. 

Right now each bot is designed to handle talking to around one or two people at a  time, and the 
conversations are not private. If I were to enable secure sessions and set browser cookies, I could 
run a distinct and private session for every user simultaneously. I hope to implement this whenever 
I obtain computing resources sufficient to handle more wide spread use. 
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