SIMS 255 Foundations of Software Design

Complexity and NP-completeness

Matt Welsh
November 29, 2001

mdw@cs.berkeley.edu

Outline

Complexity of algorithms

e Space and fime complexity
e "Big O" notation
o Complexity hierarchies and algorithm examples

P and NP

e Decision problems

o Polynomial time decidability and computability
o The ultimate question: Does P = N'P?

o N'P-completeness

o Examples of N'P-complete problems

Matt Welsh, UC Berkeley

Complexity of Algorithms

The kinds of questions we want to answer:

e Given an algorithm, how much time does it take to run?
e Given an algorithm, how much space does it use?

> Characterized by the size of the problem

A simple example: finding max in a sequence of numbers

o Algorithm: Scan the numbers from 1 to N, find the maximum value
e The run time is "order N"

Another example: is a given number prime?

o Recall - prime number cannot be divided by any integer

o The "size of the problem” is N =log,,z (number of digits in x)
o Brute force algorithm: divide x by every number less than /x
o Run time: about 10V/?

Matt Welsh, UC Berkeley 3

Big O Notation

This is a way of characterizing the run time (or space con-
straints) of a given algorithm.

We say a function f(n) is "O(g(n))" when

f(n) < Cg(n)

for some constant of C.

For example,
f(n) = 859398n° + 29810n° 4+ 10191032n

is O(n”), since as n — oo, f(n) "looks like" n° regardless of
those big constants!

Matt Welsh, UC Berkeley 4

Big O Examples

Linear: O(n)

e e.g.,, Finding max or min in a sequence of numbers
Polynomial: O(nP) for some integer p

o Classic "bubblesort” algorithm is O(n?)
Logarithmic: O(logn)

o "Quicksort” algorithm is O(nlogn)

e To sort 1 million numbers, quicksort takes 6 million steps, bubblesort
takes a trillion!

Exponential: O(B™) for some constant B > 1
o Brute force factorization, lots of numerical problems

Factorial: O(n!)

o n! definedas nx (n—1)x (n—2) x..x1

e e.g., Calculating the Fibonacci numbers recursively
0,11, 2, 3,5, 8, 13, ..)

Matt Welsh, UC Berkeley 5

Comparison of complexity classes

100000

90000

80000 [

/70000 r

Running time

30000 [

20000 r

10000 r

0

60000 r

50000 f

40000 [

|
Linear

Exponential

0

Matt Welsh, UC Berkeley

Problem size

Tractable and Intractable Problems

Looking at the last slide, it seems that exponential run times
are pretty bad!

e In fact, they are worse than almost anything else
e O(n!) and O(n™) are even worse, but uncommon

We say that tractable problems are those that we can solve
In practice

Intractible problems can be solved in theory, but not in
practice

e Tractable problems have solutions that are polynomial or better
o Intractable problems have solutions that are exponential or worse

Some problems are flat-out unsolvablel

o This is not to say that they are “really hard”, but rather no
computer could possibly solve them

e Next lecturel

Matt Welsh, UC Berkeley 7

Complexity Classes

A complexity class is a set of computational problems with
the same bounds in time and space

Say I give you a problem to solve -- what is your best hope
for an efficient algorithm?

o If you can reduce the problem to another problem with known
complexity, then you can answer straight away!

Example: Given a graph G, is it possible to color the nodes
with just 3 colors, such that no two adjacent nodes have the
same color?

Matt Welsh, UC Berkeley 8

Problem Reduction

It furns out we can reduce this problem to another one:
boolean satisfiability

e Given a boolean expression of multiple variables, is there some
assignment to the variables that makes the expression true?

(pVagVTVs)A(@QVs)

e What values should you assign to p, ¢, r, and s to make this
statement true?

It furns out there is no known polynomial time solution tfo
this problem!

Matt Welsh, UC Berkeley 9

Decision Problems

A decision problem is one that seeks a yes-or-no answer

Example: k-colorability

e Can this graph be colored with k& colors?

Traveling Salesperson Problem

e Given a set of cities with distances between them, can someone
travel to each city (without visiting a city more than once) in M

miles or less?

traveling salesperson problem A classical scheduling problem that has
baffled linear programmers for 30 years, but which, in a more complex
formulation, is solved daily by traveling salespersons.

Matt Welsh, UC Berkeley 10

Optimization Problems

Some problems are optimization problems

e What is the fewest number of colors that color this graph?
e What is the shortest path that one can take to visit all the cities?

Usually if we have a way to solve the decision problem,
without much more work we can solve the corresponding op-
timization problem:

o Start with a graph G

e Find out if G can be colored with 50 colors — yes or no
o If yes, then try 25 colors

o If yes, then try 12 colors, efc.

So, we mainly talk about decision problems

o Can easily derive the corresponding optimization problem

Matt Welsh, UC Berkeley 11

Polynomial-time decidability

We say a problem is polynomial-time decidable if:

e Given a problem P and a proposed solution s

o There is a polynomial time algorithm that checks whether s is a
solution for P

Example: Graph colorability

e Given a graph G and an assignment of colors to nodes
o Can easily check whether any two nodes have the same color
o Simple algorithm is O(n), where n is the number of nodes

Matt Welsh, UC Berkeley 12

The Complexity Class NP

The set of problems for which the answer can be checked in
polynomial time is called NP

o NP stands for "nondeterministic polynomial time"

The name comes from a "nondeterministic Turing machine”

o Formal model of computing that allows the (theoretical) machine to
perform an infinite number of operations simultaneously

e More about this next lecturel

For now, think of problems in NP as those that we have
some way of quickly checking answers for

e But not necessarily a fast way to get the answer!

Matt Welsh, UC Berkeley 13

The Complexity Class P

A problem is polynomial-time computable if:

e We can find a solution in polynomial time
o Note that this is quite different than checking a given solution !

The set of problems that have this property is called P

Generally speaking, problems in P are “good”

o i.e.,, We have fast algorithms for them
o Even if a problem is O(n'?"%%) it's still better than O(10") |
o In practice, most problems in P are O(n*) for small k

Matt Welsh, UC Berkeley 14

Does P = NP?

All problems in P are also in NP

e But the converse is not known to be true

o

The most important open problem in Computer Science |

o In fact there is a $1,000,000 award for anyone who can solve it

We know that many problems don't seem to have
polynomial-time algorithms

o But, nobody has proven that these "hard” problems are not in P

o There may be some mysterious poly-time algorithm for one of those
“hard” problems lurking out there...

Matt Welsh, UC Berkeley 15

Example: Factoring Large Numbers

Many modern systems rely on public key cryptography

e Popular implementation is RSA
e Used in all Web browsers for secure connections

Start with two (large) prime numbers, and multiply them

e Primes P and @, with product PQ

e Note that P and @ are the only two numbers that you can multiply
to get PQ

We can make the product P(Q public

o Because it is very hard to factor the number into the “secrets” P
and Q!

Public key encryption idea:

e Bob publishes the number PQ to the world
e Any one can use P(Q to encrypt a message for Bob
e Only Bob knows P and Q separately to decrypt the message

Matt Welsh, UC Berkeley 16

Factoring Large Numbers is Hard!

Factoring is in NP

o It's easy to check whether two factors P and @ multiply to get
PQ

o But, the fastest algorithm we have for finding factors is still

exponential:

s log log n2/3)

O(eclogn

Still, better factoring algorithms are always being developed...

e In 1977, Ron Rivest said that factoring a 125-digit number would
take 40 quadrillion years

o In 1994, a 129-digit number was factored

Upshot: If P = NP, then all hard problems (or at least
those in N'P) can be solved in polynomial timel

e See the movie "Sneakers”

Matt Welsh, UC Berkeley 17

NP -Completeness

The "hardest” problems in AP are called N'P-complete

A problem is N'P-complete if:

o It is in NP
o All other problems in NP can be reduced to it (in polynomial time)

Result: If we can find a mapping from any NP-complete
problem fo any problem in P, then all problems in AP are
also in P |

Complete

Matt Welsh, UC Berkeley 18

Examples of N'P-Complete Problems

Boolean satisfiability

e Given a boolean expression in a set of variables, what values of the
variables makes the expression true?

Traveling Salesperson Problem

e Given a set of cities connected by roads, what is the path of
minimum distance that visits all cities exactly once?

k-colorability

e Given a graph G, what assignment of k colors to the nodes leaves
no two adjacent nodes with the same color?

Partition problem

o Given a list of integers xi,x9,..., does there exist a subset whose
sum is exactly 3> z; ?

Matt Welsh, UC Berkeley 19

The Deeper Meaning

NP-completeness is about the theoretical limits of computing

o If a problem is N'P-complete, it is very unlikely that we will ever
find a fast algorithm for it

Nobody knows whether P = NP

o Although many people have been working on it for years
o It's impressive that we can't even prove P # NP

This is not about Computer Scientists "not realizing” that
there is a fast algorithm for an N'P-complete problem
o Rather, this is a fundamental limit on what can and cannot be
computed efficiently!

» Huge implications: If you know a problem is A'P-complete, you might
as well give up looking for a fast solution

Matt Welsh, UC Berkeley 20

Some hope for the future

Random algorithms and approximations

e Many N'P-complete problems can be approximated by fast techniques

e For example, Monte Carlo methods use randomness to “guess” an
answer to a problem

e Can often trust the answer with 99.99999% (or more) confidence

Quantum Computing

o Computers built using quantum particles can quickly compute many
answers simultaneously

o Tt turns out that quantum computers can (theoretically) solve many
problems efficiently, for which no previous fast algorithm was known

o For example, a Quantum Computer can factor numbers in polynomial
timel
o But, QCs are very hard to build

Matt Welsh, UC Berkeley 21

Summary

Algorithm complexity and "Big O" notation

Comparing complexities: linear, polynomial, exponential
Tractable and intractable problems

Complexity classes and decision problems
Polynomial-time decidability (NP)

Polynomial-time computability (P)

The P = NP problem and N'P-completeness

Matt Welsh, UC Berkeley

22

