
Teamscope: Teamwork Made Clear

An Ju (SID: 3030915369)

May 10, 2017

1 Introduction
Teaching software development process is an important component of computer science and engi-
neering education. In practice, processes are used by software development teams to coordinate
activities and combine skills[12]. As in social behavior studies, human behaviors in teams are
conceptualized as activities, interactions, and sentiments[10]. Software development processes can
be both considered as activities (visible actions of individuals and correctness of the execution),
and interactions (connectedness of two or more people regardless of the activities). The activity
aspect of a process can be quantitatively measured (for example, the velocity of a team can be
measured by the number of features developed). However, processes as interactions are more dif-
ficult to measure. The goal of Teamscope is to provide visualizations that help understand both
the activity and interaction aspect.

Visualization has its advantage over traditional evaluation methods in terms of validity, reliabil-
ity and scalability. In classrooms, processes are measured mainly through surveys, questionnaires,
interviews and human observations[6][14][7]. In all cases, validity and reliability of the evaluation
result can be undermined by various reasons. For example, the evaluation can be biased by per-
spectives of evaluator[9]. Some studies address this problem by having several graders grading the
same project[9][7], and/or having various data sources[7]. However, these methods also come with
an increased amount of human power and expert time, and thus undermine the scalability of the
class.

Teamscope is designed to support instructors to give valid evaluation to processes in scale. It
provides visualizations that presents the execution of processes in a clear and transparent way, so
that violations of processes can be noticed by instructors.

Teamscope is built upon several software development tools that are widely recognized in the
software engineering community. Tools such as GitHub1, PivotalTracker2, Travis CI3, Slack4, and
Code Climate5 (see Table 1 for detailed descriptions) are infrastructure for software development.
We believe data from these tools combined can be used as a profile of the team project and the
team itself. Teamscope collects data available from these data sources, synthesizes and analyzes
following well-established practices in software engineering community, and presents the informa-
tion to instructors, so that the instructor can have an objective and comprehensive profile of the
project, and thus to design intervention accordingly.

2 Related Work
Our project is inspired by the work of Matthies et al. in 2016, in which they studied the teaching
software development from three aspects[14], including a software that analyzes conformance of
processes based on software development artifacts called ScrumLint (as is shown in Figure 1.
Their work is built upon process conformance verification flow proposed in 2010 by Zazworka[17],
in which they proposed a framework for design and improve metrics to measure the conformance
of practices. However, the idea of process conformance and models to measure the conformance
can be dated back to late 20th century[4][5].

1https://github.com/
2https://pivotaltracker.com/
3https://travis-ci.org/
4https://slack.com/
5https://codeclimate.com/

1



Figure 1: Screenshots from ScrumLint[14]

(a) Teaching git operations with visualizations. (b) Visualizing Repositories.

Figure 2: Some existing visualization works based on GitHub data.

The goal of our system is similar to ScrumLint. However, as is shown in Figure 1, Matthies et
al. uses mostly metrics and rubrics, which is different from our system. We believe visualizations
can better help scale the evaluation of teams and teamwork.

Our system is designed to help the teaching of classes that involve team projects. However,
the system can provide us with opportunities beyond process conformance. For example, it can be
used to help novice programmers[3], and make defect predictions[16]. So the usage of the system
is not limited to classrooms.

Visualizing processes is relatively new in the area of software develop education. However, we
have seen previous works that apply visualization to software development tools such as GitHub.
The goal of these works range from teaching git operations6 (see Figure 2a for a screenshot) to
visualizing the change of git repositories7 (see Figure 2b for a screenshot).

Data used in our case study is focused on teaching Agile methods. There has been several
studies on teaching Agile methods, and more on the application of Agile methods in general[8].
The design of our metrics follows some best practices studied and recommended in some of these
works.

3 Methods and Design

3.1 Data
We collect data from a list of software development tools listed in Table 1. All these systems
support API access. Necessary information to fetch data from API is provided by the instructor.

Our study uses past student projects from CS169 at Berkeley as dataset.

3.2 System Design
In this section, we will present the design of our system. Targeted audience of our system include
both instructors and students. The interface for both parties are similar, while the workflow is

6http://git-school.github.io/visualizing-git/
7http://ghv.artzub.com

2



Tool Description
GitHub GitHub is one of the largest version

based code hosts. It is also a plat-
form for project management and
team collaboration.

PivotalTracker Pivotal Tracker is a straightfor-
ward project-planning tool that en-
courages Agile software development
method.

Code Climate Code Climate provides a suit of
static code analysis tools, and gener-
ates real-time reports on code quali-
ties.

Travis CI Travis CI is a continuous integra-
tion service used to build and test
projects hosted on GitHub.

Slack Slack is a popular team communica-
tion system.

Table 1: A list of data sources and their description

Figure 3: The dashboard page of Teamscope

slightly different. For simplicity, we present our design for instructors in this report. The difference
between user interfaces for instructors and students will be mentioned in the description.

Our design follows Shneiderman’s Manta, which is

Overview first, zoom and filter, then details-on-demand.[2]

The user (instructor or student) first see the overview of the performance over all practices.
Then he or she can move into a single team and on one specified practice only. A more detailed
page will presented that allows the user to explore data from different perspectives. The design of
visualizations keeps most detailed information available on-demand, so that the user can analyze
abnormalities and outliers.

3.2.1 Dashboard

Dashboard page contains an overview for all projects. Figure 3 is a screenshot.
The dashboard page is mainly composed of a table, whose rows are projects(teams) and columns

are practices. Each cell thus indicates how well each team performs on the corresponding practice.

3



Figure 4: The detail page of Teamscope

From this overview page, the instructor can be instantly directed to teams that are having trouble
with certain practices. For students, this page can help them compare with other teams, and their
own performance across different practices.

Furthermore, the dashboard page supports selection of time. The user can selectively see the
view at different times. This functionality allows the user to explore the trend of performance over
time.

Each cell contains a ’see details’ button, which will direct the user to a detail page for the team
on the practice. The design of detail page is explained in Section 3.2.2.

For instructors, the dashboard also provide links to create and edit teams, control the layout
(what practices to be shown in the dashboard page, and what visualizations should be presented
in the detailed page of each practice), and manage user privileges. We will skip them in this report
since they are less relevant to visualization design.

3.2.2 Detail Page

Detail page presents a breakdown of a team’s performance on a given practice. This gives the
user ability to explore data from various aspects with the help of carefully designed visualizations.
Figure 4 is a screenshot.

Detail page lists all visualizations in an ordered manner. Right now we don’t support the design
or rearrangement of all visualizations. But as is mentioned in Section 3.2.1, users can control what
visualizations appear in the detail page of a given practice.

A navigation bar is shown on the left side to help the user navigating through different visual-
izations.

3.2.3 Explanation Page

Most visualizations will have a explanation page to help the user understand the meaning and
usage of this visualization. Figure 5 is a screenshot.

The explanation page can be accessed by clicking "what’s this?" button from detail page.

3.3 Practice Visualization Design
In this section, we will present the design of visualizations that help the user understand the
performance on a given practice.

3.3.1 Practices

The system is designed for a software development course at UC Berkeley. Practices covered in
this course are based on Agile[1], a software development methodology that emphasizes values such

4



Figure 5: The explanation page of Teamscope

as quick iterations, sustainable pace, continuous customer involvements, and test driven design.
Practices in this system are selected based on our understanding of Agile practices and several
previous studies on teaching Agile methods. In particular, we are inspired by the work of Krebs
in 2002[13], and the work of Igaki et al. in 2014[11].

1. Collective Ownership. Knowledge of the code repository should be shared among team
members.

2. Continuous Integration. System integration should be frequent and continuous.

3. Story Plan. Stories should be "SMART" (Specific, Measurable, Attainable, Realistic, and
Time Driven). Story management follow the prescribed stage definition.

4. Role Playing. Team members should follow the division of responsibilities based different
roles in an Agile team.

5. Equal Opportunity. All team members should have equal opportunity to learn every aspect
of Agile methods.

6. Simple Design and Refactoring. The system should be simple and constantly refactored.

7. Team Communication. Team members should communicate with each other frequently.

8. Customer Access. Team should be in close contact with the client. Team receives requests
from the client and delivers new features to the client with a reasonable pace.

9. Code Standards. The team should keep a healthy code base, with a reasonable coding
standard and style grade.

10. Test Driven Design and Behavior Driven Design.

As is shown in Table 2, these ten practices can be divided into three levels: technical practices,
collaboration practices, and agile values[15].

Pyramid Level Practices
Technical Practices 2, 6, 9, 10

Collaboration Practices 1, 3, 4, 7, 8

Agile Values 5

Table 2: Agile Pyramid

Our visualization focuses on the first two levels, because practices on these two levels are more
objective and can be attached to some development artifacts. Equal Opportunity has important
meaning in classrooms. Thus we also select this as a practice of interest.

5



3.3.2 Visualization Design for Story Plan

For now, we only implemented visualization one practice, which is Story Plan. In this section, we
will present the design of this practice. The design for other practices will follow a similar idea.

Data used for this visualization comes from Pivotal Tracker. As a brief introduction, the
central idea of Pivotal Tracker is ’story’. Each story in Pivotal Tracker is a feature for the team to
implement. Each story has specifications, types, estimations of required effort to finish ("points"),
and should go through a series of stages (scheduled, started, finished, delivered, accepted).

Details is presented at the very beginning of our design. This part presents a list of all user
stories from Pivotal Tracker Figure 6 shows an screenshot. This part presents all information that
will be important for the user to understand the story.

The background color of table rows represent current state of the story. This information
is in particular important for the user because the user will focus more on stories that are fin-
ished/delivered.

Transitions of stories are presented with a graph shown in Figure 7. In this graph, each row
represents a story. Dots represent story state transitions. The color of the line represents the state
of the story, which is consistent with the table list.

The lower part of the graph allows the user to selectively see story transitions in a given time
period. It also presents a abstract view of all transitions.

Figure 6: Visualization for Story Plan: Story list

Two other graphs are also presented to help understand the conformance of some sub-practices,
as is shown in Figure 8. Figure 8a shows the current states of all stories, while Figure 8b is designed
to visualize whether students have a good estimation of story points. The coloring of pie chart is
consistent with other graphs.

Brush and linking is considered as an important feature of this design. Currently graphs
presented above do not share the same dataset. This will be refactored in the future. In each
detail page, the selection and filtering of elements in one graph will affect all graphs. This can help
the user explore the dataset.

3.4 Tools
Our website is built with Ruby on Rails. Each metric is developed as a Gem for the system, which
can be easily configured. This way the user can design their own version of the system and their
own metrics.

All visualizations are implemented with HTML and Javascript. Graphs are plotted mainly with
D3 and Highcharts.

6



Figure 7: Visualization for Story Plan: Story Transitions

(a) A pie chart of current story states (b) A scatter plot of points and development time.

Figure 8: Visualization for Story Plan: two graphs to help understand some sub-practices.

4 Evaluation
We do not have evaluation result yet. The system will be evaluated in the future with experiments
in a software engineering class.

The class is an upper-level computer engineering class at Berkeley. It will be given in both
summer and fall semester in 2017. We plan to deploy our system to both semesters.

In the summer semester, we plan to run a small-scale preliminary experiment to test the
usability of our system. Some research questions are:

RQ1 what features can best attract users, what features do users value most;

RQ2 which part of system is used by users and what is the usage pattern;

RQ2.1 what is the usage frequency, is the system used on a regular basis or on demand;

RQ2.2 what the distribution of stay time on different pages;

RQ2.3 what is the order of view;

RQ2.4 does the usage pattern change over time and what is the reason for that change;

RQ2.5 will students view other teams’ detail page, and does it help with learning;

RQ3 for instructors, whether the system can help scale the classroom;

7



RQ4 for instructors, whether the system can help them grade more objectively, in what aspects
can the system help most

RQ4.1 what aspects are made clearer by the system;

RQ4.2 what aspects are overlooked by the system;

RQ4.3 what new biases are potentially introduced by the system;

RQ4.4 whether the comparison among teams are made easier by the system, whether the
same set of standards is used among gradings of different teams;

RQ5 for students, whether using the system can help them follow practices prescribed by the
instructor, and how;

RQ5.1 whether using the system can increase the awareness of some practices;

RQ5.2 will they change their behaviors accordingly;

RQ6 for students, whether using the system can help them build better product, and how;

RQ6.1 what is the correlation between code metrics (such as code style, code quality) and
usage patterns (such as frequency, stay time, etc.)

RQ6.2 what is the correlation between code metrics and their attitudes towards the system;

RQ6.3 what is the correlation between code metrics and awareness of practices;

RQ7 for students, whether using the system can improve their learning, and how;

The evaluation will be a combination of surveys, interviews, and log analysis.
Surveys can help understand all research questions listed above. Surveys will be provided to

students at the end of the semester and/or on a regular basis to understand the change over time.
Interviews can help us understand the reasoning behind survey results. Besides, since this is a

small-scale class, we do not have enough instructors to get valid survey results. So interviews can
provide us with instructors’ perspectives.

Log analysis can help us understand RQ 2. The system logs can reveal the history of system
usages, which can be used to answer RQ2.

Student learning can be measure by mid-term and final exams, which are scheduled this summer
to test their understanding of Agile processes.

5 Future Work
In this section we will talk about some future plans, especially what visualizations will be developed
before the summer semester begins.

5.1 Practices Focused vs. Tool Focused
Our original design was sets of visualizations for different practices. However, as discussions with
some previous GSIs suggest, instructors are more comfortable with dividing visualizations by tools
instead of by practices. Another benefit of tool-focused design is that raw data on each platform
can be presented in an organized manner, instead of scatter among different pages as in practice-
focused design.

For tool-focused design, visualizations will be organized around features. For Pivotal Tracker,
visualizations are organized around stories. For GitHub, visualizations are organized around
branches. For Slack, visualizations are organized around topics or channels. Features are what
most important for a software product. Besides, as our interview suggests, exploring data based
on features is what GSIs did previously. So the system will be natural for them to use.

However, we do not want to confuse students since concepts of various practices are blurred
in tool-focused design. So we plan to make practices explicit in each detail page. Besides, it will
might be useful to have visualizations that are built on multiple data sources. These visualizations
will also be considered in the future.

8



5.2 Practice-based Design
There are ten practices listed in Section 3.3.1. It is impractical and inappropriate to list all ten
practices in the dashboard. Some practices must be combined. In this section, we emphasize on
two practices.

5.2.1 Visualizations for Collective Ownership

Following functionalities should be supported by visualizations

• Read the estimated knowledge of a given person on a given file.

• See estimated knowledge from different levels (files, directories, parts of the system).

• See the change over time.

There are several ways of estimating the knowledge of a person over a file. The simplest one
is to estimate based on lines of contribution. Some more advanced methods will consider from
function level instead file level.

5.2.2 Visualizations for Continuous Integration

Continuous integration is supported by TravisCI. Following functionalities should be supported by
visualizations

• See the history of integrations.

• Rearrange the history of integrations with different criteria (by branches, authors, or time).

• Highlight states of integrations, and calculate the time between two integrations.

• Read outputs of a given integration, better in a formatted way.

5.3 Tool-based Design
5.3.1 Visualizations for GitHub

Following functionalities should be supported by visualizations

• Overview of branches, pull requests, and issues.

• Read all commits from a branch or pull request.

• Read the change of test coverage and number of test cases over time.

• Read the usage of branches and highlight merges.

5.3.2 Visualizations for Slack

Visualizations for Slack can suffer from the problem that it cannot capture all communications.
But the design of visualizations is built upon the assumption that most necessary communications
(discussions related to the development of the product) happen in Slack.

Following functionalities should be supported by visualizations

• Overview of communication frequencies in each channel for each person.

• Communication pattern of a given topic.

• Connect and highlight questions and responses.

9



References
[1] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunningham, Martin

Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, and others. 2001. The
agile manifesto. (2001).

[2] Stuart K Card, Jock D Mackinlay, and Ben Shneiderman. 1999. Readings in information
visualization: using vision to think. Morgan Kaufmann.

[3] Rachel Cardell-Oliver. 2011. How can software metrics help novice programmers?. In Proceed-
ings of the Thirteenth Australasian Computing Education Conference-Volume 114. Australian
Computer Society, Inc., 55–62.

[4] Jonathan E Cook and Alexander L Wolf. 1998. Discovering models of software processes from
event-based data. ACM Transactions on Software Engineering and Methodology (TOSEM) 7,
3 (1998), 215–249.

[5] Jonathan E Cook and Alexander L Wolf. 1999. Software process validation: quantitatively
measuring the correspondence of a process to a model. ACM Transactions on Software Engi-
neering and Methodology (TOSEM) 8, 2 (1999), 147–176.

[6] Vladan Devedzic and others. 2011. Teaching agile software development: A case study. IEEE
Transactions on Education 54, 2 (2011), 273–278.

[7] Yael Dubinsky and Orit Hazzan. 2005. A framework for teaching software development meth-
ods. Computer Science Education 15, 4 (2005), 275–296.

[8] Tore Dybå and Torgeir Dingsøyr. 2008. Empirical studies of agile software development: A
systematic review. Information and software technology 50, 9 (2008), 833–859.

[9] Martin Hoegl and Hans Georg Gemuenden. 2001. Teamwork quality and the success of in-
novative projects: A theoretical concept and empirical evidence. Organization science 12, 4
(2001), 435–449.

[10] George C Homans. 1974. Social behavior: Its elementary forms. (1974).

[11] Hiroshi Igaki, Naoki Fukuyasu, Sachio Saiki, Shinsuke Matsumoto, and Shinji Kusumoto. 2014.
Quantitative assessment with using ticket driven development for teaching scrum framework.
In Companion Proceedings of the 36th International Conference on Software Engineering.
ACM, 372–381.

[12] Steve WJ Kozlowski and Bradford S Bell. 2003. Work groups and teams in organizations.
Handbook of psychology (2003).

[13] William Krebs. 2002. Turning the knobs: A coaching pattern for XP through agile metrics.
In Conference on Extreme Programming and Agile Methods. Springer, 60–69.

[14] Christoph Matthies, Thomas Kowark, Keven Richly, Matthias Uflacker, and Hasso Plattner.
2016. How surveys, tutors, and software help to assess Scrum adoption in a classroom soft-
ware engineering project. In Proceedings of the 38th International Conference on Software
Engineering Companion. ACM, 313–322.

[15] Andreas Meier, Martin Kropp, and Gerald Perellano. 2016. Experience Report of Teach-
ing Agile Collaboration and Values: Agile Software Development in Large Student Teams.
In Software Engineering Education and Training (CSEET), 2016 IEEE 29th International
Conference on. IEEE, 76–80.

[16] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. 2008. A comparative analysis of the ef-
ficiency of change metrics and static code attributes for defect prediction. In 2008 ACM/IEEE
30th International Conference on Software Engineering. IEEE, 181–190.

[17] Nico Zazworka, Kai Stapel, Eric Knauss, Forrest Shull, Victor R Basili, and Kurt Schneider.
2010. Are developers complying with the process: an XP study. In Proceedings of the 2010
ACM-IEEE International Symposium on Empirical Software Engineering and Measurement.
ACM, 14.

10


	Introduction
	Related Work
	Methods and Design
	Data
	System Design
	Dashboard
	Detail Page
	Explanation Page

	Practice Visualization Design
	Practices
	Visualization Design for Story Plan

	Tools

	Evaluation
	Future Work
	Practices Focused vs. Tool Focused
	Practice-based Design
	Visualizations for Collective Ownership
	Visualizations for Continuous Integration

	Tool-based Design
	Visualizations for GitHub
	Visualizations for Slack



