
Automating the Design of Graphical
Presentations of Relational Information
JOCK MACKINLAY
Stanford University

The goal of the research described in this paper is to develop an application-independent presentation
tool that automatically designs effective graphical presentations (such as bar charts, scatter plots,
and connected graphs) of relational information. Two problems are raised by this goal: The codifi-
cation of graphic design criteria in a form that can be used by the presentation tool, and the generation
of a wide variety of designs so that the presentation tool can accommodate a wide variety of
information. The approach described in this paper is based on the view that graphical presentations
are sentences of graphical languages. The graphic design issues are codified as expressiveness and
effectiveness criteria for graphical languages. Expressiveness criteria determine whether a graphical
language can express the desired information. Effectiveness criteria determine whether a graphical
language exploits the capabilities of the output medium and the human visual system. A wide variety
of designs can be systematically generated by using a composition algebra that composes a small set
of primitive graphical languages. Artificial intelligence techniques are used to implement a prototype
presentation tool called APT (A Presentation Tool), which is based on the composition algebra and
the graphic design criteria.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques-user
interfaces; H.1.2 [Models and Principles]: User/Machine Systems--human information processing;
H.3.4 [Information Storage and Retrieval]: Systems and Software; 1.2.1 [Artificial Intelli-
gence]: Applications and Expert Systems; 1.3.6 [Computer Graphics]: Methodology and Tech-
niques-device independence; ergonokcs

General Terms: Algorithms, Design, Human Factors, Languages, Theory

Additional Key Words and Phrases: Automatic generation, composition algebra, effectiveness,
expressiveness, graphic design, information presentation, presentation tool, user interface

1. INTRODUCTION
Computer-based information plays a crucial role in our society. As a result, an
important responsibility of a user interface is to make intelligent use of human
visual abilities and output media whenever it presents information to the user.
For example, a color medium makes it possible to use graphical techniques based
on the fact that the human visual system is very effective at distinguishing a
small number of distinct colors [13, 231. A monochrome medium requires other
graphical techniques that utilize other capabilities of the human visual system.

This work was supported in part by grant N00014-81-K-0004 from the Office of Naval Research.
Author’s current address: Xerox PARC, 3333 Coyote Hill Rd., Palo Alto, CA 94304.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1987 ACM 0730-0301/86/0400-0110 $00.75

ACM Transactions on Graphics, Vol. 5, No. P,.April 1986, Pages 110-141.

Automating the Design of Graphical Presentations l 111

Fig. 1. A linear model for generating presentations. This simplified model, which does not
include feedback loops that are required for difficult design problems, describes the funda-
mental process of generating a graphical presentation. A graphical design synthesized by a
presentation tool describes the basic structure and meaning of a graphical presentation. The
rendering process fills in the details that are required to form the final image.

Building user interfaces that intelligently present information is a difficult
task. At the current time, application designers are forced to anticipate every
presentation situation that might arise in an application and decide which
graphical techniques are most effective in each situation. Not only do application
designers have to “predesign” the presentations, but they must be graphic design
experts to ensure that the resulting presentations are effective.

An obvious solution is to build a system, called a presentation tool, that
automatically designs graphical presentations of information. Using such a
system, application designers need not predesign the presentations, and the
graphic design issues are the responsibility of the presentation tool. Figure 1
illustrates how application designers would use such a tool. The application
extracts some information from its database (perhaps using statistical analysis).
The presentation tool then synthesizes a graphical design and renders an image
that presents this information. A graphical design is an abstract description of
an image that indicates the graphical techniques (such as color variation or
position on an axis) that are used to encode information.

There are two open problems that must be solved before such a presentation
tool can be constructed: Graphic design criteria must be codified before the
presentation tool can synthesize effective designs, and a wide variety of designs
must be generated before the presentation tool can handle a wide variety of input.

This paper describes research that begins to solve these problems by focusing
on automating the design of two dimensional (2-D) static presentations (such as
bar charts, scatter plots, and connected graphs) of relational information. The
cornerstone of this research is the development of precise definitions of graphical
languages that describe the syntactic and semantic properties of graphical pres-
entations. The framework established by these definitions addresses the two
problems mentioned above. Graphic design issues are codified with expressiveness
and effectiveness criteria. Expressiveness criteria identify graphical languages
that express the desired information. Effectiveness criteria identify which of these
graphical languages, in a given situation, is the most effective at exploiting the
capabilities of the output medium and the human visual system. A wide variety
of designs is systematically generated using a composition algebra, which is a
collection of primitive graphical languages and composition operators that can
form complex presentations. This framework is implemented with artificial
intelligence techniques. A prototype application-independent presentation tool
called APT (A Presentation Tool) has been built. Even though only the basic

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

112 - Jock Mackinlay

framework has been implemented, APT can synthesize a wide variety of useful
designs.

The paper is a top-down description of the two types of graphic design criteria
and the composition algebra mentioned above. Related work is described in
Section 2. Section 3 uses three examples to motivate the development of the
criteria and algebra. Section 4 gives a detailed overview of the results described
in this paper. The core of the paper is contained in Sections 5-7, which describe
the details of the expressiveness and effectiveness criteria and the composition
algebra. Sections 8 and 9 describe how APT uses these results to synthesize
presentations. Finally, Section 10 considers how the research can be extended.

2. RELATED WORK
The automatic design of graphical presentations of information is a relatively
unexplored research area. As a result, existing work has focused on restricted
aspects of the problem. Aside from the early unfocused work, the following three
foci categorize the existing work: content issues, graphic design issues, and design
variation issues. Content issues are central to systems that automatically deter-
mine the content of presentations, such as adding or removing details to generate
an effective presentation or developing a sequence of related presentations.
The graphic design and design variation issues have already been described.
Another useful categorization is the graphical techniques used by the system
(2-D, 3-D, animation).

Two of the early, less focused pieces of work deserve mention. The first
developed the AIPS system, which was one of the earliest attempts to separate
the presentation process from the rest of an application [24]. AIPS used the
KLONE representation system to specify and refine a high-level specification of
a 2-D information display. The second piece of early work studied automatic
animation scripting and the rule-based layout of node-link diagrams [121.

Content issues were the primary focus for the work on two systems. The first
was the VIEW system developed by Friedell, which automatically generated 2-D
icons describing the properties of ships stored in a naval database [lo]. A stepwise
refinement of icon templates, using subicon templates, terminated when suffi-
cient detail was generated for a given icon size. The templates were designed by
hand rather than by the system. The second was the APEX system developed by
Feiner, which automatically generated a sequence of images that describe actions
in a 3-D world consisting of some sonar cabinets [8]. The system carefully
tailored the sequence of images to omit irrelevant or redundant details. The
graphic design issues surrounding the merging of icons and 3-D images were also
considered.

Two other pieces of work focused on graphic design issues. The first was the
BHARAT system developed by Gnanamgari, which was an early effort at the
automatic generation of 2-D presentation graphics [ll]. It selected a pie chart,
bar chart, or line chart design for a single unary function, which could have
multiple numeric ranges. BHARAT was based on a simple design algorithm.
When the function was continuous, a line chart design was used. When the user
indicated that the range sets could be summed to a meaningful total, a pie chart
design was used. Bar chart designs were used in the remaining cases. Although
ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Automating the Design of Graphical Presentations l 113

multiple designs were generated, BHARAT’s range of designs was limited. It
could not present a collection of relations or nonfunctional relations. Gnanam-
gari’s discussion focused on graphic design issues. However, her effectiveness
criteria about issues such as font and color choice were “wired” into the code
that rendered the design, making it difficult to extend the system to a broader
range of input.

The second piece of work that focused on graphic design issues was Beach’s
system, which automated the low-level layout and design of 2-D tables whose
high-level topology was specified by the user as a matrix of rows and columns
[l]. This research utilized a specification called a graphical style [2], which
allowed the explicit description of the graphic design properties of the table, such
as line widths, background tints, and size constraints. As a result, the user could
control parts of the design while the remainder was controlled by the existing
default style. Explicit graphical styles made it possible for the system to format
the table in different ways for different output media. Although the graphical
styles had to be specified by hand, care was taken to make sure that graphic
design issues could be addressed in the specification.

Design variation and graphic design are the primary foci of the work described
in this paper. This work differs from the previous work in that it focuses directly
on the generation of a comprehensive variety of designs for 2-D static presenta-
tions of relational information. The APT system uses artificial intelligence
techniques to implement a “generate and test” search for a design: The compo-
sition algebra generates design alternatives, and the graphic design criteria test
the generated alternatives.

3. THE GRAPHICAL PRESENTATION PROBLEM

The graphical presentation problem is to synthesize a graphical design that
expresses a set of relations and their structural properties effectively. This
problem is illustrated in this section by three examples that describe the desired
behavior of a presentation tool. These examples describe the basic concerns that
led to the criteria and algebra discussed in the remainder of the paper.

Given the process model in Figure 1, the examples of presentation tool behavior
begin with the application’s database. Figure 2 describes a collection of relation
tuples about automobiles that might be contained in such a database. The
structural properties of these relations, which might be in the database schema,
are shown in Figure 3 using standard database notation [22]. Structural properties
include the domain sets and their functional relationships. Given such a database,
a typical input from the application to the presentation tool would be the
following:

Present the Price and Mileage relations.
The details about the set of Cars can be omitted.

Note that the application can include additional requests, such as asking that
the Cars details be omitted.

Given this input, a presentation tool produces two outputs: a graphical design
and an image rendered from that graphical design. A graphical design, which is
the primary concern of this paper, consists of a set of encoding relations between

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

114 - Jock Mackinlay

Price(Accord, 5799) PFice(AMC Pacer, 4749)
Mi/eoge(Accord, 25) Mileage(AMC Pacer, 17)
Weight(Accord, 2240) Weight(AMC Pacer, 3350)
&paiF(Accord, Great) Repair(AMC Pacer, Terrible)
Nation(Accord, Germany) Nation(AMC Pacer, USA)
PFice(Audi 5000, 9690) PFk?(BMW 32Oi, 9735)

Fig. 2. Relation tuples about 1979 automobiles. This is an example of
a table of relation tuples that might be generated by a database system
in response to a query. A presentation tool can do much better than
this.

Price: curs + [3500, 13000]
Mileage: curs + [lo, 401
Weight: CQFS + [1500, 50001
Repair: cars + (Great, Good, OK, Bad, Terrible)
Nation: Cars + (USA, Germany, France, . . .]
Cars = {Accord, AHC Pacer, Audi 5000, BMW 32Oi, ...I

Fig. 3. Structural properties of the automobile relations. The arrow
(4) indicates a functional dependency between domain sets. The
square brackets ([1) describe domain sets that are quantitative ranges,
the angle brackets (()) describe domain sets that are ordered sets, and
the curly braces (()) describe domain sets that are unordered sets.

a graphical image and the information it presents. For example, Figure 4 describes
a scatter plot design for the price/mileage input. Graphical objects, such as points
and line segments, encode the domains of the relations. Properties of those
objects, such as their position, encode the functional information. The Encodes
predicate is used to indicate these encoding relationships for both the graphical
objects and their properties. Figure 5 contains the scatter plot image that APT
rendered from this design.’

The following three price/mileage examples illustrate the expressiveness,
effectiveness, and design variation concerns mentioned above. The scatter plot
in Figure 5 illustrates the importance of the expressiveness concern. If the
application had not requested that the details about the cars be omitted, the
scatter plot in Figure 5 would not have expressed all the input. Without this
request, the scatter plot would have had to include labels, as shown in Figure 6.
These scatter plot labels, however, illustrate the importance of the effectiveness
concern. The labels obscure the mark positions, and it is difficult to find
individual cars. If the details about the cars are important, there are more
effective design alternatives. For example, when the details of the cars are to be
presented, the presentation tool should synthesize the aligned bar chart design

’ In this paper, an apt in the lower right corner of a figure indicates that APT designed and rendered
the diagram. Such diagrams are intended to illustrate APT’s ability to deal with coarse-grained
graphic design issues, such as the choice of the graphical techniques to encode information. Fine-
grained rendering issues, such as line width, font choice, and precise graphical object placement are
not a focus of this research. A production presentation tool will certainly be able to generate more
graphically interesting diagrams than the ones shown here.

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Automating the Design of Graphical Presentations

Encodes (VertAzis, [3 5 0 0 , 13 0 0 01, ScatterPlot)
Encodes(HorzAris, [10 , 4 01, ScatterPlot)
Encodes(Points, Cars, ScatterPlot)
Encodes(Position(Points, VertAxis), Price(Cars), ScatterPlot)
Encodes(Position(Poinb, HorzAxis), Mikage(Curs), ScatterPlot)

Fig. 4. The graphical design for a scatter plot of the price mileage
input. The Encodes relation indicates the relationship between
graphical objects or properties and the information encoded. For
example, the first line says that the vertical axis encodes the range
of prices, and the fourth line says that the position of the points
on the vertical axis encodes the prices of cars. The input relations
are written as functions to simplify the description.

Price
13500-

+

+

llOOO- + +

+ + +

6500.
+

+

6000.
+

+
++

35001
++ +++

+ , Mileage
10 20 30 40

Car price for 1979
Car mileage for 1979

. 115

Fig. 5. Scatter plot of the price/mileage input. The graphical design for
this image is in Figure 4. The design expresses the relations only if the
application permits the details about the cars to be omitted. The apt in
the lower right corner indicates that APT designed and rendered this
diagram.

used to render Figure 7, rather than the scatter plot design. The aligned bar
chart design makes it easy to find values associated with an individual car. The
existence of this- alternative design illustrates the importance of the design
variation concern: A presentation tool should be able to generate an expressive
and effective design for each presentation situation.

The following rough estimate indicates that there are many possible inputs to
a presentation tool. The price/mileage input consists of two binary relations that
share the same first domain set and are functional dependencies from a qualitative
domain to a numeric range. The structural properties of the input relations are
important factors for designing a graphical presentation. Different structural
properties require the presentation tool to synthesize different designs. Further-
more, the ability to vary these properties independently leads to a combinatorial

ACM Transactions on Graphics, Vol. 5, No. 2, April 1966.

116 - Jock Mackinlay

Price
13500- Peugeot

+
Volvo 260

1 inc Q!Nille +

llOOO- + +

8500.

AudiFo 8
BMW 320i

aab900 +
+

Datsun 810
+

VW Dasher
+

6000. Accord
+

AMC Pacer
@gp,z’”

3500, &“pp”“0~~~y + , Mileage
10 20 30 40
Car price for I979
Car mileage for 1979

Fig. 6. Labeled scatter plot for the price/mileage input. Although a more
sophisticated rendering could avoid the overlapping of the labels, two basic
problems of a labeled scatter plot design reduce its effectiveness.
First, labels make it difficult to perceive the positions of the points.
Second, a given label is difficult to find.

explosion in the number of inputs that might be given to a presentation tool. To
see this, abstract the two binary relations by ignoring the functional dependen-
cies, the sharing of domain sets, and the properties of the domain sets:

d

R: A B
S: C D ” >

Given that there are on the average d domain sets for each relation and F relations
in the input, there are

(2d - 1)’ X (dr)! X 3dr

different possible design problems. The (2d - 1)’ factor is based on the fact that
each relation can be a functional dependency from 1 through d domain sets to
the remaining domain sets and is equivalent to the number of nonempty subsets
of the set of domain sets of the relation. The (dr)! factor is based on the number
of canonical permutation cycles that can be formed by the sharing of all the
domain sets [14]. The 3dr factor is based on the fact that each domain set can be
one of the following three types [20]: A domain set is nominal when it is a
collection of unordered items, such as {Jay, Eagle, Robin). A domain set is
ordinal when it is an ordered tuple, such as (Monday, Tuesday, Wednes-
day). A domain set is quantitative when it is a range, such as [0 , 2 7 31.

The preceding formula indicates that there can be many inputs to the presen-
tation tool. For two binary relations, there are over 17,000 possibilities. However,
ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Automating the Design of Graphical Presentations . 117

Car
Accord

AMC Pacer
Audi 5000
BMW 320i

Champ
Chev Nova

Civic
Datsun 210
Datsun 810

Deville
La Car

Lint Cont
Horizon

Mustang
Peugeot

Saab 900
Subaru

Volvo 260
VW Dasher

10 20 30 40 3500 6000 8500 11000 13500
Mileage Price

Car mileage for 1979 Car price for I979

Fig. 7. Aligned bar chart for the price/mileage input. This diagram shows
the detailed properties of the cars better than a scatter plot. However, the
general relationships are not so easy to see.

the input can include more relations or relations with more domain sets. For
example, four binary relations (similar to the automobile data presented in
Figure 30) can generate over 21 billion different inputs. Furthermore, this
estimate does not include other factors that increase the number of designs that
must be generated by a presentation tool, such as application requests or prop-
erties of the output media.

4. APPROACH
The fundamental assumption of the approach described in this paper is that
graphical presentations are sentences of graphical languages, which are similar
to other formal languages in that they have precise syntactic and semantic
definitions. The three concerns described in the previous section are handled by
a careful analysis of the properties of these definitions. This analysis leads to
expressiveness and effectiveness criteria for evaluating graphical designs and a
composition algebra for generating design alternatives.

An expressiveness criterion, which is derived from a precise language definition,
is associated with each graphical language. A graphical language can be used to
present some information when it includes a graphical sentence that expresses
exactly the input information, that is, all the information and only the informa-
tion. Expressing additional information is potentially dangerous because it may
not be correct.

Effectiveness criteria can be based on a number of different factors. For
example, a design can be judged effective when it can be interpreted accurately
or quickly, when it has visual impact, or when it can be rendered in a

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

118 l Jock Mackinlay

Marks: Points, lines, and areas

Fig. 8. Bertin’s graphical objects and
graphical relationships.

Positional: l-D, 2-D, and 3-D
Temporal: Animation
Retinal: Color, shape, size, saturation,

texture, and orientation

cost-effective manner. This paper concentrates on generating designs that can
be accurately interpreted. Dealing with multiple, perhaps conflicting, effective-
ness criteria is beyond the scope of this research.

Given the focus on accuracy, effectiveness criteria are based on the observation
that a graphical language uses specific graphical techniques to encode informa-
tion. When interpreting a graphical sentence, a person is confronted with
perceptual tasks that correspond to these graphical encoding techniques. Since
some perceptual tasks are accomplished more accurately than others, effective-
ness criteria can be based on the comparison of the perceptual tasks required by
alternative graphical languages.

Since most graphical presentations of relational information are based on a
general vocabulary of graphical techniques, a wide variety of designs can be
generated with a composition algebra that describes this graphical vocabulary.
Figure 8 summarizes graphic designer Jacques Bertin’s vocabulary of the
graphical techniques commonly used to encode information in presentation
graphics [3]. Graphical presentations use graphical marks, such as points, lines,
and areas, to encode information via their positional, temporal, and retinal
properties.’ The composition algebra consists of a basis set that contains primitive
graphical languages, each of which embodies one of Bertin’s graphical techniques
for encoding information, and composition operators that are able to generate a
wide range of presentations by composing the primitive languages.

5. EXPRESSIVENESS
All communication is based on the fact that the participants share conventions
that determine how messages are constructed and interpreted. For graphical
communication these conventions indicate how arrangements of graphical objects
encode information. This section shows how to formalize these conventions by
taking the view that graphical presentations are actually sentences of graphical
languages that have precise syntactic and semantic definitions. Such definitions
make it possible to determine the expressiveness and effectiveness properties of
graphical languages.

Intuitively, a set of facts is expressible in a language if there is a sentence of
the language that encodes every fact in the set. The difficulty with this intuition
is that the sentence may encode additional incorrect facts (this is discussed in
detail elsewhere [17]). Therefore, the expressiveness criteria for languages contain

’ The retinal properties are so called because the retina of the eye is sensitive to them, independent
of the position of the object. Although they are included in the list of encoding relationships, 3-D
position and animation are beyond the scope of this research.

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Automating the Design of Graphical Presentations l 119

two conditions:

A set of facts is expressible in a language if it contains a sentence that
(1) encodes all the facts in the set,
(2) encodes only the facts in the set.

This section presents two examples that demonstrate the importance of these
two conditions. The first example shows a case in which position on an axis
cannot express a one-to-many relation. The second example shows a case in
which a bar chart expresses additional incorrect facts. Before the examples can
be given, however, it is necessary to develop some formal machinery for defining
the syntax and semantics of graphical languages. Such machinery makes it
possible to determine what information is encoded by the sentences of a language.
Evaluating expressiveness requires this ability.

The formal machinery required to define a graphical language is fairly straight-
forward. A graphical sentence s is defined to be a collection of tuples:

s c ((0, 1) IO E 0 A I E L),

where 0 is a set of graphical objects and L is a set of locations. Each tuple, which
is called a located object, indicates the placement of an object at a given location.
The syntax of a graphical language is defined to be a set of well-formed graphical
sentences. This paper assumes that 0 and L are restricted to the standard
2-D Cartesian plane, such that the objects in 0 are 2-D graphical objects that
have a finite, nonzero height and width, and the locations in L are the conven-
tional binary tuples that represent the x and y positions in the Cartesian plane.3
The height and width of a sentence is determined in the normal manner from
the size and location of the objects that make up that sentence. This paper uses
a variety of intuitively named functions to describe geometric properties. For
example, the functions Xmin, Xpos, and Xmax identify the x position of the left,
center, and right of a located object. Precise definitions of these functions can be
found elsewhere [161.

The syntax of a language can be described with a predicate that identifies the
well-formed sentences of the language. Systematic syntactic conventions can be
captured by conditions that indicate when this predicate is true. For example,
consider the diagram in Figure 9 that encodes the Price relation. Intuitively, it is
an example of a set of graphical sentences (i.e., a graphical language) that is
based on the syntactic convention of placing a plus object above an axis. The
syntax of this “horizontal position” language can be formalized with the unary
predicate HorzPos, which is true for any graphical sentence that consists of a
horizontal axis and a set of tuples placing a plus object at a constant height
somewhere above the axis.

More formally, a graphical sentence s is a legal sentence of the horizontal
position language when it consists of the union of a horizontal axis set h and a
set of marks m such that each located object (0, Z) in m is a plus object plusobj

3The resolution of a device can be represented by replacing the Cartesian plane with a grid of
pixels [16].

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

120 l Jock Mackinlay

+ + ++ , t + it+ +
3500 6000 8500 11000 13;oo Price

Car price for 1979

apl

Fig. 9. The horizontal position sentence of the Price relation.

located at a constant height const above the axis:

HorzPos (s) w
s=hUm A (0,Z) Em*[

o = plusobj A
Ymax(h) 5 Ypos(Z)= const A
Xmin(h) I Xpos(Z) I Xmax(h)].

The symbols in this formula are used in a similar manner throughout the
paper. In particular, the symbol h always stands for a horizontal axis,4 and the
symbol m always stands for a set of located objects (called marks) that have a
related set of properties, such as objects positioned against the same axis.

Given a precise syntactic definition, the semantics of a graphical language can
be specified using established formal techniques, such as denotational semantics
[7]. A collection of located objects representing a graphical sentence can have a
denotation in the same way as a collection of characters representing a logic
formula. However, a presentation tool designs graphical sentences. It must be
able to describe the semantic relationships between a graphical sentence and the
encoded facts. For example, the HorzPos language encodes a binary relation with
an axis, a set of marks, and the position of the marks on the axis. Formally, a
relation called Encodes(s, facts, lung) is used to describe the semantic relationship
between the objects and properties of a graphical sentence s and the set of facts
that are encoded, given the semantic conventions of the language lung.5 For
example, given a relation r consisting of tuples r(ui, bi), the following is a formal
description of the three basic Encodes relationships for a sentence of the HorzPos
language (see Figure 10 for an abstract description of these encodes relations).
The axis h encodes the second domain of the relation, Domz(r):

Encodes(h, Domz(r), HorzPos). (1)

For the Price relation, the horizontal axis encodes the range [3 5 0 0, 13 0 0 0] of
prices. Each located object oi of the set of marks m encodes a unique domain
value ai of the first domain set of the relation Doml (r):

Encodes(oi, CQ, HorzPos). (2)

Since this is true for every located object in the mark set m, the Encodes relation
can be extended to the entire set:

Encodes(m, Doml(r), HorzPos).

For the Price relation, the marks encode the set of Curs.

4 The symbol v stands for a vertical axis.
’ Since an image might be a well-formed graphical sentence of more than one language, the Encodes
relation includes the name of the language to indicate which semantic conventions are being described.

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Automating the Design of Graphical Presentations l 121

y...v.v>: SC., ..,................I. .F,*- r................r.-r........ 0.A. cr.:

,,rFf . . .

5

. FTT

::: ::

g$
$:!

3 > 2 c .._....... R : j, B

,-,:~.:~.:.:.:.:.:.:,:,:,:.:.:.:,:.:.:.:.:.:~.:.:.:.:.:,:.:.:.:.:.:.:.:.:.:.:,:.:.:~.:.:~

Fig. 10. The Encodes relationships for the horizontal position
language. The graphical sentence is on the left, and the relation
is on the right. The gray lines indicate that the domain sets are
encoded by the objects, and the tuples of the relation are encoded
by the relative positions of the marks.

Given the semantics for the objects in a graphical sentence, it is straightforward
to describe the semantics for arrangements of objects. For the HorzPos language,
the position of marks on the axis encodes the tuples of the r relation. That is,
the first domain value oi of a tuple r(ai, bi) corresponds to a mark oi as described
in (2), and the second domain value bi corresponds to the position of the mark oi
on the axis h, which is described with the binary function Positiort(oi, h). More
formally, there exist two constants, scale and offset, that equate the domain value
bi with the axis position of the mark oi for the domain value oi:

Encodes(oi, ai, HorzPos) +
bi = scale X (Position(oi, h) + offset) A
Encodes(Position(oi, h), r(ai, bi), HorzPos).

(3)

Since this is true for every mark in the mark set m, the Encodes relation can be
extended to the domain sets. The positional encoding for the entire relation r
can be described as follows:

Encodes(Position(m, h), r, HorzPos).

The presentation tool APT uses the domain set versions of these Encodes
relations in the designs that it develops.

The formal machinery for describing the syntax and semantics of a graphical
language leads to a precise statement of expressiveness:

Expressibk(facts, kg) * 3s[lang(s) A Vf[
f E facts + Encodes(s, f, lung) A
f @ facts + lEncodes(s, f, Zung)]].

(4)

The remainder of this section gives two examples that illustrate these two
conditions of expressiveness.

The first example, which focuses on expressing all the facts, is based on the
HorzPos language. It turns out that it is possible to prove that one-to-many
relations cannot be expressed in the HorzPos language.

THEOREM 1. When r is a one-to-many relation, it cannot be expressed in the
HorzPos language:

r(ai, bj) A r(ai, bk) A bj # bk +
TExpressible (r, HorzPos).

PROOF. A proof by contradiction is straightforward, given the obvious geo-
metric fact that a mark cannot have two positions on an axis. Assume that there

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

122 l Jock Mackinlay

Car
Accord

AMC Pacer
Audi 5000
BMW 320i

Champ
Chev Nova

Civic
Datsun 210
Datsun 810

Deville
Le Car

Lint Cont
Horizon

Mustang
Peugeot

Saab 900
Subaru

Volvo 260
VW Dasher

USA Japan Germany France Sweden Nation
Car nationality for I979

UP

I

Fig. 11. Incorrect use of a bar chart for the Nation relation. The
lengths of the bars suggest an ordering on the vertical axis, as if the
USA cars were longer or better than the other cars, which is not true
for the Nation relation.

exists a sentence s that satisfies (4) for the HorzPos language and relation r,
which means that both tuples mentioned above are encoded in s. In particular,
(2) indicates that there exists a mark oi that is paired with the domain value Ui,
and (3) indicates that bj = scale X (Position(oi, h) + offset) = bk, which contradicts
the assumed inequality of the two domain values in the one-to-many relation. Cl

Although the previous theorem is not particularly deep, it illustrates the
importance of precise definitions of the graphical conventions used to design and
interpret information presentations. Not only do precise definitions make theo-
rems possible, but they make clear which conventions are being used. Different
conventions lead to different theorems. For example, the HorzPos language is
based on the convention that the marks are uniquely paired with the domain
values of the first domain set. Occasionally, graphical presentations use a differ-
ent convention, that of pairing marks with the tuples rather than with the domain
values of the first domain set. Given such a convention, the previous theorem is
no longer valid because r(ai, bj) and r(ci, bk) can be encoded by the positions of
different marks. However, this alternative convention is not so common as the
HorzPos convention because it is natural to assume that marks are associated
with domain values. For example, it is natural to assume that each mark in
Figure 9 represents a unique car.

A second example, which focuses on the second expressiveness condition,
illustrates the fact that some graphical languages encode additional information
in the geometric relationships of the objects in a graphical sentence. Consider
the bar chart diagram of the Nation relation in Figure 11. Most people perceive
the lengths of the bars as an encoding of an ordered or quantitative set. That is,
given domain tuples r(ci, bi) and r(aj, bj) and the corresponding bar objects bari
ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Automating the Design of Graphical Presentations l 123

Accord +
AMC Pacer +

Audi 5000
BMW 320i ++

Champ +
Chev Nova +

Civic
Datsun 210 T
Datsun 810 +

Deville +
Le Car +

Lint Cont
Horizon t

Mustang +
Peugeot +

Saab 900 +
Subaru +

Volvo 260 -t
VW Dasher +

USA Japan Germany France Sweden Nation
Car nationality for I979

Car

Fig. 12. Correct use of a plot chart for the Nation relation. Since bar
charts encode ordered domain sets, plot charts are conventionally used
to encode nominal domain sets. The ordering of the labels on the axes
is ignored.

and bari, an ordering relationship among the bar lengths encodes an ordering
relation among the domain values bi and bj:

Encodes(Length(bari) > Length(barj), bi > bj, BarChart),

where the rest of the Encodes relations for the BarChart language are similar to
the ones for HorzPos. Given this Encodes relation, it is easy to prove that the
bar chart in Figure 11 does not express the Nation relation because it expresses
the fact that the countries are ordered, which is not correct (see Figure 3).

The plot chart of the Nation relation in Figure 12, which is an alternative
design for encoding the Nation relation that avoids the bar length problem, also
illustrates the importance of precise language definitions. Sometimes, people use
the convention that the sequence of labels on an axis indicates an ordered domain
set, which would ruin the expressiveness of the scatter plot design for Figure 12.
However, the standard convention is to ignore this sequencing encoding. After
all, when the second domain set is ordered, a bar chart can be used. This means
that the precise definition for a plot chart language should not include an Encodes
predicate for the ordering of the second domain set. Therefore, the plot chart in
Figure 12 does not encode additional incorrect facts.6

6 The rendering of the plot chart in Figure 12 has the independent domain set of the Notion function
on the vertical axis, which does not conform to the often ignored convention of encoding the
independent domain set of a function with the horizontal axis. In this case the rendering code flipped
the axes to make the rendering of the car labels more legible, and it did not take into account the
fact that such a flip might confuse the reader of the diagram about which domain set was the
independent one. (The recent development of the Dot Chart design deals with this problem [5].)
Trade-offs between conventions and rendering constraints often occur. In the future, the rendering
component will also have to be involved in the search for the most effective design.

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

124 l Jock Mackinlay

I

IO 20 30
d Mileage

40

Car price for I979
Car mileage for 1979

)I
~~~~~ 

ap 

Fig. 13. Area/position presentation of the Price and Mileage relations. 
The vertical positioning of the marks reduces the chance that a mark is 
covered. This technique is called jittering; the vertical positioning does not 
encode any information. 

6. EFFECTIVENESS 
Given two graphical languages that express some information, the obvious 
question is which language involves a design that specifies the more effective 
presentation. For example, Figure 13 expresses the same price/mileage input as 
the scatter plot in Figure 5, but the prices are encoded with the area of the marks 
rather than with their position on a vertical axis. Which presentation is more 
effective? 

Unlike expressiveness, which only depends on the syntax and semantics of the 
graphical language, effectiveness also depends on the capabilities of the perceiver. 
The difficulty is that there does not yet exist an empirically verified theory of 
human perceptual capabilities that can be used to prove theorems about the 
effectiveness of graphical languages. Therefore, one must conjecture a theory of 
effectiveness that is both intuitively motivated and consistent with current 
empirically verified knowledge about human perceptual capabilities. This section 
describes such a conjectural theory. 

The core of this conjectural theory is an observation, made by Cleveland and 
McGill, that people accomplish the perceptual tasks associated with the inter- 
pretation of graphical presentations with different degrees of accuracy [6]. 
Cleveland and McGill focused on the presentation of quantitative information. 
They identified and ranked the tasks shown in Figure 14. Higher tasks are 
accomplished more accurately than lower tasks. Furthermore, they have some 
experimental evidence that supports the basic properties of this ranking. 

Although the ranking in Figure 14 can be used to compare alternative graphical 
languages that encode quantitative information, it does not address the encoding 
of nonquantitative information, which involves additional perceptual tasks and 
different task rankings. For example, texture is not mentioned in Figure 14, and 
color, which is at the bottom of the quantitative ranking, is a very effective way 
of encoding nominal sets [23]. Therefore, it was necessary to extend Cleveland 
and McGill’s ranking, as shown in Figure 15. Although this extension was 
developed using existing psychophysical results and various analyses of the 
different perceptual tasks, it has not been empirically verified [ 161. 
ACM Transactions on Graphics, Vol. 5, No. 2, April 1986. 



Automating the Design of Graphical Presentations l 125 

More accurate 

Less accurate 

I I Position 

IMll 1 I 
Length 

F-l 

Iha I 
I0.I I I 

Volume 

rl l¶kJ 

Color cl mot 
Shown) 

Fig. 14. Accuracy ranking of quantitative 
perceptual tasks. Higher tasks are accom- 
plished more accurately than lower tasks. 
Cleveland and McGill empirically verified the 
basic properties of this ranking. 

Quantitative Ordinal Nominal 

Position Position 

Color Saturation 

Position 
Color Hue 
Texture 
Connection 
Containment 
Density 
Color Saturation 

Color Saturation Shape 
Length 
Angle 
Slope 
Area 
Volume 

Fig. 15. Ranking of perceptual tasks. The tasks shown in the gray boxes are not relevant to these 
types of data. 

An example analysis for area perception is shown in Figure 16. The top line 
shows that a series of decreasing areas can be used to encode a tenfold quantitative 
range. Of course, in a real diagram such as Figure 13, the areas would be laid out 
randomly, making it more difficult to judge the relative sizes of different areas 
accurately (hence, area is ranked fifth in Figure 14). Nevertheless, small mis- 
judgments about the size of an area only leads to small misperceptions about the 
corresponding quantitative value that is encoded. The middle line shows that 
area can encode three ordinal values. However, one must be careful to make sure 

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986. 



126 l Jock Mackinlay 

Monday 

0 
Tuesday 

0 
Eagle Jw 

0 0 

Wednesday 

0 

Hawk 

0 

Fig. 16. Analysis of the area task. The top case shows that area is moderately 
effective for encoding quantitative information. The middle case shows that 
it is possible to encode ordinal information as long as the step size between 
areas is large enough so that the values are not confused. The bottom case 
shows that it is possible to encode nominal information, but people may 
perceive an ordinal encoding. 

that ordinal areas are different enough so that they are not confused with each 
other. This is indicated by the fact that only three days of the week are encoded. 
If more days of the week were encoded, the step size between Tuesday’s area and 
Monday’s area would get small enough for people to start confusing them, which 
is quite different from confusing two quantitative values that are almost equal. 
The bottom line shows that area can encode three nominal values. Besides the 
fact that stepping is also required for nominal information, this case illustrates 
the additional problem that people often perceive area as an encoding of ordinal 
information. This analysis indicates that area should have a moderate quantita- 
tive ranking and a low nonquantitative ranking. 

The ranking in Figure 15 can often be used to determine the relative effective- 
ness of different graphical languages. For example, Figure 17 compares the scatter 
plot and area/position designs for the price/mileage input. Since position has a 
higher ranking than area for quantitative data, it is clear that the scatter plot is 
a more effective design. 

The ranking in Figure 15, however, does not specify a total ordering on the 
effectiveness of graphical languages. For example, Figure 18 compares two 
encodings of the Price, Mileage, and Weight relations. Both designs are scatter 
plots with information also encoded in the area of the marks. Since both designs 
require the same perceptual tasks, the ranking in Figure 15 does not indicate 
which design is more effective. The ranking can be extended to generate a 
lexicographic ordering with the following principle: 

Principle of Importance Ordering: Encode more important information more 
effectively. 

That is, the input to the presentation tool is actually a tuple of relations that 
indicates the relative importance of the relations. For example, the input 

(Price, Mileage, Weight ) 
should be presented with scatter plot 1, which has the Weight relation encoded 
with area. 
ACM Transactions on Graphics, Vol. 5, No. 2, April 1986. 



Automating the Design of Graphical Presentations l 127 

Price Mileage 
position position 

Fig. 17. Comparison of perceptual tasks for the 

area position 
price/mileage designs. 

Price Mileage Weight 
Scatter plot 1 position position area 
Scatter plot 2 area position position 

Fig. 18. Example of designs not ordered by the effective- 
ness ranking. 

7. COMPOSITION 
Expressiveness and effectiveness criteria, which were described in the previous 
two sections, are not very useful without a method for generating alternative 
designs. The naive approach is simply to develop an ad hoc list of graphical 
languages that can be filtered with the expressiveness criteria and ordered with 
the effectiveness criteria for each input. The major difficulty with this approach 
is that there is no guarantee that there will exist appropriate designs for a wide 
variety of presentation situations. A minor difficulty is that the entire list must 
always be considered, even when only a few alternatives are suitable for a given 
input. This section describes an alternative approach based on the idea of a 
composition algebra. Such an algebra consists of a basis set containing primitive 
graphical languages and some composition operators that can generate composite 
designs. Described is a specific choice of basis set and composition operators 
that generate many of the designs commonly found in presentation graphics 
[3-5, 15, 19, 211. The study of alternative composition algebras is an open area 
of research. 

The idea of a composition algebra occurred to me when I looked at a diagram 
that was very similar in design to the diagram in Figure 19. The design used in 
Figure 19 combines two encoding techniques that are generally not seen together. 
First, the prerequisites among computer science classes are encoded with links 
that connect nodes that encode the classes. Second, a class schedule is encoded 
by the position of the nodes on a vertical axis. This diagram is an example of a 
composite design. The primitive languages used to form this composite 
design are a node/link language (see Figure 20) and a vertical-axis language 
(see Figure 21). Given this unusual example of a composite design, I realized that 
many presentations could be described as compositions of a set of primitive 
languages. 

7.1 A Basis Set of Primitive Graphical Languages 
A basis set of primitive graphical languages derived from Bertin’s vocabulary of 
graphical encoding techniques (see Figure 8) is listed in Figure 22. The primitive 
languages have been classified by their primary encoding technique. Single- 
position languages encode information by the position of a mark set on one axis. 
Apposed-position languages encode information by a mark set that is positioned 

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986. 



128 l Jock Mackinlay 

Quarter 

Fall 85 

Winter 86 

Class prerequisites 
Class schedule 

Fig. 19. Composite presentation for the prerequisite and schedule relations. 
The links encode the prerequisite relationships between computer science 
classes. The position on the vertical axis encodes the scheduling of the 
classes. Note that the advanced database class is scheduled before its 
prerequisite. 

Class prerequisites 

Fig. 20. Network presentation for the prerequisite relation. 

Fig. 21. Vertical-axis presentation for the 
schedule relation. 

Quarter 

Fall851 -1 

Winter 86 m I[ 

Spring 86 m m m 

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986. 



Automating the Design of Graphical Presentations 

Encoding Technique 
Single-position 
Apposed-position 
Retinal-list 
Map 
Connection 
Misc. (angle, contain, . . .) 

Primitive Graphical Language 
Horizontal axis, vertical axis 
Line chart, bar chart, plot chart 
Color, shape, size, saturation, texture, orientation 
Road map, topographic map 
Tree, acyclic graph, network 
Pie chart, Venn diagram, . . . 

Fig. 22. A basis set of primitive graphical languages. 

Encoding Technique Syntactic Structure 
Single-position h(m) or u(m) 
Apposed-position uhh) 
Retinal-list m 
Map Mm) 
Connection m.(md 
Miscellaneous uhbn) 

129 

Fig. 23. Syntactic structure of primitives. The nota- 
tion is described in the text. 

between two axes.7 Retinal-list languages use one of the six retinal properties of 
the marks in a mark set to encode information. Since the positions of these 
marks do not encode anything, the marks can be moved when retinal list designs 
are composed with other designs. Map languages, which have fixed posi- 
tions, encode information with graphical techniques that are specific to maps. 
Connection languages encode information by connecting a set of node objects 
with a set of link objects. Miscellaneous languages encode information with a 
variety of additional graphical techniques. 

Figure 23 summarizes the basic syntactic structure of the primitive languages. 
The notation used in this figure is based on the fact that graphical sentences are 
sets of located object tuples. Except for connection languages, it turns out that 
every sentence of the primitive languages described in Figure 22 can be divided 
into the disjoint subsets 

mUuUh, 

where m is a set of marks, u contains at most a vertical axis, and h contains at 
most a horizontal axis. Furthermore, both the objects and positions of the mark 
sets have additional properties. The objects are either a collection of points, lines, 
or areas, and their positions are always fixed relative to the existing axes.’ The 
notation always uses m for a set of marks, v for a vertical axis, and h for a 

’ It turns out that apposed-position languages can be described as the composition of single-position 
languages 1161. 
s This assumes that languages that restrict the positions of mark sets without a visible axis object, 
such as maps, define their sentences as having invisible axis objects. 

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986. 



130 l Jock Mackinlay 

Encoding Technique Expressiveness Criteria 
Single-position X + Y (X is nominal) 
Apposed-position X X Y (X, Y are not nominal) 
Retinal-list X, or X + Y (X is not quantitative) 
Map L+X,, . . . (L is a location) 
Connection X X X (X is nominal) 
Miscellaneous (angle, contain, . . .) Generally, X x Y 

Fig. 24. Expressiveness criteria for the primitive languages. These are the general 
restrictions. Specific languages can have additional restrictions. 

Nominal Ordinal Quantitative 
Size - . . 
Saturation - l . 

Texture . . 
Color . t 
Orientation l 

Shape . 

Fig. 25. Expressiveness of retinal techniques. The - indi- 
cates that size and saturation should not he used for nom- 
inal measurements because they will probably be perceived 
to be ordered. The * indicates that the full color spectrum 
is not ordered. However, parts of the color spectrum are 
ordinally perceived [23]. 

horizontal axis. The notation also uses parentheses to indicate that there is a 
positional constraint on a set of marks. For example, the positional constraints 
of bar charts are described by uh(m), where u and h are not empty. Sentences 
of connection languages consist of two sets of marks: the set of nodes m, 
and the set of links ml. The nodes constrain the position of links. The nota- 
tion can also be extended to more complex designs. For example, the two bar 
charts in Figure 7 that are aligned on their vertical axes have the structure 
u(h(mi), hAmi)). 

An analysis of the semantic properties of these languages leads to the expres- 
siveness criteria shown in Figures 24 and 25. Figure 24 describes the basic 
expressiveness criteria for each type of primitive language. For example, single- 
position languages can only express binary relations that have a functional 
dependency. Figure 25 describes the expressiveness criteria of various retinal 
techniques for nominal, ordinal, and quantitative information. There are addi- 
tional requirements not mentioned in Figures 24 and 25. For example, line charts 
can only be used when a relation describes values of a continuous function. 

7.2 Some Composition Operators 
The composition operators associated with the primitive languages in Figure 22 
are based on a single principle: 

Principle of Composition: Compose two designs by merging parts that encode 
the same information. 

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986. 



Automating the Design of Graphical Presentations . 131 

200. 0 

100. +O* o+ 
0 & oo-i 

50. + 3+i+ 
QS*+ ++ ($&@g*~ 

O-4 , Date 
0 7 14 

Yonkers Ozone - May I974 
Stamford Ozone - May I974 

Fig. 26. Example of double-axes composition. The diagram describes a 
month of ozone measurements for two cities. The reason that a line 
chart design was not used for these data is that there are missing 
measurements for some of the days; a line chart is only used for contin- 
uous functions. 

This principle leads to three composition operators that are based on the 
objects used by the primitive languages: double-axes composition wd, single-axis 
composition W 8, and mark composition w m. The following description of these 
composition operators gives an informal and formal definition of each of them. 

Double-axes composition can compose graphical sentences that have identical 
horizontal and vertical axes. The multiple scatter plot in Figure 26 is an example 
of double-axes composition. The component designs are two plot charts that 
describe ozone measurements in two different cities. Since the measurements 
were taken in the same month, the axes of these two plot charts are identical. 
The composite is generated by merging the identical axes and copying the mark 
sets from the two component designs. 

Formally, the double-axes composition Si Wd sj is well defined if si contains 
uihi(mi) and sj contains ojhj(mj) such that the axis sets are not empty and encode 
the same information. That is, given that si is a sentence of language li and sj is 
a sentence of language lj, the Encodes relations indicate that both horizontal axes 
encode the same domain set x and both vertical axes encode the same domain 
set y: 

ui=oj#()Ahi=hj#(]A 
Encodes(hi, X, Zi) A Encodes(hj, X, Zj) A 
Encodes(oi, y, Zi) A Encodes(uj, y, Zj). 

The composite contains oihi(mi , ml ). The prime is required when the marks are 
changed by the composition. For example, composed bar charts move the bars 
next to each other. When the prime is not needed, double-axes composition is 
commutative. It is always associative. 

Single-axis composition aligns two sentences that have identical horizontal or 
vertical axes. The diagram in Figure 7 is an example of single-axis composition. 

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986. 



132 l Jock Mackinlay 

The two component designs are bar charts that describe the price and mileage of 
some cars. Since the vertical axes encode the same set of cars, the composite can 
be generated by placing one diagram next to the other such that the vertical axes 
are aligned. 

Formally, the single-axis composition si W, sj is well defined if s; contains 
uihi(mi), sj contains Ujhj(mj), and the following condition is satisfied: 

[Ui = Uj # ( 1 A Encodes (ui, y, Zi) A EtZCOd~S (Uj, y, Zj)] V 
[hi = hj # ( ) A Emodes(hi, X, /!i) A Encodes(hj, X, lj)], 

where x, y, lip and lj are defined in the same manner as for double-axes composi- 
tion. The composite contains uf hl (m[) and ujh; (ml), where the positions of 
the objects are modified to place the diagrams next to each other in the viewing 
area. Single-axis composition is not commutative because the positions of the 
diagrams reverse. However, it is associative. 

Mark composition is more complicated than the axis composition operators 
because it actually merges mark sets. For example, a mark set of uniform size 
that encodes information with color can be merged with a mark set of uniform 
color that encodes information with size. The resulting mark set uses both color 
and size to encode information (see Figure 30 for an example). 

Mark composition merges mark sets by pairing each and every mark of one set 
with a compatible mark of the other set. The diagram in Figure 19 is an example 
of mark composition. The component design is a directed-acyclic-graph design 
for the prerequisite relation, which is rendered in Figure 20, and a vertical-axis 
design for the scheduling relation, which is rendered in Figure 21. The two mark 
sets are compatible because they encode the same information, and any shared 
positional or retinal constraints are identical. The composite is generated by 
merging the mark sets. That is, the composite includes a mark set that corre- 
sponds to the two mark sets of the components. The position and retinal 
properties of this composite mark set are based on the constrained position and 
retinal properties of the component mark sets. Compatibility makes sure that 
the component’s properties do not conflict. Additional properties and objects in 
the component sentences are copied over into the composite. For example, the 
composite in Figure 19 includes the vertical-axis object from the diagram in 
Figure 21. 

Formally, the mark composition si W, sj is well defined if si contains Uihi(mi), 
and sj contains ujh;(mj), and the marks in mi and mj can be paired such that each 
pair of located objects oi and oj encode the same domain value a: 

[Emodes(oi, a, li) A Encodes(oj, a, lj)]e 

Furthermore, the position and retinal properties of these mark pairs must encode 
the same information. For position, an existing pair of axes means that the 
positions must be identical: 

[Vi = uj # ( ) + Position(o;, vi) = Position(oj, vi)] A 
[hi = hj # ( 1 + Position(oi, hi) = Position(oj, hi)]. 

For the retinal properties, a little more formal machinery is required. A set of 
marks can have retinal constraints based on the six retinal properties identified 
ACM Transactions on Graphics, Vol. 5, No. 2, April 1986. 



Automating the Design of Graphical Presentations l 133 

Fig. 27. The interaction of size and shape. 

by Bertin. For example, the size of the marks in Figure 13 encode the values of 
the Price relation. Six functions identify the six retianl values of an object. These 
functions can also be used to indicate when the retinal properties of a mark set 
are constrained. Given a retinal function f, a set of marks m, and a graphical 
sentence s that contains m, the relation Rt(s, m, f) is true when the retinal 
properties corresponding to f encode information for the mark set m. Given this 
relation, the following indicates that the paired marks must have the same 
constraints on their retinal properties: 

Rt(Si, mi, f) A Rt(sj9 mj, f) * 
f(R) = f(oj)* 

That is, when a retinal property is used by two mark sets to encode information, 
the objects for each pair of marks must have identical retinal properties. 

The composite sentence h(m), generated by the mark composition 
aihi(mi) W, ajhj(mj), is constructed in the following manner. The vertical axis u 
is Ui if it is not empty and Uj otherwise. The horizontal axis h is hi if it is not 
empty and hj otherwise. For each pair of marks, construct a composite mark 
from the constrained retinal and position properties of the component marks 
(which must be identical) and any remaining properties from mi. The final 
condition means that w ,,, is not commutative. It is easy to show that W, is 
associative. 

The conditions for using these three composition operators are sufficiently 
general for them to be used together. The major difficulty is specifying exactly 
how the parts of the component sentences that are not part of the composition 
should be handled. The best approach is to merge pairs of axes or mark sets of 
the component sentence that satisfy the conditions of the composition operators. 
This will reduce redundancy in the composed diagram. 

A rough effectiveness ranking can also be assigned to the composition opera- 
tors. Mark composition is the most effective because it merges the component 
sentences in such a way that the number of graphical objects does not increase. 
Single-axis composition is the least effective because it does not actually merge 
the designs, which makes it harder to perceive all the information at once. 

Composition can have side effects that must be addressed. For example, when 
size and shape are composed together, the perception of shape is made difficult 
when the sizes are small. For example, the marks in Figure 27 are a composition 
of shape and size. The shapes of the small objects begin to look the same. 
Therefore, care must be taken to avoid situations in which such interactions 
reduce the effectiveness of a composite design. APT’s rendering component 
makes sure the marks do not get too small. 

8. IMPLEMENTATION 
The theoretical results described in the previous three sections have been com- 
bined in a synthesis algorithm that generates designs in order of the effectiveness 

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986. 



134 ’ Jock Mackinlay 

criteria described above. The synthesis algorithm has been implemented in APT, 
which consists of a design component followed by a rendering component (see 
Figure 1). The design component uses logic programming techniques to imple- 
ment the synthesis algorithm. The rendering component uses object-oriented 
programming techniques and a device-independent graphics package to render 
the resulting designs. The rendering component, which was not the focus of this 
research, places an implementation restriction on the set of primitive languages 
in Figure 22 that can be used by APT to generate presentations. As of this 
writing, the following primitive languages remain unimplemented: orientation, 
texture, line charts, maps, and miscellaneous. Even with these restrictions, the 
prototype can generate a wide range of useful presentations. The diagrams in 
this paper with apt in the lower right corner are examples of APT’s output. 

APT’s synthesis algorithm is based on a divide-and-conquer search strategy. 
The algorithm has three steps: partition, selection, and composition. These steps, 
which are described below, involve choices. When a particular set of choices does 
not lead to a composite design, backtracking is used to consider other choices. 
APT uses depth-first search with simple backtracking. 

(1) Partitioning. The set of relations to be presented is divided into partitions 
that match the expressiveness criteria of at least one of the primitive languages. 
This is done recursively. For example, the input 

(Price, Mileage, Repair, Weight) 

can be partitioned into the sets 

(Price) and (Mileage, Repair, Weight). 

The right partition must be recursively divided because it does not match any of 
the primitive languages. 

The principle of importance ordering is addressed by making sure that the 
choices among alternative partitionings give preference to the important infor- 
mation. The input shown above is a tuple that indicates the importance ordering 
for the automobile relations. It is partitioned so that the most important relation, 
which is the Price relation, will get first chance at being matched to an effective 
primitive language. 

Since relations, as well as sets of relations, can be partitioned [ 161, it is possible 
for the input to include relations that have more than two domain sets. The 
cumulative bar chart in Figure 28 is an example of a design that is generated by 
relation partitioning. The input is a ternary relation, which is a function of years 
and quarters, to the Ph.D.s conferred in each quarter for a range of years. Binary 
relations are generated by fixing the year. The stacked bar designs corresponding 
to the binary relations are composed with single-axis composition to generate 
the cumulative bar chart. 

(2) Selection. Given expressiveness and effectiveness criteria, selection is 
straightforward. For each partition generated by the previous step, the primitives 
are filtered, with their expressiveness criteria used to generate a list of candidate 
designs. For example, the list of candidate designs for the Price partition does 
ACM Transactions on Graphics, Vol. 5, No. 2, April 1986. 



Automating the Design of Graphical Presentations . 135 

Students 

72 73 74 75 76 77 78 79 80 81 62 83 84 85 Year 

Graduated PhD - CSD 

Fig. 28. A relation partitioning example. The cumulative bar chart describes 
the number of Ph.D. students that graduated each quarter for a range of years. 
The input is a relation of three domain sets, which are partitioned into a set 
of binary relations. The composite is generated by the single-axis composition 
of the stacked bar design chosen for each of these binary relations. 

not include maps because the Price relation does not satisfy the map expressive- 
ness criterion (see Figure 24). 

The effectiveness criteria are used to order the candidate designs so that the 
most effective design will be the first choice. For the Price relation the effective- 
ness ordering depends on whether the application has requested that the details 
about the cars be placed in the background. Apposed-position languages are the 
most effective when the details are required, and single-position languages are 
the most effective otherwise. The other primitive languages are less effective 
because position is at the top of the perceptual task ranking shown in Figure 15. 

(3) Composition. Composition operators are used to compose the individual 
designs into a unified presentation of all the information. Given designs for two 
partitions, the three composition operators are checked to see if they can be 
applied. During the generation of the composite designs, additional conditions, 
such as the interaction of shape and size, can be checked. 

The synthesis algorithm involves choices that might not lead to a design, which 
means that backtracking will occur. When backtracking occurs, the next most 
effective primitive language or composition operator is chosen until a design is 
found for all the information. For example, given a request to omit the details 
about the cars, APT processes the automobile input shown above as follows. The 
partitioning step generates a partition for the Price relation and a partition for 
the Mileage relation. The first selection choice is the vertical-axis primitive 

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986. 



136 l Jock Mackinlay 

rel= x+ y A lNumeric(n) A Numeric(y) A 
Curdinality(r) < 20 A 
LineObjs(barchart, lines) A VertAris(barchart, uaxis) A 
Encodes(lines, x) A Encodes(vaxi.s, y) A 
Length(lines, len, uaxis) A Encodes&m, rel(n)) A . . . 

+ Presents(barchart, rel) 

Expressiveness 
Effectiveness 

. Assumables 

Fig. 29. APT’s bar-chart rule. The expressiveness conditions state that 
the relation must be a functional dependency from a nonnumeric set to a 
numeric set. The effectiveness condition limits the number of bars because 
too many bars make the presentation difficult to read. The assumables are 
Encodes relations that connect the relation and the presentation. The 
independent set is connected to the bar lines and the dependent set is 
connected to the vertical axis. 

language for both of these partitions (because the relations have the same 
structure). However, the composition step fails to compose the resulting designs 
because mark composition, which is the only applicable operator, cannot merge 
marks that have two different positions on an axis. This failure triggers back- 
tracking. The next most effective choice for the Mileage partition is the horizon- 
tal-axis primitive language. Mark composition succeeds for this choice, and the 
search proceeds to deal with the remaining relations in the input. (Given an 
indication from the application that the output medium includes color, the 
resulting design for the four automobile relations is the scatter plot rendered 
in Figure 30.) 

The logic program implementing the synthesis algorithm is based on a depth- 
first’ backward chaining version of a deductive algorithm called Residue [9]. 
Residue is useful for design problems because predicates describing the design 
can be declared to be assumable. During a deduction, an assumable predicate can 
be assumed to be true to make the deduction proceed. At the end of the deduction, 
all assumed predicates are returned as conditions that must be satisfied. For 
design problems, these conditions are exactly the design constraints. For example, 
Figure 29 describes APT’s bar chart rule. The assumables are the Encodes 
relations of the bar-chart primitive language. When these predicates are assumed, 
they can be used to compose this design with others and to render the final 
image. 

APT was deveoped on a Symbolics LISP Machine using MRS, a representation 
and logic programming system [18]. APT is a functional prototype, and no effort 
has been made to make it efficient, although designs are typically generated in 
l-2 minutes, and images are rendered in less than a minute. The logic program 
is about 200 rules, and the rendering system is about 60 pages of LISP code. 

APT demonstrates that a synthesis algorithm based on composition can be 
used to generate automatically effective designs that can express a wide variety 
of input. Although inefficient, the deductive search strategy used in APT has a 
number of advantages that recommend it over more procedural approaches. APT 

’ Depth-first search can be used because the effectiveness criteria place a total ordering on designs 
that are understood by APT. As the theory of effectiveness becomes more sophisticated, it is likely 
that the control strategy will also have to become more sophisticated. 

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986. 



Automating the Design of Graphical Presentations l 137 

can be sensitive to many factors while generating designs. The next section 
describes how APT is sensitive to the output medium. APT is also sensitive to 
requests from the application. An application can indicate that a particular 
primitive language should be used, even when it contradicts the effectiveness 
ranking that APT would normally use. This makes it possible for an application 
to tailor a presentation to fit the profile of a particular user. Another advantage 
of the logic programming approach is that it is flexible. The range of designs that 
can be generated by APT can be modified by changing the rules associated with 
the primitive languages and the composition operators. The search order can 
also be modified by changing the expressiveness and effectiveness criteria. This 
is important because presentation graphics and human perceptual abilities are 
not yet well understood. As our understanding advances, it will be possible to 
make modifications to APT that will enable it to generate even more effective 
designs. 

9. MEDIA SENSITIVITY 

Since the synthesis algorithm searches for designs, it can be sensitive to the 
capabilities of the output medium. For example, when the application indicates 
that the output medium includes color, APT designs the scatter plot shown in 
Figure 30 for the automobile input, which is the mark composition of two single- 
position designs and two retinal-list designs. When the application restricts 
APT to a monochrome medium, APT designs the aligned bar chart shown in 
Figure 31, which is the single-axis composition of four bar-chart designs.” Given 
a color medium, the Repair relation can be encoded by the color-list primitive 
language. However, given a monochrome medium, the only available retinal-list 
primitive languages for ordinal information are texture, saturation, and size (see 
Figure 25). The texture primitive language was rejected because the rendering 
portion of APT does not implement texture. The saturation primitive language 
was rejected by its effectiveness criterion because five levels of gray blend 
together, making the repair values blend together. The size primitive language 
can be selected. However, the scatter plot design requires that size also be used 
for one of the other relations in the input, and mark composition cannot merge 
two designs that use size to encode different domain sets. APT ultimately settles 
on the aligned bar chart shown in Figure 31. 

10. DISCUSSION 

The research described in this paper sets the framework for the development of 
presentation tools that can automatically design effective graphical presentations 
for a wide variety of information. The formalization of graphical presentation as 
a collection of graphical languages makes it possible to develop expressiveness 

lo APT always generates the aligned bar design before the scatter plot design when the application 
does not indicate that the details about the cars can be omitted, because the bar charts contain the 
names of the cars. Labels on points in the scatter plot obscure information. When the output device 
is a computer monitor, however, it is generally better to omit detail, because omitted details can be 
obtained by interacting with the display through the use of techniques such as pick-sensitive objects 
and pop-up windows. 

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986. 



138  Jock Mackinlay

and effectiveness criteria and a composition algebra. This formalization provides

the basis of a logic program that designs presentations automatically. The

prototype implementation, called APT, demonstrates the feasibility of this

approach.

Many problems associated with the automatic generation of graphical designs

remain to be solved. The engineering of robust presentation tools will raise many

questions about the correct search criteria. Animation and 3-D presentation

appear to be very powerful techniques for presenting symbolic information and

should be incorporated into future tools. Larger search spaces, which can be

generated with finer grained  sets of primitive languages, make it more difficult

to search for an appropriate choice in real time. However, it may be possible to

build a discovery system that searches this larger space for unusual but effective

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.



Automating the Design of Graphical Presentations . 139 

Price 

Car price for I979 

Mileage 
401 

Car mileage for I979 

Repair 
Great 
Good 

OK 
Bad 

Terrible 

Repair recordfor 1977 

Weight 
5500. 
4500. 

Car weight for 1979 

Fig. 31. Aligned bar chart of automobile data. This diagram shows the 
details about the car domain set. However, the general relationships are not 
so easy to see as in the scatter plot design. 

designs. These designs can then be cached along with the primitive languages 
described in this paper to form a small but comprehensive search space. 

This research on intelligent presentation applies artificial intelligence tech- 
niques to part of the user interface design problem-that of choosing an appro- 
priate graphical presentation of relational data. Graphic design issues are an 
important concern of user interface design. This presentation research incorpo- 
rates a formalized body of graphic design knowledge. Future work with these 
techniques can address other aspects of user interface management systems, 
perhaps choosing or adapting the dialogue specifications appropriate to the 
observed skill level of the user. When research develops theoretical results, such 
as the graphic design criteria and composition algebra described in this paper, 

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986. 



140 l Jock Mackinlay 

from a careful analysis of user interface systems, artificial intelligence techniques 
can be used to develop an intelligent user interface. 

ACKNOWLEDGMENTS 

I would like to thank the following people: Polle Zellweger for her inspired 
suggestions that improved every draft of this paper, Rick Beach for his construc- 
tive suggestions just before the submission deadline, Matt Ginsberg and Eric 
Bier for their helpful suggestions on early drafts, and Michael Genesereth, my 
advisor, for his encouragement and suggestions throughout the research. The 
suggestions of the referees are also appreciated. 

REFERENCES 
1. BEACH, R. J. Setting tables and illustrations with style. Ph.D. dissertation, Dept. of Computer 

Science, Univ. of Waterloo, Waterloo, Ont., Canada, 1985. Also Xerox PARC Tech. Rep. 
CSL-85-3. 

2. BEACH, R., AND STONE, M. Graphical style-towards high quality illustrations. Computer 
Graph. (SZGGRAPZZ) 17,3 (1983), 127-135. 

3. BERTIN, J. Semiology of Graphics, W. J. Berg, Tr. University of Wisconsin Press, Milwaukee, 
Wis., 1983. 

4. BOWMAN, W. J. Graphic Communication. Wiley, New York, 1968. 
5. CLEVELAND, W. S. The Elements of Graphing Data. Wadsworth Advanced Books and Software, 

Monterey, Calif., 1980. 
6. CLEVELAND, W. S., AND MCGILL, R. Graphical perception: Theory, experimentation and 

application to the development of graphical methods. J. Am. Stat. Assoc. 79, 387 (Sept. 1984), 
531-554. 

7. ENDERTON, H. B. A Mathematical Introduction to Logic. Academic Press, Orlando, Fla., 1972. 
8. FEINER, S. APEX: An experiment in the automated creation of pictorial explanations. IEEE 

Comput. Graph. Appl. 5, 11 (Nov. 1985), 29-37. 
9. FINGER, J. J., AND GENESERETH, M. R. RESIDUE-A deductive approach to design synthesis. 

Tech. Rep. KSL-85-1, Computer Science Dept., Stanford Univ., Stanford, Calif., Jan. 1985. 
10. FRIEDELL, M. Automatic graphics environment synthesis. Ph.D. dissertation, Dept. of Com- 

puter Engineering and Science, Case Western Reserve Univ., Cleveland, Ohio, 1983. Also 
Computer Corporation of America Tech. Rep. CCA-83-03. 

11. GNANAMGARI, S. Information presentation through default displays. Ph.D. dissertation, Dept. 
of Decision Sciences, The Wharton School, Univ. of Pennsylvania, Philadelphia, Pa., May 1981. 

12. KAHN, K. M. Creation of computer animation from story descriptions. Ph.D. dissertation, MIT- 
AI-540, Massachusetts Institute of Technology, Cambridge, Mass., Aug. 1979. 

13. KAHNEMAN, D., AND HENIK, A. Perceptual organization and attention. In Perceptual Organi- 
zaton. M. Kubovy and J. R. Pomerantz, Eds. Lawrence Erlbaum, Hillsdale, N.J., 1981, 
pp. 181-211. 

14. KNUTH, D. E. The Art of Computer Programming, vol. 1. Addison-Wesley, Reading, Mass., 
1973, pp. 176-179. 

15. LOCKWOOD, A. Diagrams: A Visual Survey of Graphs, Maps, Charts and Diagrams for the 
Graphic Designer. Watson-Guptill, 1969. 

16. MACKINLAY, J. Automatic design of graphical presentations. Ph.D. dissertation, Computer 
Science Dept., Stanford Univ., Stanford, Calif., 1986. Also Tech. Rep. Stan-CS-86-1038. 

17. MACKINLAY, J., AND GENESERETH, M. R. Expressiveness and language choice. Data Knowl. 
Eng. I, 1 (June 1985), 17-29. 

18. RUSSELL, S. The compleat guide to MRS. KSL-85-12, Computer Science Dept., Stanford Univ., 
Stanford, Calif., June 1985. 

19. SCHMID, C. F. Statistical Graphics: Design Principles and Practices. Wiley, New York, 1983. 
20. STEVENS, S. S. On the theory of scales of measurement. Science, 103 2684 (June 1946), 

677-680. 

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986. 



Automating the Design of Graphical Presentations l 141 

21. TUFTE, E. R. The Visual Display of Quantitative Information. Graphics Press, Cheshire, Conn., 
1983. 

22. ULLMAN, J. D. Principles of Database Systems. Computer Science Press, Rockville, Md., 1980. 
23. WARE, C., AND BEATTY, J. C. Using colour as a tool in discrete data analysis. Tech. Rep. CS- 

85-21, Computer Science Dept., Univ. of Waterloo, Waterloo, Ont., Canada, Aug. 1985. 
24. ZDYBEL, F., GREENFELD, N. R., YONKE, M. D., AND GIBBONS, J. An information presentation 

system. In 7th International Joint Conference on Artificial Intelligence (Vancouver, Canada, Aug.). 
AAAI, Menlo Park, Calif., 1981, pp. 978-984. 

Received July 1986; revised October 1986; accepted October 1986 

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986. 


