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ABSTRACT

We present the audio retrieval system “Soundspotter,” which al-
lows the user to select a specific passage within an audio file and
retrieve perceptually similar passages. The system extracts frame-
based features from the sound signal and performs pattern match-
ing on the resulting sequences of feature vectors. Finally, an ad-
justable number of best matches is returned, ranked by their sim-
ilarity to the reference passage. Soundspotter comprises several
alternative retrieval algorithms, including dynamic time warping
and trajectory matching based on a self-organizing map. We ex-
plain the algorithms and report initial results of a comparative eval-
uation.

1. INTRODUCTION

Soundspotter is an audio retrieval system that has been developed
as a tool for detecting specific passages within a piece of music or
any other audio file. It is based on the query by example paradigm,
where the user selects a reference passage and asks the system to
retrieve perceptually similar occurrences. We refer to this task as
“sound spotting.” In this context, we interpret “perceptual simi-
larity” as similarity in spectral evolution, which is measured by
comparing sequences of feature vectors. The current implemen-
tation of our system is a prototype designed to evaluate different
retrieval algorithms. Our research fits into the emerging discipline
of audio information retrieval [1, 2]. Related work in this area
includes content-based retrieval and browsing of sound files in au-
dio databases [3, 4, 5], audio classification [6, 7], and sound source
recognition [8].

Soundspotter is based on a modular architecture consisting of
four stages. First, a frame-based feature extraction is carried out
using mel-frequency cepstral coefficients (MFCCs). Second, the
feature vectors are clustered or mapped onto a self-organizing map
(only required for some of the implemented algorithms). Third,
pattern matching is performed by comparing the given reference
sequence with possible test sequences, and finally, a prespecified
number of best matches is selected. The former two stages pro-
duce an index of the sound file, while the latter perform the actual
retrieval. An overview of the implemented algorithms and their
specific stages is provided in Figure 1. The most straightforward
variant of the implemented sound spotting algorithms, consisting
of feature extraction, trajectory matching, and match selection, is
described in Section 2, and the alternative algorithms – dynamic
time warping, mapping & trajectory matching, clustering & string
matching, and clustering & histogram matching – are explained in
Section 3. The remaining sections present the graphical user in-
terface (Section 4), some initial evaluation results (Section 5), and
plans for further development (Section 6).

2. BASIC ALGORITHMS

2.1. Feature Extraction

Feature extraction in Soundspotter is based on a variant of the mel-
frequency cepstral coefficient (MFCC) representation. MFCCs are
commonly used in speech recognition systems because they pro-
vide a concise representation of spectral characteristics. The stan-
dard implementation [9, 10] comprises the following stages: the
signal is converted to short frames (approximately 20 ms) using a
window function, and for each frame, a discrete Fourier transform
is computed. The magnitude spectrum is converted to a logarith-
mic scale and transformed to a smoothed mel spectrum. Finally,
the discrete cosine transform is calculated, and typically the first
13 coefficients are used to form a “cepstral” feature vector.

We adapted the standard MFCC implementation to the specific
demands of music retrieval by increasing the frequency range of
the Fourier transform and the mel spectrum and by modifying the
amplitude scaling. The logarithm conversion, which is supposed to
provide an approximation to the perceptual representation of loud-
ness, has been replaced by the power x0 � 23, derived from Stevens’
law [11]. This power law is not only more psychophysically plau-
sible, but provides a continuous representation of the signal from
silence (magnitude of 0) to the maximum level.

2.2. Trajectory matching

The basic pattern matching algorithm implemented in Soundspot-
ter has been termed trajectory matching because it compares tra-
jectories in the feature space. The distance between two vector
sequences of equal length is calculated by performing a one-to-
one comparison of their respective elements. The algorithm takes
the given reference pattern and compares it with every possible
test pattern of equal length along the total sequence. A distance
function, defined over all test patterns, is calculated by taking the
average Euclidean distance between corresponding frames in the
reference pattern and the test pattern.

2.3. Match Selection

The match selection algorithm receives the distance function pro-
duced by the pattern matching stage and returns a list of M best
matches, i.e. excerpts that are similar to the reference pattern pro-
vided in the original query. Soundspotter uses a ranking-based ap-
proach, where the user specifies the maximum number of matches,
M, and the system returns up to M matches ranked by their simi-
larity to the reference pattern.

First, the algorithm produces a list of potential matches by
recording all local minima of the distance function. To preclude
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Figure 1: Overview of the implemented sound spotting algorithms and their respective processing stages.

the selection of largely overlapping matches, a heuristic minimum
distance rule is introduced. It requires adjacent matches to have a
minimum inter-onset interval (IOI) of 0 � 8R, where R is the length
of the reference pattern. The match selection algorithm proceeds
along the list of potential matches and checks for each entry if the
preceding IOI is large enough. If it is too small, the inferior match
is removed. The revised list of potential matches is finally used to
extract the M best matches. If the length of the list is less or equal
M, all potential matches are returned.

3. ALTERNATIVE ALGORITHMS

3.1. Dynamic Time Warping

Dynamic time warping (DTW) is a pattern matching technique
originally developed for speech recognition [12]. In Soundspot-
ter, it is utilized to extend the trajectory matching algorithm to
sequences of different length by permitting insertion or deletion
of elements during alignment. The optimal alignment, where ref-
erence and test sequence have minimum distance, is determined
using dynamic programming [13].

DTW matches a reference sequence R � �
r1 � r2 � ����� � rI � with

subsequences of the total sequence A � �
a1 � a2 � ����� � aJ � by creating

a distortion matrix (Figure 2), in which each value D
�
i � j � is asso-

ciated with a cumulative distortion measure. D
�
i � j � represents the

best-so-far accumulated distance between the first i elements of
R and a subsequence of A ending at position j. It is recursively
calculated using the relation

D
�
i � j � � min

�
D
�
i � 2 � j � 1 ��� w1d

�
i � j � �

D
�
i � 1 � j � 2 �	� w2d

�
i � j � � D �

i � 1 � j � 1 ��� w3d
�
i � j �
� � (1)

where d
�
i � j � is the local distance between the ith vector of R and

the jth vector of A . The parameters are set to w1
� w2

� 2 and
w3

� 1. These settings, equivalent to the path constraint displayed
in Figure 2, have been selected after a number of informal trials.
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Figure 2: Distortion matrix and path constraint used in the dy-
namic time warping algorithm.

The boundary condition is defined by

D
�
1 � j � � d

�
1 � j � � (2)

The values D
�
I � j � in the last row of the distortion matrix con-

stitute the distance function to be used for match selection. The
values denote the optimal cumulative distance between the refer-
ence sequence R and a subsequence of A ending at position j. In
order to determine the beginning of the potential match, its path
through the matrix up to the first row has to be determined using
backtracking. This is implemented as follows: for each D

�
i � j �

in the distortion matrix, a pointer to the respective predecessor is
stored as soon as the value is calculated. Starting at

�
I � jlast � , the

path is traced back by following the pointers until the first row of
the matrix is reached at

�
1 � jfirst � . The retrieved subsequence is

then given by the elements along the path.

3.2. Mapping & Trajectory Matching

Unlike the above algorithms, mapping & trajectory matching in-
serts an additional processing stage between feature extraction and
pattern matching. It uses a self-organizing map (SOM) to per-
form a topology-preserving mapping of the thirteen-dimensional
feature vectors onto a two-dimensional surface. The coordinates
of the resulting trajectory are passed on to trajectory matching.
The application of the SOM is motivated by previous research on
self-organizing sound feature maps [14, 15, 16].
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A SOM can be visualized as an array of neurons arranged on a
typically two-dimensional lattice. Each neuron is associated with
an n-dimensional weight vector w � �

w1 � w2 ��������� wn � , where n cor-
responds to the dimension of the input signal. During training,
the weight vectors adapt to the presented input data and (ideally)
converge to a reduced representation [17].

In this case, the SOM is trained on the complete set of fea-
ture vectors extracted from the sound file using a batch training al-
gorithm, which provides a computationally efficient way of SOM
training [18]. The dimensions of the SOM are heuristically de-
rived from the training data; the number of units is chosen to be
approximately the square root of the number of training vectors,
i.e. all the feature vectors extracted from the respective audio file.
During the update process, each weight vector wi is replaced by a
weighted average of the data vectors v j , such that

wi � t � 1 	
� ∑n
j � 1 hc j i � t 	 v j

∑n
j � 1 hc j i � t 	 � (3)

where hc j i � t 	 is a Gaussian neighbourhood function that decreases
for subsequent training steps and depends on the distance between
the best-matching unit c j and the current unit i.1

In order to obtain a finer resolution and a more balanced map-
ping, the standard response focus metric, which maps each input
vector to the position of its best-matching unit, has been replaced
by the centroid of activation metric [19]. For a given input vec-
tor v, an activation function A � v � i 	 is calculated over all neurons i.
The function takes the Euclidean distance between the input vector
and the respective weight vector,

A � v � i 	��� v � w � i 	� � (4)

and determines the centroid of activation c � v 	 ,
c � v 	�� ∑i x � i 	 A � v � i 	

∑i A � v � i 	 � (5)

where x � i 	 represents the two-dimensional coordinates of unit i on
the SOM.

A sequence of feature vectors is thus transformed into a trajec-
tory on the SOM (see Figure 3 for an example). Pattern matching
is subsequently performed using the trajectory matching algorithm
described in Section 2.2.

3.3. Clustering & String Matching

The clustering & string matching algorithm uses a SOM to cluster
the feature vectors into discrete symbols, which are then subjected
to approximate string matching. The SOM is trained as described
in Section 3.2, but the actual clustering is based on the standard
response focus metric, which maps each input vector to its best-
matching SOM unit. Because the resulting sequence of SOM units
is interpreted merely as a string, i.e. a sequence of symbols be-
longing to a finite alphabet, all mutual relations between the SOM
units, such as distance or similarity, are disregarded. The alphabet
is given by the index numbers of the units.

String matching with k differences [20] is used to search for
approximate occurrences of the reference sequence R in the total
sequence A . The algorithm requires a distance metric such as edit

1It is defined as hc j i � t ��� e � d � c j � i � 2 � 2σ2
t , where d � c j � i � is the distance

on the map between units c j and i, and σt is the neighbourhood radius at
training step t.
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Figure 3: Mapping & trajectory matching. The diagram illustrates
a trajectory on a SOM comprising 3 � 10 neurons.

distance, which measures the distance between any two strings
in terms of the minimum number of edit operations – substitu-
tions, insertions, and deletions – needed to transform one string
into the other. The k differences algorithm has been adapted to
the Soundspotter environment by combining the distance calcula-
tion with the ranking-based match selection process described in
Section 2.3.

The implementation of the string matching technique is based
on dynamic programming, analogous to the DTW algorithm pre-
sented in Section 3.1. Figure 4 displays a typical distortion matrix,
where

Au � ��� 7 � 09 � 17 � 17 � 17 � 17 � 18 � 17 � 08 � 09 � 09 � 17 � 20 	 �
Ru � ��� 9 � 09 � 17 	 �

The elements of the matrix denote the cumulative distance D � i � j 	
between the first i elements of Ru and a substring ending at the
jth element of Au. The matrix is completed row by row using the
recursive relation

D � i � j 	�� min � D � i � 1 � j � 1 	�� d � i � j 	 � D � i � 1 � j 	�� 1 �
D � i � j � 1 	�� 1 	 � (6)

where

d � i � j 	��
�

0 : u � i 	�� u � j 	
1 : u � i 	! � u � j 	 � (7)

In terms of edit distance, the three arguments of the min function
correspond to substitution, insertion, and deletion, respectively,
which result in diagonal, vertical, and horizontal movements in the
distortion matrix, respectively. For each D � i � j 	 , a pointer is stored
referring to the position � i " � j "#	 of the decisive min argument (illus-
trated by the arrows in Figure 4).2 The boundary conditions for
the recursive relation are given by

D � 0 � j 	$� 0 � (8)

D � i � 0 	$� i � (9)

2If there is more than one minimal value, only the first one is recorded
(according to the order given in Equation 6).

DAFX-29



Proc. of the 5th Int. Conference on Digital Audio Effects (DAFx-02), Hamburg, Germany, September 26-28, 2002

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� 	��
0 0 0 0 0 0 0 0 0 0 0 0���
1 
 1 
 0 
 1 
 1 
 1 
 1 
 1 
 0 
 0 
 1 
 1���
2 
 2 
 1 
 1 
 2 
 2 
 2 
 2 
 1 
 0 
 1 
 2���
3 
 3 
 2 
 1 
 1 
 2 
 2 
 3 � 2 � 1 
 0 � 1

Figure 4: String matching with k differences using dynamic pro-
gramming.
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Figure 5: Clustering and histogram matching: example of a his-
togram derived from a 3 � 10 SOM.

The last row of the distortion matrix constitutes the distance func-
tion, which denotes the edit distance between the reference pattern
and a best-matching substring ending at the respective column. Af-
ter the selection of the M best matches, the respective start posi-
tions are determined by backtracking along the stored pointers. In
Figure 4, the two best matches that would have been picked by the
match selection algorithm are emphasized in boldface.

3.4. Clustering & Histogram Matching

Unlike all the above matching variants, clustering & histogram
matching ignores the chronological order of the frames in a pat-
tern. A self-organizing map is used to cluster the feature vectors
into discrete units exactly as in the previous algorithm. How-
ever, instead of looking at the sequences of index numbers, this
algorithm produces a histogram for the selected reference pattern,
where each unit corresponds to one bin (Figure 5). The counts re-
flect the number of times each unit was chosen as a best-matching
unit within the given pattern. A similar technique has been sug-
gested in [7].

Pattern matching is carried out by comparing the reference his-
togram with histograms representing all possible test patterns of
equal length along the entire file.3 The distance between the ref-
erence pattern and a test pattern is determined by interpreting the
histograms as vectors and taking the Euclidean distance.

3By restricting the test patterns to a uniform length, the respective his-
tograms can be computed very efficiently: histograms of adjacent test pat-
terns can be transformed into one another by deleting only one count and
inserting another.

4. GRAPHICAL USER INTERFACE

The current prototype version of Soundspotter has been imple-
mented in Matlab R


and is controlled by a simple graphical user

interface (Figure 6). It allows the user to perform a query by ex-
ample based on any of the implemented algorithms and retrieve
the corresponding matches straightforwardly.4

On opening an audio file (“Open”), feature extraction is called
automatically, and a waveform plot is displayed. The user can play
back the entire file or select a particular passage either by clicking
in the waveform display or by entering the boundaries explicitly
into a pair of text fields. The selection can be monitored using
“Play selection,” and the boundaries can be adjusted as desired.
A pull-down menu allows the user to choose one of the matching
algorithms described above. The maximum number of matches to
be retrieved is specified in additional text field. “Retrieve matches”
invokes the retrieval process. The distances between the selected
reference pattern and the test patterns are computed along the en-
tire file. The retrieved matches are indicated in the waveform plot
by triangular markers, and a list of the retrieved intervals is printed
in the Matlab command window. The retrieved patterns can be
monitored one after the other (ranked by their distance to the ref-
erence pattern) using “Play matches.”

5. EVALUATION

Up to now, the system has been subjected to various informal tri-
als as well as a limited quantitative evaluation. In this section, we
discuss the results of two comparative tests that have been per-
formed on a recording of the pop song “Fields of Gold” by Sting.
The song has a total length of 3 min 39 s. In the first test, we
queried for the “rim click”5 sound that occurs twice in each bar,
182 times altogether (reference passage: 2.19 s–2.22 s). Although
it is embedded in different acoustic contexts throughout the song,
it is relatively easy to detect because of its characteristic broadband
spectrum and its significant power. The short duration of the sound
requires a fine time resolution to obtain precise matches; we used
a frame rate of 100 Hz. In the second test, we queried for the title
phrase “fields of gold,” which occurs at the end of each verse, 10
times overall (reference passage: 33.6 s–34.8 s). Table 1 reports
the results in terms of true positives (TP) and recall (R).

Recall is a common evaluation measure in information re-
trieval, which indicates the fraction of the relevant patterns that
has been retrieved [21]. Recall is defined as

R � TP
TP � FN � (10)

where TP is the number of true positives, i.e. correctly retrieved
items, and FN is the number of false negatives, i.e. relevant items
that have not been retrieved. Recall is typically used in conjunc-
tion with precision, which measures the fraction of the retrieved
patterns that is relevant. Precision and recall can often be traded
off, i.e. one can achieve high precision and low recall or the other
way round. For the values reported in Table 1, the number of re-
trieved patterns was adjusted to the number of relevant patterns, so
that precision and recall were equal.

4Caveat: the Matlab implementation has not been optimized for speed;
larger sound files (e.g. a typical pop song) require a considerable amount
of computation time.

5A specific drum sound, which is produced by laying the stick across
the snare drum and striking the rim of the snare.
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test.wav (18.1 s)

Figure 6: Graphical user interface of Soundspotter.

Table 1: Quantitative evaluation of different sound spotting al-
gorithms. The number of retrieved patterns was adjusted to the
number of relevant patterns, i.e. 182 for the rim click and 10 for
the title phrase.

Algorithm Rim click Title phrase
TP R TP R

Trajectory matching 175 0.96 10 1.00
Dynamic time warping 177 0.97 10 1.00
Mapping & traj. matching 57 0.31 4 0.40
Clustering & string matching 134 0.74 4 0.40
Clustering & hist. matching 118 0.65 7 0.70

For both queries, the “direct” matching methods achieve a
considerably higher recall (close to or equal 1) than the SOM-
based methods. The self-organizing map only seems to deteriorate
the retrieval performance as long as the task is relatively straight-
forward. However, there may be situations where the mapping
leads to interesting and useful results. The mapping & trajectory
matching algorithm for instance managed to retrieve an instrumen-
tal phrase when a corresponding vocal phrase was given as the ref-
erence pattern. In order to assess the performance differences be-
tween the plain trajectory matching and the computationally more
demanding dynamic time warping, further tests are required.

Additional retrieval experiments querying for melodic phrases
revealed that the current implementation of Soundspotter is not
suitable for melody retrieval because the MFCC feature vectors
do not capture enough information about the pitch content, rather,
they characterize the broad shape of the spectrum.

6. CONCLUSIONS AND FUTURE WORK

In the preceding sections, we explained the architecture and the
underlying algorithms of the audio retrieval system Soundspotter
and discussed initial evaluation results. These results indicate that
in most situations, the plain trajectory matching algorithm is not
only the computationally most efficient method, but also the most

successful one. We assume that alternative algorithms such as
clustering & histogram matching and mapping & trajectory match-
ing may produce favourable results in specific situations, which
we will explore in further tests with a particular focus on electro-
acoustic music.

The most suitable algorithms will be implemented in plug-in
for Ina-GRM’s software Acousmographe [22], a tool for creating
graphic representations of sound, e.g. graphic records of electronic
music. The idea is to facilitate the creation of such representations
by automatically detecting multiple occurrences of selected sound
“events.”
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