£
v
g
W
I
-
k
]
"
z
°
"
g
H
z
2
i
3
°
v

ber 1993/Vol.36,

Octe

MAKING CUSTOMER-
CENTERED DESIGN WORK

FOR TEAMS
v

Karen Holtzblatt and Hugh Beyer

—— e " b i — L [rR

uilding today’s systems requires a more intimate
understanding of users’ work than ever before.
Computers are smaller and more common and
interfaces are more powerful. 'Today, many users
of computers neither know nor wish to learn how
computers operate—they merely wish to get
their jobs done.

In addition, venders are under increasing
pressure to develop innovative products quickly.
To be innovative means to address important
needs in new ways, and since existing products
cannot act as models, guidance must come from
users themselves.

As the industry has recognized thesc
challenges, practitioners are looking for new
ways to involve the customer closely in design.
This has resulted in such approaches as Joint
Application Design {JAD) [23], user-centered
requirements analysis [13], user-centered design
[18], and many PD techniques [8, 20] including
our own contextual design [1].

These customer-centered design approaches
make the customer, and the understanding of the customer, the center of design
activities. The two primary questions such approaches address are:
® How do I understand the customer?
® How do I ensure this understanding is reflected in my system?

Understanding the custorner is difficult. Design teams need extensive, detailed
information about customers and how they work to build systems that support
themn well. The first requirement on any custormner-driven process is to build
awareness of the customer into the design team, and continue providing
customer feedback throughout the life cycle. _

But even given customer data, we have found it is still difficult to build a system
in response. It requires a series of conceptual leaps to go from facts about the
customer to a system design. How can we turn facts into a system we know will
be useful?

Finally, no system is built by a single individual, but the quality of the system
is the result of individual actions. How do teams develop the same under-
standing of the customer, and the same vision for the system? How can we manage
the interplay between people to that end?

Contextual design is our approach to bringing customer data into design
through a well-defined sequence of activities. The foundations for contextual
design were developed in 1988 [22]. We have since used and extended this pro-
cess in developing hardware and software products, in both small groups and
large, at multiple companies,

Here, we summarize our experience with customer-centered design. We
describe the steps we have refined through our work on design problems. We
describe the reasons for each step, and draw out the implications for managing
the design process.

Our first concern is to incorporate valid, useful data about how people work

€ BoLor [e Coe

inte the engineering process. The
system we provide will support and
constrain the way people work [10].
We need to understand work in
enough detail to know what the
system must do to support it well, and
what innovations will streamline
the work.

Finding out about work is difficult:
not only are developers building for
users doing unfamiliar work, but
users themselves have difficuity
describing what they do. People are
adaptable and resourceful
creatures—they invent many work-
arounds and quick fixes to problems,
and then forget they invented the
workaround. Even the details of
everyday work become second nature
and invisible.

The users cannot describe what
they really do because they are not
conscious of it and do not reflect on
it. The defined policy for an organi-
zation is no longer representative
because it no longer reflects what is
really going on.

Contextual inquiry

How can we get detailed information
about how people work when they
cannot articulate it on their own?
Holtzblatt’s approach! was to adapt
ethnographic research methods to fit
the time and resource constraints of
engineering. The result was the first
step of our process, Contextual
Inquirv.

Contextual Inguiry provides tech-
niques to get data from users in con-
text: while they work at real tasks in
their workplace. In a contextual inter-
view the interviewer observes the user
at work and can interrupt at any time

'Contextual Inguiry was developed by Karen
Holtzblatt in 1986. Sandy Jones assisted in de-
veloping the first course on Contextual Inquiry
in 1988. Since then, Holtzblauw and Beyer have
built on Contextual Inquiry to address the fult
design process.

COMMUNICATIONS OF THE ACM Cicober 1993/V0E 56, Nulb 93

Project Orgonization and Management

ask
sider: "What are you doing now?”

and qut‘.s[i(ms as an - out-
“Isn’t there a policy tor this?™ “1s that
what you expected to happen?”

Contronted at the
doing the work, users can enter into
a conversation about what is happen-
ing, why, and the implications for
any supporting system. The user and
mterviewer discover together what
was previously implicit in the user’s
mind. Talking about work as it hap-
pens, artifacts created previously,
and specific past projects reveals the
user’s job beyond the work done on
that day.

A contextual interview usually
takes from two to three hours. Typi-
cally, several members of a design
team interview several customers at
the same site simultancously, provid-
ing a view across a whole organiza-
tion in half a day.

We recommend that a products
designers conduct interviews. Great
product ideas are derived from a
marriage of detailed understanding
of a customer need with an in-depth
understanding of technology. In our
experience, the best products hap-
pen when the product’s designers are
involved in collecting and interpret-
ing customer data.

This field-gathering technique has
been extremely successful at collect-
ing detailed data about work practice
which is hard to elicit any other way.

@ Gather data through interviews with
your customers in their workplace while
they work.

@ Put the people making design dect
sions in front of the user.

Involving the customer. What is the
best way to involve the customers in
the design process? We certainly
want to build the best system we can
tor them. But we also want to opti-
mize both development time and the
customers’ own time. As outlined by
Muller in [17], customer-centered

techniques tend either toward having
the designer participate in the users’
world, or having the users participate
in design activiies. We find both
approaches useful, but want to en-
sure the user is as effective as possi-
ble in both roles.

When we participate in the users’
world, we want it shown to us so well
that we know it—we want our feet to

moment of

be sore where thenr shoes pinch.
Working with users i their work-
place helps provide this familiarity.
When they are working on or de-
scribing their real problems, users
are much more eloquent than when
talking in generalities. The impact of
the real situation is much greater.

Conversely, when users participate
in design activities, we want to make
them strong participants in the de-
sign process.?

[l] our (fxi){fl‘i(.‘l]('(f‘ CUstomers are
at a disadvantage when brought into
a design meeting. The users’ unique
contribution is their real work expe-
Taken out
they are much less able to represent
real experience [22]. Worse, because
we want them to represent the user
community, we ask them to discount
their own actual experience. Instead
of allowing them to stand for “what I
need,” we ask them to stand for
“what all users would want.” They
become just another designer among
designers.

Customers are at a disadvantage

rience. of this context,

when building data models or other
specialized models with the design
team. This requires that they learn
an unfamiliar language and translate
their experience into this unfamiliar
language. Even if we work from the
users” artifacts, the language repre-
sents an abstraction of what they do.
The user must translate it back into
specific instances to understand what
it means [7, 9].

Customers are at a disadvantage
when brought into our laboratory
and asked to work on an unfamiliar
problem. Once again we take them
away from the context that ties them
to reality. We ask them to imagine
what their work is like without any ot
the reminders they use daily to do
their work.

Instead, in contextual design we
build on our users’ strengths by
doing all our work with them in their
own context, on their own problem
(or get as close to this ideal as possi-
ble).

If we wish 10 validate a model of

how they work, we do not show and
walk through the model with them.
Instead, during an interview about
We are indebted o the work of Pelle Ehn, Kim

Madsen, and others at Aarhus University for
inspiring our approach.

9‘ October 1993/ Vol 36, No.ll COMMUNICATIONS OF THE ACM

their own work practice, we respond
to their descriptions of their work by
drawing a picture. This picture is one
of our models which incorporates
what they just said about their own
experience. It is a conversation aid,
not something to be learned.

It we wish to codesign with users,
we take a previously developed pro-
totype to their workplace (as de-
scribed in a later section). We invite
them to work through their immedi-
ate work problem using the proto-
type. Users respond directly to the
prototype as though it were real and
give better feedback than
would be possible in a meeting room
[13].

Even when we must use a labora-

much

tory for practical reasons, we recom-
mend that users bring in their own
work and try to do 1t in the lab. Even
it we lose the context provided by
their workplace, they are familiar
with their own problem and it helps
them reconstruct the missing con-
text.

@ Use your users well. Let their own
context strengthen them.

Affinity Diagrams

As an interviewing process, Contex-
tual Inquiry successfully extracts
data about customers’ work. How-
ever, one developer talking to one
user 1s insufficient:

® The whole team needs to under-
stand what happened with the cus-
tomer.

¢ The whole team, including the in-
terviewer, must understand the im-
plications for the design.

¢ Different people have different
perspectives and will see different
implications in the data.

® Data from multiple users must be
brought together.

¢ A working team will typically have
many demands on their time. Not
everyone will be able to go on every
visit.

To bring the team together, share
the data, and develop interpretations
on which the team agrees, contextual
design includes an affinity diagram-
ming process [4].

The team, or a subset, sits down

together and goes over the transcript
or notes of each interview, writing

We take (customers) away from the context that ties them
to reality. We ask them to imagine
what their work is like w:thout any of the

facts about the user, interpretations
design ideas, and questions on Post-
It notes. After the first round of in-
terviewing is complete (usually 5 to 8
interviews or 400 to 600 notes), the
team organizes the notes into clusters
on a wall. These clusters are named
and collected into higher-level
groupings. (This entire process is
fully described by Holtzblatt and
Jones in[10].)

An effective attinity avoids using
standard categories to cluster notes.
We ban terms like “usability” or
“quality,” forcing the team to think
deeply and creatively about the data,
and making the name of the group
represent what is really there.

For example, an affinity we built
to understand object search mecha-
nisms has a top-level note labeled
“The user’s purpose.” The cluster
names beneath it tell what the user's
purpose in searching the object sys-
tem might be: “Find a particular ob-
ject,” "“Understand the structure of
the system,” and “Reuse existing ob-
jects.” Under each of these headings
is the cluster of individual notes de-
fining the category. Later, we could
read the affinity, understand these as
the user’s three primary motives, and
ensure our design supported each
well.

Group interpretation allows other
members of the team to be brought
back into the conversation. On real
teams, it 1s rare that everyone can be
in every meeting. By participating in
interpretation sessions or in building
the affinity, team members can be
brought back into contact with the
customer and can also provide their
own unique perspectives on the data.
When done, we ‘walk’ the affinity,
saying what each part is about and
brainstorming design ideas for that
part. These ideas can be attached
directly to the affinity itself. Later,
when we pick up these ideas to de-

remanders they use daily.
I

velop, they will be directly ued to the
customer data that sparked them.

An affinity captures our insight
mto the customers’ work. The cluster
names represent this insight and tie it
back to data from individual custom-
ers through the notes in each cluster.
The atfinity organizes data across
multiple customers and shows where
the data is weak.

aF]-nterpi’f't customer data .fuget.hﬂ, as d
team.

The think tank. We prefer to dedi-
cate a room to the team design effort.
We are writing down an enormous
amount of information about the
customer. The affinity diagram and
work models (described in the next
section) represent everything the
team has discovered, structured for
easy understanding. Keeping them
on the wall means the team is literally
surrounded by its data about their
customer.

Given the opportunity, the team
will continually return to this data
throughout the design process—it is
common in our meetings for a team
member to gesture or walk to a part
of their affinity to support a design
idea. It is difficult to achieve this kind
of fidelity to the customer when the
data about the customer is tucked
away, out of sight.

The room also acts as a living rec-
ord of the design process. A team
member or manager who wants to
catch up can browse the walls on
their own, or another team member
can use the walls to tell them what
has happened. One manager told us
he prefers to use the room to learn
how the team is doing—he found it
more immediate and more real than
a status report or presentation.

@ If you want your team to be creative,
gwve them a room.

Work Modeling

The affinity organizes our data in a
way that is easy to understand, and
captures all the detail well. But to
understand the structure customers
put on their work, we also draw work
model diagrams, showing the work of
a single person or of an organization.
They explicitly represent roles, flow
ot communication and information,
work tasks, steps, motivation, and
strategy of the work. Where there
are problems in the work, they are
shown directly on the model. Unlike
a list of findings, requirements, or
wishes, work models show how all
aspects of work relate to one another.

We find four types of work models
to be generally useful:

Context models (Figure 1) show how
organizational culture, policies, and
procedures constrain and create ex-
pectations about how people work
and what they produce. Context
work models represent standards,
procedures, policies, directives, ex-
pectations, deliverables and other
constraints. The context model
shows what part of the work can be
changed by introducing new technol-
ogy, and what changes affect people
or organizations who are not custom-
ers. Changing their work is always
more difficult. Where an organiza-
tion has standard procedures, we can
design the system to support them
directly, automating where possible.

Physical models (Figure 2) represent
the physical environment as it im-
pacts the work. To the extent they
can, people structure their environ-
ment to support the work; then they
work around any problems put in
their way by limitations in the physi-
cal layout, location, hardware config-
uration, or technology. Physical work
models show the physical space and
systemns that affect the work. Physical
models reveal whether the work is
split between locations and the sys-

COMMUNICATIONS OF THE ACM Udctober 1993/ Vol 36, No U 95

tem could simplity work through di-
rect communication. They reveal
whether the work involves moving
around, and whether the system
must also move or must provide arti-
facts that move. They also show the
range of hardware, software, and
network platforms the system must
support.

Flow models (Figure 3) represent
the important roles people take on. A
role is a set of responsibilities and

associated tasks for the purpose of

accomplishing a part of the work.
Roles may be tormal or informal,
growing out of the work itself. One
person usually fills several roles, and
roles can be filled by several people.
Each role represents a different type
of customer of our system. When
users interact with a system they are
trying to meet the responsibilities
their roles define. The flow model
shows what is needed and what is
supplied in filling a role. Flow mod-
els also show the communication and
coordination between roles, and the
flow of artifacts between roles. The
flow model shows communication
across a whole work domain, not only
among current users of a system.
This reveals new, unrecognized roles
that could be supported by a system.
[t also shows the needs of people who
will never be direct users, but depend
on the system for information. With
this knowledge, the team can build a
system that better supports them.
Sequence models (Figure 4) repre-
sent the sequence in time of actions
tor specific important activities. A
sequence model can be focused on
the coordination of activities across
individuals, on the thought steps and
strategies of a single individual in
doing one activity, or on the steps
taken by a person in using a tool to
accomplish an activity. (They are
similar to flow charting and task
analysis [5].) Sequence models show
the specific tasks users perform.
They define the work the system
must support in detail. They show
how the work can be simplified by
removing,
steps.
Though these work models have
proved most useful to us in design,
we frequently develop new work
models to represent important as-
pects of the design problem at hand.

combining, or fixing

When we describe the work of cus
tomers with such explicit diagrams,
we make our understanding of their
work concrete. Without a picture,
team members can hear the same
words and understand them differ-
ently.

Teams argue when misunder-
standings occur and when the only
basis for decisions is opinion. A dia-
gram makes disagreements explicit.
Team members no longer have to
argue with one another—they argue
about the diagram and what s in it. It
is clear where the diagram is incom-
plete and more data is needed. The
result is to bring teams into a shared
understanding more quickly.

A diagram takes a large amount of
data and organizes it into a single
image so it can be understood and
used. Without such a way to incorpo-
rate the data, it is lost.

@ Use diagrams to capture your under-
standing of your customers’ work.

The use of language. Work models
are a language for talking about
work. People are not used to talking
about what is there to say
about it What is important and what
is notz A modeling language struc-
tures conversation by making certain
concepts explicit, saying “talk about
this.” (See [16] for more on the use of
diagrams as language.)

As a language, work flow models
say: think about roles. Define what
their responsibilities are. Define how
each role communicates with others,
and what they communicate. You
must know these things to under-
stand work. Someone building a flow
model cannot help but ask questions
about

work;

roles, their responsibilities,
and how they communicate. The
modeling language itself guides the
designer in what to pay attention to.
Conversely, anything the language
cannot express Is easy to ignore.

Other languages, such as data flow
diagrams or object models, exist to
support other conversations about
systems. 'They make explicit the con-
cepts needed o support these other
conversations. For example, data-
flow diagrams talk about the flow
and transtformation of data. These
other languages do not support or
guide the conversations we want to
have about work.

96 October 1993/ Vol 36, Nu.ll COMMUNICATIONS OF THE ACM

Ihis is why we mtroduce new
modeling languages, despite the
large number that exist. Thinking
about difficult; thinking
about how a system supports work is
difficult. The languages we intro-
duce in work models and in user en-
vironment design (UED) tell the de-
signer what to pay attention to at
each point in the process. No existing
language does this for us.

We do not find that introducing
new modeling languages confuses
design teams. Our languages are
simple—teams doing design work
pick them up in a few minutes. We
find it more powerful to introduce
these languages than to make a map-

work is

ping from an existing language to
the concepts we are tr}-’illg LO express.

@ Let modeling languages help you
When you must, tnvent new ones lo Say
exactly what you need to say.

work Redesign

Working with specific
gives the team an understanding of
the work of those customers. How-

Customers

ever, we want an innovative design
that transforms work in new ways
and is useful to all our customers.
How do we invent such a transfor-
mation? How can we ensure we have
transformed the work usefully?

This is a new conversation. Until
now we have been talking about the
work as it is; now we talk about the
work as it well be, when our new sys-
tem 1s in place. This is not a conver-
sation you can avoid. Every system
changes the work of its users. It is
best to think about and design the
effect you want your system to have
explicitly.

We make this conversation explicit
through abstract work models
(Figure 5). We gather all the same
kind of models together: all the flow
models, all the physical models, all
the context models, and the sequence
models that address each task. Then
we build new models of each type,
removing the particular details of
each customer’s work and revealing
its underlying structure. These ab-
stract work models show the aspects
of work our system will support.
Anything the team chooses not to
represent will not be supported by
the system. This abstraction allows us

Project Organization and Management @ -

Management

Policy and tasks
Boss

Deals with
paper only

Policy suggestions
AN

Reqguests to change
work practice

Administration

Tasks to do

Procedures
Required reports

Objections 'lto policy
Requests to circumvent red tape

Employees

Public network

« No special formats

Local Site 1 Poor oS
1 F‘grformance gown Remote Site
Terminal .
Secretary
Printer

Person

Interested Parties

Senders

« Problem:
Y\, no receipt
-~ of messages

¢ 7 setup

meetings

message

»

Boss
B stack of paper d

T tak —

to meet the needs of a whole market
by building on what we discovered
from individuals.

Our best ideas for improving the
work often come from seeing how a
particularly thoughtful person or
group has solved their own prob-
lems. We build this solution into our
abstract work models and our sys-
tem, so all customers can take advan-

e

-

tage of it. Once we have this consoli-
dated model, we study it for
problems and inefficiencies. We de-
velop an abstract work model that
brings together data from all custom-
ers, keeping good ideas, fixing prob-
lems, and using technology to com-
bine and remove steps. When done,
we have a statement of how our users
will work, if we can implement the

Figure 1. Context model

This and the following models
are examples of work models
describing the use of email. This
partial model shows that the
company's administrative
groups constrain everyone by
requiring certain reports and
actions. The boss is also influ-
enced by management require-
ments, and in turn sets require-
ments on the employees. The
boss will not touch the com-
puter, which affects what the
secretary must do. The secretary
asks the boss to change his work
style to make the secretary’s job
easier; for example to keep the
paper mail in the order in which
itis given to him to make it easier
for the secretary to enter his re-
plies on-line.

Figure 2. Physical model

This is the physical environment
for our boss and secretary. Only
the aspects relevant to our mail
problem are shown, not the
whole physical layout. The secre-
tary has a printer in her own of-
fice. She shares a VAX with oth-
ers. The VAX is overloaded and
slow. The boss has no connection
to the VAX—even if thereis a ter-
minal in his office, he never uses
it, soitis notshown. The VAX is
networked with other comput-
ers at remote sites. This network
does go down, so the secretary
uses a store-and-forward mail
system. The VAX also has links to
public networks which can only
handle plain text messages.

Flgure 3. Flow model

This model shows the communi-
cation between people in the
organization. Messages sent to
the boss are intercepted by the
secretary, who prints them and
passes them to the boss on
paper. The boss writes replies
and gives them back to the sec-
retary who sends the replies and
other messages to the original
sender and sometimes to others.
Because the secretary uses
store-and-forward mail, she has
no way of knowing if the replies
ever get through. We know the
secretary is communicating with
people by phone, but we do not
know why—perhaps to set up
meetings. We also do not know
how she coordinates with the
boss off-line.

COMMUNICATIONS OF THE acm October 1993/Vol 36, No.10 97

Flgure 4. Sequence model
This model shows the steps the
secretary takes to answer the
boss's mail from his handwritten
replies. The secretary gets the
stack of printed messages with
the boss's replies written on
them and works through the
stack. The secretary may write a
reply from the boss's written
reply, get further clarification
from him, take other action such
as calling the sender, or delete
the mail without doing anything.
When the secretary has dealt
with a message she marks the
(pjaper copy so she knowsitis
one.

Figure 5. Abstract flow model
This is an abstraction of the work
of communicating, incorporat-
ing the boss and secretary as well
as other data. The secretary's
role in helping the boss commu-
nicate has been named ‘‘'commu-
nication coordinator.” Looking at
other customers, we discovered
group communication can break
down when no oneis handling it
for the group. We borrow the
idea of a communication coordi-
nator from the secretary, and
use it to solve the group’s prob-
lem. The coordinator can man-
age agroup’'s communicationsin
the same way that secretaries
manage their boss’'s. When sup-
porting a group, the coordinator
intercepts messages sent to the
group as a whole and distributes
them to individual members.
Messages can still be sent to spe-
cificgroup members. The coordi-
nator may be a group member
playing both roles.

7J .§ Project Organization ond Management

Decide to handle
boss's mail

Intent: Response
to mail with boss’s
comments

M
Get yesterday’'s

Get stack
from boss

System does not
know about stack

mail

Find top

No good way to
find message

message from
stack in system

Decide what
to do

o

Create message
based on cryptic
response

oo

clarification
from boss

Call or take
other action

~

Transcribe
response

K‘ Check off paper
copy and put aside

message
to/from
person

message for

distribution

distributed
message

Notes:

* Receipts may be for any message

Communication
Coordinator

« A principal is any person or group whose mail is handled by another
+ Communication between coordinator and principal may be paper or electronic

annotated
reply stack

message stack

system to support it.

We validate our redesign of the
work by checking it against the data
from customers we have visited and
through Contextual Inquiry with
new customers. When interviewing
new customers, we look for aspects of
their work our redesigned work
model cannot account for. These re-
tine and extend the redesigned work
model.

Making the work redesign conver-
sation explicit ensures we do not do
silly things unintentionally. For ex-
ample, in creating a presentation,
ideas move from slides to handout
notes and back again as the creator
tries different approaches to pre-
senting the ideas. So a presentation

98 October 1993/ Vol.36, No.1) COMMUMNICATIONS OF THE ACM

system should support modifying
slides and notes in parallel. Providing
a notes facility that does not allow the
slide to be changed, as some com-
mercial systems do, is not enough.

We verity any design idea against
the redesigned work model to ensure
that it fits into the users’ jobs well. We
use it to see that the new work prac-
tice our system will support hangs
together. We anticipate new prob-
lems our changes may cause, and
prevent them.

Taken together, abstract work
models are a coherent statement of
who our customer is. We use this
statement throughout the rest of the
design process.

i< o 1)tfaign the way you ward Lo r'hartg'f.’
your users” work on purpose, or you will
do it by accident.

@ Your customers are your best source of
ideas. ‘Borrow’ from them where you can.

- Separating conversations. In our
discussion of work redesign, we have
an example of separating conversations.
We will continue to do this through-
out the design process. One major
reason design meetings are difficult,
contentious, or lack clarity is because
the team i1s unknowingly mixing two
concerns. Members of the team are
not even arguing the same issue—it
is no wonder they cannot agree.

For example, I might argue for a
return receipt feature in a mail prod-
uct, and you might argue against it as
wasteful of system resources. As long
as we conduct the argument as
though it were about the system fea-
ture, we have no basis for decision.
In fact, this argument is about the
work, and how we will change it
through our new system. Once we
recognize this, we can easily discover
whether the idea solves a real work
problem. If so, we can have a sepa-
rate conversation about whether we
can implement it technically.

In this case we are separating the
work redesign conversation from the
implementation conversation. In the
introduction of work redesign, we
showed how we can separate the con-
versation about the work as it is now
from the work as it will change.

Each time we wish to separate con-
versations, we provide separate phys-
ical places to have the conversations.
We describe the work as it is now as a
work model on one part of the wall.
We describe the work as redesigned
in a separate work model, on a dif-
ferent part of the wall. We define the
system on yet another part of the
wall.

Itis always clear what conversation
we are having because we are always
referring to and moditying one
model or the other. The wall space
defines the conversations in prog-
ress. We can conduct several conver-
sations in parallel, switching between
them as necessary. This speeds up
the process. (Running out of wall
space is a problem. One team went
on to use the ceiling. You can also
start another layer, or start taking

down conversauons which

immediately relevant.)

dare not

@ Always be aware what conversation
you are having. Use the wall to keefp con-
versations separate.

Design of the System

Up to this point, we have thought
exclusively about the customers and
their work. It is rare for an engineer-
ing team to think so deeply or so
clearly about the work of their users.
But these conversations give us a
solid foundation for designing the
system.

We would expect a design team
with other demands on its time to get
to this point in about a month.
Spending longer to gather data from
more customers is not useful—the
team should begin to see the overall
structure of the work and have initial
ideas tor a system. These should be
captured as they develop by starting
an iteration of system design.

Our initial and primary concern in
system design is to ensure that the
structure of the system we deliver
supports the work as we redesigned
it. We want to be sure the system de-
livers the right functions and orga-
nizes them to let people work effi-
ciently.

We could use prototypes, mock-
ups, or sketches to represent this sys-
tem structure. But we find they focus
the team on the user interface (UI).
They hide the structure of the system
behind Ul details, making it easier to
talk about menus, icons, word choice,
and layout than about
whether the structure and organiza-
tion are right.

screen

uUser Environment Design

We must design the structure and
function of the system, as experi-
enced by the user. We must create
this design from our knowledge
about the customer. Surprisingly,
most development approaches do
not provide any support for this de-
sign step. (In this we agree with oth-
ers who have recognized this missing
step [11, 21].) Without it, we have no
way to consider how the system
hangs together as a whole.

To separate the conversation
about system structure from the con-
versation about Uls, we introduce a
new language for representing the

system. We call this wser environment
design, because it defines the environ-
ment we give our users to work in
(Figure 6).

The user environment design is a
language for defining how the sys-
tem will structure the user’s work.
What do we need to consider in de-
signing the structure of work? Look
at how people structure their own
work when they get a chance:

In designing a house, we dedicate
rooms to different purposes. The
kitchen, for example, is for cooking.
We put the tools we need for cooking
there: knives, cutting boards, an
oven. We also put food there, be-
cause food is what we work on when
we cook. We do not put unrelated
things in the kitchen—they only get
in the way. Even a related but distinct
purpose such as eating is given its
own place, a dining room. We just
ensure that the dining room is handy
to the kitchen.

We see this same pattern in every
area of life. We make a place to per-
form each activity. We collect the
items we will work on, and we clear
away anything unrelated. Related
but distinct activities are kept nearby,
but are not allowed to interfere with
one another.

It is the same for a software sys-
tem. We want to create a place for
cach coherent activity. We want to
provide the functions needed to do
this work. We want to clear away any
functions not necessary to this work—
they clutter the Ul and confuse our
user. And we want to provide conve-
nient access to parts of the system
supporting related activities.

Our redesigned work models de-
fine the coherent activities our sys-
tem must support. In the user envi-
ronment design we define focus areas,
places in the system for focusing on
each activity. Each focus area pro-
vides the functions and work objects
necessary to do one activity.

We build user environment de-
signs in paper, on a table. Each focus
area goes on a half-size piece of
paper; the flows are paper strips held
down with tape. The size and physi-
cal nature of the design allow the
whole team to gather around and
manipulate it together. Paper is still
the best medium we have found for
quick change in a meeting.

COMMUNICATIONS OF THE ACM Uctober 1993/ Vol 36, No iU 99

Handle Mail 1
Select stack

Make new stack
—Read message
Create/reply to message

Forward message
Print
Show delivery status
Coordinated Mail
Join group
Show my groups
Redirect control of mail

Coordinate

Choose Principal 2

Select principal

Coordinate principal

Overview
Show delivery status by principal
Show new group members
Manage group

Manage address book

Yy

\]

View content

Check off

Add sender to address
book > 5

Annotate

Forward

Forward as coordinator =————————————=

Reply

Subject
Content

Compose Message 4

Edit content
Annotate
Add attachment
Address

Add to cc list
Add addressee to

Message
Principal
Group
Person
l Main Focus Area
Manage Address 5
== Book
See list
Add
Modify

-«+— Send to

address book —| Message
Send as principal Person
Send as coordinator Group
Message Content
Person Annotation
Group Attachment
Support Focus Area

Title

Functions

Work
Objects

L e

. @giﬁw@gg’%@w.

.
e

Building a user environment de-
sign focuses the team on the appro-
priate level of detail. It allows us to
put off low-level decisions about look
and layout until after we have made
fundamental decisions about struc-
ture. It defines the requirements on
the implementation, provides initial
objects for the system data model,
and defines the structure of the Ul

Just as a floor plan allows the arch-
itect to see all the parts of a house
and how they relate to one another, a
user environment design allows the
team to see all the parts of a system
and how they relate. It shows the sys-
tem as a whole.

Making the system structure ex-
plicit in a user environment design
gives the team something concrete to
make the conversation real. The
team can test this structure by walk-
ing scenarios through it and fix us-
ability problems before user inter-
face design is even begun.

Figure 6. Mail user environment
design (UED)

This is a partial user environment
design supporting the abstract
work model in Figure 5. Two main
activities are defined: Handle
Mail and Coordinate Communica-
tion. Coordinate Communication
is the main activity of the coordi-
nator. The coordinator must de-
cide whose mail to handle and
then start looking at it. Handle
Mailis the common activity of
sending and receiving mail,
printing messages, forwarding
messages and seeing the deliv-
ery status of messages sent. We
have provided function to man-
age stacks directly, since this was
part of the work of our users.
Some work, such as composing a
message to send, is sufficiently
complex that we created a sepa-
rate focus area so the user can
focusonitalone.

A typical think tank. An affinity
diagram is on the walls; work
models are on the back wall. A
user environmentdiagram s
being built on the table.

Project Organizotion and Manogement @ L

Ideas not chosen are not lost —: decloping
each idea, the groups are expected to pull
together i/ best parts of all the ideas.

@ Design your system as a system. Make
sure it hangs together before designing the
parls.

Divergent thinking. 'Throughout
the process we work Lo converge on a
single, shared understanding of the
customer. This is good for building
team consensus, but can be bad for
creative design. All this agreement
and harmony can limit the range of
solutions we consider.

To counteract this tendency, we
include activities designed to encour-
age divergent thinking—thinking as
widely and creatively about the prob-
lem as possible. The first time we do
this is after the affinity, when we
walk the affinity and brainstorm de-
sign ideas for each part. We do this
again here, before starting the Ul
design. Our purpose is to bring the
unconnected design ideas together
into a coherent solution, and to in-
vestigate a range of such solutions
before settling on one.

The team brainstorms ideas. As
each idea is suggested, we write it on
a flip chart, and the team develops it
until everyone can see the possibili-
ties. This takes 5 to 15 minutes for
each idea.

The team then divides into groups
of two to four people. Each group
takes one of the ideas to develop. We
choose the ideas by voting for those
most likely to make a good base for a
system design. We usually choose the
top vote getters, but might choose an
idea just because it is especially un-
conventional. Ideas not chosen are
not lost—in developing each idea,
the groups are expected to pull to-
gether the best parts of all the ideas.
(We borrowed aspects of future
workshops [12], Pugh matrices [19],
and traditonal brainstorming for
this process.)

When the teams have developed
their ideas for a half to a whole day,
we come back together and each

team presents their designs. We ex-
amine them for completeness and fit
with the user environment.

Where designs overlap, we con-
sider ways to merge them. Where
designs suggest interesting alterna-
tives, we do not try to merge them.
Instead, we take them to customers
and test them, providing better feed-
back for developing a single design
after the visits.

This brainstorming process is
good in several ways. First, it is fun.
We develop a lot of ideas very
quickly, and make lots of progress. It
breaks us out of the mold we have
allowed ourselves to set in. It allows
us to quickly test several ideas for our
system. And it allows us to think
about the system as a whole before
designing each part.

@ Stir things up now and again. Let
your team go wide, then bring them back
together.

Mapping to the Ul

The Ul is the presentation of the
user environment design on a given
platform. Our primary concern in
designing the Ul is having it realize
the user environment design and-
make working within the system con-
venient.

Each focus area describes a coher-
ent activity and is represented as a
coherent part of the interface. In a
windowing system this often means a
window, but may also mean a pane or
area of a window. The UI should say
to the user by its look and organiza-
tion, “here is the place to do this kind
of work.”

We test the design with paper pro-
totypes, inspired by Kyng [7, 14].
These are rough mockups of the Ul
which we take to the user’s workplace
and ask them to pretend it is a system
and to work with it. They are trying
out their real work using the proto-
type, so they can react as they would

COMMUNICATIONS OF THE aAcm Ocober 1993/ Vol.36, No.ll ‘m

1 @ Project Orgonizotion and Maonagement

to a real product. We observe and
probe in the same way as a contextual
interview.

We do not have to tell our users
what level of detail they should re-
spond to—the roughness of the pro-
totype does that. If we present a pro-
totype running on a computer, they
respond to details of the look and the
layout. If we present a hand-drawn
prototype on paper, they respond to
the structure and function in the sys-
tem.

We start with very rough proto-
types and encourage users to ex-
plore, trying to accomplish a task of
their own. When they ask if the sys-
tem does something, we design on
the spot: “Yes. How would you ex-
pect it to work? Show me.” The user
sees the design is incomplete and
open to change, and is drawn into
the design conversation. (This re-
quires designers to run the interview,
to respond appropriately and to de-
sign with the user.)

This kind of rough prototyping
tests our user environment design.
We can see whether the structure
and function we provide is useful.
Users can respond to the prototype
without learning the user environ-
ment language. The user environ-
ment design successfully predicts
how users will react to a given inter-
face. Where an interface is unfaithful
to the design we have found that
users reject it. For example, one in-
terface we tested merged focus areas
in the user environment design. The
users’ comments indicated they were
rejecting it because the interface
mixed unrelated work, just as pre-
dicted by the user environment de-
sign: “I don’t want to know all that—
take it away!”

As the user environment design
stabilizes, we start to care more about
the user interface. We build more
careful prototypes, and in our cus-
tomer interviews ask our users to live
with the limitations of the system we
designed. Finally, it becomes useful
to build and test running prototypes
that can evolve into the real system.

@ Structure your system first. Then make
it real in the user interface.

Iteration with customers. Customer
iteration is a powerful team design
technique. When we can produce an

idea, develop it, prototype it, test it
with customers, and validate, modify
or discard it within 48 hours, we can
stabilize a design very quickly.

When team members advocate
different design solutions and the
best is not clear from the customer
data, it is often more etficient to pro-
totype and test the alternatives than
to try to reach consensus in the team.
Team members let go of ideas more
easily when they see users react badly
to them than when another team
member rejects them.

We use customer iteration from
work modeling through system de-
livery. We visit new customers after
building abstract work models to en-
sure the abstraction holds for them.
We build rough prototypes of user
environment designs to test that our
system structure works. And we pro-
totype the Ul and early system ver-
sions to ensure we are being true to
our design and have not broken it in
the implementation.

Furthermore, the development
process itself is iterative (as recog-
nized by Boehm [2], Booch [3], and
others). The insights we gain from
working with users on prototypes
cause us to modify our understand-
ing of their work and our redesigned
work models. We get quickly to an
initial system design for a small part
of the problem, but return to earlier
steps to incorporate new information
and to expand the system to new

areas. The quick design of a part of
the system gives the team a sense of

accomplishment.

@ lterate with your customers. lterate,
tterate, iterate.

Conclusion

One participant in our design pro-
cess said to us afterward, “It was cool,
but it was also structured. I always
knew what to do.” Along with pro-
ducing good results, this should be
the test of any design process: it
should make people feel they can be
creative and move rapidly, but also
that, at every point, they know what
to do.

Too often, a methodology feels
like a straightjacket. Structure need
not conflict with creativity—in pro-
viding a clear path forward, the right
structure should set people free to be

102 October 1993/ Vol.36, No.ll COMMUNICATIONS OF THE ACM

creauve. loo often, this does not
happen. When we combine cus-
tomer-centered design with creative
team processes, we avoid this restric-
tiveness and good results can be
achieved. @

References

1. Beyer, H. and Holtzblau, K. Contex-
tual design: Toward a customer-
centered development process. Softw.
Dev. ’93 Spring Proceedings (Santa
Clara, Calif, Feb. 1993).

2. Bochm, B. A spiral model of software
development and enhancement.
IEEE Comput. 21 5 (1986), 61-72.

3. Booch, G. Object-oriented develop-
ment. JEEE Trans. Softw. Eng. SE-12
(1986).

4. Brassard, M. Memory fogger Plus,
GOAL/QPC, Methuen, Mass., 1989.

5. Carter, J. Jr. Combining task analysis
with software engineering for design-
ing interactive systems. In Taking Soft-
ware Design Seriously. |. Karat, Ed,
Academic Press, New York, 1991,
p- 209.

6. Ehn, P. and Kyng, M. Cardboard
computers: Mocking-it-up or hands-
on the future. In Design at Work.
J. Greenbaum and M. Kyng, Eds.,
Erlbaum, Hillsdale, N.J., 1991,
p- 169.

7. Ehn, P. and Sjégren, D. From system
deseriptions to scripts for action. In
Design at Work.]J. Greenbaum and
M. Kyng, Eds., Erlbaum, Hillsdale,
N.J., 1991, p. 241.

8. Greenbaum, |. and Kyng, M. Eds. De-
sign at Work: Cooperative Design of
Computer Systems. Erlbaum, Hillsdale,
N.J., 1991.

9. Holmqvist, B. and Andersen, P.B.
Language perspectives and design.
In Design at Work. J. Greenbaum and
M. Kyng, Eds., Erlbaum, Hillsdale,
N.J., 1991, p. 155.

10. Holtzblatt, K. and Jones, S. Contex-
wal Inquiry: A participatory tech-
nique for system design. Participatory
Design: Principles and Practice.
A. Namioka and D. Schuler, Eds.
Erlbaum, Hillsdale, N.J., 1993.

11. Keller, M. and Shumate, K. Software
Specification and Design. Wiley and
Sons, New York, 1992,

12. Kensing, F. and Madsen, K.H. Gen-
erating visions: Future workshops
and metaphorical design. In Design at
Work.]J. Greenbaum and M. Kyng,
Eds., Erlbaum, Hillsdale, N.J., 1991,
p. 155.

13. Knox, S., Bailey, W. and Lynch, E.
Directed dialog protocols: Verbal
data for user interface design. In
Human Factors in Computing Systems

CHI 89 Conference Proceedings (Aus-
tin, Tex. May 1989), p. 283.

Kyng, M. Designing for a dollar a
day. In Proceedings of CSCW'88: Con
ference of Computer-Supported Coopera-
tive Work (Portland Oreg.) ACM, New
York, pp. 178-188.

Martin, C. User-Centered Requirements
Analysis. Prentice-Hall, Englewood
Clifts, N.J., 1988.

Martin, J. and Odell, J. Object-Oriented
Analysis and Design. Prentice-Hall,
Englewood Cliffs, N.J., 1992, 121,
17. Muller, M., Wildman, D. and White,
D. Taxonomy of PI) practices: A brief
practitioner’s guide. Commun. ACM
36, 4 (June 1993).

Norman, D.A. and Draper, S.W,,

14

15

16

18

Eds. User Centered System Design.
Erlbaum, Hillsdale, New Jersey,
1986.

19. Pugh, S. Total Design. Addison-

Wesley, Reading, Mass., 1991.
Schuler, D. and Namioka, A. Eds
Participatory Design: Perspectives on Sys
tems Design. Erlbaum, Hillsdale, N.J.,
1993.

Seaton, P. and Stewart, T. Evolving
task oriented systems. Human Factors
in Computing Systems CHI 92 Confer-

20

21

ence Proceedings (Monterey, Calif.,
May 1992).
22. Whiteside, J., Bennew, J. and

Holtzblatt, K. Usability engineering:
Our experience and evolution. Hend-
book of Human Compuler Interaction.
M. Helander, Ed., North Holland,
New York, 1988.

Wood, J. and Silver, D. Joint Applica-
tion Design. Wiley and Sons, New
York, 1989.

23

CR Categories and Subject Descrip-
tors: K.6.1 [Management of Computing
and Information Systems]: Project and
People Management—training; K.6.3
[Management of Computing and Infor-
mation Systems|: Software Development;
K.7.2 [The Computing Profession|: Or-
ganizations

General Terms: Management
Additional Key Words and Phrases:
Contextual design, Contextual Inquiry

About the Authors:

KAREN HOLTZBLATT is co-founder of
InContext Enterprises Inc., a firm spe-
cializing in coaching teams in customer-
centered product design. Current inter-
ests include the creation of methods for
design from customer data appropriate to
varied organizations, products, and team
structures.

HUGH BEYER s co-founder of In
Context Enterprises, Inc. Current inter-
ests include the use of explicit customer-
centered systems design o drive object-
oriented methods. Authors’ Present
Address: InContext Enterprises, Inc., 30
Magnolia Road, Sudbury, MA 01776;
email: {karen, beyerf@acm.org

Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for dircct commercial advantage,
the ACM copyright notice and the title of the publi-
cation and its date appear, and notice is give that
copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission

© ACM 0002-0782/93/1000-092 $1.50

COMMUNICATIONS OF THE ACM Uoober 19937 Vol db, Nodt Io:

