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General Course References (Advanced) 
•  R  

–  Practical Regression and Anova using R,  http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf  ,by JJ 
Faraway  (please download PDF) 

–  John Fox (2010), Sage, An R and S-PLUS Companion to Applied Regression (second edition, PDFs) 
•  Preface to the book,   Chapter 1 - Getting Started With R (PDFs available) 
•  Chapter 6 - Diagnosing Problems in Linear and Generalized Linear Models 

–  The R book, by Michael J. Crawley, Wiley 2009  

•  Linear Regression 
–  Analyzing Multivariate Data by James Lattin, J. Douglas Carroll, Paul E. Green. Thompson 

2003.ISBN: 0-534-349749  
–  Introduction to Linear Regression Analysis. D. Montgomery, E. Peck.  GG Vining (4th Edition) 

•  Data mining 
–  TSK   Introduction to Data Mining, Pang-ning Tan, Michael Steinbach, Vipin Kumar. Addison Wesley 

2005. ISBN: 0-321-32136-7 

•  Machine Learning, probability theory 
–  Duda, Hart, & Stork (2000). Pattern Classification. http://rii.ricoh.com/~stork/DHS.html 
–  Modern Multivariate Statistical Techniques: Regression, Classification, and manifold Learning, Alan 

Julian Izenman, Springer, 2008, ISBN 978-0-387-78188-4  
–  Pattern Recognition and Machine Learning, Christopher M. Bishop, Springer 
–  Elements of Machine Learning, Friedman et al., 2009, Download from here

http://www-stat.stanford.edu/~tibs/ElemStatLearn/download.html  

•  General AI 
–  Artificial Intelligence: A Modern Approach (Third edition) by Stuart Russell and Peter Norvig. 
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Lecture Outline 

•  Linear Regression: a brief intro 
•  A quick statistics review 

–  Mean, expected value, variance, stdev, quantiles, stats in R 

•  Locally Weighted Linear Regression 
•  Exploratory Data Analysis 
•  Simple Linear Regression 

–  Normal Equations 
–  Closed form Solution 
–  Variance of the estimators 

•  Good model? 
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Regression and Model Building 
•  Regression analysis is a statistical technique for 

investigating and modeling the relationship between 
variables. 
–  Assume two variables, x and y. Model relationship as y~x (aka y =f

(x)) as a linear relationship  
•  y=β0

 + β1x  
–  Not a perfect fit generally; Account for difference between model 

prediction and the actual target value as a statistical error ε 
•  y=β0

 + β1x + ε         #This is a linear regression model 
–  This error ε maybe made up of the effects of other variables, 

measurement errors and so forth 
–  Customarily x is called the independent variable (aka predictor or 

regressor) and y the dependent variable (aka response variable) 
–  Simple linear regression involves only one regressor variable 
–  Suppose we can fix the value of x and observe the corresponding 

value of the response y. Now if x is fixed, the random component ε 
determines the properties of y  
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     The simple linear 
regression model posits an 
exact l inear re lat ionship 
between the expected or 
average va lue of Y, the 
dependent variable Y, and X, 
the independent or predictor 
variable:     

 µy|x= α+β x 
 

       Actual observed values of 
Y (y) differ from the expected 
value (µy|x ) by an unexplained 
or random error(ε): 
 
             y =  µy|x      +  ε 
            = α+β x +  ε  

X 

Y 

µy|x=α + β x 

x 

}} β = Slope 

1 

y { Error: ε 

Regression Plot 

Simple Linear Regression Model 

0 

{α = Intercept 
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ε determines the properties of the response y 

•  Suppose we can fix the value of x and observe the 
corresponding value of the response y. Now if x is fixed, the 
random component ε determines the properties of y.  

•  Suppose the mean and variance of  ε are 0 and σ2, respectively. 
Then the mean response at any value of the regressor variable 
(x) is  
•  E(y|x) = µy|x=E(β0 + β1 x + ε) = β0 + β1 x  

•  The variance of y given any value x is 
•  Var(y|x) =  σy|x

2 = Var(β0 + β1 x + ε) = σ2 
–  The variability of y at a particular value of x is determined by the 

variance of the error component of the model σ2. This implies 
that there is a distribution of y values at each x and the variance 
of this distribution is the same at each x 

–  Small σ2 implies the observed values y will fall close to the line. 
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•  The relationship between X 
and Y is a straight-Line (linear) 
relationship. 

•  The values of the independent 
variable X are assumed fixed 
(not random); the only 
randomness in the values of Y 
comes from the error term ε. 

•  The errors ε are uncorrelated 
(i.e. Independent) in 
successive observations. The 
errors ε are Normally 
distributed with mean 0 and 
variance σ2(Equal variance). 
That is:    ε~ N(0,σ2) 

X 

Y 
LINE assumptions of the Simple 

Linear Regression Model 

Identical normal 
distributions of errors, 
all centered on the 
regression line. 

Assumptions of the Simple Linear Regression Model 

µy|x=α + β x 

x 

y 

y~N(µy|x, σy|x
2) 
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Example 

•  Let y be a student’s college achievement, 
measured by his/her GPA. This might be a 
function of several variables: 
–  x1 = rank in high school  class 
–  x2 = high school’s overall rating 
–  x3 = high school GPA 
–  x4 = SAT scores 

•  We want to predict y using knowledge of x1, 
x2, x3 and x4. 
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Some Questions 

•  Which of the independent variables are useful 
and which are not? 

•  How could we create a prediction equation to 
allow us to predict y using knowledge of x1, 
x2, x3 etc? 

•  How good is this prediction? 

We start with the simplest case, in which the 
response y is a function of a single 
independent variable, x. 
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A Simple Linear Model 

•  We use the equation of a line to 
describe the relationship between y 
and x for a sample of n pairs, (x, y). 

•  If we want to describe the relationship 
between y and x for the whole 
population, there are two models we 
can choose 

• Deterministic Model: y = β0 + β1 x 
• Probabilistic Model:  

– y = deterministic model + random error 
– y = β0 + β1 x + ε 
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A Simple Linear Model 

•  Since the measurements that we observe 
do not generally fall exactly on a straight 
line, we choose to use: 

•  Probabilistic Model:  
–  y = β0 + β1x + ε	

–  E(y) = β0 + β1x  

Points deviate from the  
line of means by an amount 
ε where ε has a normal 
distribution with mean 0 and 
variance σ2. 
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The Random Error 

p The line of means, E(y) = α + βx , describes average 
value of y for any fixed value of x.  

p The population of measurements is generated as y 
deviates from  
 the population line  
 by ε. We estimate α	

	
and β using sample 
 information. 
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Linear Regression App 
•  http://www.duxbury.com/

authors/mcclellandg/tiein/
johnson/reg.htm 

•  Play with App to see the 
relationship between R^2 
and the error 
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Simple Linear Regression in R 
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http://www-stat.stanford.edu/~jtaylo/courses/stats203/R/
introduction/introduction.R.html  
heights.table <- read.table('http://www-stat.stanford.edu/
~jtaylo/courses/stats203/data/heights.table', header=T, 
sep=',') 
attach(heights.table) 
 
# wife's height vs. husband's height 
plot(heights.table, pch=23, bg='red', cex=2, lwd=2) 
 
# Fit model 
 
wife.lm <- lm(WIFE ~ HUSBAND) 
print(summary(wife.lm)) 
 
# with fitted line 
plot(heights.table, pch=23, bg='red', cex=2, lwd=2) 
abline(wife.lm$coef, lwd=2, col='orange') 
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R Example: Simple Linear Regression 
•  ### Download the data and tell R where to find the variables by attaching it 

 
heights.table <- read.table('http://www-stat.stanford.edu/~jtaylo/courses/stats203/data/heights.table', 
header=T, sep=',') 
attach(heights.table) 
 
# wife's height vs. husband's height 
plot(heights.table, pch=23, bg='red', cex=2, lwd=2) 
 
# Fit model 
wife.lm <- lm(WIFE ~ HUSBAND) 
print(summary(wife.lm)) 
 
# with fitted line 
plot(heights.table, pch=23, bg='red', cex=2, lwd=2) 
abline(wife.lm$coef, lwd=2, col='orange') 
 
### Some other aspects of R 
 
# Take a look at the variable names 
names(heights.table) 
# Estimate beta.1 using S_xx and S_yx 
 
num <- cov(HUSBAND, WIFE) # = S_xx / (n-1) 
den <- var(HUSBAND) # = S_yx / (n-1) 
print(num/den) 
# Get predicted values (Y.hat) 
 
wife.hat <- predict(wife.lm) 
# Two different ways of getting residuals 
wife.resid1 <- WIFE - predict(wife.lm) 
wife.resid2 <- resid(wife.lm) 
 
# Computing sample variance by hand 
 
husband.var <- sum((HUSBAND - mean(HUSBAND))^2) / (length(HUSBAND) - 1) 
print(c(var(HUSBAND), husband.var)) 
 
# Estimating sigma.sq 
 
S2 <- sum(resid(wife.lm)^2) / wife.lm$df 
print(sqrt(S2)) 
print(sqrt(sum(resid(wife.lm)^2) / (length(WIFE) - 2))) 
print(summary(wife.lm)$sigma) 
 
# What else is in summary(wife.lm)? 
 
print(names(summary(wife.lm))) 

http://www-stat.stanford.edu/
~jtaylo/courses/stats203/R/
introduction/introduction.R.html   
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Residuals 

•  # Get predicted values (Y.hat) 
 
wife.hat <- predict(wife.lm) 
 
# Two different ways of getting residuals 
 
wife.resid1 <- WIFE - predict(wife.lm) 
wife.resid2 <- resid(wife.lm) 
 
# Computing sample variance by hand 
 
husband.var <- sum((HUSBAND - mean(HUSBAND))^2) / (length(HUSBAND) - 1) 
print(c(var(HUSBAND), husband.var)) 
 
# Estimating sigma.sq 
 
S2 <- sum(resid(wife.lm)^2) / wife.lm$df 
print(sqrt(S2)) 
print(sqrt(sum(resid(wife.lm)^2) / (length(WIFE) - 2))) 
print(summary(wife.lm)$sigma) 
 
# What else is in summary(wife.lm)? 
 
print(names(summary(wife.lm))) 
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Linear Regression in R : WWW 

•  R Homepage 
•  R Download Page 
•  Using R in Statistics 

•  Dataframes, distributions etc. in R 

•  http://msenux.redwoods.edu/math/R/ 

•  Linear Regression in R  
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Lecture Outline 

•  Linear Regression: a brief intro 
•  A quick statistics review 

–  Mean, expected value, variance, stdev, quantiles, stats in R 

•  Locally Weighted Linear Regression 
•  Exploratory Data Analysis 
•  Simple Linear Regression 

–  Normal Equations 
–  Closed form Solution 
–  Variance of the estimators 

•  Good model? 
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Scales of Measurement 
•  All measurement in science was 

conducted using four different types 
of scales that he called "nominal", 
"ordinal", "interval" and "ratio” 

•  In general, many unobservable 
psychological qualities (e.g., 
extraversion), are measured on 
interval scales 

•  We will mostly concern ourselves 
with the simple categorical 
(nominal) versus continuous 
distinction (ordinal, interval, ratio) 

•  Check out  
–  http://en.wikipedia.org/wiki/

Level_of_measurement   

categorical continuous 

ordinal 

interval 

ratio 

variables 
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Summarizing Data 
•  Data are a bunch of values of one or more variables. 
•  A variable is something that has different values. 

–  Values can be numbers or names, depending on the variable: 

• Numeric, e.g. weight 
• Counting, e.g. number of injuries 
• Ordinal, e.g. competitive level (values are 

numbers/names) 
• Nominal, e.g. sex (values are names 

–  When values are numbers,  visualize the distribution of all values in 
stem and leaf plots or in a frequency histogram. 

•  Can also use normal probability plots to visualize how 
well the values fit a normal distribution. 

–  When values are names, visualize the frequency of each value with 
a pie chart or a just a list of values and frequencies. 
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•  A statistic is a number summarizing a bunch of values. 
–  Simple or univariate statistics summarize values of one variable. 
–  Effect or outcome statistics summarize the relationship between 

values of two or more variables. 

•  Simple statistics for numeric variables… 
–  Mean: the average 
–  Standard deviation: the typical variation 
–  Standard error of the mean: the typical variation in the mean with 

repeated sampling 

• Multiply by √(sample size) to convert to standard 
deviation. 

–  Use these also for counting and ordinal variables. 
–  Use median (middle value or 50th percentile) and quartiles (25th and 

75th percentiles) for grossly non-normally distributed data. 
–  Summarize these and other simple statistics visually with box and 

whisker plots. 
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•  Simple statistics for nominal variables 
–  Frequencies, proportions, or odds. 
–  Can also use these for ordinal variables. 

•  Effect statistics… 
–  Derived from statistical model (equation) of the form 

   Y (dependent) vs X (predictor or independent). 
–  Depend on type of Y and X .  Main ones: 

Y X Effect statistics Model/Test 
numeric numeric slope, intercept, correlation  regression 
numeric nominal 
nominal nominal 
nominal numeric 

mean difference 
frequency difference or ratio 
frequency ratio per…  

t test, ANOVA  
chi-square 
categorical 
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Ordinal Measurement 

•  Ordinal: Designates an ordering; quasi-ranking 
–  Does not assume that the intervals between numbers are equal. 
–  finishing place in a race (first place, second place) 

1 hour  2 hours  3 hours  4 hours  5 hours  6 hours  7 hours  8 hours 

1st place 2nd place 3rd place 4th place 
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Interval and Ratio Measurement 

•  Interval: designates an equal-interval ordering 
–  The distance between, for example, a 1 and a 2 is the same as 

the distance between a 4 and a 5 
–  Example: Common IQ tests are assumed to use an interval 

metric 

•  Ratio: designates an equal-interval ordering with a 
true zero point (i.e., the zero implies an absence of 
the thing being measured) 
–  Example: number of intimate relationships a person has had 

•  0 quite literally means none 
•  a person who has had 4 relationships has had twice as many 

as someone who has had 2 
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Statististics: Enquiry to the unknown 
Population Sample 
Parameter Estimate 

http://www.stats.gla.ac.uk/steps/glossary/basic_definitions.html#stat  

Parameter A parameter is a value, usually unknown (and which therefore has to be estimated), used 
to represent a certain population characteristic. For example, the population mean is a parameter that 
is often used to indicate the average value of a quantity. 
 
Within a population, a parameter is a fixed value which does not vary. Each sample drawn from the 
population has its own value of any statistic that is used to estimate this parameter. For example, the 
mean of the data in a sample is used to give information about the overall mean in the population from 
which that sample was drawn. 
 
Statistic: A statistic is a quantity that is calculated from a sample of data. It is used to give information 
about unknown values in the corresponding population. For example, the average of the data in a 
sample is used to give information about the overall average in the population from which that sample 
was drawn. 
 
It is possible to draw more than one sample from the same population and the value of a statistic will 
in general vary from sample to sample. For example, the average value in a sample is a statistic. The 
average values in more than one sample, drawn from the same population, will not necessarily be 
equal. 
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Estimate the population mean 

Population height mean = 160 cm 
Standard deviation = 5.0 cm 

ht <- rnorm(10, mean=160, sd=5) 
mean(ht) 
 
ht <- rnorm(10, mean=160, sd=5) 
mean(ht) 
 
ht <- rnorm(100, mean=160, sd=5) 
mean(ht) 
 
ht <- rnorm(1000, mean=160, sd=5) 
mean(ht) 
 
ht <- rnorm(10000, mean=160, sd=5) 
mean(ht) 
hist(ht) 

The larger the sample, the more accurate the estimate is! 
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Estimate the population proportion 

Population proportion of males = 0.50  
Take n samples, record the number of k males 

rbinom(n, k, prob) 

males <- rbinom(10, 10, 0.5) 
males  
mean(males) 
 

males <- rbinom(20, 100, 0.5) 
males 
mean(males) 
 
males <- rbinom(1000, 100, 0.5) 
males 
mean(males) 
 
 The larger the sample, the more accurate the estimate is! 
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Summary of Continuous Data 

•  Measures of central tendency: 
–  Mean, median, mode 

•  Measures of dispersion or variability: 
–  Variance, standard deviation, standard error 
–  Interquartile range 

 
R commands 

length(x), mean(x), median(x), var(x), sd(x) 
summary(x), quantile(x) 
 
full.deciles<-quantile(x,probs=seq(0,1,by=.1)) 
# now we’re interested in each 10% cutoff, not just the quarters 
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R example 

height <- rnorm(1000, mean=55, sd=8.2) 
mean(height) 
[1] 55.30948 
 
median(height) 
[1] 55.018 
 
var(height) 
[1] 68.02786 
 
sd(height) 
[1] 8.2479 
 
summary(height) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  28.34   49.97   55.02   55.31   60.78   85.05  
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Graphical Summary: Box plot 
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boxplot(height) 

95% percentile 
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5% percentile 

Median, 50% perc. 
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Strip chart 

30 40 50 60 70 80

stripchart(height) 



Berkeley I 296 A Data Science and Analytics Thought Leaders©  2011 James G. Shanahan      James.Shanahan_AT_gmail.com 32 

Histogram 
Histogram of height
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Expected Value (weighted average) 
•  Definition (informal) 

–  The expected value of a random variable X is the weighted average of 
the values that X can take on, where each possible value is weighted 
by its respective probability.  

–  The expected value of a random variable X is denoted by E(X) and it is 
often called the expectation of or the mean of X.  

•  In probability theory, the expected value (or expectation, 
or mathematical expectation, or mean, or the first 
moment) of a random variable is the weighted average of 
all possible values that this random variable can take on.  
–  The weights used in computing this average correspond to the 

probabilities in case of a discrete random variable, or densities in case 
of a continuous random variable.  

–  From a rigorous theoretical standpoint, the expected value is the 
integral of the random variable with respect to its probability measure. 
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Expected Value for Discrete Variable 

EP(x)[X] 
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Expected Value wrt  
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More Generally.. 
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Variance 
•  In probability theory and statistics, the variance is a measure of how far 

a set of numbers are spread out from each other. It is one of several 
descriptors of a probability distribution, describing how far the numbers 
lie from the mean (expected value).  
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Variance of a Fair Dice 
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Standard Deviation 

•  Standard deviation is a widely used measure of variability 
or diversity used in statistics and probability theory. It 
shows how much variation or "dispersion" there is from the 
average (mean, or expected value). A low standard 
deviation indicates that the data points tend to be very 
close to the mean, whereas high standard deviation 
indicates that the data points are spread out over a large 
range of values. 

•  The standard deviation of a statistical population, data set, 
or probability distribution is the square root of its variance. 
It is algebraically simpler though practically less robust 
than the average absolute deviation.[1][2]  

•  A useful property of standard deviation is that, unlike 
variance, it is expressed in the same units as the data. 



Berkeley I 296 A Data Science and Analytics Thought Leaders©  2011 James G. Shanahan      James.Shanahan_AT_gmail.com 40 

Implications of the mean and SD 

•  “In the Vietnamese population aged 30+ years, the 
average of weight was 55.0 kg, with the SD being 8.2 
kg.” 

•  What does this mean?  

•  68% individuals will have height between 55 +/- 8.2*1 
= 46.8 to 63.2 kg 

•  95% individuals will have height between 55 +/- 
8.2*1.96 = 38.9 to 71.1 kg 
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Implications of the mean and SD 

•  The distribution of weight of the entire population can 
be shown to be: 
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The	  Gaussian	  Distribu/on	  
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Gaussian	  Mean	  and	  Variance	  
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The	  Mul/variate	  Gaussian	  
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Distributions in R 
•  http://msenux.redwoods.edu/math/R/StandardNormal.php  
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•  If you'd like a more detailed introduction to plotting in R, 
we refer you to the activity Simple Plotting in R.  

•  However, these commands are simply explained. 
–  The command x=seq(-4,4,length=200) produces 200 equally spaced 

values between -4 and 4 and stores the result in a vector assigned to 
the variable x. 

–  The command y=1/sqrt(2*pi)*exp(-x^2/2) evaluates the probability 
density function of Figure 2 at each entry of the vector x and stores the 
result in a vector assigned to the variable y. 

–  The command plot(x,y,type="l",lwd=2,col="red") plots y versus x, using: 
–  a solid line type (type="l") --- that's an "el", not an I (eye) or a 1 (one), 
–  a line width of 2 points (lwd=2), and  
–  uses the color red (col="red").  

x=seq(-4,4,length=200)  
y=1/sqrt(2*pi)*exp(-x^2/2)  
plot(x,y,type="l",lwd=2,col="red")  
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Standard Normal Distribution 

The bell-shaped curve of the standard normal distribution. 

x=seq(-4,4,length=200)  
y=1/sqrt(2*pi)*exp(-x^2/2)  
plot(x,y,type="l",lwd=2,col="red")  
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dnorm () as a An Alternate Approach 
 

•  An Alternate Approach 
•  The command dnorm can be used to produce the 

same result as the probability density function of 
Figure 2.  

•  Indeed, the "d" in dnorm stands for "density." 
Thus, the command dnorm is designed to provide 
values of the probability density function for the 
normal distribution.  

x=seq(-4,4,length=200)  
y=1/sqrt(2*pi)*exp(-x^2/2)  
plot(x,y,type="l",lwd=2,col="red")  

x=seq(-4,4,length=200)  
y=dnorm(x,mean=0,sd=1)  
plot(x,y,type="l",lwd=2,col="red")  
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Area Under the PDF 
•  Like all probability density functions, the standard normal 

curves possess two very important properties: 
1.  The graph of the probability density function lies entirely above the x-

axis. That is, f(x) ≥ 0 for all x. 
2.  The area under the curve (and above the x-axis) on its full domain is 

equal to 1.  

•  The probability of selecting a number between x = a and x 
= b is equal to the area under the curve from x = a to x = b.  
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pnorm() 

•  If the total area under the curve equals 1, then by 
symmetry one would expect that the area under the 
curve to the left of x = 0 would equal 0.5.  

•  R has a command called pnorm (the "p" is for 
"probability") which is designed to capture this 
probability (area under the curve). 

 
•  Note that the syntax is strikingly similar to the syntax 

for the density function. The command pnorm(x, 
mean = , sd = ) will find the area under the normal 
curve to the left of the number x. Note that we use 
mean=0 and sd=1, the mean and density of the 
standard normal distribution. 

pnorm(0, mean=0, sd=1)  
[1] 0.5  
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polygon() 
x=seq(-4,4,length=200) > y=dnorm(x)  
plot(x,y,type="l", lwd=2, col="blue")  
x=seq(-4,1,length=200)  
y=dnorm(x)   
polygon(c(-4,x,1),c(0,y,0),col="gray") 

For help on the polygon command enter  
•  ?polygon  
•  and read the resulting help file.  
•  However, the basic idea is pretty 

simple.  
•  In the syntax polygon(x,y), the 

argument x contains the x-
coordinates of the vertices of the 
polygon you wish to draw.  

•  Similarly, the argument y contains the 
y-coordinates of the vertices of the 
desired polygon. 
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Exercise 

•  Plot this graph 
•  What is the area of the shaded area? 
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Exercise Solution 

•  Plot this graph 
•  What is the area of the shaded area? 

68%-95%-99.7% Rule 
The 68% - 95% - 99.7% is a rule of thumb that allows practitioners of 
statistics to estimate the probability that a randomly selected number 
from the standard normal distribution occurs within 1, 2, and 3 standard 
deviations of the mean at zero. 
Let's first examine the probability that a randomly selected number from 
the standard normal distribution occurs within one standard deviation 
of the mean. This probability is represented by the area under the 
standard normal curve between x = -1 and x = 1, pictured in the above 
Figure. 
 
x=seq(-4,4,length=200)  
y=dnorm(x)  
plot(x,y,type="l", lwd=2, col="blue")  
x=seq(-1,1,length=100) > y=dnorm(x)  
polygon(c(-1,x,1),c(0,y,0),col="gray")  
 
pnorm(1,mean=0,sd=1)-pnorm(-1,mean=0,sd=1)  
[1] 0.6826895 
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Quantiles 
•  Sometimes the opposite question is asked. That is, 

suppose that the area under the curve to the left of some 
unknown number is known. What is the unknown 
number?  

•  For example, suppose that the area under the curve to the 
left of some unknown x-value is 0.85, as shown in Figure 

To find the unknown value of x we 
use R's qnorm command (the "q" is 
for "quantile"). 
 
> qnorm(0.95,mean=0,sd=1) 
[1] 1.644854 
 
Hence, there is a 95% probability 
that a random number less than or 
equal to 1.644854 is chosen from 
the standard normal distribution. 
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pnorm() vs qnorm() 

•  In a sense, R's pnorm and qnorm commands play 
the roles of inverse functions.  

•  On one hand, the command pnorm is fed a 
number and asked to find the probability that a 
random selection from the standard normal 
distribution falls to the left of this number.  

•  On the other hand, the command qnorm is given 
the probability and asked to find a limiting 
number so that the area under the curve to the 
left of that number equals the given probability. 
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The Standard Deviation 
•  The standard deviation represents the "spread" in the 

distribution. With "spread" as the interpretation, we would 
expect a normal distribution with a standard deviation of 2 
to be "more spread out" than a normal distribution with a 
standard deviation of 1.  

•  Let's simulate this idea in R. 

x=seq(-8,8,length=500) 
y1=dnorm(x,mean=0,sd=1) 
plot(x,y1,type="l",lwd=2,col="red") 
 
y2=dnorm(x,mean=0,sd=2) 
lines(x,y2,type="l",lwd=2,col="blue") 
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Lecture Outline 

•  Linear Regression: a brief intro 
•  A quick statistics review 

–  Mean, expected value, variance, stdev, quantiles, stats in R 

•  Locally Weighted Linear Regression 
•  Exploratory Data Analysis 
•  Simple Linear Regression 

–  Normal Equations 
–  Closed form Solution 
–  Variance of the estimators 

•  Good model? 
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Kernel Density Estimation 
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Parametric vs. Non-Parametric ML Algorithms 
•  Parametric ML Algorithms (e.g., OLS, Decision Trees; 

SVMs) 
–  The linear regression algorithm that we saw earlier is known as a 

parametric learning algorithm, because it has a fixed, finite number of 
parameters (the Wi’s), which are fit to the data.  

–  Once we’ve fit the Wi’s and stored them away, we no longer need to 
keep the training data around to make future predictions.  

•  Non-Parametric (lowess(); knn; some flavours SVMs) 
–  In contrast, to make predictions using locally weighted linear 

regression, we need to keep the entire training set around.  
–  The term “non-parametric” (roughly) refers to the fact that the amount 

of stuff we need to keep in order to  represent the hypothesis/model 
grows linearly with the size of the training set. 
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Locally Weighted Linear Regression 

•  Locally Weighted (Linear) Regression (LWR): 
–  k-NN forms local approximation for each query point xq 
–  Why not form an explicit approximation f^(x) for region 

surrounding xq	
•  Fit linear function to k nearest neighbors  
•  Fit quadratic, ... 
•  Thus producing ``piecewise approximation''  to  f	

–  Minimize error over k nearest neighbors of xq	
–  Minimize error entire set of examples, weighting by distances 
–  Combine two above 

•  Non-parametric approach 

Non-parametric approach 
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Locally Weighted Linear Regression 

•  Local linear function:  
   f(x)=w0+  w1a1(x)+…+  wnan(x)	

•  Error criterions: 

•  Combine E1(xq) and E2(xq)	
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Locally Weighted Linear Regression 

How it works 

•  For each point (xk,  yk) compute wk	

•  Let WX  =  Diag(w1,w2,…,wn)X	

•  Let WY  =  Diag(w1,w2,…,wn)Y	

•  β  =  (WXTWX-‐‑1)(WXTWY) 
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Kernel regression 

•  aka locally weighted regression, locally linear 
regression, LOESS, … 
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LWR Example 
 f1 (OLS regression) 

Training data 

Predicted value using locally weighted (piece-wise) regression 

Predicted value using simple regression 

  

[Yike Guo, Advanced Knowledge Management, 2000] 

Locally-weighted regression 
(f3) 

Locally-weighted regression (f2) 
         Locally-weighted 

regression (f4) 
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LWR in R: lowess() or loess() 

library(cars)  
# formula method  
plot(dist ~ speed, data=cars, main = "lowess(cars)")  
lines(lowess(dist ~ speed, data=cars), col = 2)  
lines(lowess(dist ~ speed, data=cars, f=.2), col = 3)  
legend(5, 120, c(paste("f = ", c("2/3", ".2"))), lty = 1, col = 2:3)  

Note f is the smoother span. This 
gives the proportion of points in the 
plot which influence the smooth at 
each value. Larger values give more 
smoothness. 
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Lowess and Scatterplot Examples 
example.lowess = function(){ 
      
  #EXAMPLE 1     
  library(cars)  
  # formula method  
  plot(dist ~ speed, data=cars, main = "lowess(cars)")  
  lines(lowess(dist ~ speed, data=cars), col = 2)  
  lines(lowess(dist ~ speed, data=cars, f=.2), col = 3)  
  legend(5, 120, c(paste("f = ", c("2/3", ".2"))), lty = 1, col = 2:3)  
 
  #EXAMPLE 2 
  library(car) 
  attach( Prestige ) 
  plot( income , prestige ) 
  #click on examples to see lables; right click and select STOP to quit pointer mode 
  identify( income, prestige, rownames(Prestige), xpd = T) 
 
  lines ( lowess( income, prestige) col=2)            # use the defaults 
  lines ( lowess( income, prestige, f = 1/10), c=3)  # use smaller span (fraction of data) 
  lines ( lowess( income, prestige, f = 9/10), col=4)  # use larger span 
  legend(5, 80, c(paste("f = ", c("2/3", ".1", 0.9))), lty = 1, col = 2:4)  
 
  #EXAMPLE 3 
  # robust fits for all pairs of variables 
  #excellent way to examine pairs of variables 
  ?scatterplot.matrix 
  scatterplot.matrix( Prestige ) 
  scatterplot.matrix( Prestige , span= .1) 
  detach( Prestige ) 
} 
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LWR Examples 

•  Loess examples 
–  http://cran.r-project.org/doc/contrib/Fox-Companion/

appendix-nonparametric-regression.pdf   
–  http://wiki.math.yorku.ca/images/a/a5/Math6630Fox-

Chap18.R  
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Lecture Outline 

•  Linear Regression: a brief intro 
•  A quick statistics review 

–  Mean, expected value, variance, stdev, quantiles, stats in R 

•  Locally Weighted Linear Regression 
•  Exploratory Data Analysis 
•  Simple Linear Regression 

–  Normal Equations 
–  Closed form Solution 
–  Variance of the estimators 

•  Good model? 
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Exploratory Data Analysis: rug, density 

Histogram of income

income
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##-------------------------------------------------------## 
## An R Companion to Applied Regression, Second Edition  ## 
##    Script for Chapter 3                               ## 
##                                                       ## 
##    John Fox and Sanford Weisberg                      ## 
##    Sage Publications, 2011                            ## 
##-------------------------------------------------------## 
 
 
options(show.signif.stars=FALSE) 
 
library(car) 
head(Prestige) # first 6 rows 
with(Prestige, hist(income)) 
with(Prestige, hist(income, breaks="FD", col="gray")) 
box() 
 
args(hist.default) 
 

with(Prestige, { 
   hist(income, breaks="FD", freq=FALSE, ylab="Density") 
   lines(density(income), lwd=2) 
   lines(density(income, adjust=0.5), lwd=1) 
   rug(income) 
   box() 
}) 
with(Prestige, qqPlot(income, labels=row.names(Prestige), id.n=3)) 
set.seed(124) # for reproducibility 
qqPlot(rchisq(100, 3), distribution="chisq", df=3) 
Boxplot(~ income, data=Prestige) 
with(Prestige, plot(income, prestige)) 
scatterplot(prestige ~ income, span=0.6, lwd=3, 
    id.n=4, data=Prestige) 
scatterplot(prestige ~ income | type, data=Prestige, boxplots=FALSE, 
             span=0.75, col=gray(c(0, .25, .5)), id.n=0) 
 
head(Vocab) 
nrow(Vocab) 
plot(vocabulary ~ education, data=Vocab) 
plot(jitter(vocabulary) ~ jitter(education), data= Vocab) 
plot(jitter(vocabulary, factor=2) ~ jitter(education, factor=2), 
    col="gray", cex=0.5, data=Vocab) 
with(Vocab, { 
    abline(lm(vocabulary ~ education), lwd=3, lty="dashed") 
    lines(lowess(education, vocabulary, f=0.2), lwd=3) 
    }) 
 
 
set.seed(1234) # to reproduce results in the text 
 
some(Ornstein) # sample 10 rows 
nrow(Ornstein) 
Boxplot(interlocks ~ nation, data=Ornstein, main="(a)") 
library(plotrix) 
means <- with(Ornstein, tapply(interlocks, nation, mean)) 
sds <- with(Ornstein, tapply(interlocks, nation, sd)) 
plotCI(1:4, means, sds, xaxt="n", xlab="Nation of Control", 
    ylab="interlocks", main="(b)", ylim=c(0, 100)) 
lines(1:4, means) 
axis(1, at=1:4, labels = names(means)) 
 
scatter3d(prestige ~ income + education, id.n=3, data=Duncan) 
 
scatterplotMatrix(~ prestige + income + education + women, 
    span=0.7, id.n=0, data=Prestige) 
log(7) # natural logarithm 
log10(7) # base-10 logarithm 
log2(7) # base-2 logarithm 
log2(7)/log2(exp(1)) # again the natural logarithm 
log(7, base=10)  # equivalent to log10(7) 
logb(7, 10) 
par(mfrow=c(1, 2)) 
with(Ornstein, plot(density(assets), xlab="assets", main="(a)")) 
with(Ornstein, plot(density(log10(assets)), 
     xlab="base-10 log of assets", main="(b)")) 
par(mfrow=c(1,1)) 
scatterplot(infant.mortality ~ gdp, data=UN, xlab="GDP per Capita", 
     ylab="Infant Mortality Rate (per 1000 births)", main="(a)", 
     boxplot=FALSE) 
scatterplot(infant.mortality ~ gdp, data=UN, xlab="GDP per capita", 
     ylab="Infant Mortality Rate (per 1000 births)", main="(b)", 
     log="xy", boxplots=FALSE, id.n=4) 
lm(log(infant.mortality) ~ log(gdp), data=UN) 
bcPower(1:5, 0.5) 
yjPower(-5:5, 0.5) 
symbox(~ gdp, data=UN) 
asin(sqrt(seq(0, 1, length=11))) 
 
logit(seq(0.1, 0.9, 0.1)) 
logit(seq(0, 1, 0.1)) 
par(mfrow=c(1, 3)) 
with(Prestige, { 
    plot(density(women, from=0, to=100), 
        main="(a) Untransformed") 
    plot(density(logit(women), adjust=0.75), 
        main="(b) Logit") 
    plot(density(asin(sqrt(women/100)), 
        adjust=0.75), main="(c) Arcsine square-root") 
}) 
par(mfrow=c(1, 1)) 
 
spreadLevelPlot(interlocks + 1 ~ nation, Ornstein) 
oldmar <- par(mar=c(5.1, 4.1, 4.1, 4.1)) 
Boxplot(log10(interlocks + 1) ~ nation, data=Ornstein) 
basicPowerAxis(power=0, base=10, at=c(1, 3, 6, 11, 21, 51, 101), 
     start=1, axis.title="Interlocks") 
par(oldmar) 
par(mfrow=c(1, 2)) 
invTranPlot(prestige ~ income, data=Prestige, lwd=2, 
    xlab="income", main="(a)", col.lines=gray((0:3)/6)) 
plot(prestige ~ I(income^(1/3)), data=Prestige, 
    xlab=expression(income^{1/3}), main="(b)") 
abline(lm(prestige ~ I(income^(1/3)), data=Prestige)) 
summary(powerTransform(UN)) 
par(mfrow=c(1, 1)) 
 
with(UN, summary(powerTransform(cbind(infant.mortality, gdp)))) 
summary(powerTransform(UN[ , c("infant.mortality", "gdp")])) 
 
summary(powerTransform(interlocks ~ nation, 
    data=Ornstein, family="yjPower")) 
summary(p1 <- with(Prestige, 
    powerTransform(cbind(income, education)))) 
testTransform(p1, lambda=c(0.33, 1)) 
testTransform(p1, lambda=c(0, 1)) 
scatterplotMatrix(~ prestige + log2(income) + education + women, 
     span=0.7, Prestige, id.n=0) 
coef(p1) 
coef(p1, round=TRUE) 
Prestige <- transform(Prestige, log2income = log2(income)) 
summary(p2 <- powerTransform(cbind(income, education) ~ type, 
    data=Prestige)) 
testTransform(p2, c(0, 1)) 
scatterplotMatrix(~ prestige + log2(income) + education + women | type, 
      Prestige, by.group=TRUE, id.n=0, smooth=FALSE, 
      col=gray(c(0, .25, .5))) 
 
with(Freedman, { 
    plot(density, crime) 
    # to exit from identify: right-click in Windows, esc in Mac OS X 
    identify(density, crime, row.names(Freedman)) 
}) 
 
args(showLabels) 

http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/scripts/chap-3.R  

Chapter 3 CAR  
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Q-Q plot: comparing two distributions 
by plotting their quantiles  

•  In statistics, a Q-Q plot[1] ("Q" stands for quantile) is a 
probability plot, which is a graphical method for comparing two 
probability distributions by plotting their quantiles against each 
other. First, the set of intervals for the quantiles are chosen. A 
point (x,y) on the plot corresponds to one of the quantiles of the 
second distribution (y-coordinate) plotted against the same 
quantile of the first distribution (x-coordinate). Thus the line is a 
parametric curve with the parameter which is the (number of the) 
interval for the quantile. 

•  If the two distributions being compared are similar, the points in 
the Q-Q plot will approximately lie on the line y = x. If the 
distributions are linearly related, the points in the Q-Q plot will 
approximately lie on a line, but not necessarily on the line y = x. Q-
Q plots can also be used as a graphical means of estimating 
parameters in a location-scale family of distributions. 

•  A Q-Q plot is used to compare the shapes of distributions, 
providing a graphical view of how properties such as location, 
scale, and skewness are similar or different in the two 
distributions. Q-Q plots can be used to compare collections of 
data, or theoretical distributions.  
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Compare data to theoretical dist 
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with(Prestige, qqPlot(income, labels=row.names(Prestige), id.n=3)) 

Show 3 most extreme data and corresponding label  

> with(Prestige, summary(income)) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
    611    4106    5930         6798    8187   25880  

SEE: 
 

http://en.wikipedia.org/wiki/Q-
Q_plot  
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Identify outliers 
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> with(Prestige, qqPlot(income, labels=row.names
(Prestige), id.n=3)) 
[1] "general.managers" "physicians"       "lawyers"          
> with(Prestige, summary(income)) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
    611    4106    5930    6798    8187   25880  
> text(0, 5930, "median", col="red") 
>abline(5930,0, lwd=2,col="blue") 
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Boxplot 

•  Boxplot(~ income, data=Prestige) 
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Scatterplots 
•  Plot two quantitative variables 
•  Core to understanding regression analysis 

with(Prestige, plot(income, prestige)) 
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Scatterplots 

scatterplot(prestige ~ income, span=0.6, lwd=3, id.n=4, data=Prestige) 
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Regression to mean; var 
•  Visualizing the conditional distributions of prestige given 

values of income 
–  As income increase so does prestige 
–  But after 10000 the value stays fixed at around 80 

•  Q: is the prestige independent of income? 
•  E(prestige|income) represents the mean value of prestige 

as the value of income varies  
–  Known as conditional mean function or the regression function 

•  The variance function, Var(prestige|income), traces the 
conditional variability in prestige as income changes 
–  That is the spread in vertical strips in the plot 
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Jitter the data so we can see it 
head(Vocab) 
nrow(Vocab) 
plot(vocabulary ~ education, data=Vocab) 
plot(jitter(vocabulary) ~ jitter(education), data= Vocab) 
plot(jitter(vocabulary, factor=2) ~ jitter(education, factor=2), 
    col="gray", cex=0.5, data=Vocab) 
 
with(Vocab, { 
    abline(lm(vocabulary ~ education), lwd=3, lty="dashed") 
    lines(lowess(education, vocabulary, f=0.2), lwd=3) 
    }) 
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ScatterPlot with jitter 
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E[Daughterheight | MotherHeight] 
•  What we mean by this is shown in Figure 1.2, in which we show only 

points corresponding to mother–daughter pairs with Mheight rounding 
to either 58, 64 or 68 inches. We see that within each of these three 
strips or slices, even though the number of points is different within 
each slice, (a) the mean of Dheight is increasing from left to right, and 
(b) the vertical variability in Dheight seems to be more or less the same 
for each of the fixed values of Mheight. 

E[Daughterheight | MotherHeight] 
 
Mean is increasing 
Variance is similar 
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Forbes: pressure and temperature 

•  19th century data miner 
•  In an 1857 article, a Scottish physicist named 

James D. Forbes discussed a series of 
experiments that he had done concerning the 
relationship between atmospheric pressure and 
the boiling point of water.  

•  He knew that altitude could be determined from 
atmospheric pressure, measured with a 
barometer, with lower pressures corresponding 
to higher altitudes. In the middle of the nineteenth 
century, barometers were fragile instruments, and 
Forbes wondered if a simpler measurement of the 
boiling point of water could substitute for a direct 
reading of barometric pressure.  
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Residuals are quite big 
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Straight line: reasonable sumamry 
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Lecture Outline 

•  Linear Regression: a brief intro 
•  A quick statistics review 

–  Mean, expected value, variance, stdev, quantiles, stats in R 

•  Locally Weighted Linear Regression 
•  Exploratory Data Analysis 
•  Simple Linear Regression 

–  Normal Equations 
–  Closed form Solution 
–  Standard Error 
–  Variance of the estimators 

•  Good model? 
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Mean Functions 
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Mean Functions 
•  Imagine a generic summary plot of Y versus X. Our 

interest centers on how the distribution of Y changes as X 
is varied. One important aspect of this distribution is the 
mean function, which we define by E(Y|X = x) = a function 
that depends on the value of x 

  
E(Y|X = x) = a function that depends on the value of x 
 

•  We read the left side of this equation as “the expected 
value of the response when the predictor is fixed at the 
value X = x;”  
–  The right side of (1.1) depends on the problem. For example, in the 

heights data, we might believe that 

 E(Dheight|Mheight = x) = β0 + β1x   
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Specifying the mean function 
•  Different ways: 

–  Ordinary least squared:  E(Dheight|Mheight = x) = β0 + β1x 
–  Nonparametric estimated mean function (Loess, locally weighted)  

Surprisingly, the straight 
line and the dashed lines 
that join the within-age 
means appear to agree 
very closely, and we might 
be encouraged to use the 
straight-line mean 
function to describe these 
data. 
 
Any thoughts on OLS 
versus Nonparametric 
estimated mean function? 
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Variance Function 
•  Another characteristic of the distribution of the response 

given the predictor is the variance function, defined by the 
symbol Var(Y|X = x) and in words as the variance of the 
response distribution given that the predictor is fixed at X 
= x.  

•  For example, we can see that the variance function for 
Dheight|Mheight is approximately the same for each of the 
three values of Mheight shown in the graph.  
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Assumptions of Linear Regression 

•  A frequent assumption in fitting linear regression 
models is that the variance function is the same 
for every value of x. This is usually written as 
–  Var(Y|X = x) = σ2   

–  where σ2 (read “sigma squared”) is a generally unknown 
positive constant 
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Simple Linear Regression 

•  The simple linear regression model consists of 
the mean function and the variance function 
–  E(Y|X = x) = β0 + β1x  
–  Var(Y|X = x) = σ2 

•  The parameters in the mean function are  
–  the intercept β0, which is the value of E(Y|X = x) when x 

equals zero,  
–  and the slope β1, which is the rate of change in E(Y|X = x) 

for a unit change in X; 
–  By varying the parameters, we can get all possible straight 

lines. In most applications, parameters are unknown and 
must be estimated using data.  

–  The variance function in is assumed to be constant, with a 
positive value σ2 that is usually unknown. 
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R Primer 

•  install.packages("alr3") 
•  library("alr3") 

•  For R users, scripts can be obtained while you 
are running R and also connected to the internet. 
To get the script for Chapter 2 for this primer, for 
example, you could type 

•  To get the script for Chapter 2 of the text, use 
–  alrWeb(script = 'chapter2') 
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Applied Linear Regression, Third edition 
 (Chapter 2) 

# Applied Linear Regression, Third edition 
# Chapter 2 
# October 14, 2004; revised January 2011 for alr3 Version 2.0, R only 
 
# Fig. 2.1 in the new edition 
# R only 
 
     x <- c(0, 4) 
     y <- c(0, 4) 
     plot(x, y, type="n", xlab="Predictor = X", ylab="E(Y|X=x)") 
     abline(.8, 0.7) 
     x<-c(2, 3, 3) 
     y<-c(2.2, 2.2, 2.9) 
     lines(x, y) 
     lines(c(0, 0), c(0, .8), lty=2) 
     lines(c(0, 4), c(0, 0), lty=2) 
     text(3.05, 2.5, expression(beta[1] == Slope), adj=0) 
     text(.05, .4, expression(beta[0] == Intercept), adj=0) 
     text(2.5, 1.8, "1") 
 
 
# Fig. 2.2.   
plot(c(0, .4),c(150, 400), type="n", xlab="X", ylab="Y") 
abline(135, 619.712, lty=2) 
x <- seq(0,.4, length=200) 
y <- 178.581 + 79.3528*x + 1369.44*x*x 
lines(x, y) 
lines( c(.325, .325), c(336.406, 349.017)) 
text(.07, 165, "Simple regression mean function", adj=0, cex=0.6) 
text(.34, 380, "True mean function", adj=1, cex=0.6) 
text(.305, 300, "Fixed lack of fit error", adj=0, cex=0.6) 
arrows(.305, 302, .323, 333, .06) 
 
 
# Fig. 2.3 
x<-c(0.45, 3.97, 1.12, 4.21, -0.23, 1.56, -0.01, 2.67, 1.51,  
     0.93, 2.08, 3.50,4.14, 1.92, 2.11, 3.25, 0.67, 0.68, -0.22, 3.96) 
y<-c(-1.24, 4.87, 1.32, 4.14, -0.62, 0.66, 0.61, 3.27, 1.97, 0.40, 2.49,  
     4.00, 3.11, 2.08, 1.97, 2.70, 1.50, 1.77, -0.26, 2.11) 
m1 <- lm(y ~ x) 
yhat <- predict(m1) 
plot(x, y, type="p", xlab=expression(Predictor==X), 
     ylab=expression(Response==Y)) 
abline(m1) 
abline(.8, .7, lty=2) 
text(1, -.4, "Residuals are the signed lengths of", cex=0.7, adj=0) 
text(1, -.65, "the vertical lines", cex=0.7, adj=0) 
arrows(.95, -.5, .46, -.3, length=.08) 
arrows(1.1, -.15, 1.54, 1, length=.08) 
for (i in 1:20){lines(list(x=c(x[i], x[i]),y=c(y[i], yhat[i])))} 
 
 
# computations in text 
#forbes 
forbes1 <- forbes[,c(1,3)] 
fmeans <- colMeans(forbes1)  
fmeans # xbar and ybar 
xbar <- fmeans[1] ; ybar <- fmeans[2] 
# get SXX, SXY and SYY.   
fcov <- (17-1) * var(forbes1) 
fcov 
SXX <- fcov[1,1]; SXY<- fcov[1,2]; SYY <- fcov[2,2] 
(betahat1 <- SXY/SXX) 
(betahat0 <- ybar - betahat1*xbar) 
(RSS <- SYY - SXY^2/SXX) 
(SSreg <- SYY - RSS) 
(R2 <- SSreg/SYY) 
(sigmahat2 <- RSS/15) 
(sigmahat <- sqrt(sigmahat2)) 
 
a <- data.frame(list(values=c(xbar, ybar, SXX, SXY, SYY, SSreg, R2, 
                     betahat1, betahat0, RSS, sigmahat2 ,sigmahat)), 
    row.names=c("xbar", "ybar", "SXX", "SXY", "SYY", "SSreg", "R2",  
                     "betahat1", "betahat0", "RSS",  
                     "sigmahat2", "sigmahat")) 
round(a, 5) 
 
# Figure 
m0 <- update(m1, ~ . -x)  # intercept only 
plot(x, y, type="p", xlab=expression(Predictor==X), 
     ylab=expression(Response==Y)) 
abline(reg=m1) 
abline(m0$coef[1],0) 
text(2.9, 1.5, "Fit of (2.13)", adj=0) 
text(0.0, -0.2, "Fit of (2.16)", adj=0) 
 
# Forbes anova table 
m1 <- lm(Lpres ~ Temp, data=forbes) 
summary(m1) 
anova(m1) 
 
 
(betahat<-coef(m1)) 
(var <- vcov(m1)) 
(tval <- qt(1-.05/2, m1$df)) 
data.frame(Est = betahat, lower=betahat-tval*sqrt(diag(var)), 
                          upper=betahat+tval*sqrt(diag(var)))  
 
confint(m1) 
predict(m1) 
predict(m1, newdata=data.frame(Temp=c(210,220))) 
predict(m1, newdata=data.frame(Temp=c(210,220)), 
 se.fit=TRUE, interval="prediction", level=.95) 
 
residuals(m1) 
 
# p-value for an test of beta_0 = 35: 
s1 <- summary(m1) 
(s1$coefficients[1,1]+35)/s1$coefficients[1,2] 
2*pt((s1$coefficients[1,1]+35)/s1$coefficients[1,2],15) 
 
(p200 <- predict(m1, data.frame(Temp=200), 
        interval="prediction", level=.99)) 
 
#prediction of Pressure 
10^(p200/100) 
 
# predictions and fitted values for the heights data 
m1 <- lm(Dheight ~ Mheight, data=heights) 
new <- data.frame(Mheight=seq(55.4, 70.8, length=50)) 
pred.w.plim <- predict(m1, new, interval="prediction") 
pred.w.clim <- predict(m1, new, interval="confidence") 
# R does not use the Scheffe correction, we I need to fix up this 
# last interval. 
cf <- sqrt(2*qf(.975, 2, 1373))/qt(.975, 1373) 
pred.w.clim[,2] <- -(pred.w.clim[, 1] - pred.w.clim[, 2])*cf + 
                   pred.w.clim[, 1] 
pred.w.clim[,3] <- (pred.w.clim[,3] - pred.w.clim[, 1])*cf + 
                   pred.w.clim[,1]                    
# Fig. 2.3  
matplot(new$Mheight,cbind(pred.w.clim, pred.w.plim[, -1]), 
             col=rep(1, 5), 
             lty=c(2, 3, 3, 1, 1), type="l", ylab="Dheight", 
             xlab="Mheight") 
 
 
# residual plot for heights data. 
m1 <- lm(Dheight ~ Mheight, data=heights) 
# Fig. 2.6  
plot(predict(m1),residuals(m1),cex=.3, 
      xlab="Fitted values",ylab="Residuals") 
abline(h=0, lty=2) 
 
 
# residual plot for forbes data  
m1 <- lm(Lpres ~ Temp, data=forbes) 
# Fig. 2.7  
plot(predict(m1), residuals(m1), 
     xlab="Fitted values", ylab="Residuals") 
text(predict(m1)[12],residuals(m1)[12],labels="12",adj=-1) 
abline(0,0) 
# can be obtained using the car function residualPlots 
residualPlots(m1, terms= ~ 1, fitted=TRUE, id.n=1, id.method="y") 
# terms = ~ 1 suppresses all plots versus predictors 
# fitted=TRUE includes residuals vs fitted values 
# id.n=1 identifies one most extreme residual 
 
 
# Table 2.5 
m2 <- update(m1, subset=-12) 
s1 <- summary(m1) 
s2 <- summary(m2) 
ans <-matrix(c(s1$coefficients[,1],s1$coefficients[,2],s1$sigma, 
             s1$r.squared, 
             s2$coefficients[,1],s2$coefficients[,2],s2$sigma, 
             s2$r.squared),ncol=2, 
             dimnames=list(c("betahat_0", 
                             "betahat_1", 
                             "se(betahat_0)", 
                             "se(betahat_1)", 
                             "sigmahat", 
                             "R^2"), 
                c("All data", "Delete case 12"))) 
 
round(ans, 5) 
 
# Ft. Collins data 
snow1 <- lm(Late ~ Early, data=ftcollinssnow) 
summary(m1) 
anova(m1) 
"fff" 
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Simple Linear Regression 

•  The simple linear regression model consists of 
the mean function and the variance function 
–  E(Y|X = x) = β0 + β1x  
–  Var(Y|X = x) = σ2 

•  The parameters in the mean function are  
–  the intercept β0, which is the value of E(Y|X = x) when x 

equals zero,  
–  and the slope β1, which is the rate of change in E(Y|X = x) 

for a unit change in X; 
–  By varying the parameters, we can get all possible straight 

lines. In most applications, parameters are unknown and 
must be estimated using data.  

–  The variance function in is assumed to be constant, with a 
positive value σ2 that is usually unknown. 
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Assumptions  of Linear Regression 

•  Each example is independent of every other 
example 

•  Predictors can be numerical, qualitative, or 
ordinal 

•  Additional regressor variables can be generated 
using interactions 

•  The dependence of the response on the 
predictors is through the conditional expected 
value 
–  E(Y|X = x) = β0 + β1x 
–  Var(Y|X = x) = σ2           #conditional variance 
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 x <- c(0, 4) 
     y <- c(0, 4) 
     plot(x, y, type="n", xlab="Predictor = X", ylab="E(Y|X=x)") 
     abline(.8, 0.7) 
     x<-c(2, 3, 3) 
     y<-c(2.2, 2.2, 2.9) 
     lines(x, y) 
     lines(c(0, 0), c(0, .8), lty=2) 
     lines(c(0, 4), c(0, 0), lty=2) 
     text(3.05, 2.5, expression(beta[1] == Slope), adj=0) 
     text(.05, .4, expression(beta[0] == Intercept), adj=0) 
     text(2.5, 1.8, "1") 
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Choose parameters that minimize RSS 

•  The fitted value for case i is given by E(Y |X = xi ), 
for which we use the shorthand notation yˆi, 

•  y ˆ i = !E ( Y | X = x i ) = β ˆ 0 + β ˆ 1 x i  ( 2 . 2 ) 
•  Although the ei are not parameters in the usual 

sense, we shall use the same hat notation to 
specify the residuals: the residual for the ith case, 
denoted eˆi, is given by the equation 

•  eˆi = yi −!E(Y|X = xi) = yi −yˆi = yi −(βˆ0 +βˆ1)  i 
= 1,...,n  (2.3) which should be compared with 
the equation for the statistical errors, 

•  ei=yi−(β0+β1xi) i=1,...,n 
Error 
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Residuals 
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Standardizing the data 

In R for the help page try 
?scale 
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•  All least squares computations for simple regression depend only on 
aver- ages, sums of squares and sums of cross-products. Definitions 
of the quantities used are given in Table 2.1. Sums of squares and 
cross-products have been centered by subtracting the average from 
each of the values before squaring or taking cross-products. 



Berkeley I 296 A Data Science and Analytics Thought Leaders©  2011 James G. Shanahan      James.Shanahan_AT_gmail.com 101 

OLS Closed Form 

Since OLS minimizes (2.4), it will always fit at least as well 
as, and generally better than, the true mean function 
(actual function); OLS model is biased by data.. 
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Closed form solution to OLS 

[Friedman et al. 2001] 

β is computed directly in 
closed form 

β is W in our notation 
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Closed form solution to OLS 
•  To minimize J (aka RSS), we set its derivatives to zero, and obtain the 

normal equations: 
–  XTXW = Xty 
–  Thus the value of W that minimizes J(W) is give in closed form 

•  For a full derivation see: http://www.stanford.edu/class/cs229/notes/cs229-
notes1.pdf 
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Normal Equations à Closed From Soln. to OLS 

 
•  An alternative is to performing the minimization 

explicitly and without resorting to an iterative 
algorithm 
–  In this method, we will minimize RSS by explicitly taking its 

derivatives with respect to the βj’s (sometimes written as W, the 
weight vector), and setting them to zero.  

–  Do this via calculus with matrices. 

•  Gradient descent gives another way of minimizing 
RSS(β). [Discussed next lecture] 
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Closed form solution to OLS 
•  To minimize RSS, we set its derivatives to zero, 

and obtain the normal equations: 
–  XTXW = XTy 
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Derivation of Parameter Equations 

•  An Alternative Derivation treating the y-intercept and 
the variable coefficients separately; here we represent 
W as β.  

•  Goal: Minimize squared error (WRT to the y-intercept) 
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OLS Via Gradient Descent: The Gradient 

•  In order to implement this algorithm, we have to work out 
what is the partial derivative term at time t on the right hand 
side ∇fwj(W)=dF(W)/dwi.  

•  Assume we have only one training example (x, y), so that 
we can drop the sum in the definition of J.  
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single training 
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For a single wj 

Use chain rule df/du*du/dx 
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Forbes Model 



Berkeley I 296 A Data Science and Analytics Thought Leaders©  2011 James G. Shanahan      James.Shanahan_AT_gmail.com 109 

Forbes Model 
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Lecture Outline 

•  Linear Regression: a brief intro 
•  A quick statistics review 

–  Mean, expected value, variance, stdev, quantiles, stats in R 

•  Locally Weighted Linear Regression 
•  Exploratory Data Analysis 
•  Simple Linear Regression 

–  Normal Equations 
–  Closed form Solution 
–  Standard Error 
–  Variance of the estimators 

•  Good model? 
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Standard Error 

•  The standard error is the standard deviation of the 
sampling distribution of a statistic.[1]  

•  The term may also be used to refer to an estimate of that 
standard deviation, derived from a particular sample used 
to compute the estimate. 

•  For example, the sample mean is the usual estimator of a 
population mean. However, different samples drawn from 
that same population would in general have different values 
of the sample mean. The standard error of the mean (i.e., of 
using the sample mean as a method of estimating the 
population mean) is the standard deviation of those sample 
means over all possible samples (of a given size) drawn 
from the population. Secondly, the standard error of the 
mean can refer to an estimate of that standard deviation, 
computed from the sample of data being analyzed at the 
time. 
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Population of IQ 
scores, 10-year 
olds 

Etc Sample 
 2 

Sample 
1 

Sample 
 3 

n = 64 

µ=100 

σ=16 

 

70.1031=X 58.982 =X 11.1003 =X

Is sample 2 a likely  
representation  

of our population? 
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Distribution of Sample Means 

1.  The mean of a sampling 
distribution is identical to mean of 
raw scores in the population (µ) 

2.  If the population is Normal, the 
distribution of sample means is 
also Normal 

3.  If the population is not Normal, the 
distribution of sample means 
approaches Normal distribution as 
the size of sample on which it is 
based gets larger 

Central 
Limit 

Theorem 
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Standard Error of the Mean 

•  The standard deviation of means 
in a sampling distribution is 
known as the standard error of  
the mean. 

•  It can be calculated from the 
standard deviation of observations 

 
3.  The larger our sample size, the 

smaller our standard error 
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Sample of 
 observations 

Entire population of 
 observations 

Statistic 
 X

 
Parameter 

µ=? 
 

Random selection 

Statistical inference 
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Estimation Procedures 

•  Point estimates 
–  For example mean of a sample of 25 patients 

•  No information regarding probability of accuracy 
–  Interval estimates 
–  Estimate a range of values that is likely 

•  Confidence interval between two limit values 
–  The degree of confidence depends on the probability of including 

the population mean 
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When Sample size is small … 

95% CI = X 
___

   + t S 
X 
___
   

 

X 
___

    

A constant from  
Student t Distribution 

that depends on confidence  
interval and sample size 
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HYPOTHESIS TESTING 

•  Hygiene procedures are effective in 
preventing cold. 

•  State 2 hypotheses: 
•  Null: H0 : Hand-washing has no effect on 

bacteria counts. 
•  Alternative: Ha : Hand-washing reduces 

bacteria. 
•  The null hypothesis is assumed true: i.e., 

the defendant is assumed to be innocent. 
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ε determines the properties of the response y 

•  Suppose we can fix the value of x and observe the 
corresponding value of the response y. Now if x is fixed, the 
random component ε determines the properties of y.  

•  Suppose the mean and variance of  ε are 0 and σ2, respectively. 
Then the mean response at any value of the regressor variable 
(x) is  
•  E(y|x) = µy|x=E(β0 + β1 x + ε) = β0 + β1 x  

•  The variance of y given any value x is 
•  Var(y|x) =  σy|x

2 = Var(β0 + β1 x + ε) = σ2 
–  The variability of y at a particular value of x is determined by the 

variance of the error component of the model σ2. This implies 
that there is a distribution of y values at each x and the variance 
of this distribution is the same at each x 

–  Small σ2 implies the observed values y will fall close to the line. 

ε ~N(0, σ2) 
E(y|x) = µy|x=E(β0 + β1x + ε) = β0 + β1 x  
 
Now if x is fixed, the random component ε determines 
the properties of y.  
  
Var(y|x) =  σy|x

2 = Var(β0 + β1 x + ε) = σ2 
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Estimating Variance based on Residual 
Since the variance σ2 is essentially the average squared 
size of the ei

2 , we should expect that its estimator σˆ 2 is 
obtained by averaging the squared residuals.  
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Standard Error : Same units as response variable 
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Lecture Outline 

•  Linear Regression: a brief intro 
•  A quick statistics review 

–  Mean, expected value, variance, stdev, quantiles, stats in R 

•  Locally Weighted Linear Regression 
•  Exploratory Data Analysis 
•  Simple Linear Regression 

–  Normal Equations 
–  Closed form Solution 
–  Standard Error 
–  Variance of the estimators 

•  Good model? 
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Good model 

•  Lower residual standard error is better 

•  More to come on this front next class 
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• End of Lecture 
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Guidelines for Homework 
•  These exercises are OPTIONAL. 
•  GENERAL Guidelines for Homework 

–  Paste each question into your manuscript and then provide your solution 
–  Please provide explanations,  code, graphs captions, and cross references 

in a PDF report (that should read like research paper.  
–  Don’t forget to put your name, email and date of submission on each report. 
–  In addition, please provide R code in separate file. Please comment your so 

that I or anybody else can understand it and please cross reference code 
with problem numbers and descriptions 

–  Please create a separate driver function for each exercise or exercise part 
(and comment!) 

–  If you have questions please raise them in class or via email or during office 
hours 

–  Homework is due on Tuesday, February 21 of the following week by 5PM.  
–  Please submit your homework by email to: James.Shanahan@gmail.com 

with the subject “Berkeley I 296A” 
–  Have fun! 
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Exercise 1 

•  What is the difference between Parametric and . 
Non-Parametric machine learning algorithms? 

•  Define the expected value for a discrete variable 
and give an example.  Calculate the expected for 
your example and the variance. 
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Exercise 2 
•  The 68% - 95% - 99.7% is a rule of thumb that allows 

practitioners of statistics to estimate the probability that 
a randomly selected number from the standard normal 
distribution occurs within 1, 2, and 3 standard deviations 
of the mean at zero. 

•  What is the probability that a randomly selected number 
from the standard normal distribution occurs within one 
standard deviation of the mean? This probability is 
represented by the area under the standard normal curve 
between x = -1 and x = 1, pictured below. 

•  Plot this graph 
•  What is the area of the shaded area? 
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Exercise 2 Solution 

•  Plot this graph 
•  What is the area of the shaded area? 

68%-95%-99.7% Rule 
The 68% - 95% - 99.7% is a rule of thumb that allows practitioners of 
statistics to estimate the probability that a randomly selected number 
from the standard normal distribution occurs within 1, 2, and 3 standard 
deviations of the mean at zero. 
Let's first examine the probability that a randomly selected number from 
the standard normal distribution occurs within one standard deviation 
of the mean. This probability is represented by the area under the 
standard normal curve between x = -1 and x = 1, pictured in the above 
Figure. 
 
x=seq(-4,4,length=200)  
y=dnorm(x)  
plot(x,y,type="l", lwd=2, col="blue")  
x=seq(-1,1,length=100) > y=dnorm(x)  
polygon(c(-1,x,1),c(0,y,0),col="gray")  
 
pnorm(1,mean=0,sd=1)-pnorm(-1,mean=0,sd=1)  
[1] 0.6826895 
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Exercise 3 

•  ff 
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Exercise 4: LWR 
•  In R locally weighted (linear) regression is 

available via lowess(); using data(airquality) 

•  Apply lowess() to ozone data set (available in R) 
•  Construct the lowess model for following formula 

“ozone ~ temp” for different f’s (0.01, 0.1, 0.3, 0.5, 
1); comment on your results   

•  Comment on the computational requirements 
(memory and CPU) for LOESS models versus a 
linear regression model when it comes to 
–   training a model 
–  Classification of a new example (please write out the 

classification rule for Loess and and for linear regression) 
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Exercise 5 
•  Using the Davis dataset  

–  library(car);  head (Davis) # examine first 6 rows 
•  Tasks 

–  Build a linear regression model weight ~repwt 
–  Predict weight from reported weight of men and women engaged in regular 

exercise 
–  What is the dimensionality of this data set 
–  Compute the summary stats (using summary() command) 
–  Comment on these stats 
–  Use the summary command on you built linear regression model. Comment on the 

residuals and the Residual standard error. How is the residual standard error 
calculated ? (calculate this yourself and show the code) 

–  Explain the Residual standard error wrtt problem in layperson’s english  
–  Plot scattorplots weight ~repwt 

•  scatterplot(weight ~repwt, span=0.6, lwd=3, id.n=4, data=Davis) 
•  Does everything look okay here? Comment on your findings. Take action and 

rebuild a new model and compare to the original model. How have things 
changed?  
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Exercise 6: Whiteboard 
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Exercise  6 
•  Visualizing the conditional distributions of prestige given values of 

income using LOESS, or LOWESS (locally weighted scatterplot 
smoothing) 

•  Calculate the E(prestige|income),  the mean value of prestige given 
income the following income values, and the variance (prestige|
income) using a LOWESS (using your own implementation) 
–  Assume the neighborhood on the regressor is defined as follows  

•  if (value is in the interval income = ± 100) weightUNIFORM = 1 else 0 
•  Weight norm(value,  σ =50) (NOTE standard deviation is 50)  
•  Plot the resultant mean functions and calculate the residual standard error. 

Contrast this to ordinary least squared comment on your findings 
–   Scatterplot the data, for Income = 5000 plot the active points for the for 

weightUNIFORM in red big dots (twice the default size). Plot the mean value 
prediction using Lowess weightUNIFORM ; Label using a text pointer; plot the 95% 
confidence interval using Lowess weightUNIFORM; label using a text pointer 

•  Repeat this for incomes = 10,000 (plot utilised points in green stars) and 
15,000 (plot utilised points in brown x s) 

•  Remember to include a legend in the graph 
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Guidelines for Homework 
•  GENERAL Guidelines for Homework 

–  Paste each question into your manuscript and then provide your solution 
–  Please provide explanations,  code, graphs captions, and cross references 

in a PDF report (that should read like research paper.  
–  Don’t forget to put your name, email and date of submission on each report. 
–  In addition, please provide R code in separate file. Please comment your so 

that I or anybody else can understand it and please cross reference code 
with problem numbers and descriptions 

–  Please create a separate driver function for each exercise or exercise part 
(and comment!) 

–  If you have questions please raise them in class or via email or during office 
hours 

–  Homework is due on Tuesday, February 21 of the following week by 5PM.  
–  Please submit your homework by email to: James.Shanahan@gmail.com 

with the subject “Berkeley I 296A” 

–  Have fun! 
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• END 


