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.(%eneral Course References (Advanced)

— Practical Regression and Anova using R, by JJ
— Faraway (please download PDF)
Lt Mol John Fox (2010), Sage, (second edition, PDFs)
| | . : (PDFs available)

The R book, by Michael J. Crawley, Wiley 2009

 Linear Regression

— Analyzing Multivariate Data by James Lattin, J. Douglas Carroll, Paul E. Green. Thompson
2003.1SBN: 0-534-349749

— Introduction to Linear Regression Analysis. D. Montgomery, E. Peck. GG Vining (4" Edition)
« Data mining
- TSK , Pang-ning Tan, Michael Steinbach, Vipin Kumar. Addison Wesley
2005. ISBN: 0-321-32136-7
« Machine Learning, probability theory
— Duda, Hart, & Stork (2000). Pattern Classification.

— Modern Multivariate Statistical Techniques: Regression, Classification, and manifold Learning, Alan
Julian Izenman, Springer, 2008, ISBN 978-0-387-78188-4

— Pattern Recognition and Machine Learning, Christopher M. Bishop, Springer
— Elements of Machine Learning, Friedman et al., 2009, Download from here

e General Al

- éThird edition) by Stuart Russell and Peter Norvig.
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Lecture Outline

* Linear Regression: a brief intro

* A quick statistics review
— Mean, expected value, variance, stdev, quantiles, stats in R

* Locally Weighted Linear Regression
 Exploratory Data Analysis

« Simple Linear Regression
— Normal Equations
— Closed form Solution
— Variance of the estimators

Good model?
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Regression and Model Building

 Regression analysis is a statistical technique for
investigating and modeling the relationship between
variables.

Assume two variables, x and y. Model relationship as y~x (aka y =f
(x)) as a linear relationship

* ¥=Bo + BiX
Not a perfect fit generally; Account for difference between model
prediction and the actual target value as a statistical error ¢

* y=B,+Bx+¢€  #Thisis a linear regression model

This error € maybe made up of the effects of other variables,
measurement errors and so forth

Customairily x is called the independent variable (aka predictor or
regressor) and y the dependent variable (aka response variable)
Simple linear regression involves only one regressor variable
Suppose we can fix the value of x and observe the corresponding
value of the response y. Now if x is fixed, the random component €
determines the properties of y
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Simple Linear Regression Model

Regression Plot

a = Intercept

0 x
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The simple linear
regression model posits an
exact linear relationship
between the expected or
average value of Y, the
dependent variable Y, and X,
the independent or predictor

variable:
Auy|x= a+ﬁ X

Actual observed values of
Y (y) differ from the expected
value (u,,,) by an unexplained
or random error(¢):

Ve ;uy|x + ¢
=agtfx+ ¢




£ determines the properties of the response y

« Suppose we can fix the value of x and observe the
corresponding value of the response y. Now if x is fixed, the
random component € determines the properties of y.

« Suppose the mean and variance of € are 0 and o2, respectively.
Then the mean response at any value of the regressor variable
(x) is

* E(YX)=u, mEBy+ B x+€)=Bp+ Bix

« The variance of y given any value x is
» Var(y|x) = o,* = Var(B,+ B;x +¢) = 0°

— The variability of y at a particular value of x is determined by the
variance of the error component of the model 62. This implies

that there is a distribution of y values at each x and the variance
of this distribution is the same at each x
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Assumptions of the Simple Linear Regression Model

* The re!atlonsh_lp bet\_lveen_X LINE assumptions of the Simple
and Y is a straight-Line (linear) Y Linear Regression Model
relationship.

* The values of the independent
variable X are assumed fixed
(not random); the only
randomness in the values of Y
comes from the error term .

* The errors ¢ are uncorrelated
(i.e. Independent)in F |7 [T
successive observations. The
errors ¢ are Normally
distributed with mean 0 and
variance ¢?(Equal variance).

My|x=a + ﬂx

Identical normal
distributions of errors,
all centered on the
egression line.

Thatis: &~ N(0,0?) Y"‘N(.uyp:n Oyx

' X
X
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Example

 Let y be a student’s college achievement,
measured by his/her GPA. This might be a

function of several variables:

e We want to predict y using knowledge of x;,,
X5, X3 and Xx,.
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Some Questions

e Which of the independent variables are useful
and which are not?

 How could we create a prediction equation to
allow us to predict y using knowledge of x,,
X5, X5 etc?

 How good is this prediction?

We start with the simplest case, in which the

response y is a function of a single
independent variable, x.
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A Simple Linear Model /

* We use the equation of a line to
describe the relationship between y
and x for a sample of n pairs, (x, y).

o If we want to describe the relationship
between y and x for the whole

population, there are two models we
can choose

‘Deterministic Model: y =, + 3; x
*Probabilistic Model:

—y = deterministic model + random error
¥ =Py + Py x+E¢
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A Simple Linear Model

e Since the measurements that we observe
do not generally fall exactly on a straight
line, we choose to use:

e Probabilistic Model:

~ Y =Po+Birte
- E(y) = Bo+Byx

Points deviate from the

line of means by an amount
€ where € has a normal
distribution with mean 0 and

: 2
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The Random Errot

[0 The line of means, E(y) = a + fx, describes average
value of y for any fixed value of x.

[0 The population of measurements is generated as y
deviates from
the population line
by . We estimate a
and 3 using sample
information.
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Linear Regression App

 Play with App to see the
relationship between R*2
and the error

The data in the applet correspond to Table 3-12 and

Figure 3-22 on pp. 164-165 an in Just the Essentials
of Elementary Statistics. The substantive question is
the relationship between HEIGHT (in inches) and

WEIGHT (in pounds) for a group of college women.

Model: WEIGHT =-186.5 +4.7 * HEIGHT

2= WEIGHT
0.64 140.0

130.0

120.0

1100

100.0

90G00 620 640 660 680 700
Emor = HEIGHT

617.6

3 3
( Find Best Mode! ) ( Hide/Show Errors )
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Simple Linear Regression in R

heights.table <- read.table('http://www-stat.stanford.edu/
~jtaylo/courses/stats203/data/heights.table’, header=T,
sep=',")

attach(heights.table)

# wife's height vs. husband's height
plot(heights.table, pch=23, bg="red’, cex=2, lwd=2)

# Fit model

WIFE

wife.Im <- Im(WIFE ~ HUSBAND)
print(summary(wife.Im)) 3

# with fitted line

plot(heights.table, pch=23, bg='red', cex=2, lwd=2) g -

abline(wife.Im$coef, Iwd=2, col="orange’)
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R Example: Simple Linear Regression

. #Ht Download the data and tell R where to find the variables by attaching it

heights.table <- read.table('http://www-stat.stanford.edu/~jtaylo/courses/stats203/data/heights.table’,
header=T, sep=",")

attach(heights.table)

# wife's height vs. husband's height htt ./lIwww-stat.stanford.edu/
plot(heights.table, pch=23, bg="red’, cex=2, lwd=2) ~'ta IO/CourseS/Stat3203lRl

# Fit model introduction/introduction.R.html

wife.Im <- Im(WIFE ~ HUSBAND)
print(summary(wife.lm))

# with fitted line
plot(heights.table, pch=23, bg="red’, cex=2, lwd=2)
abline(wife.Im$coef, Iwd=2, col="orange')

### Some other aspects of R

# Take a look at the variable names
names(heights.table)
# Estimate beta.1 using S_xx and S_yx

num <- cov(HUSBAND, WIFE) # = S_xx / (n-1)
den <- var(HUSBAND) # = S_yx / (n-1)
print(hum/den)

# Get predicted values (Y.hat)

wife.hat <- predict(wife.Im)

# Two different ways of getting residuals
wife.resid1 <- WIFE - predict(wife.Im)
wife.resid2 <- resid(wife.lm)
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Residuals

*  # Get predicted values (Y.hat)
wife.hat <- predict(wife.Im)
# Two different ways of getting residuals

wife.resid1 <- WIFE - predict(wife.Im)
wife.resid2 <- resid(wife.lm)

# Computing sample variance by hand

husband.var <- sum((HUSBAND - mean(HUSBAND))*2) / (length(HUSBAND) - 1)
print(c(var(HUSBAND), husband.var))

# Estimating sigma.sq

S$2 <- sum(resid(wife.Im)*2) / wife.Im$df
print(sqrt(S2))

print(sqrt(sum(resid(wife.lm)*2) / (length(WIFE) - 2)))

print(summary(wife.Im)$sigma)

# What else is in summary(wife.lm)?
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Linear Regression in R : WWW

Dataframes, distributions etc. in R
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Lecture Outline

* Linear Regression: a brief intro

A quick statistics review
— Mean, expected value, variance, stdev, quantiles, stats in R

* Locally Weighted Linear Regression
 Exploratory Data Analysis

« Simple Linear Regression
— Normal Equations
— Closed form Solution
— Variance of the estimators

Good model?
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Scales of Measurement

« All in science was
conducted using four different types
of scales that he called "nominal",
"ordinal”, "interval” and "ratio” variables

* In general, many unobservable
psychological qualities (e.g.,

extraversion), are measured on . :
. categorical || continuous
interval scales

 We will mostly concern ourselves
with the simple categorical ordinal -
(nominal) versus continuous
distinction (ordinal, interval, ratio) interval {-
« Check out
_ ratio —

Berkeley | 296 A Data Science and Analytics Thought Leaders© 2011 James G. Shanahan  James.Shanahan_AT_gmail.com 19



Summarizing Data

 Data are a bunch of values of one or more variables.
« A variable is something that has different values.
— Values can be numbers or names, depending on the variable:
* Numeric, e.g. weight
» Counting, e.g. number of injuries

 Ordinal, e.g. competitive level (values are
numbers/names)

 Nominal, e.g. sex (values are names

— When values are numbers, visualize the distribution of all values in
stem and leaf plots or in a frequency histogram.

- Can also use normal probability plots to visualize how
well the values fit a normal distribution.

— When values are names, visualize the frequency of each value with

a pie chart or a just a list of values and frequencies.
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« A statistic is a number summarizing a bunch of values.
— Simple or univariate statistics summarize values of one variable.
— Effect or outcome statistics summarize the relationship between
values of two or more variables.
« Simple statistics for numeric variables...
— Mean: the average
— Standard deviation: the typical variation

— Standard error of the mean: the typical variation in the mean with
repeated sampling

 Multiply by v(sample size) to convert to standard
deviation.

— Use these also for counting and ordinal variables.

— Use median (middle value or 50th percentile) and quartiles (25th and
75th percentiles) for grossly non-normally distributed data.

— Summarize these and other simple statistics visually with box and
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« Simple statistics for nominal variables

— Frequencies, proportions, or odds.

— Can also use these for ordinal variables.

- Effect statistics...

— Derived from statistical model (equation) of the form
Y (dependent) vs X (predictor or independent).

— Depend on type of Y and X . Main ones:

Y X Model/Test Effect statistics
numeric | numeric | regression | slope, intercept, correlation
numeric | nominal | ttest, ANOVA | mean difference
nominal | nominal | chi-square |frequency difference or ratio
nominal | numeric | categorical |frequency ratio per...
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Ordinal Measurement

* Ordinal: Designates an ordering; quasi-ranking
— Does not assume that the intervals between numbers are equal.
— finishing place in a race (first place, second place)

1st place 2nd place 3rd place 4th place
1 hour 2 hours 3 hours 4 hours 5 hours 6 hours 7 hours 8 hours
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Interval and Ratio Measurement

* Interval: designates an equal-interval ordering

— The distance between, for example, a 1 and a 2 is the same as
the distance between a4 and a 5

— Example: Common IQ tests are assumed to use an interval
metric

* Ratio: designates an equal-interval ordering with a
true zero point (i.e., the zero implies an absence of
the thing being measured)

— Example: number of intimate relationships a person has had
0 quite literally means none

« a person who has had 4 relationships has had twice as many
as someone who has had 2
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Statististics: Enqmry to the unknown

Population Sample
Parameter Estimate

Parameter A parameter is a value, usually unknown (and which therefore has to be estimated), used
to represent a certain population characteristic. For example, the population mean is a parameter that
is often used to indicate the average value of a quantity.

Within a population, a parameter is a fixed value which does not vary. Each sample drawn from the
population has its own value of any statistic that is used to estimate this parameter. For example, the
mean of the data in a sample is used to give information about the overall mean in the population fromr
which that sample was drawn.

Statistic: A statistic is a quantity that is calculated from a sample of data. It is used to give information
about unknown values in the corresponding population. For example, the average of the data in a
sample is used to give information about the overall average in the population from which that sample
was drawn.

It is possible to draw more than one sample from the same population and the value of a statistic will
in general vary from sample to sample. For example, the average value in a sample is a statistic. The
average values in more than one sample, drawn from the same population, will not necessarily be
equal.
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Estimate the population mean

Population height mean =160 cm
Standard deviation = 5.0 cm

ht <- rnorm (10, mean=160, sd=5)
mean (ht)

ht <- rnorm (10, mean=160, sd=5)
mean (ht)

ht <- rnorm (100, mean=160, sd=5)
mean (ht)

ht <- rnorm (1000, mean=160, sd=5)
mean (ht)

ht <- rnorm (10000, mean=160, sd=5)
mean (ht)
hist (ht)

The larger the sample, the more accurate the estimate is!
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Estimate the population proportion

Population proportion of males = 0.50
Take n samples, record the number of k males
rbinom(n, k, prob)

males <- rbinom (10, 10, 0.5)
males
mean (males)

males <- rbinom (20, 100, 0.5)
males
mean (males)

males <- rbinom (1000, 100, 0.5)
males
mean (males)

The larger the sample, the more accurate the estimate is!
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Summary of Continuous Data

 Measures of central tendency:
— Mean, median, mode

 Measures of dispersion or variability:
— Variance, standard deviation, standard error
— Interquartile range

R commands
length (x) , mean(x), median(x), wvar(x), sd(x)

summary (x) , quantile (x)

full .deciles<-quantile (x,probs=seq(0,1,by=.1))
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R example

height <- rnorm (1000, mean=55, sd=8.2)
mean (height)
[1] 55.30948

median (height)
[1] 55.018

var (height)
[1] 68.02786

sd (height)
[1] 8.2479

summary (height)

Min. 1lst Qu. Median Mean 3rd Qu. Max.
28 .34 49 .97 55.02 55.31 60.78 85.05
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Graphical Summary: Box plot

boxplot (height)
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Strip chart

stripchart(height)
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30 40 50 60 70 80
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Histogram

Histogram of height

“ hist(height, breaks=100)
o J —d I —"
3I0 4I0 5IO 6I0 7IO 8I0 9I0
height
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Expected Value (weighted average)

* Definition (informal)

— The expected value of a X is the weighted average of
the values that X can take on, where each possible value is weighted
by its respective probability.

— The expected value of a random variable X is denoted by E(X) and it is
often called the expectation of or the mean of X.

* |n , the expected value (or expectation,
or mathematical expectation, or mean, or the first
moment) of a is the of

all possible values that this random variable can take on.

— The weights used in computing this average correspond to the
in case of a discrete random variable, or in case
of a continuous random variable.

— From a rigorous theoretical standpoint, the expected value is the
of the random variable with respect to its

Berkeley | 296 A Data Science and Analytics Thought Leaders© 2011 James G. Shanahan  James.Shanahan_AT_gmail.com 33



Expected Value for Discrete Variable

When X is a discrete random variable having support Ry and probability mass function px(x),
the formula for computing its expected value is a straightforward implementation of the informal
definition given above: the expected value of X is the weighted average of the values that X can
take on (the elements of Ry ), where each possible value x € Ry is weighted by its respective
probability px(x).

Definition Let X be a discrete random variable with support Ry and probability
mass function px(x). The expected value of X is:

E[X] = ) xpx(x)

xeRx
provided that:

T Ep(olX]

xeRx

The symbol

2

xeRx
indicates summation over all the elements of the support Ry. So, for example, if
Ry={1.2.3}
then:

D xpx(x) = 1+ px(1)+ 2 px(2) + 3 - px(3)
xeRx
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Expected Value wrt

Berkeley

Suppose random variable X can take value x; with probability ps, value xz with probability pz, and so on, up
to value xi with probability px. Then the expectation of this random variable X is defined as

E[X] =T1p1+ P2+ ... + TPk -
Since all probabilities p;add up to one: p; + p2 + ... + px = 1, the expected value can be viewed as the
weighted average, with pi's being the weights:

E[X] _ T1ip + Topo + ... + TP
Pr4pet... .+

If all outcomes x; are equally likely (that is, p1 = p2 = ... = pk), then the weighted average turns into the
simple average. This is intuitive: the expected value of a random variable is the average of all values it can
take; thus the expected value is what you expect to happen on average. If the outcomes x; are not
equiprobable, then the simple average ought to be replaced with the weighted average, which takes into
account the fact that some outcomes are more likely than the others. The intuition however remains the
same: the expected value of Xis what you expect to happen on average.

Example 1. Let Xrepresent the

outcome of a roll of a six-sided average dice value against number of rolls
die. More specifically, X will be 6 T T T T T T T T T
the number of pips showing on W;L;gse

the top face of the die after the
toss. The possible values for X
are 1,2, 3, 4, 5, 6, all equally
likely (each having the
probability of ). The
expectation of Xis

mean value

]
T
1

1 I 1 1 1 1 ! 1 I I
0 100 200 300 400 500 600 700 800 900 1000

trials

An illustration of the convergence of sequence averages of rolls of adieto &
the expected value of 3.5 as the number of rolls (trials) grows.

E‘TY’I_1,1|"),,|Q,

an
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More Generally..

When X is an absolutely continuous random variable with probability density function fx(x), the
formula for computing its expected value involves an integral, which can be thought of as the

limiting case of the summation > _. x»x(x) found in the discrete case above.

Berkeley

Definition Let X be an absolutely continuous random variable with probability
density function fx(x). The expected value of X is:

ELX] = | xfilx)d

In general, if X is a random variable defined on a probability space (Q, Z, P), then the expected value of X,
denoted by E[X], (X}, X or E[X)], is defined as Lebesgue integral

E[X] :/QX dP=/QX(w)P(dw)

When this integral exists, it is defined as the expectation of X. Note that not all random variables have a
finite expected value, since the integral may not converge absolutely; furthermore, for some it is not defined
at all (e.g., Cauchy distribution). Two variables with the same probability distribution will have the same
expected value, if it is defined.

It follows directly from the discrete case definition that if X is a constant random variable, i.e. X = b for some
fixed real number b, then the expected value of Xis also b.

The expected value of an arbitrary function of X, g(X), with respect to the probability density function #{(x) is 36
given by the inner product of fand g:



Variance

In and , the variance is a measure of how far
a set of numbers are spread out from each other. It is one of several
descriptors of a , describing how far the numbers
lie from the (expected value).

If a random variable X has the expected value (mean) u = E[X], then the variance of X is given by:

_ 2
Var(X) = E[(X — p)7].
That is, the variance is the expected value of the squared difference between the variable's realization and the variable's

mean. This definition encompasses random variables that are discrete, continuous, or neither (or mixed). It can be expanded
as follows:

Var(X) = E[(X — p)?]
= E[X? - 2uX + p*]
= E[X?] - 2p E[X] + p*
= E[X?] - 24" 4
= E[X7] — p
= E[X7] - (E[X])*.

A mnemonic for the above expression is "mean of square minus square of mean". The variance of random variable Xis
typically designated as Var(X), a_?Y, or simply o (pronounced “"sigma squared”).



Variance of a Fair Dice

A six-sided fair die can be modelled with a discrete random variable with outcomes 1 through 6, each with equal probability é
. The expected value is (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5. Therefore the variance can be computed to be:
6 6

S Hi-352 =1 "(i-35)

1=1 1=1

((—2.5)%4+(~1.5)%+(—0.5)*+0.52+1.5?+2.5)

1
6

- 17.50 = % ~ 2.92.

=]
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Standard Deviation

« Standard deviation is a widely used measure of variability
or diversity used in and At
shows how much variation or " " there is from the
average ( , or expected value). A low standard
deviation indicates that the data points tend to be very
close to the , Whereas high standard deviation
indicates that the data points are spread out over a large
range of values.

« The standard deviation of a , data set,
or is the of its
Itis simpler though practically less
than the

« A useful property of standard deviation is that, unlike
, it is expressed in the same units as the data.
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Implications of the mean and SD

« “In the Vietnamese population aged 30+ years, the
average of weight was 55.0 kg, with the SD being 8.2

kg_”
e What does this mean?

* 68% individuals will have height between 55 +/- 8.2*1
= 46.8 to 63.2 kg

* 95% individuals will have height between 55 +/-
8.2*1.96 = 38.9 to 71.1 kg
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Implications of the mean and SD

* The distribution of weight of the entire population can

be shown to be:
+/-1.96SD

6 ~ 4/-1SD

< >

6)]

nt (%)

Percent
N

; ________ nnnnnnnﬂﬂm ”m””ﬂnnnn ________

22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 92
Weight (kg)
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0.2 0.3 0.4
|

a 34.1% 34.1%

0.0 0.1

Berkeley | 296 A Data Science and Analytics Thought Leaders© 2011 James G. Shanahan  James.Shanahan_AT_gmail.com 42



The Gaussian Distribution

1 1
N (@l o?) = o e { ~5 (e — 02}

N(@|p, o)

20
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Gaussian Mean and Variance

E[z] = /OO N (zlp,0?) zdz = p
E[z?] = /00 N (z|p, %) 2° dz = p* + o*

— 00

var[z] = E[z?] — E[z]? = o

Berkeley | 296 A Data Science and Analytics Thought Leaders© 2011 James G. Shanahan  James.Shanahan_AT_gmail.com 44



The Multivariate Gaussian

N (x|p, %) = (271.;1)/2 ‘2’11/2 exXp {_%(X o “')Tz_l(x - U)}

35'2‘
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Distributions In R

The Probability Density Function

The probability density function for the normal distribution having mean p and standard deviation o is
given by the function in Figure 1.

The Normal Probability Density Function

1 2 o2
— —(z—p)* /20
)= e
f( ) oV 2T

Figure 1. The probability density function for the normal distribution.

If we let the mean g = 0 and the standard deviation o = 1 in the probability density function in Figure
1, we get the probability density function for the standard normal distribution in Figure 2.

The Standard Normal Probability Density Function

f(z) = ﬁ e~ /2

Figure 2. The probability density function for the standard normal distribution has mean y = 0
and standard deviation o = 1.
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* If you'd like a more detailed introduction to plotting in R,
we refer you to the activity

- However, these commands are simply explained.

The command x=seq(-4,4,length=200) produces 200 equally spaced
values between -4 and 4 and stores the result in a vector assigned to
the variable x.

The command y=1/sqrt(2*pi)*exp(-x*2/2) evaluates the probability
density function of Figure 2 at each entry of the vector x and stores the
result in a vector assigned to the variable y.

The command plot(x,y,type="1",lwd=2,col="red") plots y versus X, using:
a solid line type (type="1") --- that's an "el", not an | (eye) or a 1 (one),
a line width of 2 points (lwd=2), and

uses the color red (col="red").
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Standard Normal Distribution

a2 la Quartz (2) - Active

The bell-shaped curve of the standard normal distribution.
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dnorm () as a An Alternate Approach

 An Alternate Approach

« The command dnorm can be used to produce the

same result as the probability density function of
Figure 2.

* Indeed, the "d" in dnorm stands for "density."
Thus, the command dnorm is designed to provide

values of the probability density function for the
normal distribution.
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Area Under the PDF

« Like all probability density functions, the standard normal
curves possess two very important properties:

1. The graph of the probability density function lies entirely above the x-
axis. That is, f(x) = 0 for all x.

2. The area under the curve (and above the x-axis) on its full domain is
equal to 1.

* The probability of selecting a number between x = a and x
= b is equal to the area under the curve from x =ato x =b.

X
o

4
o

- o
o

0.1

0.0

4
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pnorm()

 If the total area under the curve equals 1, then by
symmetry one would expect that the area under the

curve to the left of x = 0 would equal 0.5.

R has a command called pnorm (the "p" is for
“"probability”) which is designed to capture this
probability (area under the curve).

pnorm(0, mean=0, sd=1)
[1] 0.5

* Note that the syntax is strikingly similar to the syntax
for the density function. The command pnorm(x,
mean =, sd =) will find the area under the normal
curve to the left of the number x. Note that we use
mean=0 and sd=1, the mean and density of the
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polygon()

Quartz (2) - Active

For help on the polygon command enter <-
« ?polygon
« and read the resulting help file. > 31
« However, the basic idea is pretty
simple. S
* In the syntax polygon(x,y), the
argument x contains the x- 21
coordinates of the vertices of the
polygon you wish to draw. x
« Similarly, the argument y contains the
y-coordinates of the vertices of the
desired polygon.
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Exercise

* Plot this graph
« What is the area of the shaded area?

0.4

0.1

0.0
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Exercise Solution




Quantiles

 Sometimes the opposite question is asked. That is,
suppose that the area under the curve to the left of some
unknown number is known. What is the unknown
number?

 For example, suppose that the area under the curve to the
left of some unknown x-value is 0.85, as shown in Figure

<
=]

—

o

«
o

0.2

0.95

0.1

0.0
|




pnorm() vs gnorm()

* In a sense, R's pnorm and qnorm commands play
the roles of inverse functions.

 On one hand, the command pnorm is fed a
number and asked to find the probability that a
random selection from the standard normal
distribution falls to the left of this number.

* On the other hand, the command gnorm is given
the probability and asked to find a limiting
number so that the area under the curve to the
left of that number equals the given probability.
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The Standard Deviation

 The standard deviation represents the "spread” in the
distribution. With "spread" as the interpretation, we would
expect a normal distribution with a standard deviation of 2
to be "more spread out” than a normal distribution with a
standard deviation of 1.

 Let's simulate this idea in R.

04

sigma=1
sigma=2

0.3
1

0.2

01

—
—d
—
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Lecture Outline

* Linear Regression: a brief intro

* A quick statistics review
— Mean, expected value, variance, stdev, quantiles, stats in R

 Locally Weighted Linear Regression
 Exploratory Data Analysis

« Simple Linear Regression
— Normal Equations
— Closed form Solution
— Variance of the estimators

Good model?
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Kernel Density Estimation

Berkeley | 2¢

In statistics, kernel density estimation is a non-parametric way of estimating the "
probability density function of a random variable. Kernel density estimation is a o :I

reference {
— 0. ull “ 7
=01 I fwl h

A Ar |

fundamental data smoothing problem where inferences about the population are g.
made, based on a finite data sample. In some fields such as signal p
econometrics it is also known as the Parzen—Rosenblatt window m:
Emanuel Parzen and Murray Rosenblatt, who are usually credited wif

creating it in its current form.['12]

|

referenc

|

Contents [hide]

1 Definition

1.1 Relation to the characteristic function density estimator
2 Bandwidth selection
3 Practical estimation of the bandwidth
4 Statistical implementation

4.1 Example in Matlab/octave

4.2 Example in R
5 See also
6 External links

7 References I . 1] 1u1u1‘_-u.1.u_|_,|,|1_.u14 li l
-3 -2 -1 0 1 2 3
X

1

Density
0.0 0.1 0.2 0.3 0.4 0.5
1

1

_Definition

Let (x1, X2, ..., X5) be an iid sample drawn from some distribution with
of this function f. Its kernel density estimator is

. 1 n 1 n -
fulz) = E;K,,(x —z;) = EZIK(¥)’

where K(*) is the kernel — a symmetric but not necessarily positive function that integrates to one — and h > 0 is a smoothing
parameter called the bandwidth. A kernel with subscript h is called the scaled kernel and defined as Ki(x) = 1/h K(x/h). Intuitively one
wants to choose h as small as the data allows, however there is always a trade-off between the bias of the estimator and its variance;
more on the choice of bandwidth later. A range of kernel functions are commonly used: uniform, triangular, biweight, triweight,
Epanechnikov, normal, and others. The Epanechnikov kernel is optimal in a minimum variance sense,m though the loss of efficiency is
small for the kernels listed previously.w and due to its convenient mathematical properties, the normal kernel is often used K(x) = ¢(x),
where ¢ is the standard normal density function.

VM DUIU UVIGTHIVES ATV MITTdIyUHYD 1 TIVUYIIL RCUUSI IO\ &V I VUHIIIGY W JIIdIIaiiuan VUHIIITCI I IUI AT nr gma’l.com
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Parametric vs. Non-Parametric ML Algorithms

« Parametric ML Algorithms (e.g., OLS, Decision Trees;
SVMs)

— The linear regression algorithm that we saw earlier is known as a
parametric learning algorithm, because it has a fixed, finite number of
parameters (the W,'s), which are fit to the data.

— Once we've fit the W.'s and stored them away, we no longer need to
keep the training data around to make future predictions.
* Non-Parametric (lowess(); knn; some flavours SVMs)

— In contrast, to make predictions using locally weighted linear
regression, we need to keep the entire training set around.

— The term “non-parametric” (roughly) refers to the fact that the amount
of stuff we need to keep in order to represent the hypothesis/model
grows linearly with the size of the training set.
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Locally Weighted Linear Regression

Non-parametric approach

* Locally Weighted (Linear) Regression (LWR):
— k-NN forms local approximation for each query point X,

— Why not form an explicit approximation f*(x) for region
surrounding x,

 Fit linear function to k nearest neighbors
 Fit quadratic, ...

« Thus producing piecewise approximation” to f
— Minimize error over k nearest neighbors of X,
— Minimize error entire set of examples, weighting by distances
— Combine two above

 Non-parametric approach
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Locally Weighted Linear Regression

 Local linear function:
flx)=wy+ wia(x)+...+ w,a,(x)
 Error criterions:

i ) Binary Neighbors
E(x,)== S (f(x)-f(x)  With OLS

2 xEk _nearest _nbrs_of _x,
1 N l. Weighted Neighbors
Ei(i) = DU - FOPKEE D) with weighted OLS =/ N\o
xeD

* Combine E;(x,) and E,(x,)

EG)=s  DU@-F@FKEG,0)

xEk _nearest _nbrs_of _x,

k(d(x,x')=w = exp[ - (xz—x)z] where 7 is the bandwidth parameter
T

Berkeley | 296 A Data Science and Analytics Thought Leaders© 2011 James G. Shanahan  James.Shanahan_AT_gmail.com 62



Locally Weighted Linear Regression

How it works E @)= BTxy
W, X X,) — min
B)=s D@0 KEC0) et oo i

xEk _nearest _nbrs_of _x,

* For each point (x,, y,) compute w,
* Let WX = Diag(w,w,,..., w, )X

T Y o i W W WY Wy

.\'31 .\.:2 e .\.:n "'2 n'-_y.\.:l H‘_.\\'_s: e “‘:.r_ﬁn
EN

Xy Xy2 0 Xap Wy o WyXyp WaXys 0 Wydyp

* Let WY = Diag(w,w,,...,w,)Y

¢ B=(WXTWX)(WXTIWY)
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Kernel regression

» aka locally weighted regression, locally linear
regression, LOESS, ...

LD

X

Figure 2: Inlocally weighted regression, pomts are weighted by proximity to the current x in question using
a kernel A regression 1s then computed using the weighted points.
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LWR Example

f1 (OLS regression)

Locally-

regression (f4)

p

Locally-weighted regres

weighted
13)

A

v

1

+ Training data

() Predicted value using simple regression

Predicted value using locally weighted (piece-wise) regression

[Y

Berkeley | 296 A Data Scien

ike Guo, Advanced Knowledge Management, 2000]
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LWR in R: lowess() or loess()

Note f is the smoother span. This lowessicars)
gives th_e proportlon of points inthe &1 ——
plot which influence the smooth at ) -2
each value. Larger values give more - Y
smoothness. ° 0
9 o /%/{;2
= A/‘f(o/o °
library(cars) 5 - - - -
# fOI"mU|a methOd speed

plot(dist ~ speed, data=cars, main = "lowess(cars)")
lines(lowess(dist ~ speed, data=cars), col = 2)
lines(lowess(dist ~ speed, data=cars, f=.2), col = 3)
legend(5, 120, c(paste("f =", c("2/3", ".2"))), Ity = 1, col = 2:3)
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Lowess and Scatterplot Examples

example.lowess = function(){

80
L

#EXAMPLE 1
library(cars)
# formula method

60
1

prestige

plot(dist ~ speed, data=cars, main = "lowess(cars)")
lines(lowess(dist ~ speed, data=cars), col = 2)
lines(lowess(dist ~ speed, data=cars, f=.2), col = 3)
legend(5, 120, c(paste("f =", c("2/3", ".2"))), Ity =1, col = 2:3)

40

3.0

20
1

T T T T T T
0 5000 10000 15000 20000 25000

#EXAMPLE 2

library(car)

attach( Prestige )

plot( income , prestige )

#click on examples to see lables; right click and select STOP to
identify( income, prestige, rownames(Prestige), xpd = T)

ducytion S
o8

income

20000

5000

lines ( lowess( income, prestige) col=2) # use the defaults
lines ( lowess( income, prestige, f = 1/10), c=3) # use smaller sp
lines ( lowess( income, prestige, f = 9/10), col=4) # use larger sf
legend(5, 80, c(paste("f =", c("2/3", ".1", 0.9))), Ity =1, col = 2:4)

20 40 60 80

#EXAMPLE 3

# robust fits for all pairs of variables
#excellent way to examine pairs of variables
?scatterplot.matrix

scatterplot.matrix( Prestige )
scatterplot.matrix( Prestige , span=.1) v

detach( Prestige ) T L
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LWR Examples

 Loess examples
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Lecture Outline

* Linear Regression: a brief intro

* A quick statistics review
— Mean, expected value, variance, stdev, quantiles, stats in R

* Locally Weighted Linear Regression
 Exploratory Data Analysis

« Simple Linear Regression
— Normal Equations
— Closed form Solution
— Variance of the estimators

Good model?
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Exploratory Data Analysis: rug, density

H## Script for Chapter 3 ##

i #

## John Fox and Sanford Weisberg #H
## Sage Publications, 2011 #it — ymy

options(show.signif.stars=FALSE)

Density

library(car)

head(Prestige) # first 6 rows

with(Prestige, hist(income))

with(Prestige, hist(income, breaks="FD", col="gray"))
box()

args(hist.default) 0 5000 15000 25000

0.00000 0.00008

with(Prestige, { income
hist(income, breaks="FD", freq=FALSE, ylab="Density")
lines(density(income), lwd=2)
lines(density(income, adjust=0.5), Iwd=1)
rug(income)

. box() Chapter 3 CAR

with(Prestige, qqPlot(income, labels=row.names(Prestige), id.n=3))
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Q-Q plot: comparing two distributions
by plotting their quantiles

 In , a Q-Q plot  ("Q" stands for )is a
, Which is a for comparing two
by plotting their quantiles against each

other. First, the set of intervals for the quantiles are chosen. A
point (x,y) on the plot corresponds to one of the quantiles of the
second distribution (y-coordinate) plotted against the same
quantile of the first distribution (x-coordinate). Thus the line is a
parametric curve with the parameter which is the (number of the)
interval for the quantile.

« If the two distributions being compared are similar, the points in
the Q-Q plot will approximately lie on the line y = x. If the
distributions are linearly related, the points in the Q-Q plot will
approximately lie on a line, but not necessarily on the line y = x. Q-
Q plots can also be used as a graphical means of estimating
parameters in a of distributions.

« A Q-Q plot is used to compare the shapes of distributions,
providing a graphical view of how properties such as )

, and are similar or different in the two
distributions. Q-Q plots can be used to compare collections of
, Or :
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Compare data to theoretical dist

with(Prestige, qqPlot(income, labels=row.names(Prestige), id.n=3))

Show 3 most extreme data and corresponding label

S genspLmanagerse
% B lawyerso
SEE:
http://en.wikipedia.org/wiki/Q- 2 |
Q_plot S

> with(Prestige, summary(income))
Min. 1St Qu. Median Mean 3rd Qu. MaX. norm quant"es

611 4106 5930 6798 8187 25880
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Identify outliers

> with(Prestige, qqPlot(income, labels=row.names

(Prestige), id.n=3))
[1] "general.managers
> with(Prestige, summary(income))

Min. 1st Qu. Median Mean 3rd Qu. Max.g |

611 4106 5930 6798 8187 25880
> text(0, 5930, "median”, col="red")
>abline(5930,0, Iwd=2,col="blue")

20000 2500

income
10000 15000

5000

0
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Boxplot

 Boxplot(~ income, data=Prestige)

o
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Scatterplots

* Plot two quantitative variables

« Core to understanding regression analysis

o
©
o
©
()
joy
o=
N
)
—
a
o
v
o
N

with(Prestige, plot(income, prestige))

o) O
& e}
Oo o e} @)
o} o0
o (e}
o o©
@
S
O
O
OOOO

5000

I I I I
10000 15000 20000 25000

income
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Scatterplots

- = = —
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™
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| I I I I I
0 5000 10000 15000 20000 25000

income

scatterplot(prestige ~ income, span=0.6, lwd=3, id.n=4, data=Prestige)
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Regression to mean; var

Visualizing the conditional distributions of prestige given
values of income

— As income increase so does prestige

— But after 10000 the value stays fixed at around 80

Q: is the prestige independent of income?

E(prestigelincome) represents the mean value of prestige
as the value of income varies
— Known as conditional mean function or the regression function

 The variance function, Var(prestige|income), —rmm
conditional variability in prestige as income cnaug 7
— That is the spread in vertical strips in the plot [

— - — =

Berkeley | 296 A Data Science and Analytics Thought Leaders© 2011 James G. Shanahan  Jadies.Shanahan AT _gmail.com 17
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Jitter the data so we can see it

head(Vocab)

nrow(Vocab)

plot(vocabulary ~ education, data=Vocab)

plot(jitter(vocabulary) ~ jitter(education), data= Vocab)

plot(jitter(vocabulary, factor=2) ~ jitter(education, factor=2),
col="gray", cex=0.5, data=Vocab)

with(Vocab, {

abline(Im(vocabulary ~ education), Iwd=3, Ity="ldashed")
lines(lowess(education, vocabulary, =0.2), lwd=3)

3 .

=2)

jitter(vocabulary, factor

0 5 10 15 2
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ScatterPlot with jitter

1

1

1

75

70 -+

‘e

. .’ .. . *
"o o - . . *
7’ . N,

Dheight
(*)]
O
£
e

604 &

55 * T T
55 60 65 70 75

Mheight

FIG. 1.1 Scatterplot of mothers’ and daughters’ heights in the Pearson and Lee data. The original data
have been jittered to avoid overplotting, but if rounded to the nearest inch would return the original
data provided by Pearson and Lee.
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E[Daughterheight | MotherHeight]

« What we mean by this is shown in Figure 1.2, in which we show only
points corresponding to mother—-daughter pairs with Mheight rounding
to either 58, 64 or 68 inches. We see that within each of these three
strips or slices, even though the number of points is different within
each slice, (a) the mean of Dheight is increasing from left to right, and
(b) the vertical variability in Dheight seems to be more or less the same
for each of the fixed values of Mheight.

75

70 -

E[Daughterheight | MotherHeight]

Mean is increasing
Variance is similar

60 -

Dheight
&
CERTECTERIER

55

55 60 65 70 75
Mheight

Berkeley I 296 A Data Science and Analytlcs Thouqht L FIG.12 Scatterplot showing only pairs with mother’s height that rounds to 58, 64 or 68 inches. n 80



Forbes: pressure and temperature

« 19t century data miner

* In an 1857 article, a Scottish physicist named
James D. Forbes discussed a series of

experiments that he had done concerning the
relationship between atmospheric pressure and

the boiling point of water.

* He knew that altitude could be determined from
atmospheric pressure, measured with a
barometer, with lower pressures corresponding
to higher altitudes. In the middle of the nineteenth
century, barometers were fragile instruments, and
Forbes wondered if a simpler measurement of the
boiling point of water could substitute for a direct
reading of barometric pressure.
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Residuals are quite big

She © _| ©
o
Q0 _
o < _
® ®» ©
2 Q- ° S lo
g 8
a < o
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o o
Eu _ O
o 3
o o
77 T I T T | T T T
185 200 205 210 195 200 205 210
Temperature Temperature
(a) (b)

FIG. 13 Forbes data. (a) Pressure versus Temp; (b) Residuals versus Temp.
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Straight line: reasonable sumamry

0
Q2 =)
- S
B o w ©
2 o S
s - 2 5-
s 8 o
@
g 3 = o
) — S F---- CO M — - O ---
o o ©
| | | | | | | |
195 200 205 210 195 200 205 210
Temperature Temperature
(a) (b)

FIG.14 (a) Scatterplot of Forbes’' data. The line shown is the oLs line for the regression of
log(Pressure) on Temp. (b) Residuals versus Temp.
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Lecture Outline

* Linear Regression: a brief intro

* A quick statistics review
— Mean, expected value, variance, stdev, quantiles, stats in R

* Locally Weighted Linear Regression
 Exploratory Data Analysis

« Simple Linear Regression
— Normal Equations
— Closed form Solution
— Standard Error
— Variance of the estimators

Good model?
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Mean Functions

Age

FIG.15 Length (mm) versus Age for West Bearskin Lake smallmouth bass. The solid line shown
was estimated using ordinary least squares or oLS. The dashed line joins the average observed length
at each age.
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Mean Functions

* Imagine a generic summary plot of Y versus X. Our
interest centers on how the distribution of Y changes as X
is varied. One important aspect of this distribution is the
mean function, which we define by E(Y|X = x) = a functlon
that depends on the value of x e

E(Y|X = x) = a function that depends on the value of x

FIG.15 Length (mm) versus Age for West Bearskin Lake smallmouth bass. The solid line shown
was estimated usi L I

- We read the left side of this equation as “the expected
value of the response when the predictor is fixed at the
value X = x;”

— The right side of (1.1) depends on the problem. For example, in the
heights data, we might believe that

E(Dheight|Mheight = x) = 3
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Specifying the mean function

« Different ways:

— Ordinary least squared: E(Dheight|Mheight = x) = B, + B4X
— Nonparametric estimated mean function (Loess, locally weighted)

2 B 6 8
Age

15 Length (mm) versus Age for West Bearskin Lake smallmouth bass. The solid line shown 45,
'stimated using ordinary least squares or oLS. The dashed line joins the average observed length

Surprisingly, the straight
line and the dashed lines
that join the within-age
means appear to agree
very closely, and we might
be encouraged to use the
straight-line mean
function to describe these
data.

Any thoughts on OLS
versus Nonparametric
estimated mean function?



Variance Function

* Another characteristic of the distribution of the response
given the predictor is the variance function, defined by the
symbol Var(Y|X = x) and in words as the variance of the
response distribution given that the predictor is fixed at X
= X.

 For example, we can see that the variance function for

Dheight|Mheight is approximately the same for each of the
three values of Mheight shown in the graph.

Mheight

. . FIG.12 S lot showi: I irs with mother’s height th: unds to 58, 64 or 68 inches.
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Assumptions of Linear Regression

* A frequent assumption in fitting linear regression
models is that the variance function is the same
for every value of x. This is usually written as

— Var(Y|X = x) = g?

— where o2 (read “sigma squared”) is a generally unknown
positive constant
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Simple Linear Regression

 The simple linear regression model consists of
the mean function and the variance function
— E(Y[X=X) =By + B4X
— Var(Y|X = x) = g?
 The parameters in the mean function are

— the intercept B,, which is the value of E(Y|X = x) when x
equals zero,

— and the slope [3,, which is the rate of change in E(Y|X = x)
for a unit change in X;

— By varying the parameters, we can get all possible straight
lines. In most applications, parameters are unknown and
must be estimated using data.

— The variance function in is assumed to be constant, with a

positive value 02 that is usually unknown.
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R Primer

* install.packages("alr3")
* library("alr3")

 For R users, scripts can be obtained while you
are running R and also connected to the internet.
To get the script for Chapter 2 for this primer, for
example, you could type
 To get the script for Chapter 2 of the text, use
— alrWeb(script = ‘chapter2’)
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Applied Linear Regression, Third edition
(Chapter 2)

# Applied Linear Regression, Third edition
# Chapter 2
# October 14, 2004; revised January 2011 for alr3 Version 2.0, R only

# Fig. 2.1 in the new edition
# R only

x <- ¢(0, 4)

y <-¢(0, 4)

plot(x, y, type="n", xlab="Predictor = X", ylab="E(Y|X=x)")
abline(.8, 0.7)

x<-c(2, 3, 3)

y<-c(2.2, 2.2, 2.9)

lines(x, y)

lines(c(0, 0), c(0, .8), Ity=2)
lines(c(0, 4), c(0, 0), Ity=2)
text(3.05, 2.5, expression(beta[1] == Slope), &
text(.05, .4, expression(beta[0] == Intercept), adj=0)
text(2.5, 1.8, "1")
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Simple Linear Regression

 The simple linear regression model consists of
the mean function and the variance function
— E(Y[X=X) =By + B4X
— Var(Y|X = x) = g?
 The parameters in the mean function are

— the intercept B,, which is the value of E(Y|X = x) when x
equals zero,

— and the slope [3,, which is the rate of change in E(Y|X = x)
for a unit change in X;

— By varying the parameters, we can get all possible straight
lines. In most applications, parameters are unknown and
must be estimated using data.

— The variance function in is assumed to be constant, with a

positive value 02 that is usually unknown.
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Assumptions of Linear Regression

 Each example is independent of every other
example

 Predictors can be numerical, qualitative, or
ordinal

- Additional regressor variables can be generated
using interactions
 The dependence of the response on the
predictors is through the conditional expected
value
— E(Y[X=X) =By + B4X
— Var(Y|X = x) = g2 #conditional variance
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x <-¢(0, 4)
y <-¢(0, 4)
plot(x, y, type="n", xlab="Predictor = X", ylab="E(Y|X=x)")
abline(.8, 0.7)
x<-c(2, 3, 3)
y<-c(2.2, 2.2, 2.9)
lines(x, y)
lines(c(0, 0), c(0, .8), Ity=2)
lines(c(0, 4), c(0, 0), Ity=2)
text(3.05, 2.5, expression(beta[1] == Slope), adj=0)
text(.05, .4, expression(beta[0] == Intercept), adj=0)
text(2.5, 1.8, "1")

,I:F ’ P = Qlupe
X o -
> 1
o
' Bo = Intercept
o l

I 1 l 1 I
0 1 2 3 -

Predictor = X
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Choose parameters that minimize RSS

Parameters are unknown quantities that characterize a model. Estimates of
parameters are computable functions of data and are therefore statistics. To keep
this distinction clear, parameters are denoted by Greek letters like «, 8, y and o,
and estimates of parameters are denoted by putting a “hat” over the corresponding
Greek letter. For example, B, read “beta one hat,” is the estimator of 81, and 62 is
the estimator of o 2. The fitted value for case i is given by E(Y|X = x;), for which
we use the shorthand notation y;,

% =E(Y|X =x;) = Bo + Bixi (2.2)
Although the ¢; are not parameters in the usual sense, we shall use the same hat
notation to specify the residuals: the residual for the ith case, denoted ¢;, is given
by the equation
&=y —E¥|IX=x)=yi—Fi=yi—(Bo+B) i=1...,n (2.3)
which should be compared with the equation for the statistical errors,
Error e,=y;—(ﬁ0+ﬂ1x,) i=l,...,n
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Residuals

Response =Y

Residuals are the signed lengths of
the vertical lines

| T T T 1
0 1 2 3 -

Predictor = X
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Standardizing the data

Standardizing normal random variables [edit]

As a consequence of property 1, it is possible to relate all normal random variables to the standard normal. For example if Xis
normal with mean u and variance o, then

X —p
o

has mean zero and unit variance, that is Z has the standard normal distribution. Conversely, having a standard normal random
variable Zwe can always construct another normal random variable with specific mean u and variance o

X=0Z+ p.
This "standardizing" transformation is convenient as it allows one to compute the pdf and especially the cdf of a normal distribution
having the table of pdf and cdf values for the standard normal. They will be related via

fun=0(552). = Lo (552)

7 —

o o

In R for the help page try
?scale
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« All least squares computations for simple regression depend only on
aver- ages, sums of squares and sums of cross-products. Definitions
of the quantities used are given in Table 2.1. Sums of squares and
cross-products have been centered by subtracting the average from
each of the values before sauarina or takina cross-products.

TABLE 2.1 Definitions of Symbols®

Quantity Definition Description

x Y xi/n Sample average of x

¥y Y yi/n Sample average of y

SXX Y — %)% =3 (x; — X)x; Sum of squares for the x’s

SD? SXX/(n — 1) Sample variance of the x’s

SDy VSXX/(n — 1) Sample standard deviation of the x’s
SYY YNy — 0= — V)i Sum of squares for the y’s

SD%. SYY/(n—1) Sample variance of the y’s

SD,, JSYY/(n—1) Sample standard deviation of the y’s
SXY Y (xi =)y —y) =D (xi —X)yi Sum of cross-products

Sxy SXY/(n—1) Sample covariance

Txy Sxy/(SDxSDy) Sample correlation

9In each equation, the symbol ) means to add over all the n values or pairs of values in the data.
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OLS Closed Form

The oLs estimators are those values By and B, that minimize the function!

n

RSS(Bo. B1) = 3 [ — (Bo + Brxi)]’ (2.4)

i=l1

When evaluated at (ﬁo, ﬁl), we call the quantity RSS(BO, ,31) the residual sum of
squares, or just RSS.

The least squares estimates can be derived in many ways, one of which is
outlined in Appendix A.3. They are given by the expressions

. SXY SD, (SYY)2
=TIy | oo
SXX

(2.5)

The several forms for 31 are all equivalent.

Since OLS minimizes (2.4), it will always fit at least as well
as, and generally better than, the true mean function
(actual function); OLS model is biased by data..
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Closed form solution to OLS

o o

How do we minimize (3.2)7 Denote by X the N x (p + 1) matrix with
each row an input vector (with a 1 in the first position), and similarly let
y be the N-vector of outputs in the training set. Then we can write the

residual sum-of-squares as B is W in our notation
RSS(3) = (y — X3)" (y = X3). (3.3)

This is a quadratic function in the p + 1 parameters. Differentiating with
respect. to 3 we obtain

IRSS .

(g, ~ oXT(y - X3)

o (3.4)
D’RSS
asogT ~ XX

Assuming (for the moment) that X has full column rank, and hence X7'X
is positive definite, we set the first derivative to zero

T . . . .
X' (y—-Xd) =0 gis computed directly in
to obtain the unique solution closed form
3= (XTX)y 'x7y. — (3.6)
[Friedman et al. 20012]
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Closed form solution to OLS

 To minimize J (aka RSS), we set its derivatives to zero, and obtain the
normal equations:

— XTXW = Xly
— Thus the value of W that minimizes J(W) is give in closed form

VI, N =3 d ) = (- F)
- 2*%(fW(x)—J/)aLW}(fW(x)_y)

. (fW<x>—y)%m((§fo")_y)

(f,, (x)-y)x, foreachjinl:n

(XW -Y)' X  overallandin terms of data
= X'XW-X'Y=0

X'"XW =X"Y Normal Equations

W= (x"x)' xTy

 For a full derivation see: http://www.stanford.edu/class/cs229/notes/cs229-
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Normal Equations = Closed From Soln. to OLS

« An alternative is to performing the minimization
explicitly and without resorting to an iterative
algorithm

— In this method, we will minimize RSS by explicitly taking its
derivatives with respect to the 3;'s (sometimes written as W, the
weight vector), and setting them to zero.

— Do this via calculus with matrices.

« Gradient descent gives another way of minimizing
RSS(B). [Discussed next lecture]
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Closed form solution to OLS

 To minimize RSS, we set its derivatives to zero,
and obtain the normal equations:

— XTXW = XTy
RSS =Varianceof ¢

85‘5 _ )2 826 E(yi—/s)g—/s)lxi)z
_ —2X(y B, - Bx ) = -2 X; (yi - Po - /3’1361‘)

= —22xl.(yl. —y+/)’1x—/3’1xl-) = —2Exi(Yi _J""/;)lx_/;)lxi)

http://www.stanford.edu/class/cs229/notes/cs229-
notes1.pdf
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Derivation of Parameter Equations

* An Alternative Derivation treating the y-intercept and
the variable coefficients separately; here we represent

W as £.
 Goal: Minimize squared error (WRT to tl;f y-intercept)

o3& _a3li-Bo- A
350 dp0

= 320y - Bo - Aix;)

= ~2(ny - nfy - npix)

Po=y-hix
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OLS Via Gradient Descent: The Gradient
W a=W, —axVJ (W)

J.t+l
* In order to implement this algorlthm we have to work out

what is the partial derivative term at time t on the right hand
side Vf;,(W)=dF(W)/dw..

« Assume we have only one training example (x, y), so that
we can drop the sum in the definition of J.

VJy (W)_ J(W) = aW (2 (fW(X) y)) Use chain rule df/du*du/dx
(fW(x) y)aW (fW(X) y)Assumea

single training
example
(fW(x) - Y)ﬁ ((E WX, ) - y) For a single w,
i=0
(fy (¥) =)k,
Reca" agvj ((iwi'xi)_y] = %Wj(woxo + WX+ WX +"'ann)

= 0+0+..x,+..0
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Forbes Model

Using Forbes’ data, we will write x to be the sample mean of 7emp and y to be
the sample mean of Lpres. The quantities needed for computing the least squares
estimators are

= 202.95294 SXX =530.78235 SXY = 475.31224

X
2.6
y = 139.60529  SYY = 427.79402 20

The quantity SYY, although not yet needed, is given for completeness. In the rare
instances that regression calculations are not done using statistical software or a
statistical calculator, intermediate calculations such as these should be done as
accurately as possible, and rounding should be done only to final results. Using
(2.6), we find

. SXY
B = —— =0.895
SXX
Bo=7y — Bix = —42.138

The estimated line, given by either of the equations

ﬁ(l.preslTemp) = —42.138 + 0.895Temp
= 139.606 + 0.895(7Temp — 202.953)
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Forbes Model

Using Forbes’ data, we will write x to be the sample mean of 7emp and y to be

o)
< - 2
L o
B o w ©
2 o « Q
s - 25+
a 3 o
g 3 - S o)
) — S +---+ Q@ .. o - -
o s [° °78o ®
o) o ©
T T l T I T T T
195 200 205 210 195 200 205 210
Temperature Temperature

(a) (b)

FIG.14 (a) Scatterplot of Forbes’ data. The line shown is the oLs line for the regression of
log(Pressure) on Temp. (b) Residuals versus Temp.

ﬁ(LpresITemp) = —42.138 + 0.895Temp
= 139.606 + 0.895(7Temp — 202.953)
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Lecture Outline

* Linear Regression: a brief intro

* A quick statistics review
— Mean, expected value, variance, stdev, quantiles, stats in R

* Locally Weighted Linear Regression
 Exploratory Data Analysis

« Simple Linear Regression
— Normal Equations
— Closed form Solution
— Standard Error
— Variance of the estimators

Good model?
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Standard Error

e The standard error is the of the
of a

 The term may also be used to refer to an estimate of that
standard deviation, derived from a particular sample used
to compute the estimate.

 For example, the is the usual estimator of a
mean. However, different samples drawn from

that same population would in general have different values
of the sample mean. The standard error of the mean (i.e., of
using the sample mean as a method of estimating the
population mean) is the standard deviation of those sample
means over all possible samples (of a given size) drawn
from the population. Secondly, the standard error of the
mean can refer to an estimate of that standard deviation,
computed from the sample of data being analyzed at the
time.
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Distribution of Sample Means

1. The mean of a sampling
distribution is identical to mean of
raw scores in the population (u)

2. If the population is Normal, the
distribution of sample means is
also Normal

3. If the population is not Normal, the
distribution of sample means
approaches Normal distribution a
the size of sample on which it is
based gets larger
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Standard Error of the Mean

« The standard deviation of means
in a sampling distribution is
known as the standard error of
the mean.

|t can be calculated from the
standard deviation of observations

— S
SX =——= lox=L

NP

3. The larger our sample size, the
smaller our standard error
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Entire population of

observations

Sample of
observations

Random selection

Statistic Parameter
p=?

Statistical inference
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Estimation Procedures

 Point estimates
— For example mean of a sample of 25 patients
* No information regarding probability of accuracy
— Interval estimates

— Estimate a range of values that is likely

* Confidence interval between two limit values

— The degree of confidence depends on the probability of including
the population mean(y

95% CI=X+1.960 _

X

99% CI=X+2.580 _

X
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When Sample size is small ...

95% CI=X+ 1960 _

95% CI=X+1tS_

A constht from
Student t Distribution

that depends on confidence
interval and sample size
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HYPOTHESIS TESTING

* Hygiene procedures are effective in
preventing cold.

« State 2 hypotheses:

* Null: H, : Hand-washing has no effect on
bacteria counts.

« Alternative: H, : Hand-washing reduces
bacteria.

 The null hypothesis is assumed true: i.e.,
the defendant is assumed to be innocent.

Berkeley | 296 A Data Science and Analytics Thought Leaders© 2011 James G. Shanahan  James. Shanahan_AT_gmail.com 118



£ determines the properties of the response y

« Suppose we can fix the value of x and observe the
corresponding value of the response y. Now if x is fixed, the
random component € determines the properties of y.

« Suppose the mean and variance of € are 0 and o2, respectively.
Then the mean response at any value of the regressor variable
(X) is
* E(ylx) = u,.= € ~N(0, o?)

E(y|x) = by =E(Bo + B1x + €) = By + B4 X

« The variance of
« Var(y|x)= o

— The variability o

variance of the «

— 2 — —
that there is a i Yar(yIx) = Oyx" = Var(By+ B, x t€)=c
of this distributic

_ 2 . . .
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Estimating Variance based on Residual

Since the variance o2 is essentially the average squared
size of the e , we should expect that its estimator 6™ 2 is
obtained by averaging the squared residuals.

Berkeley I .

Since the variance o is essentially the average squared size of the e,-z, we should

expect that its estimator 62 is obtained by averaging the squared residuals. Under
the assumption that the errors are uncorrelated random variables with zero means
and common variance o2, an unbiased estimate of o is obtained by dividing
RSS =) é,-z by its degrees of freedom (df), where residual df = number of cases
minus the number of parameters in the mean function. For simple regression,
residual df = n — 2, so the estimate of o2 is given by

RSS
52 = (2.7)
n—2

This quantity is called the residual mean square. In general, any sum of squares
divided by its df is called a mean square. The residual sum of squares can be
computed by squaring the residuals and adding them up. It can also be computed
from the formula (Problem 2.9)

2

S
RSS = §YY —

_ __ Q2
i = SYY - Bisxx (2.8)

.com
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Standard Error : Same units as response variable

Using the summaries for Forbes’ data given at (2.6), we find

RSS = 427.79402 475.31224°
- e ~530.78235
= 2.15493 (2.9)
2.15493
ot = = 0.14366 (2.10)
17 -2

The square root of 62, & = 4/0.14366 = 0.37903 is often called the standard error
of regression. It is in the same units as is the response variable.
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Lecture Outline

* Linear Regression: a brief intro

* A quick statistics review
— Mean, expected value, variance, stdev, quantiles, stats in R

* Locally Weighted Linear Regression
 Exploratory Data Analysis

« Simple Linear Regression
— Normal Equations
— Closed form Solution
— Standard Error
— Variance of the estimators

Good model?
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Good model

« Lower residual standard error is better

« More to come on this front next class

Berkeley | 296 A Data Science and Analytics Thought Leaders© 2011 James G. Shanahan  James.Shanahan_AT_gmail.com 123



 End of Lecture
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Guidelines for Homework

These exercises are OPTIONAL.

« GENERAL Guidelines for Homework
— Paste each question into your manuscript and then provide your solution

— Please provide explanations, code, graphs captions, and cross references
in a PDF report (that should read like research paper.

— Don't forget to put your name, email and date of submission on each report.

— In addition, please provide R code in separate file. Please comment your so
that | or anybody else can understand it and please cross reference code
with problem numbers and descriptions

— Please create a separate driver function for each exercise or exercise part
(and comment!)

& If you have questions please raise them in class or via email or during office

6‘3' & hours
Q}‘O\Q_ Slomework is due on Tuesday, February 21 of the following week by SPM.

60

&«°® \‘& ,Elease submit your homework by email to:

\‘(\o&‘ with the subject - Berkeley |1 296A”

— Have fun!
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Exercise 1

 What is the difference between Parametric and .
Non-Parametric machine learning algorithms?

* Define the expected value for a discrete variable

and give an example. Calculate the expected for
your example and the variance.
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Exercise 2

 The 68% -95% -99.7% is a rule of thumb that allows
practitioners of statistics to estimate the probability that
a randomly selected number from the standard normal
distribution occurs within 1, 2, and 3 standard deviations
of the mean at zero.

 What is the probability that a randomly selected number
from the standard normal distribution occurs within one
standard deviation of the mean? This probability is
represented by the area under the standard normal curve

between x = -1 and x = 1, pictured below. . A

* Plot this graph -
 What is the area of the shaded area? .
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Exercise 2 Solution




Exercise 3

2.1. Height and weight data The table below and in the data file htwt.txt
— gives Ht = height in centimeters and Wt = weight in kilograms for a sample
of n = 10 18-year-old girls. The data are taken from a larger study described

in Problem 3.1. Interest is in predicting weight from height.

o ff Ht %

169.6 71.2
166.8 58.2
157.1 56.0
181.1 645
1584 53.0
165.6 524
166.7 56.8
156.5 49.2
168.1 55.6

1653 77.8

2.1.1. Draw a scatterplot of Wt on the vertical axis versus Ht on the horizontal
axis. On the basis of this plot, does a simple linear regression model
make sense for these data? Why or why not?

2.1.2. Show that X = 165.52,y = 59.47, SXX = 472.076, SYY = 731.961,
and SXY = 274.786. Compute estimates of the slope and the intercept
for the regression of ¥ on X. Draw the fitted line on your scatterplot.

2.1.3. Obtain the estimate of o2 and find the estimated standard errors of
Bg and Bl. Also find the estimated covariance between 30 and 51.
Compute the t-tests for the hypotheses that By = 0 and that gy =0
and find the appropriate p-values using two-sided tests.

2.1.4. Obtain the analysis of variance table and F-test for regression. Show _
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Exercise 4: LWR

* In R locally weighted (linear) regression is
available via lowess(); using data(airquality)

« Apply lowess() to ozone data set (available in R)

« Construct the lowess model for following formula
“ozone ~ temp” for different f’s (0.01, 0.1, 0.3, 0.5,
1); comment on your results

« Comment on the computational requirements
(memory and CPU) for LOESS models versus a
linear regression model when it comes to

— training a model

— Classification of a new example (please write out the
classification rule for Loess and and for linear regression)
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Exercise 5

Using the Davis dataset

library(car); head (Davis) # examine first 6 rows

Tasks

Build a linear regression model weight ~repwt

Predict weight from reported weight of men and women engaged in regular
exercise

What is the dimensionality of this data set
Compute the summary stats (using summary() command)
Comment on these stats

Use the summary command on you built linear regression model. Comment on the
residuals and the Residual standard error. How is the residual standard error
calculated ? (calculate this yourself and show the code)

Explain the Residual standard error wrtt problem in layperson’s english
Plot scattorplots weight ~repwt
 scatterplot(weight ~repwt, span=0.6, lwd=3, id.n=4, data=Davis)

» Does everything look okay here? Comment on your findings. Take action and
rebuild a new model and compare to the original model. How have things
changed?
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Exercise 6: Whiteboard
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Exercise 6

« Visualizing the conditional distributions of prestige given values of

income using LOESS, or LOWESS (locally weighted scatterplot
smoothing)

« Calculate the E(prestigelincome), the mean value of prestige given
income the following income values, and the variance (prestige|
income) using a LOWESS (using your own implementation)

— Assume the neighborhood on the regressor is defined as follows
« if (value is in the interval income = £ 100) weight,\jrorm = 1 €lse O
» Weight norm(value, o =50) (NOTE standard deviation is 50)

* Plot the resultant mean functions and calculate the residual standard error.
Contrast this to ordinary least squared comment on your findings

— Scatterplot the data, for Income = 5000 plot the active points for the for
weight \eoru 1N red big dots (twice the default size). Plot the mean value
prediction using Lowess weight\rory ; Label using a text pointer; plot the 95%
confidence interval using Lowess weightrory. label using a text pointer

» Repeat this for incomes = 10,000 (plot utilised points in green stars) and
15,000 (plot utilised points in brown x s)

« Remember to include a legend in the graph _
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Guidelines for Homework

« GENERAL Guidelines for Homework

— Paste each question into your manuscript and then provide your solution

— Please provide explanations, code, graphs captions, and cross references
in a PDF report (that should read like research paper.

— Don’t forget to put your name, email and date of submission on each report.

— In addition, please provide R code in separate file. Please comment your so
that | or anybody else can understand it and please cross reference code
with problem numbers and descriptions

— Please create a separate driver function for each exercise or exercise part
(and comment!)

— If you have questions please raise them in class or via email or during office
2 hours

Q§ 6 6\. Homework is due on Tuesday, February 21 of the following week by SPM.
Qo (;(\‘P’Iease submit your homework by email to:
\\o <Sith the subject “Berkeley 1 296A”
0

— fun!
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END
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