
Mixed-initiative interaction
James F. Allen, University of Rochester

Mixed-initiative interaction is a key
aspect of effective human-computer inter-
action and has great potential to affect
work on multiagent systems. The term
mixed-initiative interaction is sometimes
conflated with human-computer interaction
itself, but this is a mistake because almost
all models of HCI so far are not mixed-
initiative, and mixed-initiative systems
need not involve a human. It is perhaps in
HCI where we will see the greatest impact.

The development of mixed-initiative intel-
ligent systems will ultimately revolutionize
the world of computing even more than the
recent move to GUIs, in my view. This
essay describes the goals of research in
mixed-initiative interaction, suggests a
general framework for thinking about work
in the area based on the properties of
human dialogue, and then briefly describes
the key problems to overcome before
mixed-initiative systems become a reality. 

For simplicity, I will focus on a single
scenario consisting of two agents: a human
and an intelligent system. Mixed-initiative

interaction can occur in many other scenar-
ios as well, including between multiple
machines cooperating to perform tasks
(such as in distributed planning) or between
multiple people and machines interacting to
coordinate their activities (collaboration
systems, for example). Most everything I
say here generalizes to these other cases. In
fact, many of the issues become even more
crucial as the number of agents grows. In
many examples, I will draw from our expe-
rience in building mixed-initiative planning
systems over the last five years.1–3.

The goals of mixed-initiative
interaction

Mixed-initiative interaction is an impor-
tant aspect of effective multiagent collabora-
tion to solve problems or perform tasks. In
our minimal human-computer configura-
tion, such tasks could include systems de-
signed to interact with a user to design a
kitchen, find the best airfare, coordinate an
emergency relief mission, or teach the user
how to use new equipment. Mixed-initiative
refers to a flexible interaction strategy,
where each agent can contribute to the task
what it does best. Furthermore, in the most
general cases, the agents’ roles are not deter-
mined in advance, but opportunistically
negotiated between them as the problem is
being solved. At any one time, one agent
might have the initiative—controlling the
interaction—while the other works to assist
it, contributing to the interaction as required.
At other times, the roles are reversed, and at
other times again the agents might be work-
ing independently, assisting each other only
when specifically asked. The agents dynam-
ically adapt their interaction style to best
address the problem at hand. 

Mixed-initiative interaction lets agents
work most effectively as a team—that’s the
key. The secret is to let the agents who cur-
rently know best how to proceed coordinate
the other agents. Involving a human in the
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Mixed-initiative
interaction 

In the last few years, a series of well-publicized debates argued the merits of total
automation of user needs (via intelligent agents) versus the importance of user con-
trol and decision making (via graphical user interfaces).1

Perhaps a more productive way to frame this discussion is to note that there is an
interesting duality between AI and human-computer interaction. In AI, we try to
model the way a human thinks in order to create a computer system that can perform
intelligent actions. In HCI, we design computer interfaces that leverage off a human
user to aid the user in the execution of intelligent actions.

What is the boundary between these two fields? An area that is becoming known as
mixed-initiative interaction might turn out to be the missing link. Mixed-initiative
interaction refers to a flexible interaction strategy in which each agent (human or
computer) contributes what it is best suited at the most appropriate time. I became
interested in this area when I read about AIDE, a system that helps a user explore a
dataset using a statistics software package.2 AIDE both makes suggestions to the user
and responds to user guidance about what to do next.

In this installment of “Trends and Controversies,” we have three essays about the
area of mixed-initiative interaction. James Allen of the University of Rochester intro-
duces the area and creates a useful taxonomy of mixed-initiative dialog issues. He
also summarizes several years’ worth of research on mixed-initiative planning sys-
tems. The second essay, by Eric Horvitz of Microsoft Research, describes the role of
uncertainty in mixed-initiative interaction and describes two innovative systems for
semiautomated assistance that make use of Bayesian reasoning. Finally, Curry Guinn
of Duke University confronts the difficult task of evaluating such systems, including
the creation of test sets and metrics for evaluating descriptive versus prescriptive dia-
log models. In earlier work, Guinn has developed extensive computer simulations of
mixed-initiative dialogs.

—Marti Hearst
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interaction adds the complication that the
system agents must use an interaction mode
convenient to the human and support
human-style problem solving. To do this,
computer agents must be able to focus on
different key subproblems, collaborate to
find solutions—filling in details and identi-
fying problem areas—and work with the
person to resolve problems as they arise. 

Current approaches to human-computer
interaction with intelligent systems are
typically not mixed-initiative. Rather, they
fall into two approaches, illustrated by the
following two examples:

• human control: a scheduling worksta-
tion—The system is a tool for schedul-
ing vehicles for transporting freight. It
provides a GUI for accessing a set of
software tools for developing, manipu-
lating, evaluating, and displaying plans,
invoking simulators, and so on. The
system responds to commands from the
human, who specifies the plan using the
tools available. If well-designed, such a
system would be a useful planning tool,
but it is not a mixed-initiative system,
because the human always controls the
interaction. 

• system control: automated call cen-
ters—One of the fastest-growing appli-
cations of human-machine interfaces are
automated call centers, in which the
human uses a telephone keypad or
speech to make a series of menu selec-
tions (for example, “if you want your
account balance, press or say one….”).
This is a prototypical example of sys-
tem-controlled interaction, and our
almost universal sense of frustration
with such interfaces indicates how
annoying they are to the human user.
Such systems are becoming prevalent
because they save companies money, not
because they improve customer service. 

Mixed-initiative interaction within
a dialogue framework

The best way to view interaction between
agents is as a dialogue, and thus mixed-
initiative becomes a key property of effec-
tive dialogue. We all have intuitions about
how human dialogue works, which can be
exploited in developing new models of
interaction. While natural-language interac-
tion is the typical form of human dialogue,
dialogue models can be characterized in
terms of any communication protocol and

are independent of natural language. People
even engage in dialogues in other modali-
ties, using gestures, drawing, and the like. A
computer offers yet further modes of com-
munication, graphics-based user interfaces,
menu-base systems, and so on, used both
for system output and point-and-click input.
By dialogue, I refer to specific mechanisms
such as contextual interpretation, turn tak-
ing, and grounding, that would be needed
with any communication modality. 

Turn-taking: When should or can I
speak? When a particular agent communi-
cates in a dialogue and the others listen, that
agent has the turn. Turn-taking models ad-
dress questions of when an agent is obliged
to take the turn, when it cannot have the
turn, and when it has an option of taking the
turn or not. In fixed-initiative systems, turn
taking is usually not an issue, because one
agent initiates all interactions and waits for
the appropriate response before moving on
to the next interaction. Who has the turn is
always well-defined, and the agent in con-
trol always initiates turns. 

In mixed-initiative interaction, the situa-
tion can be more complex. Because differ-
ent agents might take the initiative at differ-
ent times, an agent must be able to tell when
it should appropriately start an interaction
by taking the turn. For example, in a plan-
management system, the system might
learn of a new problem that interferes with
the current plan built so far. Assume that the
user is currently asking about the weather.
The system must decide whether to 

• interrupt the user with a notification of
the problem; 

• wait for the user to finish but then ig-
nore the question and notify the prob-
lem; 

• answer the question and then state the
problem; or 

• wait until later (say, until the user asks
if there are any problems). 

The right decision here requires balancing
the importance of the problem, the status of
the weather, and other “social” constraints
between the two agents.

Different levels of mixed initiative. Sin-
gle-initiative systems specify in advance
which agent has the initiative in the interac-
tion, while mixed-initiative systems offer a
range of options and levels of complexity
(see Table 1). Consider starting with an
interactive-planning application in which
the user has the initiative. The first step
toward mixed-initiative is to allow unso-
licited reporting. For example, say the sys-
tem continually verifies whether the plan
under development is likely to succeed in
the current situation. As the situation or
plan changes, the system might notice
problems and then notify the user. At this
basic level, however, the system does not
then coordinate the subsequent interaction. 

The next level involves subdialogue ini-
tiation. In this case, the system might initi-
ate a subdialogue in certain situations, say,
to ask a clarification. Because the user
should then answer the question, and the
clarification might take several inter-
actions, the system has temporarily taken
the initiative until the issue is clarified.
Initiative then reverts to the user. 

At the fixed-subtask mixed-initiative
level, the system responsibility to perform
certain operations. For instance, say the
system is responsible for choosing particu-
lar vehicles, routes, and refueling stops for
each planned transportation action. When
the user suggests a transportation goal, the
system takes over building the plan, asking
the user to make decisions when it needs
help. As long as the system is working on
this aspect of the plan, it is maintaining the
initiative. Once the subtask is completed,
initiative reverts to the user. 

At the final negotiated mixed-initiative
level, there is no fixed assignment of
responsibilities or initiative. Each agent
constantly monitors the current task and
evaluates whether it should take the initia-
tive in the interaction, basing this decision
on many factors, including 

• the agent’s capability to effective coordi-
nate the current subtask (Can I coordinate
the interaction to solve this problem?),

• the other demands on the agent at the
present time (Do I have the time and

Table 1. Different levels of mixed initiative

MIXED-INITIATIVE LEVELS CAPABILITIES

Unsolicited reporting Agent may notify others of critical information as it arises
Subdialogue initiation Agent may initiate subdialogues to clarify, correct, and so on
Fixed subtask initiative Agent takes initiative to solve predefined subtasks
Negotiated mixed initiative Agents coordinate and negotiate with other agents to determine 

initiative



resources to do it?), and 
• the other agents’ evaluations of their

own capability to coordinate the inter-
action at the present time (Am I the best
qualified to coordinate given my current
collaborators?).

Intention recognition. Another key tech-
nical problem that arises in mixed-initiative
settings is intention recognition. When the
system wholly controls the interaction, it
can determine the allowable responses each
time and decide how to interpret them.
When the user has control, however, the
system must identify the goals underlying
the user’s request to respond appropriately.
In the simplest of tasks, simple techniques
might suffice and be built into the interpre-
tation strategy. With more complex tasks,
however, the system might need to recog-
nize some or all of the following from a
user’s contribution:

• What speech act the user is performing
(for example, is this a request, a prom-
ise, or acceptance of a proposal?),

• What level the user is concerned with
(are they talking about the interaction or
about how to perform the task, or are
they performing part of the task?), and

• What action they are trying to accomplish
(what modification to the interaction, how
is the task being modified, or what part of
the task is the user performing?).

Mixed-initiative planning systems
At the University of Rochester, we have

been working for more than five years on
mixed-initiative planning systems. The goal
is to develop systems that can enhance
human performance in managing plans, for
example, to maintain a transportation net-
work or to coordinate emergency relief in
response to natural disasters. At first, we had
high hopes of harnessing the long history of
work in AI on planning systems4 to build
effective planning tools. This hope disap-
peared rapidly, however, as we understood
that there was a serious mismatch between
the way planning systems solve problems

and the way humans solve problems. 
Automated planners require complete

specifications of the goals and situation
before starting to work, while people incre-
mentally learn about the scenario and re-
fine and modify their goals as the plan is
being developed. Automated planners eval-
uate plans quantitatively and in black-and-
white terms, while humans subjectively
evaluate plans. Automated planners work
on one solution at a time, whereas people
compare options and alternatives before
selecting a course of action. 

Faced with this dilemma, we decided to
try to design collaborative planning systems
in which the user and machine collaborate
to build plans, each providing the capabili-
ties it does best. The human brought intu-
ition, a notion of the goals and trade-offs
between goals, and highly developed prob-
lem-solving strategies, while the machine
brought an ability to manage detail, allocate
and schedule resources, and perform quan-
titative analysis of proposed courses of
action. 

To determine how the system should
interact with the human, we studied how
humans interact with each other. We col-
lected dialogues between two people inter-
acting in a transportation-planning scenario,
to see what types of interactions they used
when they collaboratively planned. One
person received information about the do-
main—the capabilities of trains, for exam-
ple—while the other started with the goals
to achieve and was ultimately responsible
for the plan produced. The two could not
see each other and did not know each other.
The only information they shared at the
start of the dialogue was an abstract map of
the Trains world. 

Table 2 summarizes the different classes
of interaction and their frequency that we
found in analyzing every utterance in one
hour of a sample dialogue. The only type of
interactions supported by a typical state-of-
the-art planning system (namely, adding a
new course of action) handles less than
25% of the interactions. Much of the inter-
action was concerned with maintaining the

communication (summarizing and clarify-
ing, for example) or managing the collabo-
ration (discussing the problem solving strat-
egy). Clearly, an effective collaborative
planner required much more that traditional
planning technology.

Faced with this analysis, we have focussed
our research on several key areas. First, to
provide the human with a convenient com-
munication language, we have developed a
spoken natural-language dialogue interface.
While a complex task in itself, it did not
seem feasible to develop a flexible enough
communication language that would not
have required too much training on the
human’s part. Second, we developed a more
general model of plan reasoning and man-
agement, focusing on incremental develop-
ment of plans, plan recognition, ways of
managing and comparing different options,
and ways of effectively communicating the
structure and implications of proposed plans.
(See our Web site at www.cs.rochester/
research/trains for details.)

Summary
Research in mixed-initiative interaction

is still in its infancy, and the research prob-
lems we will face are significant. The po-
tential impact of such systems, however,
cannot be overestimated. If we are ever to
build computer systems that can seamlessly
interact with humans as they perform com-
plex tasks, these systems will need to sup-
port effective mixed-initiative interaction.

References

1. J. Allen et al., “A Robust System for Natural
Spoken Dialog,” Proc. 31st Meeting ACL,
MIT Press, Cambridge, Mass., 1996, pp.
62–70.

2. G. Ferguson, J. Allen, and B. Miller,
“TRAINS-95: Towards a Mixed-Initiative
Planning Assistant,” Proc. Third Conf. AI
Planning Systems (AIPS-96), AAAI Press,
Menlo Park, Calif., 1996, pp. 70–77

3. G. Ferguson and J. Allen, “TRIPS: An Inte-
grated Intelligent Problem-Solving Assis-
tant,” Proc. Nat’l Conf. AI (AAAI-98),
AAAI Press, Menlo Park, Calif., 1998.

4. J. Allen, J. Hendler, and A. Tate, Readings
in Planning, Morgan Kaufmann, San Fran-
cisco, 1990.

16 IEEE INTELLIGENT SYSTEMS

Table 2. What happens in a mixed-initiative collaborative planning between humans.

ACTION AMOUNT (%)

Evaluating and comparing options         25
Suggesting courses of action          23
Clarifying and establishing state        13.5
Clarifying or confirming the communication 13.5
Discussing problem-solving strategy       10
Summarizing courses of action          8
Identifying problems and alternatives      7
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Uncertainty, action, and inter-
action: in pursuit of mixed-
initiative computing
Eric Horvitz, Microsoft Research

Recent debate has highlighted differing
views on the most promising opportunities
for user-interface innovation.1 One group
of investigators has expressed optimism
about the potential for refining intelligent-
interface agents, suggesting that research
should focus on developing more powerful
representations and inferential machinery
for sensing a user’s activity and taking
automated actions.2–4 Other researchers
have voiced concerns that efforts focused
on automation might be better expended on
tools and metaphors that enhance the abili-
ties of users to directly manipulate and
inspect objects and information.5 Rather
than advocating one approach over the
other, a creative integration of direct man-
ipulation and automated services could
provide fundamentally new kinds of user
experiences, characterized by deeper, more
natural collaborations between users and
computers. In particular, there are rich
opportunities for interweaving direct con-
trol and automation to create  mixed-
initiative systems and interfaces.

Computer scientists have used the term
mixed-initiative in various ways. These
include references to the automated control
of turn taking in human-computer conver-
sation6 and the coordinated application of a
set of problem-solving methodologies.7 I
shall use the phrase to refer broadly to
methods that explicitly support an efficient,
natural interleaving of contributions by
users and automated services aimed at con-
verging on solutions to problems.8

Taking a mixed-initiative approach
promises to dramatically enhance human-
computer interaction by allowing comput-
ers to behave more like associates, capable
of working with users to develop a shared
understanding of goals and of contributing
to problem solving in the most appropriate
way. Achieving such a dream of fluid col-
laboration between users and computers
requires solving several difficult challen-
ges. In particular, we need to develop
machinery for gathering information and
making inferences about the intentions,
attention, and competencies of users—and
for ultimately making decisions about the
nature and timing of automated services.
Computers will often be uncertain about

the goals and needs of users. Thus, meth-
ods for reasoning under uncertainty play a
critical role in mixed-initiative interaction.

Supporting joint activity under
uncertainty

People appear to be well adapted to
mixed-initiative problem solving. In daily
life, we continue to engage one another in
efficient, tightly woven collaborations. We
assume and rely on a rich interleaving of
efforts to achieve goals through a sharing
of beliefs, needs, and context. A common
arena for exploring mixed-initiative inter-
action is conversation, centering on a col-
laboration to achieve the goal of communi-
cating needs and information. However,
mixed-initiative interaction extends beyond
conversation to encompass a wide variety
of interactions that rely on a collaborative
interleaving of contributions by partici-
pants, some of which might include con-
versational interaction.

Psychologists and computer scientists
have referred to efficient collaborations con-
verging on shared goals as joint activity.9–11

Joint activity captures the behavior dis-
played in fast-paced, well-coordinated inter-
actions among people who work together to
solve a mutual goal. Examples of joint activ-
ity include the collaborative behaviors seen
in conversation, dancing, and the familiar

struggle of moving a large piece of furniture
through cramped hallways. Participants in
joint activity seek convergence on a shared
set of beliefs about the setting, activity,
goals, and the nature and timing of individ-
ual contributions. Uncertainties about goals
and needs are resolved through a drive to-
wards a mutual understanding or common
ground in a process referred to by psycholo-
gists as grounding.9,10,12

Joint activity embodies an especially
fluid and efficient form of mixed-initiative
interaction. The pursuit of metaphors, de-
signs, and reasoning machinery for support-
ing joint activity presents the most difficult
challenges—and the greatest opportuni-
ties—for research on mixed-initiative
interaction.

Beliefs, actions, and initiative
Mixed-initiative systems must consider a

set of key decisions in their efforts to sup-
port joint activity and grounding.  These
include when to engage users with a ser-
vice, how to best contribute to solving a
problem, when to pass control of problem
solving back to users for refinement or
guidance, and when to query a user for
additional information in pursuit of mini-
mizing uncertainty about a task. 

Systems that provide automated services
rely on the ability to make good guesses
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about a user’s needs by considering evi-
dence obtained through the narrow keyhole
of user interface events. A system’s ability
to understand users can be enhanced by
coupling richer systems for monitoring user
activity with more expressive knowledge
representations and sophisticated grounding
skills. However, even given more complete
knowledge about a user’s activity, mixed-
initiative systems must still grapple with
significant uncertainties. Thus, building
effective mixed-initiative systems requires
the consideration of key uncertainties both
at design time and in real time.

A Bayesian approach to human-computer
interaction provides a valuable perspective
for the design of mixed-initiative systems.
Bayesian agents maintain beliefs about such
critical variables as a user’s intentions and
attention.  Bayesian agents also update their
beliefs continuously with probabilistic pro-
cedures that consider both passively ob-
served and actively gathered evidence.

Recent work on the use of real-time
Bayesian inference suggests that dynamic
reasoning under uncertainty can be a valu-
able component of mixed-initiative interac-
tion. Both hand-built and automatically
learned probabilistic user models, includ-
ing Bayesian networks, have been embed-
ded as key components of user-interface
prototypes. For example, in the Lumière
system,4 a Bayesian network model ana-
lyzes a stream of events generated by the
user’s interaction with Microsoft Excel.  It
continuously infers probability distribu-
tions over the user’s goals and user’s inter-
est in receiving active assistance. When the
user makes an explicit query for assistance,
information about this query is added to the
analysis. The bar graph in Figure 1 repre-
sents a snapshot of a probability distribu-
tion inferred by Lumière over a user’s
goals. My colleagues and I have developed
prototypes that not only reason about a
user’s goals and needs, but additionally

harness Bayesian networks to infer a prob-
ability distribution over the attentional
focus of users.13 

Guiding mixed-initiative action
with expected utility

A system endowed with the ability to
infer beliefs about the states of a user’s
intention and attention can make ideal deci-
sions about how and when an automated
service should step in to assist a user. More
specifically, access to beliefs about a user’s
goals give a mixed-initiative system the
ability to take information-gathering and
problem-solving actions that have the high-
est expected utility, taking into considera-
tion the expected benefits and costs of
attempting to participate in problem solv-
ing. Expected benefits represent the gains in
efficiency associated with offering a contri-
bution under uncertainty.  Expected costs
capture the frustration and inefficiency
associated with the distraction of presenting
an otherwise valuable contribution—or of
executing an inappropriate contribution.
Beyond reasoning about goals, inferences
about the attention of users are critical in
making decisions about the best time to
provide assistance. Significant costs may be
associated with querying a user or provid-
ing a partial solution when the user is not
ready to accept the intervention.

The policy of taking actions associated
with maximum expected utility has a long
tradition, founded on the axioms of utility,
formulated originally by John von Neu-
mann and Oskar Morgenstern over 50
years ago. Although expected utility has
enjoyed a rich history of application in
such fields as economics and decision
analysis, it has only recently been applied
in human-computer interaction.  

Designing for a mix of initiatives
Harnessing probabilistic inference to

provide an awareness of users and expected

utility to guide actions offers an overall
perspective that can guide the development
of mixed-initiative architectures. However,
the basic principles do not provide detailed
blueprints for creating specific, valuable
interleavings of direct manipulation and
automation. Designs for mixed-initiative
systems benefit greatly from careful consid-
eration—from the earliest phases of the
design process—of the detailed interactions
between potential automated services and
options for user manipulation and display. 

The large space of design opportunities
for mixed-initiative interaction includes 

• developing automated services that are
performed in line with a user’s activity,
allowing users to take advantage of con-
tributions provided by a system while
they work in a natural manner,

• identifying elegant metaphors that pro-
mote efficient grounding by providing
efficient means for users and computers
to communicate information about in-
tended or ongoing contributions to a
solution, and 

• developing automated services that can
provide solutions at varying levels of
precision or completeness, giving
mixed-initiative systems the flexibility
to scope the precision of contributions in
accordance with the uncertainty about a
user’s goals or the competency of an
analysis.

The latter class of design opportunities is
motivated by the notion that, as uncertainty
grows about a user’s intentions or about the
quality of the result, a system should grace-
fully degrade its contribution so as to “do
less, but do it well.” That is, we prefer that a
system provide users with a clear, valuable
advance towards a solution—an advance
that minimizes the need for the user to per-
form costly undoing or backtracking. We
can enhance the ability of systems to make
decisions about the most appropriate contri-
bution by endowing those systems with the
ability to decompose prototypical tasks into
sets of subtasks that span a spectrum of pre-
cision or completeness. 

Lookout
A prototype system named Lookout pro-

vides concrete instantiations of several key
concepts that highlight the role of decision
making under uncertainty in mixed-initia-
tive interaction.8 Lookout assists with the
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Utility-directed actions

Beliefs

Observations

• User activity
• User profile
• User utterances
• Data stuctures
• Context

Figure 1. A Bayesian perspective on human-computer interaction. A probability distribution about a user’s goals (bar
graph) is computed from a set of observations and background information about the user. Actions are selected based
on their expected utility. The probability distribution here, generated by the Lumière system, displays the likelihoods
of a user’s different goals while working with Microsoft Excel. 
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tasks of calendar review and appointment
creation. A group of interested people scat-
tered throughout Microsoft have employed
the system since it was released for internal
testing in early 1998.

Lookout monitors a user’s interactions
with the Microsoft Outlook messaging and
calendar system. The system recognizes
when users open and attend to new e-mail
messages. Lookout decides whether, when,
and how to best assist users with the tasks
of accessing the appropriate view of their
calendar and scheduling appointments
associated with the messages.

For each message being reviewed, Look-
out infers the probability that a user has the
goal of invoking Outlook’s calendar and
scheduling subsystem.  This is done by
considering information in the header and
patterns of text in the body of e-mail mes-
sages. Given this probability, and the costs
and benefits of providing automation, the
system performs an expected-utility analy-
sis and decides whether to simply do noth-
ing (letting users continue to perform direct
manipulation), or to interact with the user.
The system considers the expected utility
of pausing to ask the user if he or she might
like assistance and of simply going ahead
and performing the most appropriate calen-
dar view or scheduling action without re-
questing the user’s input. When the system
decides that automated calendar access or

appointment generation would be a valu-
able contribution, it displays results in a
manner that makes it easy for the user to
further refine or undo the analysis.

In providing its service, Lookout uses
knowledge about the typical ways people
describe meetings and times.  It understands
the temporal implications of such phrases
appearing in e-mail as “Fri afternoon,”
“tomorrow at 3,” “next week,” “in Decem-
ber,” “get breakfast,” “grab lunch,” and so
forth. In preparing its analysis, Lookout
considers a spectrum of contributions at
differing levels of precision. The system
seeks to provide a user with a valuable step
forward by displaying an automatically
generated appointment or a calendar view
with the most appropriate scope. 

If the system can identify a single date
and time with confidence, it will construct
a proposed appointment by filling out the
day, time, and subject fields of an Outlook
appointment form and present it to the user
for confirmation or modification. If the
target appointment conflicts with another
meeting on the calendar, the system will
search to find an alternative time for the
event before composing and presenting the
appointment. If the system cannot identify
a specific day and time with confidence, it
will opt to introduce a less precise contri-
bution. For example, the system will open
the calendar to the most likely day, or the

most likely week, and pass control back to
the user for refinement.

Lookout relies on reasoning, learning,
and communication to provide services in
line with the flow of a user’s work. Lookout
employs a model for gauging the status of a
user’s attention in making decisions about
when to jump in and query the user or to
perform its service. The system infers the
amount of time a user wishes to dwell on an
e-mail message at hand by considering at-
tributes of the message and the user’s activ-
ity. Specifically, Lookout considers the
length of the message and the time since the
last paging or scroll event to decide on the
ideal time to step in. Early versions of
Lookout that did not employ such a model
of attention had a very different feel; the
appropriate timing of services dramatically
improves the experience and relays a re-
markable sense that an intuitive assistant is
attempting to work with the user.

Lookout can be instructed to run in a
hands-free, social-agent modality, employ-
ing an explicit animated assistant coupled
with speech synthesis and recognition.
When operating in the social-agent mode,
Lookout establishes a separate audio chan-
nel for communicating with users about
contributions, minimizing the potential
conflict with ongoing keyboard and mouse
activity. Figure 2 shows a sample interac-
tion with Lookout as an embodied agent.

Figure 2. Lookout in action. Procedures that harness probability and utility guide Lookout’s actions to assist users with accessing their calendar and composing appointments, based
on a background analysis of e-mail being reviewed.8



Integrating an explicit social presence has
let us explore the use of gestures and utter-
ances that might be expected in natural
mixed-initiative interaction among people.
For example, the agent selects a behavior
from a set of gestures and utterances that
communicates its confidence about taking
an action. Also, the agent displays signs of
confusion when the speech-recognition sub-
system has difficulty interpreting the audio
signals. If the system does not receive a
response when offering the user assistance,
it uses gestures to communicate, in a nonin-
vasive manner, the notion that it understands
that the user is too busy to respond before
disappearing (for example, the agent will
shrug, relaying with visual cues that “I was
just trying to be of service—no problem...”).
At such times, the agent will wait patiently
on the sidelines for a period of time that is
computed dynamically as a function of the
inferred belief that the system could have
provided a valuable service.

Lookout continually attempts to improve
its ability to provide valuable contributions
by performing background learning. The
system’s models for inferring the goals and
attention of users are updated over time
through implicit observation of a user’s
behavior, using a learning process that col-
lects evidence about such variables as the
content of messages associated with a
user’s scheduling activity and the period of
time between a message being opened and
a user’s direct execution of calendar and
scheduling tasks.

Beyond implicit learning, Lookout al-
lows users to directly indicate their prefer-
ences about the system’s decision-making
behavior. Preferences input during configu-
ration are used in Lookout’s cost-benefit
analyses and timing decisions. Additionally,
users can take the initiative to invoke Look-
out’s services at any time by simply click-
ing on the Lookout icon that is always
available on the System Tray of the Win-
dows shell.

We have explored designs for more
deeply integrating Lookout’s automated
services with direct manipulation and dis-
play. Lookout’s current version was de-
signed to work with a legacy software
application, rather than built as part of a
more global design process taking a more
comprehensive approach to interweaving
direct manipulation and automation. As
such, the behavior and value of the Look-
out prototype hinges on the design of the

direct-manipulation capabilities provided
by Outlook. Without Lookout, users typi-
cally navigate to the appropriate graphical
button or menu item to access their calen-
dar, search for the appropriate day, input
the appropriate times, and fill in the subject
of the meeting. Changes in the details of
how Outlook operates would likely entail
modifications of the actions and cost-bene-
fit considerations employed by Lookout. 

Frontiers of mixed-initiative
interaction

The Lookout system has provided a test-
bed for utility-directed mixed-initiative
interaction on relatively short-run sequen-
ces of interaction. Work is underway on
leveraging Bayesian inference and ex-
pected-utility decision making in richer
mixed-initiative systems that work with
users on longer, more sophisticated com-
munication and problem-solving sessions.
For example, work on the Bayesian Recep-
tionist focuses on methods for supporting
joint activity and grounding in conversation
about goals that are typically handled by
receptionists at the Microsoft corporate
campus.14,15 The Bayesian Receptionist
decomposes goals into a hierarchical set of
subgoals and employs sets of Bayesian
networks and expected-utility decision
making to navigate through a subgoal hier-
archy in pursuit of common ground.

Lookout and the Bayesian Receptionist
have highlighted the necessity and promise
of endowing agents with beliefs and of
employing probability and expected utility
to mesh automated services with direct
manipulation. Opportunities abound for
harnessing probabilistic methods to weave
automation more tightly together with
methods that enable users to control, in-
spect, and guide computing. Although great
challenges lie ahead, we believe these early
prototypes, and others being developed by
colleagues pursuing principles and machin-
ery for mixed-initiative interaction, provide
glimmers of the future of human-computer
interaction.
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Evaluating mixed-initiative dialog
Curry I. Guinn, Research Triangle Institute

Researchers in mixed-initiative interac-
tion are trying to make computers be collab-
orators with their human users. In this two-
way information exchange, the computer
can do some tasks better alone, some tasks
require joint work, and some tasks are better
done by the human user. The challenge is to
define computation models of how initiative
is or should be controlled in a dialog.

In current user-interface design, the pre-
dominate initiative structure has the human
user initiating almost every interaction.
Only in some very fixed, a priori-designed
instances might the computer initiate inter-
actions (“All files in directory will be
deleted! Are you sure (Y/N)?”). In early
human-computer interfaces, these designer-
selected interfaces were often faulted for
being too rigid. So, today, almost all com-
plex software comes with a multitude of
user-preference selections. 

In moving away from these rigid para-
digms of interaction, we strive toward the
more loose, open, and dynamic interaction
patterns seen in human-human conversations.
Flow control there is often very fast-paced,
with many dialog turns and shifts in initiative. 

In this essay, I will focus on how to eval-
uate and compare computational models of
mixed-initiative dialog. I will focus on two
aspects of this evaluation:

• What are the metrics used for evaluat-
ing dialog systems? 

• What is the nature of the data set being
used for evaluation? 

Metrics for evaluating models of
mixed-initiative dialog

How would we describe a good model of
dialog? One approach to goodness—the des-
criptive model of dialog—is how well the
model fits existing data. A second approach is
prescriptive: whether dialogs that result from
the model’s use have desirable qualities.

Evaluating descriptive models of dialog.
Does the theory fit the data? That is the
essential question in evaluating descriptive
models. The problem for researchers in
mixed-initiative dialog is that existing data
is extremely limited and the challenge of
gathering appropriate data is formidable. 

Once gathered, the key issue is appropri-
ately transcribing and then tagging the data.

In tagging the data, there is
no current standard of what
should be tagged. Different
research agendas—speech
recognition, prosody, pars-
ing, co-reference, and dis-
course structure—have gen-
erated different formalisms
for tagging spoken conver-
sations. Recently, efforts
such as the IRCS Workshop
on Discourse Tagging
(http:// ftp.cis. upenn.edu/
~ircs/discoursetagging/
toplevel. html), the Interna-
tional Workshop on Dis-
course Tagging, and the
ACL 99 Workshop towards Standards and
Tools for Discourse Tagging (http://www.
research.att.com/~walker/dtagwrk/
ac199-dtag.html) have attempted to bring
together researchers from these different areas
to reach consensus. 

For researchers interested in mixed-
initiative systems, strategies for tagging
dialogs can range from simply identifying
utterance boundaries to complex taxonomy
of labels applied to each dialog segment.
While we have not yet established a standard
of tagging, certain features seem common
across a variety of tagging schemes. The
corpus is broken up into discourse segments.
Labels applied to each segment indicate the
function of that segment. For example, the
coding scheme used by Sherri Condon and
Claude Cech identifies utterance boundaries
and labels each utterance with a simple func-
tion MOVE, RESPONSE, or OTHER.1 In con-
trast, the VerbMobil coding scheme applied
to appointment-scheduling dialogs used over
50 domain-specific dialog acts as labels such
as SUGGEST_EXCLUDE_TIME.2

Mixed-initiative researchers must deter-
mine whether there should be explicit tags
for initiative in a corpus. An early version
of the Penn Multiparty Standard Coding
Scheme has explicit labels for initiative:

• INITIATE—where the speaker main-
tains or takes control of what is being
discussed,

• RESPONSE-TO-ACCEPT—where the
utterance is a response to a previous
utterance and is accepting,

• RESPONSE-TO-REJECT—where the
utterance is a response to a previous
utterance but rejects its proposal or con-
tent, and 

• RESPONSE-TO-OTHER-RESPONSE—
where the utterance is a response to a
previous utterance that neither confirms
nor rejects its content.3

These labels, however, are heavily loaded
with meaning. The very definition of what
initiative is (does it refer to the dialog or the
domain task or both?) is still controversial.
Thus, coding schemes that require taggers
to make decision on initiative are likely to
have low reliability across coders and
across projects. In a tagging scheme Jenni-
fer Chu-Carroll and Michael Brown de-
vised, taggers had to decide at each dialog
turn which participant had task initiative
and which participant had dialog initiative.4

The kappa statistic for dialog initiative was
0.69, while the kappa for task initiative was
0.57. (For an overview of the kappa statistic
as a means of evaluating a coding scheme’s
reliability, see Carletta et al.5) As a general
rule, K > 0.8 represents high reliability,
0.67 < K < 0. 8 moderate reliability, and K
< 0.67 low reliability. If other studies show
similar results, this suggests using initia-
tive-neutral labeling schemes. 

One initiative-neutral tagging system is
the Coconut scheme, which is a derivative
of the DRI tagging scheme, which uses the
concept of forward-looking and backward-
looking functions to label discourse
segments.6

• Forward-looking functions include
Statements (assertions and reasser-
tions), Influence-on-Hearer (informa-
tion request, action directives, laying
out options), and Influence-on-Speaker
(offers and commitments). 

• Backward-looking functions include



Answers (to previous requests) and
Agreement (acceptance or rejection of a
belief or proposal embodied in a previ-
ous utterance). 

In a study of inter-coder reliability using
this system, the kappa coefficient for State-
ment and Answer were quite high (0.83 and
0.79, respectively), making these labels
highly reliable.7 The kappas for Influence-
on-Hearer and Influence-on-Speaker were
reasonable (0.72 for both). However, the
cross-coder reliability of Agreement was
only 0.54. These results indicate that many
of the features believed to be important in
setting and changing initiative (most for-
ward-looking functions) are highly code-
able. However, there might be important
classes of utterances that are challenges or
acceptance of initiative (the Agreement
function) that require subjective evaluation.

An important area of study is determining
how and why agents challenge the initiative
of their collaborator. These backward-
looking functions apparently have very low
cross-coder reliability, indicating that evalua-
tion of these utterances is much more subjec-
tive. This reliability result seems to present a
serious challenge to mixed-initiative re-
searchers. It is not surprising that tags related
to initiative have low reliability—a precise
all-acceptable definition of what initiative is
has not been specified. Until an algorithm is
devised that identifies which agent has what
level of initiative, it is unlikely that high
cross-coder reliability will be achievable
within a study, much less across studies.

Evaluating prescriptive dialog models.
Here, we are less concerned with the theory
fitting the data. Rather, we want computa-
tional agents carrying out our dialog theory
to produce conversations with desirable
qualities. What qualities might we look
for? Past evaluations of human-computer
systems have focused on a variety of per-
formance factors summarized nicely by
Marilyn Walker and her colleagues.8 The
performance factors divide into objective
metrics such as mean response time, which
require no human judgment, and subjective
metrics such as appropriateness of re-
sponses, which require human judgment.
Table 3 lists objective and subjective met-
rics. While not meant to be exhaustive, this
list gives a sense of the potential complex-
ity of the analysis. (Walker gives a subset
of this list. 8) As this table shows, many of

the features that are of interest to mixed-
initiative researchers are subjective.

Walker’s Paradise evaluation system
uses decision theory to combine various
metrics into a single performance metric.8

Using a linear-regression analysis, it
determines which factors are most impor-
tant to maximizing task success while min-
imizing cost. Their analysis of Elvis, a
voice-interactive email service, compared
two initiative strategies:

• System initiative, where the system
prompts the user by giving a list of pos-
sible responses (“Select messages by
subject, by sender, or in order of arriv-
al.”) and 

• Mixed initiative, where the system does
not prompt with possible responses
(“I’ve got your mail.”). The user is
expected to know the system capabili-
ties and what is appropriate given the
interaction’s context.

Their analysis revealed that the three
significant user-satisfaction factors in this
spoken interactive system were the user
assessment of task completion, the mean
recognition score (performance of the
speech recognizer), and elapsed time. The
overall performance with mixed initiative
was not as good as system initiative. Sub-
jects had a more difficult time learning how
to use the mixed-initiative system, and the
mean recognition score tended to be worse. 

Data sets for evaluation
Three types of data sets have been used

to evaluate models of dialog: human-
human dialogs, human-computer dialogs,
and computer-computer dialogs.

Human-human dialogs. Gathering the
appropriate data to model is a significant
challenge for dialog researchers. But in
evaluating dialog systems, we have very
limited data sets with which to work. These
data sets are expensive to obtain, and the
quality of the data is affected by many con-
founding factors:

• How do we gather naturally occurring
conversations between human partici-
pants? 

• How does the intrusion of recording
affect the data?

• If the communication between humans is
partly linguistic, partly gestural, and

partly intonational, how is this data cap-
tured and transcribed? (Tools for automat-
ing (or semiautomating) the transcription
process are an important research area.9)

• How can an external observer ever be
confident of understanding the nuances
of conversation between human partici-
pants? The underlying knowledge that
makes interpretation possible might be
inaccessible to the transcriber. 

Also, the data collected is often far more
complex than limited dialog theories can
model. To simplify the data collected,
researchers often will limit the contextual
elements of the dialogs in the laboratory
setting. Preventing face-to-face interaction
and having typed interaction are common
techniques in eliminating variables (essen-
tially gesture and intonation) that comput-
ers currently are not good at interpreting or
generating.  Another (perhaps obvious)
technique is to provide a rigid task for the
conversants to work on. This predefined
task makes modeling the domain’s seman-
tics much easier and can limit the amount
of hidden knowledge. 

For a variety of reasons, the corpus of
human-human conversations is quite lim-
ited. They are usually gathered with a spe-
cific research agenda in mind, which might
bias their use in particular directions. For
instance, in the Map Corpus domain, one
participant is usually the expert while the
other is a novice.10 The resulting conversa-
tion, then, might have very few changes in
initiative. Specifically trying to study the
effect of dialog initiative, Terry Moody had
a human play the role of an expert system
that had to follow certain predefined initia-
tive rules (in what is often called a Wizard
of Oz experiment).11

Human-computer dialogs. Here, research-
ers actually implement some or all of their
dialog theory on a computer and have hu-
man subjects interact with the system. By
actually implementing a system, they can
directly test aspects of a theory. A typical
experiment might involve running sets of
subjects with the system using various ini-
tiative strategies. Recent examples of spo-
ken-language systems used for testing ini-
tiative strategies include Elvis, Toot, Trains,
the CSELT Italian railway timetable sys-
tem, and the Circuit Fix-it Shoppe.12–15

There are a number of problems with
running human-computer dialog experi-
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ments. Some of these difficulties encoun-
tered by researchers often have little to do
with the actual dialog theory:

• Creating an actual dialog system in-
volves a very intensive programming
effort that introduces variables of its
own.14

• Because typed input systems drastically
affect user perception and performance,
a speech interface is preferred. Despite
tremendous advances in speech recogni-
tion in the last decade, the errors that
occur because of speech recognition
often dominate the development cycle
and performance.17 In the analysis car-
ried out by Walker, the mean recognition
score was one of the three dominant vari-
ables affecting system performance.7

• Once the words are recognized, the sys-
tem requires excellent natural-language
parsing. 

• The inevitable variability in human sub-
jects requires a large test set. Ronnie
Smith and Richard Hipp, for instance,
found that subject outliers made model
evaluation substantially more
difficult.17

• Finally, the time to run and transcribe
experiments inevitably limits the num-
ber of possible subjects.

Computer-computer dialogs. If the com-
putational model of dialog developed is
intended to model both participants in a
dialog, it is theoretically possible to con-
duct computer-computer conversations.
Two computational agents could each use
the same dialog model (presumably with
different knowledge sets) and have a con-
versation.  The advantages of running com-
puter-computer experiments mirror the
disadvantages of running human-computer
experiments. While a complex software
system might have to be built, it does not
require a user interface, speech recognition,
or a sophisticated parser. Most importantly,
computer-computer simulations can gener-
ate large test sets. Parameters that affect the
dialog can be easily changed and tested. A
number of researchers have performed
such ablation studies.18–21

As an example, my initiative model has
each computational agent attempt to assess
each agent’s ability to solve a goal based
on a probabilistic analysis of its own
knowledge and its model of its collabora-
tor’s knowledge. By varying how and when

the agent carried out such analysis, we can
gather empirical data on the effectiveness
of various initiative-setting strategies. 

What do computer-computer simulations
say about our models? Simulations provide
one tool for analyzing a complex model.
These simulations give us detailed infor-
mation about the underlying model. By
observing the resulting dialogues, we can
ascertain whether the underlying model
generates interactions that have the target
behaviors observed in human-human or
human-computer dialogs. 
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Table 3. Objective and subjective metrics.

OBJECTIVE METRICS SUBJECTIVE METRICS

Percentage of correct answers Percentage of implicit recover utterances
Percentage of successful transactions Percentage of explicit recover utterances
Number of dialog turns Percentage of appropriate system utterances
Dialog time Cooperativity 
User response time Percentage of correct and partially correct utterances
System response time User satisfaction
Percentage of error messages Number of initiative changes
Percentage of “non-trivial” utterances Number of explicit initiative changing events
Mean length of utterances Number of implicit initiative changing events
Task completion Level of initiative 

Number of discourse segments
Knowledge density of utterances 
Co-reference patterns 
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