
Lecture 3 – REST intro

i290-rmm
Patrick Schmitz



Lecture 3 Slide 2

• Services underlie the application, manage and 
provide access to all CMS data

• Web-services approach enables mashups
– Also, new applications now yet envisioned.

• REST-based services easy to use and integrate
– Services model common entities, and relations, but are extensible 

to provide a flexible “data model” for each collection
– Provide permanent URI for objects for linking, citation, etc.
– Easy access to data for other applications, research projects, etc.

Services and the Project



Lecture 3 Slide 3

• Example URIs, e.g., for loans, objects associated to one 
loan, and for a given collection object: 
your.museum.org/cspace-services/loans
your.museum.org/cspace-services/loans/{id}/collectionobjects
your.museum.org/cspace-services/collectionobjects/{id}

• REST payload (XML content) includes core schema 
information, and your custom extensions

• Dissemination and publishing tools have easy access to 
collections data

• Research applications have access to data without 
compromising database security or access policies

REST Access to CollectionSpace



Lecture 3 Slide 4

REST … in 1 slide …

• “… resources are just consistent mappings from an 
identifier [such as a URL path] to some set of views on 
server-side state.

• “If one view doesn’t suit your needs, then feel free to 
create a different resource that provides a better view 
…

• “These views need not have anything to do with how 
the information is stored on the server … [They just 
need] to be understandable (and actionable) by the 
recipient.” – Roy T. Fielding



Lecture 3 Slide 5

REST … in 2 slides …

Every resource is URL-addressable:
/collectionobjects
/collectionobjects/{id}
/loans

You can get creative!
/collectionobjects/moviescripts
/loans/overdue



Lecture 3 Slide 6

REST … in 3 slides …

To change system state, simply change a 
resource.
Within the /collectionobjects “bucket”, 
you can:

• Create an item
• Update an item with new data
• Delete an item



Lecture 3 Slide 7

RESTful APIs (generic)

Create POST a new item to a “bucket”
POST /collectionobjects

Read GET an item by its ID
GET /collectionobjects/{id}

Read (multiple) GET the items in a “bucket”
GET /collectionobjects



Lecture 3 Slide 8

RESTful APIs (generic)

Read (multiple) GET the items in a “bucket”
GET /collectionobjects

Results returned as list of items, each of which has:
• CSID (unique identifier for each record)
• Summary info: museum number and/or title
• URI to access each item
Read can also be search or filter:
• For paging (page size, page number)
• Search parameters (keyword, term completion, etc.)
• Information returned – extra info, deep records



Lecture 3 Slide 9

RESTful APIs (generic)

Update PUT a fully updated item to an ID
PUT /collectionobjects/{csid}
(Can handle sparse/partial updates!)

Delete DELETE an item by its ID
DELETE /collectionobjects/{csid}

Proposed, NYI:
Resource discovery GET info about resource
GET /collectionobjects/schema
GET /collectionobjects/description



Lecture 3 Slide 10

RESTful APIs for search
Search Not REST-defined.  Often:
GET /collectionobjects?q=term

Keyword based search on most services:
GET /collectionobjects/?kw=whetstone

Partial term completion on certain services:
GET /collectionobjects/?pt=patr

Specialized search on specific services:
GET /relations?sbjType=intakes

&objType=collectionobjects



Lecture 3 Slide 11

Status Codes
HTTP status codes returned in the response header:

• 200 OK The resource was read, updated, or deleted.
• 201 Created The resource was created.
• 400 Bad Request The data sent in the request was 

bad.
• 403 Not Authorized The Principal named in the 

request was not authorized to perform this action.
• 404 Not Found The resource does not exist.
• 409 Conflict A duplicate resource could not be 

created.
• 500 Internal Server Error A service error occurred.



Lecture 3 Slide 12

Error Responses

Response in body when a 4xx or 5xx status is returned:

<error>
<code>{Mandatory code}</code>
<message>{Optional message}</message>
<resource-id>{Resource ID, if available}
</resource-id>
<request-uri>{URI of request}</request-uri>

</error>

12CollectionSpace



Lecture 3 Slide 13

Demos/Lab

1. Open and understand a schema
2. Open and play with a payload
3. Play with REST services, and use the UI 

to see the effects.
4. Open a JSON payload (from the app-layer 

services) just to see it.
5. Convert XML to and from JSON


