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ce Cov(e) = ¢21, it follows frou

B(RSS) = Be? =S [Bly: — B x1)]” + tx(Cov(e)).

t=1 =1

IX) ! =?(XTX)1.

P nanhining this with (2.6) yields (1.31).

- X(B — B) + Xe¢, so E(e) = 0
ve can write e = (I — H)Y, whae
ix. Hence, by (2.4),

4 I'rincipal component analysis (PCA)

i | Pasic definitions

H)Cov(e)(I — H) = 0%(I - H),

fliltion 2.1. Let 'V be a p X p matrix. A complex number ) is called an
of V if there exists a p x 1 vector a # 0 such that Va = Aa. Such
b v is called an edgenvector of V corresponding to the eigenvalue A.

(1.35).
1<4,j<k is the sum of its diagona

ant property of a trace is

Wi onn rewrite Va = Aa as (V — A)as= 0. Since a 3 0, this implies
¢ A It n solution of the equation det(V.~ AI) = 0. Since det(V — AI) is a
oininl of degree p in ), there are p eigenvalues, not necessarily distinct.

3A). (2.4

iensionality of an identity matris
al sum of squares can be express
5). Since Etr(M) = tr(EM) for

+ Ap, det(V) =

Jov(e)) = o*tr(I-H) = (n— 4 641 eigenvector of 'V corresponding to the eigenvalue A, then so is ca for

i Moreover, premultiplying Aa = Va by aT yields

XTX)~1X) = p by (2.5).
» prove (1.30), which is related t
the assumption Fy, = ,BTxt,

A =alVa/|la||®. (2.8)

1;1 the rest of this section, we shall focus on the case where V is the
w matrix of a random vector x = (Xi,...,X,)T. Not only are its
rvaliios real because V is symmetric, but they are also nonnegative since V
finegative definite; see Section 1.1.3. Consider the linear combination a¥x
li {|la]| == 1 that has the largest variance over all such linear combinations.

ximize aT Va(= Var(a”x)) over a with [|a]| = 1, introduce the Lagrange
jur A to obtain

B-B)B-B)T]x (by (24))

Tx)—-lxt

(XX “xex?] (by (25))

t=1
[,) = o?p.

5% {aTVa+A(1-aTa)} =0 fori=1,...,p. (2.9)

e pnuations in (2.9) can be written as the linear system Va = Aa. Since
), this implies that X is an eigenvalue of V and a is the corresponding
m’w,m', and that A = aTVa by (2.8).

,it then follows that E(RSS,)/¢* |

sles associated with nonzero £,

- S A = maXa|a)=1a TVa and a; be the corresponding eigenvector
B"x;) # 0. Since Fe? = (Ee;)? ilni]] = 1. Next consider the linear combination a’x that maximizes
in'x) = aTVa subject to afa = 0 and |jaJ| = 1. Introducing the La-

e nmulbipliers A and ), we obtain
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The proportion in (2.14) can be evaluated by using screeplot, which plots
Ai/tr(V) for each 4, in R or Splus.

9 {aTva+ (1 — aTa) +nafal =0fori=1,...p.
@QA
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. i i obtain the eige > >
inductively in this way, we

with the optimization characterization

‘Singular-value decomposition

We can write the representation of V in (2.12) as

TV, (2.10) V = Qdiag(M,...,2,)Q7, (2.15)
a a.

max
ajlalj=1,aTa;=0 for 1<j<k

vé+~ =

here Q = (ay, ... »ap). The matrix Q is orthogonal, and (2.15) is called the

gular-value decomposition of V. We can use (2.15) to define the square
t of V by V/2 = Qdiag(v,...,vA,)Q7, noting that V1/2y1/2
liag(As,...,0,)QT = V.

. . . . .
w.—uwm maximizer agi-1 Oﬁ. the merﬁ :m:& SIC —® A& 2.10) 1s an O_.WG:CQOA\OR COrrTe:
mvauDQHHHW to ﬂw.»m mﬂmmﬂ,,@_.ﬁm v;lxu.

i ; rincipal component of x.
Definition 2.2. al x is called the ith p D

222 Propertios of principe] componey™ 08€ X1,...,Xp are n independent observations from a multivariate pop-

on with mean & and covariance matrix V. The mean vector g can be
ated by X = k1 Xi/n, and the covariance matrix can be estimated by

i ivati ; = Var(a] x). .
o e e o 1 amn.:&n_obm \/w ay MHM om.zvoa factor loadings in PC
( nts of the eigenvectors ay ; e
(b) MMMMHHMMM@SB%ORQ analysis), which o@% be owmﬂma MMM %Mba ol e
i ; =0 for

incomp in R or Splus. Since a; a; :

Mm&&mw vawwpmnmbwogromob& matrix and therefore we can decompos
Ay .

identity matrix I as

n
-~

V=) (i~ R)(x; — )7/(n-1),

i=1

T4... T (2
HH?T..;w&?ﬁ:;m&aHNB: + -+ apay

the sample covariance matrix. Let & = (Gy,..., @pi)7T be the eigen-
rresponding to the jth mem.mmﬁ eigenvalue \; of the sample covariance

V.. For fixed p, the following asymptotic results have been established
¢ assumption Ay > --- > A, > 0 as 1 — co:

;al i and applying (
More importantly, summing \/S.P.w.s. = 493. Mﬁwa M mm...dw.o Mw@gwnanom
we obtain the following decomposition of V into p .

T

— i) has a limiting N(0,22) distribution. Moreover, for ; # j, the
V= VLNHN\W + .-t \/@Nﬁm{ .

ing distribution of \/n(}; — A;, Aj — Aj) is that of two independent
Is.

{¢) Since V = Cov(x) and x = X1y, Xp) T, t2(V) 1 ;

it follows from (2.7) that

14
AL+ Ay =, Var(Xs).

i=1

~—a;) has a limiting normal distribution with mean 0 and covariance

MU v:.v<~ Nm.w.u._
pyood (A — A )2 22

not uniquely defined because multiplication by —1 still preserves
)t property Va = Aa with [|a| = 1, the preceding result means

&; are chosen so that they have the same sign.

-of (ii) above, even when D is large so that V estimates a larger
+1)/2, of barameters, if many eigenvalues \,, are small compared
st A;’s, then they have small contributions to the sum in (i}, in

A= AR)2 =), /A when ), is much smaller than );, noting that

few principal comy

i ine if the first
An important goal of PCA is to determine if the o viow of

. P i
can account for most of the overall variance P Var(X;
this amounts to determining whether

3 k.
A ) /tr(V) is near 1 for some small
()
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tr(azal) = 1. Hence the covariance structure of the data can be approximated
by a few principal components with large eigenvalues. In this approximation,
only a few, say k, principal components are involved in the covariance matrix
of the estimate &@; for 1 < j < k.

ntracts, which involve exchanging the U.S. Treasury bond rate with the
ndon Interbank Offered Rate (LIBOR), and the associated swap rates for
flerent maturities are given in Chapter 10. The top panel of Figure 2.1 plots
ke daily swap rates rg; for four of the eight maturities T, =1,2,3,4,5,7,10,
nd 30 years from July 3, 2000 to July 15, 2005. The data are obtained from
Representation of data in terms of principal components fww.Economagic.com. Let dy; = rpy — 397.* denote the daily changes in the
year swap rates during the period. The middle and bottom panels plot the
Let x; = (zag, ..., z5p) T, i =1,... , 1, be the multivariate sample. Let X = - ferenced time series dy; for 1-year and 30-year swap rates, respectively.
(T1k, -, znk)T, 1 <k < p, and define rther discussion of these plots will be given in Chapter 5 (Section 5.2.3).
. 'he sample mean vector and the sample covariance and correlation matrices

Y; =8, X0+ 4+ 8 X, 1<j7<p, f the difference data {(dys,...,ds),1 <t < 1256} are

where & = (@15, ..., 3p)7 is the eigenvector corresponding to the jth largest = —(2.412 2.349 2.293 2.245 2.196 2.158 2.094 ,H.méw_e x 1073,
eigenvalue ); of the sample covariance matrix V with l/&;1] = 1. Since the
matrix A = (@i)1<ij<p is orthogonal (ie., AAT = 1), it follows that the . 0.233
observed data X can be expressed in terms of the “principal components” 0.300 0.438
Y; as ; 0.303 0.454 0.488
X =Y+ + Gkp Yp. (2.16) S 0.297 0.453 0.492 0.508 % 10~2

: . . 0.292 0.451 0.494 0.514 0.543 ?
Moreover, the sample correlation matrix of the transformed data y;; is the 0.268 0.421 0.466 0.490 0.513 0.498 ,
identity matrix. : 0.240 0.384 0.431 0.458 0.477 0.472 0.467

0.169 0.278 0.318 0.344 0.362 0.365 0.369 0.322
PCA of correlation matrices
1.000

As shown above, the key ingredient of PCA is the decomposition V = 0.941 1.000
Mazaf + .- 4 vﬁwﬁwm of a nonnegative definite matrix V. An alternative 0.899 0.983 1.000
to Cov(x) is the correlation matrix Corr(x), which is also nonnegative defi- . f — | 0-8620.9610.988 1.000
nite, consisting of the correlation coefficients Corr(X;,X;),1 <4, <p. In 0.821 0.925 0.960 0.979 1.000
fact, Corr(x) = Cov(Xy/ay,... 2 Xp/op) is itself a covariance matrix, where - / 0.787 0.901 0.945 0.973 0.986 1.000
0; is the standard deviation of X;. Since a primary goal of PCA is to uncover ; 0.729 0.850 0.902 0.941 0.948 0.978 1.000
low-dimensional subspaces around which x tends to concentrate, scaling the 0.618 0.742 0.803 0.852 0.866 0.912 0.951 1.000

components Omu.n. by their standard Qmimg.uzm may .Soln vmﬁ“.ma for this pur- H@Ea 2.1 gives the results of PCA using both the covariance and correlation
@0mm_. and applying PCA to sample correlation matrices Inay give more stable : matrices. Also given there are eigenvalues, factor loadings Amwmmbd\moﬁoﬁmvu and
results. the proportions of overall variance explained by the principal components.

2.2.3 An example: PCA of U.S. Treasury-LIBOR swap rates Swap rate movements indicated by PCA

PCA can be implemented by the following software packages: Let @ = (ds — [ix)/Gk, where Gy is the sample standard deviation of dix
and is given by the square root of the kth diagonal element of X. We can use
(2.16) to represent Xy, = (z14, ..., znt)T in terms of the principal components
We now apply PCA to account for the variance of daily changes in swap rates M\?ﬁ..‘ ) MM & M.Nﬂm 2.1 mWOSm ﬁwm ﬁ.HuO.P HMm.: ?W :wwnm the MQHME@M %aww 5% Mm
with a few principal components (or factors). Details of interest rate swap matrix £ an ¢ sample correlation matrix R. From part (b) of Table 2.1,

R/Splus: princomp, screeplot, biplot.princomp;
MATLAB: princomp, pcacov, biplot.
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! Table 2.1. PCA of covariance and correlation matrices of swap rate data.
PCl PC2 PC3 PC4 PC5 PC§ PCY PC8
(a) Using sample covariance matrix
‘Eigenvalue (x10%) 324.1 18.44 3.486 1.652 0.984 0.473 0292 0.253
.,.Tﬁobuogmos 0.926 0.053 0.010 0.005 0.003 0.001 0.001 0.001
Factor loadings 0.231 0.491 —0.535 —0.580 —0.081 —0.275  0.006 —0.030
Tl 0.351 0.431 ~0.150: 0.279 0.049 0.725 —0.050 0.246
——swp10y 0.381 0263 0.073™ 0.456 0.057 —0.265 —0.001 —0.706
1L " owe30y _ _ _ _ 0.393 0.087 0.175 0.299 —0.069 —0.534 0.062 0.652
07/05/00  05/03/01  03/11/02  01/09/03 09/10/04  07/15/05
0.404 —0.054 0.486 —0.447 0.414 0.131  0.455 —0.054
0.387 —0.211 0.238 —0.262 —0.089 0.052 —0.818 —0.038
0.365 -0.395 —0.127 —0.034 —0.735 0.154 0.344 —0.103
0.279 ~0.541 —0.588 0.138 0.513 —0.032 —0.003 0.027
(b) Gmmzm.mmEEm correlation matrix
,mwmwaxm_:m 7.265 0.548 0.103 0.041 0.022 0.011 0.006 0.005
.Muao_.uoimos 0.908 0.067 0.013 0.005 o.oom. 0.001 0.001 0.001
Factor loadings 0.324 0.599 —0.586 —0.402 —0.025 —0.175  0.002 —0.013
0.356 0.352 0.037 0.436 0.004 0.717 —~0.044 0.205
oz 0.364 0.187 0.215 0432 0.007 —0.349  0.007 —0.691
0.368 0.043 0253 0.206 —0.076 —0.533 0.045 0.681
-04f . ; ) . . L A 0.365 —0.064 0.385 ~0.455 0.499 0.151 0.482 -0.056
07/05/00  05/03/01 03/11/02  01/09/03  11/07/03 09/10/04  07/15/05 0.365 —0.192 0.216 ~0.342 —0.014 0075 —0.811 —0.052
Fig. 2.1. Swap rates from July 3, 2000 to July 15, 2005. Top panel: the original : : , 0.356 —0.348 —0.059 ~0.154 ~0.768 0.143 0.324 —0.098

time series. Middle and bottom panels: the differenced series for 1-year (middle) and -
30-year (bottom) swap rates.

0.328 —0.565 —0.589 0.267 0.393 —0.025 0.002 0.020
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the proportion of the overall variance explained by the first principal compo-
nent is 7.265/8 = 90.8%. Moreover, the second principal component explains
0.548/8 = 6.7% and the third principal component explains 0.103/8 = 1.3%
of the overall variance. Hence 98.9% of the overall variance is explained by
the first three principal components, yielding the approximation

(dk — Bik)/Bk = Bea Y1 + Gro Yo + Gps Y3 (2.17)

for the differenced swap rates.

In Figure 2.2, the bottom panel plots the factor loadings of the first three
principal components (or the entries of the eigenvectors a;, ap, and a3) versus
the maturities of the swap rates. The top panel shows the variances of all
principal components. The graphs of the factor loadings show the following
constituents of interest rate or yield curve movements documented in the
literature:

(a) Parallel shift component. The factor loadings of the first principal com-
ponent are roughly constant over different maturities. This means that a
change in the swap rate for one maturity is accompanied by roughly the
same change for other maturities. Indeed, if @31,...,dp; (the components
of &) are equal, then the first summand on the right-hand side of (2.17)
is the same for all maturities 7.

(b) Tilt component. The factor loadings of the second principal component
have a monotonic change with maturities. Changes in short-maturity and
long-maturity swap rates in this component have opposite signs.

(c) Curvature component. The factor loadings of the third principal compo-
nent are different for the midterm rates and the average of short- and
long-term rates, revealing a curvature of the graph that resembles the
convex shape of the relationship between the rates and their maturities.

2.3 Multivariate normal distribution
2.3.1 Definition and density function

(i) An m x 1 random vector Z = (Z1--.,2:,)7 is said to have the m-variate
standard normal distribution if 21, ..., 2y, are independent standard normal
random variables. The joint density function of Z is therefore

m

f(z) = E )\'Fw.ls. exp A - Wuwv = (2m)~™/2 exp(—z¥z/2).

i=1

(ii) An m x 1 random vector Y is said to have a multivariate normal distribu-
tion if it is of the form Y = p + AZ, where Z is standard m-variate normal
and g and A arem x 1 and m x m nonrandom matrices.
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Comp.2 Comp.3 Comp.5 Comp.6 Comp.7 Comp.8

1 2 3 4 5 6 7 8

Fig. 2.2. PCA of correlation matrix. Top panel: variances of principal components.
Bottom panel: eigenvectors of the first three principal components, which represent
the parallel shift, tilt, and convexity components of swap rate movements,




