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For the given portfolio Port, we compute the mean MuP and the standard deviation

SigP of the portfolio return, and we compute the one percentile of the corresponding

normal distribution. We learn that only one percent of the time will the return be less

than 8% while the above computation was telling us that it should be expected to be
1 the dollar is not much, but for

less than 9.2% with the same frequency. One cent O
a large portfolio, things add up!

2.5 PRINCIPAL COMPONENT ANALYSIS

significant loss of information is one of the main chal-
has seen an exponential growth in the re-
search efforts devoted to the design of officient codes and compression algorithms.
Whether the data are comprised of video streams, images, and/or speech signals, or
financial data, finding a basis in which these ddta can be expressed with a small (or

at least a smaller) number of coefficients is of crucial importance. Other important

domains of applications are cursed by the high dimensionality of the data. Artifi-

cial intelligence applications, especially those involving machine learning and data
mining, have the same dimension reduction problems. Pattern recognition problems
are closer to the hearts of traditional statisticians. Indeed, regression and statistical
classification problems have forced statisticians to face the curse of dimensionality,
and to design systematic procedures t0 encapsulate the important features of high di-
mensional observations in a small number of variables. Principal component analysis
as presented in this chapter, offers an optimal solution to these dimension reduction

issues.

Dimension reduction without
lenges of data analysis. The internet age

2.5.1 Identification of the Principal Components of a Data Set

Principal component analysis (PCA, for short) is a data analysis technique designed
for numerical data (as opposed to categorical data). The typical situation that we

consider is where the data come in the form of a matrix [z; j]i=1,...,N,j=1,....M of

real numbers, the entry T;,; representing the value of the i-th observation of the j-
f labeling the columns of the data

th variable. As usual, we follow the convention O
matrix by the variables measured, and the rows by the individuals of the population
under investigation. Examples are plentiful in most data analysis applications. We
give below detailed analyses of several examples from the financial arena.

As we mentioned above, the N members of the population can be identified with
the N rows of the data matrix, each one corresponding to an M -dimensional (row)
vector of numbers giving the values of the variables measured on this individual. It
is often desirable (especially when M is large) to reduce the complexity of the de-
scriptions of the individuals and to replace the M descriptive variables by a smalier
number of variables, while at the same time, losing as little information as possible.
Let us consider a simple (and presumably naive) illustration of this idea. Imaginc
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momentarily that all the variables measured are scores of the same nature (for exam-
ples they are all lengths expressed in the same unit, or they are all prices expressed
in the same currency, . . .) so that it would be conceivable to try to characterize each
individual by the mean, and a few other numerical statistics computed on all the
individual scores. The mean:

—_ Tt Tipt -+ Tim

T; =

’ M
can be viewed as a linear combination of the individual scores with coefficients 1/M,
1/M, ..., 1/M. Principal component analysis, is an attempt to describe the indi-

vidual features in the population in terms of M linear combinations of the original
features, as captured by the variables originally measured on the IV individuals. The
coefficients used in the example of the mean are all non-negative and sum up to one.
Even though this convention is very attractive because of the probabilistic interpre-
tation which can be given to the coefficients, we shall use another convention for the
linear combinations. We shall allow the coefficients t?z) be of any sign (positive as
well as negative) and we normalize them so that the’s sum of their squares is equal to
1. So if we were to use the mean, we would use the normalized linear combination
(NLC, for short) given by:

T = \/——xu + \/—x12 +- J%xiM'

The goal of principal component analysis is to search for the main sources of vari-
ation in the M -dimensional row vectors by identifying M linearly independent and
orthogonal NLC’s in such a way that a small number of them capture most of the vari-
ation in the data. This is accomplished by identifying the eigenvectors and eigenval-
ues of the covariance matrix C, of the M column variables. This covariance matrix
is defined by:

C .7 .7 N Z(-’rz] -j)(xij’ _rj’)’ j:jl =1,..., M,

where we used the standard notation:
1 + o5+ + TN
Z.5 = N
for the mean of the j-th variable over the population of N individuals. It is easy
to check that the matrix C,, is symmetric (hence diagonalizable) and non-negative
definite (which implies that all the eigenvalues are non-negative). One usually orders
the eigenvalues in decreasing order, say:

MZAz-2Ay 20

The corresponding eigenvectors are called the loadings. In practice we choose ¢;
to be a normalized eigenvector corresponding to the eigenvalue Ay, cp to be a nor-
malized eigenvector corresponding to the eigenvalue A, .. . , and finally cps to be a
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normalized eigenvector corresponding to the eigenvalue Aus. and we make sure that
all the vectors c; are orthogonal to each other. This is automatically true when the
eigenvalues ); are simple. See the discussion below for the general case. Recall that
we say a vector is normalized if the sum of the squares of its components is equal to
1. If we denote by C the M x M matrix formed by the M column vectors containing
the components of the vectors cg, ¢z, ..., CM in this order, this matrix is orthogonal
(since it it a matrix transforming one orthonormal basis into another) and it satisfies:

C,=C'DC

where we use the notation ¢ to denote the transpose of a matrix or a vector, and
where D is the M x M diagonal matrix with A1, Az, ..., As on the diagonal. Notice
the obvious lack of uniqueness of the above decomposition. In particular, if ¢; is a
normalized eigenvector associated to the eigenvalue Aj, s0is —c;! Thisis something
one should keep in mind when plotting the eigenvectors ¢;, and when trying to find
an intuitive interpretation for the features of the plots. However, this sign flip is easy
to handle, and fortunately, it is the only form of non uniqueness when the eigenvalues

%y,

are simple (i.e. nondegenerate). The ratio: %
A
M
Zj’ =1 AJ !

of a given eigenvalue to the trace of C (i.e. the sum of its eigenvalues) has the inter-
pretation of the proportion of the variation explained by the corresponding eigenvec-
tor, i.e. the loading c;. In order to justify this statement, we appeal to the Raleigh-
Ritz variational principle from linear algebra. Indeed, according to this principle, the
eigenvalues and their corresponding eigenvectors can be characterized recursively in
the following way. The largest eigenvalue A, appears as the maximum:

= max z'Cyx
zeRM [lz]|=1

while the corresponding eigenvector c; appears as the argument of this maximization

problem:
c; =arg max z'Chz.
z€RM ||zf=1

If we recall the fact that z:C,z represents the quadratic variation (empirical vari-
ance) of the NLC’s z'z1., 'Ts.,. .., #'zN., A1 can be interpreted as the maximal
quadra lic variation when we consider all the possible (normalized) linear combi-
nations of the M original measured variables. Similarly, the corresponding (nor-
malized) eigenvector has precisely the interpretation of this NLC which realizes the
maximum variation.

As we have already pointed out, the first loading is uniquely determined up to a
sign change if the eigenvalue ); is simple. If this is not the case, and if we denote
by m; the multiplicity of the eigenvalue A;, we can choose any orthonormal set
{c1, -+ ,Cm, } in the eigenspace of A; and repeat the eigenvalue \p, m; times in the
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list of eigenvalues (and on the diagonal of D as well). This lack of uniqueness is not
a mathematical difficulty, it is merely annoying. Fortunately, it seldom happens in
practice ! We shall assume that all the eigenvalues are simple (i.e. non-degenerate)
for the remainder of our discussion. If they were not, we would have to repeat them
according to their multiplicities.

Next, still according to the Raleigh-Ritz variation principle, the second eigen-
value A\ appears as the maximum:

Ag = max ztCpz
z€RM [|z|j=1,zLlec

while the corresponding eigenvector cp appears as the argument of this maximization

problem:
- ¢
2 =aE z€RM II[I;?}—CI zle 'j G,

The interpretation of this statement is the followmg if we avoid any overlap with
the loading already identified (i.e. if we restrict ourselves to NLC’s x which are
orthogonal to c;), then the maximum quadratic variation will be A2 and any NLC
realizing this maximum variation can be used for c;. We can go on and identify in
this way all the eigenvalues A; (having to possibly repeat them according to their
multiplicities) and the loadings c¢;’s

Armed with a new basis of RM, the next step is to rewrite the data observations
(i.e. the N rows of the data matrix) in this new basis. This is done by multiplying
the data matrix by the change of basis matrix (i.e. the matrix whose columns are the
eigenvectors identified earlier). The result is a new N x M matrix whose columns are
called principal components. Their relative importance is given by the proportion of
the variance explained by the loadings, and for that reason, one typically considers
only the first few principal components, the remaining ones being 1gnored and/or

treated as noise.

2.5.2 PCA with S-Plus

The principal component analysis of a data set is performed in S-Plus with the
function princomp, which returns an object of class princomp that can be printed
and plotted with generic methods. Illustrations of the calls to this function and of the
interpretation of the results are given in the next subsections in which we discuss
several financial applications of the PCA.

2.5.3 Effective Dimension of the Space of Yield Curves

Our first application concerns the markets of fixed income securities which we will
introduce in Section 3.8. The term structure of interest rates is conveniently captured
by the daily changes in the yield curve. The dimension of the space of all possible
yield curves is presumably very large, potentially infinite if we work in the idealized
world of continuous-time finance. However, it is quite sensible to try to approximate
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these curves by functions from a class chosen in a parsimonious way. Without any a
priori choice of the type of functions to be used to approximate the yield curve, PCA
can be used to extract, one by one, the components responsible for the variations in
the data.

PCA of the Yield Curve

For the purposes of illustration, we use data on the US yield curve as provided by
the Bank of International Settlements (BIS, for short). These data are the result of
a nonparametric processing (smoothing spline regression, to be specific) of the raw
data. The details will be given in Section 4.4 of Chapter 4, but for the time being, we
shall ignore the possible effects of this pre-processing of the raw data. The data are
imported into an S-object named us . bis . yield which gives, for each of the 1352
successive trading days following January 3rd 1995, the yields on the US Treasury
bonds for times to maturity

£=0,1,2,3,4,5,5.5,6.5,7.5/8.5,9.5 months.

We run a PCA on these data with the followiﬁ:g S-Plus commands:

> dim(us.bis.yield)
{11 1352 11
> us.bis.yield.pca <- princomp(us.bis.yield)
> plot (us.bis.yield.pca)
[1] 0.700000 1.900000 3.100000 4.300000 5.500000
[6] 6.700000 7.900000 9.099999 10.299999 11.499999
> title("Proportions of the Variance Explained
by the Components")

The results are reproduced in Figure 2.20 which gives the proportions of the variation
explained by the various components. The first three eigenvectors of the covariance
matrix (the so-called loadings) explain 99.9% of the total variation in the data. This
suggests that the effective dimension of the space of yield curves could be three. In
other words, any of the yield curves from this period can be approximated by a linear
combination of the first three loadings, the relative error being very small. In order
to better understand the far reaching implications of this statement we plot the first
four loadings.

> X <~ ¢(0,1,2,3,4,5,5.5,6.5,7.5,8.5,9.5)

par (mfrow=c(2,2))
plot(X,us.bis.yield.pca$loadings[,1],ylim=c(-.
lines(X,us.bis.yield.pca$loadings[,1])

plot (X,us.bis.yield.pca$loadings[,2] ,ylim=c(-.
lines(X,us.bis.yield.pca$loadings|[,2])

plot (X,us.bis.yield.pca$loadings[,3],ylim=c(~.
lines (X,us.bis.yield.pcasloadings |, 31)
plot(X,us.bis.yield.pca$loadings|[,4],ylim=c(~.

V V.V V V Vv v Vv
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Proportions of the Variance Explained by the Components

0.953

Variances

0.991
0.999 1 1 1 1 1 1 1

Comp. 1Comp. 2Comp. 3Comp. 4Comp. SComp. 6Comp. 7Comp. 8Comp. LComp. 10

Fig. 2.20. Proportions of the variance explained by the ’components of the PCA of the daily
changes in the US yield curve.

> lines(X,us.bis.yield.pca$loadings|[,41)
> par (mfrow=c(1,1))
> title ("First Four Loadings of the US Yield Curves")

The results are reproduced in Figure 2.21. The first loading is essentially flat, so a
component on this loading will essentially represent the average yield over the matu-
rities, and the effect of this most-important component on the actual yield curve is a
paralle! shift. Because of the monotone and increasing nature of the second loading,
the second component measures the upward trend (if the component is positive, and
the downward trend otherwise) in the yield. This second factor is interpreted as the
tilt of the yield curve. The shape of the third loading suggests that the third compo-
nent captures the curvature of the yield curve. Finally, the shape of the fourth loading
does not seem to have an obvious interpretation. It is mostly noise (remember that
most of the variations in the yield curve are explained by the first three components).
These features are very typical, and they should be expected in most PCA’s of the
term structure of interest rates.

The fact that the first three components capture so much of the yield curve may
seem strange when compared to the fact that some estimation methods, which we
discuss later in the book, use parametric families with more than three parameters!
There is no contradiction there. Indeed, for the sake of illustration, we limited the
analysis of this section to the first part of the yield curve. Restricting ourselves to
short maturities makes it easier to capture all the features of the yield curve in a
small number of functions with a clear interpretation.
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First Four Loadings of the US Yield Curves

us his.yield peaSloadingsi, 1)

-06-0.4-02 0.0 0.2 0.4 06
us.bis.yield pcaSloadingsl, 2}
06-0.4-0.2 0.0 0.2 0.4 0.6

us.bis.yield. peagioadings(, 3}
0.6-0.4-0.2 00 0.2 0.4 06
us.bis.yiglt pca$toadings|, 4]
0.6-0.4-0.2 0.0 02 04 08

Fig. 2.21. From left to right and top to boftom, sequential plots of the first four US yield
loadings.

2.5.4 Swap Rate Curves

Swap contracts have been traded publicly since 1981. As of today, they are the most
popular fixed income derivatives. Because of this popularity, the swap markets are
extremely liquid, and as a consequence, they can be used to hedge interest-rate risk
of fixed income portfolios at a low cost. The estimation of the term-structure of swap
rates is important in this respect and the PCA which we present below is the first step
toward a better understanding of this term structure.

Swap Contracts and Swap Rates

As implied by its name, a swap contract obligates two parties to exchange (or swap)
some specified cash flows at agreed upon times. The most common swap contracts
are interest rate swaps. In such a contract, one party, say counter-party A, agrees to
make interest payments determined by an instrument P4 (say, a 10 year US Trea-
sury bond rate), while the other party, say counter-party B, agrees to make interest
payments determined by another instrument Pg (say, the London Interbank Offer
Rate — LIBOR for short) Even though there are many variants of swap contracts, in
a typical contract, the principal on which counter-party A makes interest payments
is equal to the principal on which counterparty B makes interest payments. Also, the
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payment schedules are identical and periodic, the payment frequency being quarterly,
semi-annually, . . . .

Itis not difficult to infer from the above discussion that a swap contract is equiv-
alent to a portfolio of forward contracts, but we shall not use this feature here. In this
section, we shall restrict ourselves to the so-called plain vanilla contracts involving
a fixed interest rate and the 3 or 6 months LIBOR rate.

We will not attempt to derive here a formula for the price of a swap contract,
neither will we try to define rigorously the notion of swap rate. These derivations
are beyond the scope of this book. See the Notes & Complements at the end of the
chapter for references to appropriate sources. We shall use only the intuitive idea of
the swap rate being a rate at which both parties will agree to enter into the swap
contract.

PCA of the Swap Rates

Our second application of principal componen}i?‘%analysis concerns the term struc-
ture of swap rates as given by the swap rate“curves. As before, we denote by M
the dimension of the vectors. We use data downloaded from Data Stream. Itis
quite likely that the raw data have been processed, but we are not quite sure what
kind of manipulation is performed by Data Stream, so for the purposes of this
illustration, we shall ignore the possible effects of the pre-processing of the data. In
this example, the day ¢ labels the rows of the data matrix. The latter has M — 15
columns, containing the swap rates with maturities T conveniently labeled by the
times to maturity z = T — ¢, which have the values 1,2,...,10,12,15, 20,25, 30
years in the present situation. We collected these data for each day ¢ of the period
from May 1998 to March 2000, and we rearranged the numerical values in a matrix
R =r;jli=1,..nN, j=1,....m - Here, the index j stands for the time to maturity, while
the index 7 codes the day the curve is observed.

The data is contained in the S object swap. The PCA is performed in S-Plus
with the command:

> dim(swap)
[1] 496 15
> swap.pca <- princomp (swap)
> plot (swap.pca)
[1] 0.700000 1.900000 3.100000 4.300000 5.500000
[6] 6.700000 7.900000 9.099999 10.299999 11.499999
> title("Proportions of the Variance Explained by

the Components")
YEARS <- C(1,2,3,4,5,6,7,8,9,10,12,15,20,25,30)
par (mfrow=c (2,2))
plot(YEARS,swap.pca$loadings[,1],ylim:c(—.G,.G))
lines(YEARS,swap.pca$loadings[,1])
plot(YEARS,swap.pca$loadings{,2],ylim=c(-.6,.6))
lines(YEARS,swap.pca$loadings[,2])
plot(YEARS,swap.pca$loadings[,3],ylim:c(—.G,.6))

>
>
>
>
>
>
>
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> lines (YEARS, swap.pca$ loadings|, 31)

> plot (YEARS, swap.pca$loadings(, 4], ylim=c(-.6,.6))
> lines (YEARS, swap.pca$loadings|,4])

> par (mfrow=c(1,1))

> title("First Four Loadings of the Swap Rateg")

Figure 2.22 gives the proportions of the variation explained by the various compo-
nents, while Figure 2.23 gives the plots of the first four eigenvectors.

Proportions of the Variance Explained by the Components

0.984

Variances

0.998 1 1 1 1 1 1 1 1

Comp. 1Comp. 2Comp. 3Comp. 4Comp. 5Comp. 6Comp. 7Comp. 8Comp. Comp. 10

Fig. 2.22. Proportions of the variance explained by the components of the PCA of the daily
changes in the swap rates for the period from May 1998 to March 2000.

Looking at Figure 2.23 one sees that the remarks made above, for the interpre-
tation of the results in terms of a parallel shift, a tilt and a curvature component, do
apply to the present situation as well.

Since such an overwhelming proportion of the variation is explained by one sin-
gle component, it is often recommended to remove the effect of this component from
the data, (here, that would amount to subtracting the overall mean rate level) and to
perform the PCA on the transformed data (here, the fluctuations around the mean
rate level).

APPENDIX 1: CALCULUS WITH RANDOM VECTORS AND MATRICES

The nature and technical constructs of this chapter justify our spending some time
discussing the properties of random vectors (as opposed to random variables) and
reviewing the fundamental results of the calculus of probability with random vectors.
Their definition is very natural: a random vector is a vector whose entries are random




