
doi:10.1145/1721654.1721677

april 2010 | vol. 53 | no. 4 | communications of the acm 89

Collaborative Filtering with
Temporal Dynamics
By Yehuda Koren

Abstract
Customer preferences for products are drifting over time.
Product perception and popularity are constantly chang-
ing as new selection emerges. Similarly, customer inclina-
tions are evolving, leading them to ever redefine their taste.
Thus, modeling temporal dynamics is essential for design-
ing recommender systems or general customer preference
models. However, this raises unique challenges. Within the
ecosystem intersecting multiple products and customers,
many different characteristics are shifting simultaneously,
while many of them influence each other and often those
shifts are delicate and associated with a few data instances.
This distinguishes the problem from concept drift explora-
tions, where mostly a single concept is tracked. Classical
time-window or instance decay approaches cannot work, as
they lose too many signals when discarding data instances.
A more sensitive approach is required, which can make bet-
ter distinctions between transient effects and long-term pat-
terns. We show how to model the time changing behavior
throughout the life span of the data. Such a model allows
us to exploit the relevant components of all data instances,
while discarding only what is modeled as being irrelevant.
Accordingly, we revamp two leading collaborative filtering
recommendation approaches. Evaluation is made on a large
movie-rating dataset underlying the Netflix Prize contest.
Results are encouraging and better than those previously
reported on this dataset. In particular, methods described
in this paper play a significant role in the solution that won
the Netflix contest.

1. INTRODUCTION
Modeling time drifting data is a central problem in data
mining. Often, data is changing over time, and models
should be continuously updated to reflect its present nature.
The analysis of such data needs to find the right balance
between discounting temporary effects that have very low
impact on future behavior, while capturing longer term
trends that reflect the inherent nature of the data. This led to
many works on the problem, which is also widely known as
concept drift; see, e.g., Schlimmer and Granger, and Widmer
and Kubat.15, 20

Temporal changes in customer preferences bring unique
modeling challenges. One kind of concept drift in this setup
is the emergence of new products or services that change the
focus of customers. Related to this are seasonal changes, or
specific holidays, which lead to characteristic shopping pat-
terns. All those changes influence the whole population,
and are within the realm of traditional studies on concept
drift. However, many of the changes in user behavior are

driven by localized factors. For example, a change in the
family structure can drastically change shopping patterns.
Likewise, individuals gradually change their taste in movies
and music. Such changes cannot be captured by methods
that seek a global concept drift. Instead, for each customer
we are looking at different types of concept drifts, each
occurs at a distinct time frame and is driven toward a differ-
ent direction.

The need to model time changes at the level of each
individual significantly reduces the amount of available
data for detecting such changes. Thus we should resort to
more accurate techniques than those that suffice for mod-
eling global changes. For example, it would no longer be
adequate to abandon or simply underweight far in time
user transactions. The signal that can be extracted from
those past actions might be invaluable for understanding
the customer herself or be indirectly useful to modeling
other customers. Yet, we need to distill long-term patterns
while discounting transient noise. These considerations
require a more sensitive methodology for addressing drift-
ing customer preferences. It would not be adequate to con-
centrate on identifying and modeling just what is relevant to
the present or the near future. Instead, we require an accu-
rate modeling of each point in the past, which will allow us
to distinguish between persistent signal that should be cap-
tured and noise that should be isolated from the longer term
parts of the model.

Modeling user preferences is relevant to multiple appli-
cations ranging from spam filtering to market-basket
analysis. Our main focus in the paper is on modeling user
preferences for building a recommender system, but we
believe that general lessons that we learn would apply to
other applications as well. Automated recommendations
are a very active research field.12 Such systems analyze pat-
terns of user interest in items or products to provide per-
sonalized recommendations of items that will suit a user’s
taste. We expect user preferences to change over time. The
change may stem from multiple factors; some of these fac-
tors are fundamental while others are more circumstan-
tial. For example, in a movie recommender system, users
may change their preferred genre or adopt a new view-
point on an actor or director. In addition, they may alter
the appearance of their feedback. For example, in a system

A previous version of this paper appeared in the Proceedings
of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2009), 447–456.

90 communications of the acm | april 2010 | vol. 53 | no. 4

research highlights

Section 3, our principles for addressing time changing user
preferences are evolved. Those principles are then incorpo-
rated, in quite different ways, into two leading recommender
techniques: factor modeling (Section 4) and item–item
neighborhood modeling (Section 5).

2. PRELIMINARIES

2.1. Notation
We are given ratings for m users (aka customers) and n items
(aka products). We reserve special indexing letters to dis-
tinguish users from items: for users u, v, and for items i, j.
A rating rui indicates the preference by user u of item i, where
high values mean stronger preference. For example, values
can be integers ranging from 1 (star) indicating no interest
to 5 (stars) indicating a strong interest. We distinguish pre-
dicted ratings from known ones, by using the notation r̂ui for
the predicted value of rui.

The scalar tui denotes the time of rating rui. One can use
different time units, based on what is appropriate for the

where users provide star ratings to products, a user that
used to indicate a neutral preference by a “3 stars” input
may now indicate dissatisfaction by the same “3 stars”
feedback. Similarly, it is known that user feedback is influ-
enced by anchoring, where current ratings should be taken
as relative to other ratings given at the same short period.
Finally, in many instances, systems cannot separate differ-
ent household members accessing the same account, even
though each member has a different taste and deserves
a separate model. This creates a de facto multifaceted
meta-user associated with the account. A way to distin-
guish between different persons is by assuming that
time-adjacent accesses are being done by the same mem-
ber (sometimes on behalf of other members), which can
be naturally captured by a temporal model that assumes
a drifting nature of a customer.

All these patterns and the likes should have made temporal
modeling a predominant factor in building recommender
systems. Nonetheless, with very few exceptions (e.g., Ding
and Li, and Sugiyama et al.4, 16), the recommenders’ literature
does not address temporal changes in user behavior.
Perhaps this is because user behavior is composed of many
different concept drifts, acting in different timeframes and
directions, thus making common methodologies for deal-
ing with concept drift and temporal data less successful. We
show that capturing time drifting patterns in user behavior
is essential for improving accuracy of recommenders. Our
findings also give us hope that the insights from successful
time modeling for recommenders will be useful in other
data mining applications.

Our test bed is a large movie-rating dataset released by
Netflix as the basis of a well-publicized competition.3 This
dataset combines several merits for the task at hand. First,
it is not a synthetic dataset, but contains user-movie ratings
by real paying Netflix subscribers. In addition, its relatively
large size—above 100 million date-stamped ratings—makes
it a better proxy for real-life large-scale datasets, while put-
ting a premium on computational efficiency. Finally, unlike
some other dominant datasets, time effects are natural and
are not introduced artificially. Two interesting (if not sur-
prising) temporal effects that emerge within this dataset
are shown in Figure 1. One effect is an abrupt shift of rating
scale that happened in early 2004. At that time, the mean rat-
ing value jumped from around 3.4 stars to above 3.6 stars.
Another significant effect is that ratings given to movies
tend to increase with the movie age. That is, older movies
receive higher ratings than newer ones. In Koren,8 we shed
some light on the origins of these effects.

The major contribution of this work is presenting a meth-
odology and specific techniques for modeling time drifting
user preferences in the context of recommender systems.
The proposed approaches are applied on the aforemen-
tioned extensively analyzed movie-ratings dataset, enabling
us to firmly compare our methods with those reported
recently. We show that by incorporating temporal informa-
tion, we achieve best results reported so far, indicating the
significance of uncovering temporal effects.

The rest of the paper is organized as follows. In the next
section we describe basic notions and notation. Then, in

Figure 1. Two temporal effects emerging within the Netflix movie-
rating dataset. Top: the average movie-rating made a sudden jump in
early 2004 (1,500 days since the first rating in the dataset). Bottom:
ratings tend to increase with the movie age at the time of the rating.
Here, movie age is measured by the time span since its first rating
event within the dataset. In both charts, each point averages 100,000
rating instances.

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 3.8

 3.9

 0 500 1000 1500 2000 2500
M

ea
n

sc
or

e
Time (days)

Rating by date

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 3.8

 3.9

 0 500 1000 1500 2000 2500

M
ea

n
sc

or
e

Movie age (days)

Rating by movie age

april 2010 | vol. 53 | no. 4 | communications of the acm 91

product ratings—without requiring the creation of explicit
profiles. CF analyzes relationships between users and inter-
dependencies among products, in order to identify new
user–item associations.

A major appeal of CF is that it is domain-free and avoids
the need for extensive data collection. In addition, relying
directly on user behavior allows uncovering complex and
unexpected patterns that would be difficult or impossible
to profile using known data attributes. As a consequence,
CF attracted much of attention in the past decade, result-
ing in significant progress and being adopted by some suc-
cessful commercial systems, including Amazon,10 TiVo,1
and Netflix.

The two primary areas of CF are the neighborhood meth-
ods and latent factor models. The neighborhood methods are
centered on computing the relationships between items or,
alternatively, between users. The item-oriented approach
evaluates the preference of a user to an item based on rat-
ings of “neighboring” items by the same user. A product’s
neighbors are other products that tend to be scored simi-
larly when rated by the same user. For example, consider the
movie “Saving Private Ryan.” Its neighbors might include
other war movies, Spielberg movies, and Tom Hanks mov-
ies, among others. To predict a particular user’s rating for
“Saving Private Ryan,” we would look for the movie’s nearest
neighbors that were actually rated by that user. A dual to
the item-oriented approach is user-oriented approach,
which identifies like-minded users who can complement
each other’s missing ratings.

Latent factor models comprise an alternative approach
that tries to explain the ratings by characterizing both items
and users on, say, 20–200 factors inferred from the pattern
of ratings. For movies, factors discovered by the decomposi-
tion might measure obvious dimensions such as comedy vs.
drama, amount of action, or orientation to children; less well-
defined dimensions such as depth of character development
or “quirkiness,” or completely uninterpretable dimensions.
For users, each factor measures how much the user likes
movies that score high on the corresponding movie factor.
One of the most successful realizations of latent factor mod-
els is based on matrix factorization; see, e.g., Koren et al.9

3. TRACKING DRIFTING CUSTOMER PREFERENCES
One of the frequently mentioned examples of concept drift
is changing customer preferences over time, e.g., “cus-
tomer preferences change as new products and services
become available.”6 This aspect of drifting customer pref-
erences highlights a common paradigm in the literature
of having global drifting concepts influencing the data as a
whole. However, in many applications, including our focus
application of recommender systems, we also face a more
complicated form of concept drift where interconnected
preferences of many users are drifting in different ways at
different time points. This requires the learning algorithm
to keep track of multiple changing concepts. In addition
the typically low amount of data instances associated with
individual customers calls for more concise and efficient
learning methods, which maximize the utilization of signal
in the data.

application at hand. For example, when time is measured in
days, then tui counts the number of days elapsed since some
early time point. Usually the vast majority of ratings are
unknown. For example, in the Netflix data 99% of the pos-
sible ratings are missing because a user typically rates only
a small portion of the movies. The (u, i) pairs for which rui is
known are stored in the set K = {(u, i)|rui is known}, which is
known as the training set.

Models for the rating data are learned by fitting the pre-
viously observed ratings. However, our goal is to generalize
those in a way that allows us to predict future, unknown
ratings. Thus, caution should be exercised to avoid overfit-
ting the observed data. We achieve this by using a technique
called regularization. Regularization restricts the complexity
of the models, thereby preventing them from being too spe-
cialized to the observed data. We employ L2-regularization,
which penalizes the magnitude of the learned parameters.
Extent of regularization is controlled by constants which are
denoted as: l1, l2, …

2.2. The Netflix data
We evaluated our algorithms on a movie-rating data-
set of more than 100 million date-stamped ratings
performed by about 480,000 anonymous Netflix custom-
ers on 17,770 movies between 31 December 1999 and 31
December 2005.3 Ratings are integers ranging between 1
and 5. On average, a movie receives 5,600 ratings, while a
user rates 208 movies, with substantial variation around
each of these averages. To maintain compatibility with
results published by others, we adopted some common
standards. We evaluated our methods on two comparable
sets designed by Netflix: a holdout set (“Probe set”) and a
test set (“Quiz set”), each of which contains over 1.4 million
ratings. Reported results are on the test set, while experi-
ments on the holdout set show the same findings. In
our time-modeling context, it is important to note that
the test instances of each user come later in time than
his/her training instances. The quality of the results
is measured by their root mean squared error (RMSE)

The Netflix data is part of the Netflix Prize contest, with
the target of improving the accuracy of Netflix movie recom-
mendations by 10%. The benchmark is Netflix’s proprietary
system. Cinematch, which achieved an RMSE of 0.9514 on
the test set. The grand prize was awarded to a team that
managed to drive this RMSE to 0.8554 after almost 3 years
of extensive efforts. Achievable RMSE values on the test set
lie in a quite compressed range, as evident by the difficulty
to win the grand prize. Nonetheless, there is evidence that
small improvements in RMSE terms can have a significant
impact on the quality of the top few presented recommenda-
tions.7 The algorithms described in this work played a cen-
tral role in reaching the grand prize.

2.3. Collaborative filtering
Recommender systems are often based on collaborative fil-
tering (CF), a term coined by the developers of the first rec-
ommender system—Tapestry.5 This technique relies only
on past user behavior—e.g., their previous transactions or

92 communications of the acm | april 2010 | vol. 53 | no. 4

research highlights

•	 While we need to model separate drifting “concepts”
or preferences per user and/or item, it is essential to
combine all those concepts within a single frame-
work. This combination allows modeling interactions
crossing users and items thereby identifying higher
level patterns.

•	 In general, we do not try to extrapolate future temporal
dynamics, e.g., estimating future changes in a user’s
preferences. Extrapolation could be very helpful but is
seemingly too difficult, especially given a limited
amount of known data. Rather than that, our goal is to
capture past temporal patterns in order to isolate per-
sistent signal from transient noise. The result, indeed,
helps in predicting future behavior.

Now we turn to how these desirable principles are
incorporated into two leading approaches to CF—matrix
factorization and neighborhood methods.

4. TIME-AWARE FACTOR MODEL

4.1. The anatomy of a factor model
Matrix factorization is a well-recognized approach to
CF.9, 11, 17 This approach lends itself well to an adequate mod-
eling of temporal effects. Before we deal with those tem-
poral effects, we would like to establish the foundations of
a static factor model.

In its basic form, matrix factorization characterizes both
items and users by vectors of factors inferred from patterns
of item ratings. High correspondence between item and user
factors leads to recommendation of an item to a user. More
specifically, both users and items are mapped to a joint latent
factor space of dimensionality f, such that ratings are mod-
eled as inner products in that space. Accordingly, each user
u is associated with a vector pu Î Rf and each item i is associ-
ated with a vector qi Î Rf. A rating is predicted by the rule

	 	
(1)

The major challenge is computing the mapping of each
item and user to factor vectors qi, pu Î Rf. After this mapping
is accomplished, we can easily compute the ratings a user
will give to any item by using Equation 1.

Such a model is closely related to singular value decom-
position (SVD), which is a well-established technique for
identifying latent semantic factors in the information
retrieval. Applying SVD in the CF domain would require
factoring the user–item rating matrix. Such a factorization
raises difficulties due to the high portion of missing val-
ues, due to the sparseness in the user–item ratings matrix.
Conventional SVD is undefined when knowledge about the
matrix is incomplete. Moreover, carelessly addressing only
the relatively few known entries is highly prone to overfit-
ting. Earlier works13 relied on imputation to fill in missing
ratings and make the rating matrix dense. However, impu-
tation can be very expensive as it significantly increases the
amount of data. In addition, the data may be considerably
distorted due to inaccurate imputation. Hence, more recent

In a survey on the problem of concept drift, Tsymbal19
argues that three approaches can be distinguished in the lit-
erature. The instance selection approach discards instances
that are less relevant to the current state of the system. A
common variant is time-window approaches were only
recent instances are considered. A possible disadvantage of
this simple model is that it is giving the same significance
to all instances within the considered time-window, while
completely discarding all other instances. Equal signifi-
cance might be reasonable when the time shift is abrupt,
but less so when time shift is gradual. Thus, a refinement
is instance weighting were instances are weighted based on
their estimated relevance. Frequently, a time decay function
is used, underweighting instances as they occur deeper into
the past. The third approach is based on ensemble learn-
ing, which maintains a family of predictors that together
produce the final outcome. Those predictors are weighted
by their perceived relevance to the present time point, e.g.,
predictors that were more successful on recent instances get
higher weights.

We performed extensive experiments with instance
weighting schemes, trying different exponential time
decay rates on both neighborhood and factor models. The
consistent finding was that prediction quality improves as
we moderate that time decay, reaching best quality when
there is no decay at all. This finding is despite the fact that
users do change their taste and rating scale over the years,
as we show later. However, much of the old preferences still
persist or, more importantly, help in establishing useful
cross-user or cross-product patterns in the data. Thus, just
underweighting past actions lose too many signals along
with the lost noise, which is detrimental, given the scarcity
of data per user.

As for ensemble learning, having multiple models, each
of which considers only a fraction of the total behavior
may miss those global patterns that can be identified only
when considering the full scope of user behavior. What
makes them even less appealing in our case is the need to
keep track of the independent drifting behaviors of many
customers. This, in turn, would require building a separate
ensemble for each user. Such a separation will significantly
complicate our ability to integrate information across users
along multiple time points, which is the cornerstone of
collaborative filtering. For example, an interesting relation
between products can be established by related actions of
many users, each of them at a totally different point of time.
Capturing such a collective signal requires building a single
model encompassing all users and items together.
All those considerations led us to the following guidelines
we adopt for modeling drifting user preferences.

•	 We seek models that explain user behavior along the
full extent of the time period, not only the present
behavior (while subject to performance limitations).
Such modeling is key to being able to extract signal
from each time point, while neglecting only the noise.

•	 Multiple changing concepts should be captured. Some
are user-dependent and some are item-dependent.
Similarly, some are gradual while others are sudden.

april 2010 | vol. 53 | no. 4 | communications of the acm 93

the part of signal relevant to it. Learning is done analogously
to before, by minimizing the squared error function

(5)

Schemes along these lines were described in, e.g., Koren and
Paterek.7, 11

The decomposition of a rating into distinct portions is
convenient here, as it allows us to treat different temporal
aspects in separation. More specifically, we identify the fol-
lowing effects: (1) user-biases (bu) change over time; (2) item
biases (bi) change over time; and (3) user preferences (pu)
change over time. On the other hand, we would not expect
a significant temporal variation of item characteristics (qi),
as items, unlike humans, are static in their nature. We start
with a detailed discussion of the temporal effects that are
contained within the baseline predictors.

4.2. Time changing baseline predictors
Much of the temporal variability is included within the base-
line predictors, through two major temporal effects. The
first addresses the fact that an item’s popularity may change
over time. For example, movies can go in and out of popular-
ity as triggered by external events such as the appearance of
an actor in a new movie. This is manifested in our models
by treating the item bias bi as a function of time. The second
major temporal effect allows users to change their baseline
ratings over time. For example, a user who tended to rate an
average movie “4 stars,” may now rate such a movie “3 stars.”
This may reflect several factors including a natural drift in a
user’s rating scale, the fact that ratings are given in relevance
to other ratings that were given recently and also the fact
that the identity of the rater within a household can change
over time. Hence, in our models we take the parameter bu as
a function of time. This induces a template for a time sensi-
tive baseline predictor for u’s rating of i at day tui:

	 bui = m + bu(tui) + bi(tui).	 (6)

Here, bu(·) and bi (·) are real valued functions that change
over time. The exact way to build these functions should
reflect a reasonable way to parameterize the involving tem-
poral changes. Our choice in the context of the movie-rating
dataset demonstrates some typical considerations.

A major distinction is between temporal effects that span
extended periods of time and more transient effects. In the
movie-rating case, we do not expect movie likeability to fluctu-
ate on a daily basis, but rather to change over more extended
periods. On the other hand, we observe that user effects can
change on a daily basis, reflecting inconsistencies natural to
customer behavior. This requires finer time resolution when
modeling user-biases compared with a lower resolution that
suffices for capturing item-related time effects.

We start with our choice of time-changing item biases
bi(t). We found it adequate to split the item biases into time-
based bins, using a constant item bias for each time period.
The decision of how to split the timeline into bins should

works (e.g., Koren, Paterek, and Takacs et al.7, 11, 17) suggested
modeling directly only the observed ratings, while avoid-
ing overfitting through an adequate regularized model. In
order to learn the factor vectors (pu and qi), we minimize the
regularized squared error on the set of known ratings:

	
.
	

(2)

Minimization is typically performed by stochastic gradient
descent.

Model (1) tries to capture the interactions between users
and items that produce the different rating values. However,
much of the observed variation in rating values is due to effects
associated with either users or items, independently of their
interaction, which are known as biases. A prime example is
that typical CF data exhibits large systematic tendencies for
some users to give higher ratings than others, and for some
items to receive higher ratings than others. After all, some
products are widely received as better (or worse) than others.

Thus, it would be unwise to explain the full rating value
by an interaction of the form qi

Tpu. Instead, we will try to
identify the portion of these values that can be explained by
individual user or item effects (biases). The separation of
interaction and biases will allow us to subject only the true
interaction portion of the data to factor modeling.

We will encapsulate those effects, which do not involve
user–item interaction, within the baseline predictors. These
baseline predictors tend to capture much of the observed
signal, in particular much of the temporal dynamics within
the data. Hence, it is vital to model them accurately, which
enables better identification of the part of the signal that
truly represents user–item interaction and should be sub-
ject to factorization.

A suitable way to construct a static baseline predictor is
as follows. Denote by m the overall average rating. A base-
line predictor for an unknown rating rui is denoted by bui and
accounts for the user and item main effects:

	 bui = m + bu + bi .	 (3)

The parameters bu and bi indicate the observed deviations of
user u and item i, respectively, from the average. For exam-
ple, suppose that we want a baseline estimate for the rating
of the movie Titanic by user Joe. Now, say that the average
rating over all movies, m, is 3.7 stars. Furthermore, Titanic is
better than an average movie, so it tends to be rated 0.5 stars
above the average. On the other hand, Joe is a critical user,
who tends to rate 0.3 stars lower than the average. Thus, the
baseline estimate for Titanic’s rating by Joe would be 3.9
stars by calculating 3.7 − 0.3 + 0.5.

The baseline predictor should be integrated back into the
factor model. To achieve this we extend rule (1) to be

	 	 (4)

Here, the observed rating is separated to its four components:
global average, item-bias, user-bias, and user–item interac-
tion. The separation allows each component to explain only

94 communications of the acm | april 2010 | vol. 53 | no. 4

research highlights

	 (3) () dev () .u u u u utb t b t b= + ⋅ +a 	 (9)

A baseline predictor on its own cannot yield personal-
ized recommendations, as it misses all interactions between
users and items. In a sense, it is capturing the portion of the
data that is less relevant for establishing recommendations.
Nonetheless, to better assess the relative merits of the various
choices of time-dependent user-bias, we compare their accu-
racy as stand-alone predictors. In order to learn the involved
parameters we minimize the associated regularized squared
error by using stochastic gradient descent. For example, in
our actual implementation we adopt rule (9) for modeling
the drifting user-bias, thus arriving at the baseline predictor

	
, , Bin()dev () .
ui uiui u u u ui u t i i tb b t b b b= + + ⋅ + + +m a 	 (10)

To learn the involved parameters, bu, au, but, bi, and bi,Bin(t),
one should solve

Here, the first term strives to construct parameters that fit
the given ratings. The regularization term, l7 (b2

u + . . .) , avoids
overfitting by penalizing the magnitudes of the parameters,
assuming a neutral 0 prior. Learning is done by a stochastic
gradient descent algorithm running 20–30 iterations, with
l7 = 0.01.

Table 1 compares the ability of various suggested baseline
predictors to explain signal in the data. As usual, the amount
of captured signal is measured by the RMSE on the test set.
As a reminder, test cases come later in time than the training
cases for the same user, so predictions often involve extrapo-
lation in terms of time. We code the predictors as follows:

•	 static, no temporal effects: bui = m + bu + bi,
•	 mov, accounting only for movie-related temporal

effects: bui = m + bu + bi + bi,Bin(tui)
,

•	 linear, linear modeling of user-biases: bui = m + bu +
au· devu(tui) + bi + bi,Bin(tui), and

•	 linear+, linear modeling of user-biases and single day
effect: bui = m + bu + au · devu(tui) + bu, tui

 + bi + bi, Bin(tui)
.

The table shows that while temporal movie effects reside in
the data (lowering RMSE from 0.9799 to 0.9771), the drift in
user-biases is much more influential. In particular, sudden
changes in user-biases, which are captured by the per-day
parameters, are most significant.

Beyond the temporal effects described so far, one can

balance the desire to achieve finer resolution (hence, smaller
bins) with the need for enough ratings per bin (hence, larger
bins). For the movie-rating data, there is a wide variety of bin
sizes that yield about the same accuracy. In our implementa-
tion, each bin corresponds to roughly 10 consecutive weeks
of data, leading to 30 bins spanning all days in the dataset.
A day t is associated with an integer Bin(t) (a number between
1 and 30 in our data), such that the movie bias is split into
a stationary part and a time changing part:

	 bi(t) = bi + bi, Bin(t)
.	 (7)

While binning the parameters works well on the items, it
is more of a challenge on the users’ side. On the one hand,
we would like a finer resolution for users to detect very short-
lived temporal effects. On the other hand, we do not expect
enough ratings per user to produce reliable estimates for
isolated bins. Different functional forms can be considered
for parameterizing temporal user behavior, with varying
complexity and accuracy.

One simple modeling choice uses a linear function to
capture a possible gradual drift of user-bias. For each user
u, we denote the mean date of rating by tu. Now, if u rated
a movie on day t, then the associated time deviation of this
rating is defined as

devu(t) = sign(t – tu) · |t – tu|b.

Here |t – tu| measures the number of days between dates t
and tu. We set the value of b by cross-validation; in our imple-
mentation b = 0.4. We introduce a single new parameter for
each user called au so that we get our first definition of a
time-dependent user-bias

	 	 (8)

A more flexible spline-based rule is described in Koren.8

A smooth function for modeling the user-bias meshes
well with gradual concept drift. However, in many applica-
tions there are sudden drifts emerging as “spikes” associated
with a single day or session. For example, in the movie-rat-
ing dataset we have found that multiple ratings, a user gives
in a single day, tend to concentrate around a single value.
Such an effect need not span more than a single day. The
effect may reflect the mood of the user that day, the impact
of ratings given in a single day on each other, or changes in
the actual rater in multiperson accounts. To address such
short-lived effects, we assign a single parameter per user
and day, absorbing the day-specific variability. This param-
eter is denoted by but. Notice that in some applications the
basic primitive time unit to work with can be shorter or lon-
ger than a day.

In the Netflix movie-rating data, a user rates on 40 different
days on average. Thus, working with but requires, on average,
40 parameters to describe each user-bias. It is expected that
but is inadequate as a stand-alone for capturing the user-bias,
since it misses all sorts of signals that span more than a single
day. Thus, it serves as an additive component within the previ-
ously described schemes. The time-linear model (8) becomes

Table 1. Comparing baseline predictors capturing main movie and
user effects. As temporal modeling becomes more accurate,
prediction accuracy improves (lowering RMSE).

Model Static Mov Linear Linear+

RMSE 0.9799 0.9771 0.9731 0.9605

april 2010 | vol. 53 | no. 4 | communications of the acm 95

again, we need to model those changes at the very fine level
of a daily basis, while facing the built-in scarcity of user rat-
ings. In fact, these temporal effects are the hardest to cap-
ture, because preferences are not as pronounced as main
effects (user-biases), but are split over many factors.

We modeled each component of the user preferences
pu(t)T = ( pu(t)[1], pu(t)[2], …, pu(t)[f]) in the same way that
we treated user-biases. Within the movie-rating dataset, we
have found modeling after (9) effective, leading to

	 	 (12)

Here puk captures the stationary portion of the factor,
auk · devu(t) approximates a possible portion that changes
linearly over time, and pukt absorbs the very local, day-spe-
cific variability.

At this point, we can tie all pieces together and extend the
SVD factor model (4) by incorporating the time changing
parameters. The resulting model will be denoted as timeSVD,
where the prediction rule is as follows:

	 	 (13)

The exact definitions of the time drifting parameters bi(t),
bu(t), and pu(t) were given in Equations 7, 9, and 12. Learning
is performed by minimizing the associated squared error
function on the training set using a regularized stochastic
gradient descent algorithm. The procedure is analogous to
the one involving the original SVD algorithm. Time com-
plexity per iteration is still linear with the input size, while
wall clock running time is approximately doubled compared
to SVD, due to the extra overhead required for updating the
temporal parameters. Importantly, convergence rate was
not affected by the temporal parameterization, and the pro-
cess converges in around 30 iterations.

4.4. Comparison
The factor model we are using in practice is slightly more
involved than the one described so far. The model, which
is known as SVD++,7 offers an improved accuracy by also
accounting for the more implicit information recorded by
which items were rated (regardless of their rating value).
While details of the SVD++ algorithm are beyond the scope
of this article, they do not influence the introduction of tem-
poral effects, and the model is extended to account for tem-
poral effects following exactly the same procedure described
in this section. The resulting model is known as timeSVD++,
and is described in Koren.8

In Table 2 we compare results of three matrix factoriza-
tion algorithms. First is SVD, the plain matrix factorization
algorithm. Second is the SVD++ method, which improves
upon SVD by incorporating a kind of implicit feedback.
Third is timeSVD++, which also accounts for temporal
effects. The three methods are compared over a range of fac-
torization dimensions ( f ). All benefit from a growing num-
ber of factor dimensions that enables them to better express
complex movie–user interactions. Addressing implicit feed-
back by the SVD++ model leads to accuracy gains within the
movie-rating dataset. Yet, the improvement delivered by

use the same methodology to capture more effects. A prime
example is capturing periodic effects. For example, some
products may be more popular in specific seasons or near
certain holidays. Similarly, different types of television or
radio shows are popular throughout different segments
of the day (known as “dayparting”). Periodic effects can be
found also on the user side. As an example, a user may have
different attitudes or buying patterns during the weekend
compared to the working week. A way to model such periodic
effects is to dedicate a parameter for the combinations of
time periods with items or users. This way, the item bias
of (7) becomes

For example, if we try to capture the change of item bias with
the season of the year, then period(t) ∈ {fall, winter, spring,
summer}. Similarly, recurring user effects may be modeled
by modifying (9) to be

However, we have not found periodic effects with a signifi-
cant predictive power within the movie-rating dataset, thus
our reported results do not include those.

Another temporal effect within the scope of basic predic-
tors is related to the changing scale of user ratings. While
bi(t) is a user-independent measure for the merit of item
i at time t, users tend to respond to such a measure differ-
ently. For example, different users employ different rating
scales, and a single user can change his rating scale over
time. Accordingly, the raw value of the movie bias is not
completely user-independent. To address this, we add a
time-dependent scaling feature to the baseline predictors,
denoted by cu(t). Thus, the baseline predictor (10) becomes

	 	 (11)

All discussed ways to implement bu(t) would be valid for imple-
menting cu(t) as well. We chose to dedicate a separate param-
eter per day, resulting in: cu(t) = cu + cut. As usual, cu is the stable
part of cu(t), whereas cut represents day-specific variability.
Adding the multiplicative factor cu(t) to the baseline predictor
lowers RMSE to 0.9555. Interestingly, this basic model, which
captures just main effects disregarding user–item interac-
tions, can explain almost as much of the data variability as the
commercial Netflix Cinematch recommender system, whose
published RMSE on the same test set is 0.9514.3

4.3. Time changing factor model
In Section 4.2 we discussed the way time affects baseline
predictors. However, as hinted earlier, temporal dynamics
go beyond this, they also affect user preferences and thereby
the interaction between users and items. Users change their
preferences over time. For example, a fan of the “psychologi-
cal thrillers” genre may become a fan of “crime dramas” a
year later. Similarly, humans change their perception on cer-
tain actors and directors. This effect is modeled by taking
the user factors (the vector pu) as a function of time. Once

96 communications of the acm | april 2010 | vol. 53 | no. 4

research highlights

reasoning behind computed recommendations, and seam-
lessly accounting for new entered ratings.

Recently, we suggested an item–item model based on
global optimization,7 which will enable us here to capture
time dynamics in a principled manner. The static model,
without temporal dynamics, is centered on the following
prediction rule:

	 	 (14)

Here, the set R(u) contains the items rated by user u. The
item–item weights wij and cij represent the adjustments
we need to make to the predicted rating of item i, given a
known rating of item j. It was proven greatly beneficial to
use two sets of item–item weights: one (the wijs) is related
to the values of the ratings, and the other disregards the
rating value, considering only which items were rated (the
cijs). These weights are automatically learned from the data
together with the biases bi and bu. The constants buj are pre-
computed according to Equation 3. Recall that R(u) is the
set of items rated by user u.

When adapting rule (14) to address temporal dynamics,
two components should be considered separately. First
component, m + bi + bu, corresponds to the the baseline pre-
dictor portion. Typically, this component explains most
variability in the observed signal. Second component,

, captures the more informative
signal, which deals with user–item interaction. As for the
baseline part, nothing changes from the factor model, and
we replace it with m + bi(tui) + bu(tui), according to Equations
7 and 9. However, capturing temporal dynamics within the
interaction part requires a different strategy.

Item–item weights (wij and cij) reflect inherent item
characteristics and are not expected to drift over time.
The learning process should capture unbiased long-term
values, without being too affected from drifting aspects.
Indeed, the time changing nature of the data can mask
much of the longer term item–item relationships if not
treated adequately. For instance, a user rating both items i
and j high within a short time period is a good indicator for
relating them, thereby pushing higher the value of wij. On
the other hand, if those two ratings are given 5 years apart,
while the user’s taste (if not her identity) could considerably
change, this provides less evidence of any relation between
the items. On top of this, we would argue that those consid-
erations are pretty much user dependent; some users are
more consistent than others and allow relating their longer
term actions.

Our goal here is to distill accurate values for the item–
item weights, despite the interfering temporal effects. First
we need to parameterize the decaying relations between two
items rated by user u. We adopt exponential decay formed
by the function , where bu > 0 controls the user-specific
decay rate and should be learned from the data. We also
experimented with other decay forms, like the computation-
ally cheaper (1 + buDt)−1, which resulted in about the same
accuracy, with an improved running time.

This leads to the prediction rule

timeSVD++ over SVD++ is consistently more significant. We
are not aware of any single algorithm in the literature that
could deliver such accuracy. We attribute this to the impor-
tance of properly addressing temporal effects. Further
evidence of the importance of capturing temporal dynam-
ics is the fact that a timeSVD++ model of dimension 10 is
already more accurate than an SVD model of dimension 200.
Similarly, a timeSVD++ model of dimension 20 is enough to
outperform an SVD++ model of dimension 200.

4.5. Predicting future days
Our models include day-specific parameters. An aparaent
question would be how these models can be used for pre-
dicting ratings in the future, on new dates for which we can-
not train the day-specific parameters? The simple answer
is that for those future (untrained) dates, the day-specific
parameters should take their default value. In particular
for Equation 11, cu(tui) is set to cu, and bu,tui is set to zero. Yet,
one wonders, if we cannot use the day-specific parameters
for predicting the future, why are they good at all? After all,
prediction is interesting only when it is about the future. To
further sharpen the question, we should mention the fact
that the Netflix test sets include many ratings on dates for
which we have no other rating by the same user and hence
day-specific parameters cannot be exploited.

To answer this, notice that our temporal modeling
makes no attempt to capture future changes. All it is trying
to do is to capture transient temporal effects, which had
a significant influence on past user feedback. When such
effects are identified, they must be tuned down, so that
we can model the more enduring signal. This allows our
model to better capture the long-term characteristics of
the data, while letting dedicated parameters absorb short-
term fluctuations. For example, if a user gave many higher
than usual ratings on a particular single day, our models
discount those by accounting for a possible day-specific
good mood, which does not reflect the longer term behav-
ior of this user. This way, the day-specific parameters con-
tribute to cleaning the data, which improves prediction of
future dates.

5. TEMPORAL DYNAMICS AT NEIGHBORHOOD MODELS
The most common approach to CF is based on neighborhood
models. While typically less accurate than their factoriza-
tion counterparts, neighborhood methods enjoy popular-
ity thanks to some of their merits, such as explaining the

Table 2. Comparison of three factor models: prediction accuracy is
measured by RMSE (lower is better) for varying factor dimensionality
(f). For all models accuracy improves with growing number of
dimensions. Most significant accuracy gains are achieved by address-
ing the temporal dynamics in the data through the timeSVD++ model.

Model f = 10 f = 20 f = 50 f = 100 f = 200

SVD 0.9140 0.9074 0.9046 0.9025 0.9009

SVD++ 0.9131 0.9032 0.8952 0.8924 0.8911

timeSVD++ 0.8971 0.8891 0.8824 0.8805 0.8799

april 2010 | vol. 53 | no. 4 | communications of the acm 97

changes within a single model thereby interconnecting users
(or, products) to each other to identify communal patterns
of behavior. A mere decay of older instances or usage of mul-
tiple separate models lose too many signals, thus degrading
prediction accuracy. The solution we adopted is to model the
temporal dynamics along the whole time period, allowing us
to intelligently separate transient factors from lasting ones.
We applied this methodology to two leading recommender
techniques. In a factorization model, we modeled the way
user and product characteristics change over time, in order
to distill longer term trends from noisy patterns. In an item–
item neighborhood model, we showed how the more funda-
mental relations among items can be revealed by learning
how influence between two items rated by a user decays
over time. In both factorization and neighborhood models,
the inclusion of temporal dynamics proved very useful in
improving quality of predictions, more than various algorith-
mic enhancements. This led to the best results published so
far on a widely analyzed movie-rating dataset.�

	 	 (15)

The involved parameters, bi(tui) = bi + bi,Bin(tui), bu(tui) =
bu + au · devu(tui) + bu,tui, bu, wij and cij, are learned by minimiz-
ing the associated regularized squared error

	

	 (16)

Minimization is performed by stochastic gradient descent.
As in the factor case, properly considering temporal dynam-
ics improves the accuracy of the neighborhood model
within the movie-ratings dataset. The RMSE decreases
from 0.90027 to 0.8885. To our best knowledge, this is sig-
nificantly better than previously known results by neigh-
borhood methods. To put this in some perspective, this
result is even better than those reported by using hybrid
approaches such as applying a neighborhood approach on
residuals of other algorithms.2, 11, 18 A lesson is that address-
ing temporal dynamics in the data can have a more sig-
nificant impact on accuracy than designing more complex
learning algorithms.

We would like to highlight an interesting point related to
the basic methodology described in Section 3. Let u be a user
whose preferences are quickly drifting (bu is large). Hence,
old ratings by u should not be very influential on his status at
the current time t. One could be tempted to decay the weight
of u’s older ratings, leading to “instance weighting” through
a cost function like

Such a function is focused at the current state of the user (at
time t), while de-emphasizing past actions. We would argue
against this choice, and opt for equally weighting the predic-
tion error at all past ratings as in Equation 16, thereby model-
ing all past user behavior. Therefore, equal-weighting allows us
to exploit the signal at each of the past ratings, a signal that is
extracted as item–item weights. Learning those weights would
equally benefit from all ratings by a user. In other words, we can
deduce that two items are related if users rated them similarly
within a short time frame, even if this happened long ago.

6. CONCLUSION
Tracking the temporal dynamics of customer preferences to
products raises unique challenges. Each user and product
potentially goes through a distinct series of changes in their
characteristics. Moreover, we often need to model all those

	 1.	A li, K., van Stam, W. TiVo: making
show recommendations using a
distributed collaborative filtering
architecture. In Proceedings of the
10th ACM SIGKDD International
Conference on Knowledge Discovery
and Data Mining (2004), 394–401.

	 2.	B ell, R., Koren, Y. Scalable
collaborative filtering with jointly
derived neighborhood interpolation
weights. IEEE International
Conference on Data Mining (ICDM’07)
(2007), 43–52.

	 3.	B ennet, J., Lanning, S. The Netflix
Prize. KDD Cup and Workshop, 2007.
www.netflixprize.com.

	 4.	D ing, Y., Li, X. Time weight
collaborative filtering. In Proceedings
of the 14th ACM International
Conference on Information and
Knowledge Management (CIKM’04)
(2004), 485–492.

	 5.	G oldberg, D., Nichols, D., Oki, B.M.,
Terry, D. Using collaborative filtering
to weave an information tapestry.
Commun. ACM 35 (1992), 61–70.

	 6.	 Kolter, J.Z., Maloof, M.A. Dynamic
weighted majority: A new ensemble
method for tracking concept drift. In
Proceedings of the IEEE Conference
on Data Mining (ICDM’03) (2003),
123–130.

	 7.	 Koren, Y. Factorization meets the
neighborhood: A multifaceted
collaborative filtering model. In
Proceedings of the 14th ACM
SIGKDD International Conference on
Knowledge Discovery and Data Mining
(KDD’08) (2008), 426–434.

	 8.	 Koren, Y. Collaborative filtering with
temporal dynamics. In Proceedings of
the 15th ACM SIGKDD International
Conference on Knowledge Discovery and
Data Mining (KDD’09) (2009), 447–456.

	 9.	 Koren, Y., Bell, R., Volinsky, C.
Matrix factorization techniques for
recommender systems. IEEE Comput.
42 (2009), 30–37.

	10.	 Linden, G., Smith, B., York, J. Amazon.
com recommendations: Item-to-item

collaborative filtering. IEEE Internet
Comput. 7 (2003), 76–80.

	11.	 Paterek, A. Improving regularized
singular value decomposition for
collaborative filtering. In Proceedings
of the KDD Cup and Workshop (2007).

	12.	 Pu, P., Bridge, D.G., Mobasher, B., Ricci,
F. (eds.). In Proceedings of the 2008
ACM Conference on Recommender
Systems (2008).

	13.	S arwar, B.M., Karypis, G., Konstan, J.A.,
Riedl, J. Application of dimensionality
reduction in recommender system—
A case study. WEBKDD’2000.

	14.	S arwar, B., Karypis, G., Konstan, J.,
Riedl, J. Item-based collaborative
filtering recommendation algorithms.
In Proceedings of the 10th
International Conference on the World
Wide Web (2001), 285–295.

	15.	S chlimmer, J., Granger, R. Beyond
incremental processing: Tracking
concept drift. In Proceedings of the
5th National Conference on Artificial
Intelligence (1986), 502–507.

	16.	S ugiyama, K., Hatano, K., Yoshikawa,
M. Adaptive web search based on user
profile constructed without any effort
from users. In Proceedings of the 13th
International Conference on World
Wide Web (WWW’04) (2004), 675–684.

	17.	T akacs, G., Pilaszy, I., Nemeth, B., Tikk,
D. Major components of the gravity
recommendation aystem. SIGKDD
Explor. 9 (2007), 80–84.

	18.	T oscher, A., Jahrer, M., Legenstein,
R. Improved neighborhood-
based algorithms for large-scale
recommender systems. KDD’08
Workshop on Large Scale
Recommenders Systems and the
Netflix Prize (2008).

	19.	T symbal, A. The problem of concept
drift: Definitions and related work.
Technical Report TCD-CS-2004-15.
Trinity College Dublin, 2004.

	20.	 Widmer, G., Kubat, M. Learning in the
presence of concept drift and hidden
contexts. Mach. Learn. 23, 69 (1996),
101.

References

Yehuda Koren (yehuda@yahoo-inc.com),
Yahoo! Research, Haifa, Israel.

© 2010 ACM 0001-0782/10/0400 $10.00

