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Collaborative Filtering with 
Temporal Dynamics
By Yehuda Koren

Abstract
Customer preferences for products are drifting over time. 
Product perception and popularity are constantly chang-
ing as new selection emerges. Similarly, customer inclina-
tions are evolving, leading them to ever redefine their taste. 
Thus, modeling temporal dynamics is essential for design-
ing recommender systems or general customer preference 
models. However, this raises unique challenges. Within the 
ecosystem intersecting multiple products and customers, 
many different characteristics are shifting simultaneously, 
while many of them influence each other and often those 
shifts are delicate and associated with a few data instances. 
This distinguishes the problem from concept drift explora-
tions, where mostly a single concept is tracked. Classical 
time-window or instance decay approaches cannot work, as 
they lose too many signals when discarding data instances. 
A more sensitive approach is required, which can make bet-
ter distinctions between transient effects and long-term pat-
terns. We show how to model the time changing behavior 
throughout the life span of the data. Such a model allows 
us to exploit the relevant components of all data instances, 
while discarding only what is modeled as being irrelevant. 
Accordingly, we revamp two leading collaborative filtering 
recommendation approaches. Evaluation is made on a large 
movie-rating dataset underlying the Netflix Prize contest. 
Results are encouraging and better than those previously 
reported on this dataset. In particular, methods described 
in this paper play a significant role in the solution that won 
the Netflix contest.

1. intRoDuCtion
Modeling time drifting data is a central problem in data 
mining. Often, data is changing over time, and models 
should be continuously updated to reflect its present nature. 
The analysis of such data needs to find the right balance 
between discounting temporary effects that have very low 
impact on future behavior, while capturing longer term 
trends that reflect the inherent nature of the data. This led to 
many works on the problem, which is also widely known as 
 concept drift; see, e.g., Schlimmer and Granger, and Widmer 
and Kubat.15, 20

Temporal changes in customer preferences bring unique 
modeling challenges. One kind of concept drift in this setup 
is the emergence of new products or services that change the 
focus of customers. Related to this are seasonal changes, or 
specific holidays, which lead to characteristic shopping pat-
terns. All those changes influence the whole population, 
and are within the realm of traditional studies on concept 
drift. However, many of the changes in user behavior are 

driven by localized factors. For example, a change in the 
family structure can drastically change shopping patterns. 
Likewise, individuals gradually change their taste in movies 
and music. Such changes cannot be captured by methods 
that seek a global concept drift. Instead, for each customer 
we are looking at different types of concept drifts, each 
occurs at a distinct time frame and is driven toward a differ-
ent direction.

The need to model time changes at the level of each 
 individual significantly reduces the amount of available 
data for detecting such changes. Thus we should resort to 
more accurate techniques than those that suffice for mod-
eling global changes. For example, it would no longer be 
adequate to abandon or simply underweight far in time 
user transactions. The signal that can be extracted from 
those past actions might be invaluable for understanding 
the customer herself or be indirectly useful to modeling 
other customers. Yet, we need to distill long-term patterns 
while discounting transient noise. These considerations 
require a more sensitive methodology for addressing drift-
ing  customer preferences. It would not be adequate to con-
centrate on identifying and modeling just what is relevant to 
the present or the near future. Instead, we require an accu-
rate modeling of each point in the past, which will allow us 
to distinguish between persistent signal that should be cap-
tured and noise that should be isolated from the longer term 
parts of the model.

Modeling user preferences is relevant to multiple appli-
cations ranging from spam filtering to market-basket 
analysis. Our main focus in the paper is on modeling user 
preferences for building a recommender system, but we 
believe that general lessons that we learn would apply to 
other applications as well. Automated recommendations 
are a very active research field.12 Such systems analyze pat-
terns of user interest in items or products to provide per-
sonalized recommendations of items that will suit a user’s 
taste. We expect user preferences to change over time. The 
change may stem from multiple factors; some of these fac-
tors are fundamental while others are more circumstan-
tial. For example, in a movie recommender system, users 
may change their preferred genre or adopt a new view-
point on an actor or director. In addition, they may alter 
the appearance of their feedback. For example, in a system  

A previous version of this paper appeared in the Proceedings 
of the 15th ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining (2009), 447–456.
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Section 3, our principles for addressing time changing user 
preferences are evolved. Those principles are then incorpo-
rated, in quite different ways, into two leading recommender 
techniques: factor modeling (Section 4) and item–item 
neighborhood modeling (Section 5).

2. PRELiminARiES

2.1. notation
We are given ratings for m users (aka customers) and n items 
(aka products). We reserve special indexing letters to dis-
tinguish users from items: for users u, v, and for items i, j.  
A rating rui indicates the preference by user u of item i, where 
high values mean stronger preference. For example, values 
can be integers ranging from 1 (star) indicating no interest 
to 5 (stars) indicating a strong interest. We distinguish pre-
dicted ratings from known ones, by using the notation r̂ui for 
the predicted value of rui.

The scalar tui denotes the time of rating rui. One can use 
different time units, based on what is appropriate for the 

where users provide star ratings to products, a user that 
used to indicate a neutral preference by a “3 stars” input 
may now indicate dissatisfaction by the same “3 stars” 
feedback. Similarly, it is known that user feedback is influ-
enced by anchoring, where current ratings should be taken 
as relative to other ratings given at the same short period. 
Finally, in many instances, systems cannot separate differ-
ent household members accessing the same account, even 
though each member has a different taste and deserves 
a separate model. This creates a de facto  multifaceted 
meta-user associated with the account. A way to distin-
guish between different persons is by assuming that 
time- adjacent accesses are being done by the same mem-
ber (sometimes on behalf of other members), which can 
be naturally captured by a temporal model that assumes  
a drifting nature of a customer.

All these patterns and the likes should have made  temporal 
modeling a predominant factor in building recommender 
systems. Nonetheless, with very few exceptions (e.g., Ding 
and Li, and Sugiyama et al.4, 16), the recommenders’  literature 
does not address temporal changes in user behavior.  
Perhaps this is because user behavior is composed of many 
different concept drifts, acting in different timeframes and 
directions, thus making common methodologies for deal-
ing with concept drift and temporal data less successful. We 
show that capturing time drifting patterns in user behavior 
is essential for improving accuracy of recommenders. Our 
findings also give us hope that the insights from  successful 
time modeling for recommenders will be useful in other 
data mining applications.

Our test bed is a large movie-rating dataset released by 
Netflix as the basis of a well-publicized competition.3 This 
dataset combines several merits for the task at hand. First, 
it is not a synthetic dataset, but contains user-movie ratings 
by real paying Netflix subscribers. In addition, its relatively 
large size—above 100 million date-stamped ratings—makes 
it a better proxy for real-life large-scale datasets, while put-
ting a premium on computational efficiency. Finally, unlike 
some other dominant datasets, time effects are natural and 
are not introduced artificially. Two interesting (if not sur-
prising) temporal effects that emerge within this dataset 
are shown in Figure 1. One effect is an abrupt shift of rating 
scale that happened in early 2004. At that time, the mean rat-
ing value jumped from around 3.4 stars to above 3.6 stars. 
Another significant effect is that ratings given to movies 
tend to increase with the movie age. That is, older movies 
receive higher ratings than newer ones. In Koren,8 we shed 
some light on the origins of these effects.

The major contribution of this work is presenting a meth-
odology and specific techniques for modeling time drifting 
user preferences in the context of recommender systems. 
The proposed approaches are applied on the aforemen-
tioned extensively analyzed movie-ratings dataset, enabling 
us to firmly compare our methods with those reported 
recently. We show that by incorporating temporal informa-
tion, we achieve best results reported so far, indicating the 
significance of uncovering temporal effects.

The rest of the paper is organized as follows. In the next 
section we describe basic notions and notation. Then, in 

figure 1. two temporal effects emerging within the netflix movie-
rating dataset. Top: the average movie-rating made a sudden jump in 
early 2004 (1,500 days since the first rating in the dataset). Bottom: 
ratings tend to increase with the movie age at the time of the rating. 
here, movie age is measured by the time span since its first rating 
event within the dataset. in both charts, each point averages 100,000 
rating instances.
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product ratings—without requiring the creation of explicit 
profiles. CF analyzes relationships between users and inter-
dependencies among products, in order to identify new 
user–item associations.

A major appeal of CF is that it is domain-free and avoids 
the need for extensive data collection. In addition, relying 
directly on user behavior allows uncovering complex and 
unexpected patterns that would be difficult or impossible 
to profile using known data attributes. As a consequence, 
CF attracted much of attention in the past decade, result-
ing in significant progress and being adopted by some suc-
cessful commercial systems, including Amazon,10 TiVo,1 
and Netflix.

The two primary areas of CF are the neighborhood meth-
ods and latent factor models. The neighborhood methods are 
centered on computing the relationships between items or, 
alternatively, between users. The item-oriented approach 
evaluates the preference of a user to an item based on rat-
ings of “neighboring” items by the same user. A product’s 
neighbors are other products that tend to be scored simi-
larly when rated by the same user. For example, consider the 
movie “Saving Private Ryan.” Its neighbors might include 
other war movies, Spielberg movies, and Tom Hanks mov-
ies, among others. To predict a particular user’s rating for 
“Saving Private Ryan,” we would look for the movie’s nearest  
neighbors that were actually rated by that user. A dual to 
the item-oriented approach is user-oriented approach,  
which identifies like-minded users who can complement 
each other’s missing ratings.

Latent factor models comprise an alternative approach 
that tries to explain the ratings by characterizing both items 
and users on, say, 20–200 factors inferred from the pattern 
of ratings. For movies, factors discovered by the decomposi-
tion might measure obvious dimensions such as comedy vs. 
drama, amount of action, or orientation to children; less well-
defined dimensions such as depth of character development 
or “quirkiness,” or completely uninterpretable dimensions. 
For users, each factor measures how much the user likes 
movies that score high on the corresponding movie factor. 
One of the most successful realizations of latent factor mod-
els is based on matrix factorization; see, e.g., Koren et al.9

3. tRACKinG DRiftinG CuStomER PREfEREnCES
One of the frequently mentioned examples of concept drift 
is changing customer preferences over time, e.g., “cus-
tomer preferences change as new products and services 
become available.”6 This aspect of drifting customer pref-
erences highlights a common paradigm in the literature 
of having global drifting concepts influencing the data as a 
whole. However, in many applications, including our focus 
application of recommender systems, we also face a more 
complicated form of concept drift where interconnected 
preferences of many users are drifting in different ways at 
different time points. This requires the learning algorithm 
to keep track of multiple changing concepts. In addition 
the typically low amount of data instances associated with 
individual customers calls for more concise and efficient 
learning methods, which maximize the utilization of signal 
in the data.

application at hand. For example, when time is measured in 
days, then tui counts the number of days elapsed since some 
early time point. Usually the vast majority of ratings are 
unknown. For example, in the Netflix data 99% of the pos-
sible ratings are missing because a user typically rates only 
a small portion of the movies. The (u, i) pairs for which rui is 
known are stored in the set K = {(u, i)|rui is known}, which is 
known as the training set.

Models for the rating data are learned by fitting the pre-
viously observed ratings. However, our goal is to generalize 
those in a way that allows us to predict future, unknown 
ratings. Thus, caution should be exercised to avoid overfit-
ting the observed data. We achieve this by using a technique 
called regularization. Regularization restricts the complexity 
of the models, thereby preventing them from being too spe-
cialized to the observed data. We employ L2-regularization, 
which penalizes the magnitude of the learned parameters. 
Extent of regularization is controlled by constants which are 
denoted as: l1, l2, …

2.2. the netflix data
We evaluated our algorithms on a movie-rating data-
set of more than 100 million date-stamped ratings 
 performed by about 480,000 anonymous Netflix custom-
ers on 17,770 movies between 31 December 1999 and 31 
December 2005.3 Ratings are integers ranging between 1 
and 5. On average, a movie receives 5,600 ratings, while a 
user rates 208 movies, with substantial variation around 
each of these averages. To maintain compatibility with 
results published by others, we adopted some common 
 standards. We evaluated our methods on two comparable 
sets designed by Netflix: a holdout set (“Probe set”) and a 
test set (“Quiz set”), each of which contains over 1.4 million  
ratings. Reported results are on the test set, while experi-
ments on the holdout set show the same findings. In 
our time-modeling context, it is important to note that 
the test instances of each user come later in time than 
his/her training instances. The quality of the results 
is measured by their root mean squared error (RMSE) 

The Netflix data is part of the Netflix Prize contest, with 
the target of improving the accuracy of Netflix movie recom-
mendations by 10%. The benchmark is Netflix’s proprietary 
system. Cinematch, which achieved an RMSE of 0.9514 on 
the test set. The grand prize was awarded to a team that 
managed to drive this RMSE to 0.8554 after almost 3 years 
of extensive efforts. Achievable RMSE values on the test set 
lie in a quite compressed range, as evident by the difficulty 
to win the grand prize. Nonetheless, there is evidence that 
small improvements in RMSE terms can have a significant 
impact on the quality of the top few presented recommenda-
tions.7 The algorithms described in this work played a cen-
tral role in reaching the grand prize.

2.3. Collaborative filtering
Recommender systems are often based on collaborative fil-
tering (CF), a term coined by the developers of the first rec-
ommender system—Tapestry.5 This technique relies only 
on past user behavior—e.g., their previous transactions or 



92    CommuniCAtionS of thE ACm   |   aPrIL 2010  |   VoL.  53  |   no.  4

research highlights 

 

•	 While	we	need	to	model	separate	drifting	“concepts”	
or preferences per user and/or item, it is essential to 
 combine all those concepts within a single frame-
work. This combination allows modeling interactions 
crossing users and items thereby identifying higher 
level patterns.

•	 In	general,	we	do	not	try	to	extrapolate	future	temporal	
dynamics, e.g., estimating future changes in a user’s 
preferences. Extrapolation could be very helpful but is 
seemingly too difficult, especially given a limited 
amount of known data. Rather than that, our goal is to 
capture past temporal patterns in order to isolate per-
sistent signal from transient noise. The result, indeed, 
helps in predicting future behavior.

Now we turn to how these desirable principles are 
 incorporated into two leading approaches to CF—matrix 
factorization and neighborhood methods.

4. timE-AWARE fACtoR moDEL

4.1. the anatomy of a factor model
Matrix factorization is a well-recognized approach to  
CF.9, 11, 17 This approach lends itself well to an adequate mod-
eling of temporal effects. Before we deal with those tem-
poral effects, we would like to establish the foundations of  
a static factor model.

In its basic form, matrix factorization characterizes both 
items and users by vectors of factors inferred from patterns 
of item ratings. High correspondence between item and user 
factors leads to recommendation of an item to a user. More 
specifically, both users and items are mapped to a joint latent 
factor space of dimensionality f, such that ratings are mod-
eled as inner products in that space. Accordingly, each user 
u is associated with a vector pu Î Rf and each item i is associ-
ated with a vector qi Î Rf. A rating is predicted by the rule

  
(1)

The major challenge is computing the mapping of each 
item and user to factor vectors qi, pu Î Rf. After this mapping 
is accomplished, we can easily compute the ratings a user 
will give to any item by using Equation 1.

Such a model is closely related to singular value decom-
position (SVD), which is a well-established technique for 
identifying latent semantic factors in the information 
retrieval. Applying SVD in the CF domain would require 
factoring the user–item rating matrix. Such a factorization 
raises difficulties due to the high portion of missing val-
ues, due to the sparseness in the user–item ratings matrix. 
Conventional SVD is undefined when knowledge about the 
matrix is incomplete. Moreover, carelessly addressing only 
the relatively few known entries is highly prone to overfit-
ting. Earlier works13 relied on imputation to fill in missing 
ratings and make the rating matrix dense. However, impu-
tation can be very expensive as it significantly increases the 
amount of data. In addition, the data may be considerably 
distorted due to inaccurate imputation. Hence, more recent 

In a survey on the problem of concept drift, Tsymbal19 
argues that three approaches can be distinguished in the lit-
erature. The instance selection approach discards instances 
that are less relevant to the current state of the system. A 
common variant is time-window approaches were only 
recent instances are considered. A possible disadvantage of 
this simple model is that it is giving the same significance 
to all instances within the considered time-window, while 
completely discarding all other instances. Equal signifi-
cance might be reasonable when the time shift is abrupt, 
but less so when time shift is gradual. Thus, a refinement 
is instance weighting were instances are weighted based on 
their estimated relevance. Frequently, a time decay  function 
is used, underweighting instances as they occur deeper into 
the past. The third approach is based on ensemble learn-
ing, which maintains a family of predictors that together 
produce the final outcome. Those predictors are weighted 
by their perceived relevance to the present time point, e.g., 
predictors that were more successful on recent instances get 
higher weights.

We performed extensive experiments with instance 
weighting schemes, trying different exponential time 
decay rates on both neighborhood and factor models. The 
consistent finding was that prediction quality improves as 
we moderate that time decay, reaching best quality when 
there is no decay at all. This finding is despite the fact that 
users do change their taste and rating scale over the years, 
as we show later. However, much of the old preferences still 
persist or, more importantly, help in establishing useful 
cross-user or cross-product patterns in the data. Thus, just 
underweighting past actions lose too many signals along 
with the lost noise, which is detrimental, given the scarcity 
of data per user.

As for ensemble learning, having multiple models, each 
of which considers only a fraction of the total behavior 
may miss those global patterns that can be identified only 
when considering the full scope of user behavior. What 
makes them even less appealing in our case is the need to 
keep track of the independent drifting behaviors of many 
customers. This, in turn, would require building a separate 
ensemble for each user. Such a separation will significantly 
complicate our ability to integrate information across users 
along multiple time points, which is the cornerstone of 
collaborative filtering. For example, an interesting relation 
between products can be established by related actions of 
many users, each of them at a totally different point of time. 
Capturing such a collective signal requires building a single 
model encompassing all users and items together.
All those considerations led us to the following guidelines  
we adopt for modeling drifting user preferences.

•	 We	seek	models	 that	explain	user	behavior	along	the	
full extent of the time period, not only the present 
behavior (while subject to performance limitations). 
Such modeling is key to being able to extract signal 
from each time point, while neglecting only the noise.

•	 Multiple	changing	concepts	should	be	captured.	Some	
are user-dependent and some are item-dependent. 
Similarly, some are gradual while others are sudden.
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the part of signal relevant to it. Learning is done analogously 
to before, by minimizing the squared error function

(5)

Schemes along these lines were described in, e.g., Koren and 
Paterek.7, 11

The decomposition of a rating into distinct portions is 
convenient here, as it allows us to treat different temporal 
aspects in separation. More specifically, we identify the fol-
lowing effects: (1) user-biases (bu) change over time; (2) item 
biases (bi) change over time; and (3) user preferences (pu) 
change over time. On the other hand, we would not expect 
a significant temporal variation of item characteristics (qi), 
as items, unlike humans, are static in their nature. We start 
with a detailed discussion of the temporal effects that are 
contained within the baseline predictors.

4.2. time changing baseline predictors
Much of the temporal variability is included within the base-
line predictors, through two major temporal effects. The 
first addresses the fact that an item’s popularity may change 
over time. For example, movies can go in and out of popular-
ity as triggered by external events such as the appearance of 
an actor in a new movie. This is manifested in our models 
by treating the item bias bi as a function of time. The second 
major temporal effect allows users to change their baseline 
ratings over time. For example, a user who tended to rate an 
average movie “4 stars,” may now rate such a movie “3 stars.” 
This may reflect several factors including a natural drift in a 
user’s rating scale, the fact that ratings are given in relevance 
to other ratings that were given recently and also the fact 
that the identity of the rater within a household can change 
over time. Hence, in our models we take the parameter bu as 
a function of time. This induces a template for a time sensi-
tive baseline predictor for u’s rating of i at day tui:

 bui = m + bu(tui) + bi(tui). (6)

Here, bu(·) and bi (·) are real valued functions that change 
over time. The exact way to build these functions should 
reflect a reasonable way to parameterize the involving tem-
poral changes. Our choice in the context of the movie-rating 
dataset demonstrates some typical considerations.

A major distinction is between temporal effects that span 
extended periods of time and more transient effects. In the 
movie-rating case, we do not expect movie likeability to fluctu-
ate on a daily basis, but rather to change over more extended 
periods. On the other hand, we observe that user effects can 
change on a daily basis, reflecting inconsistencies natural to 
customer behavior. This requires finer time resolution when 
modeling user-biases compared with a lower resolution that 
suffices for capturing item-related time effects.

We start with our choice of time-changing item biases 
bi(t). We found it adequate to split the item biases into time-
based bins, using a constant item bias for each time period. 
The decision of how to split the timeline into bins should 

works (e.g., Koren, Paterek, and Takacs et al.7, 11, 17) suggested 
modeling directly only the observed ratings, while avoid-
ing overfitting through an adequate regularized model. In 
order to learn the factor vectors (pu and qi), we minimize the 
 regularized squared error on the set of known ratings:

  
.
 

(2)

Minimization is typically performed by stochastic gradient 
descent.

Model (1) tries to capture the interactions between users 
and items that produce the different rating values. However, 
much of the observed variation in rating values is due to effects 
associated with either users or items, independently of their 
interaction, which are known as biases. A prime example is 
that typical CF data exhibits large systematic tendencies for 
some users to give higher ratings than others, and for some 
items to receive higher ratings than others. After all, some 
products are widely received as better (or worse) than others.

Thus, it would be unwise to explain the full rating value 
by an interaction of the form qi

Tpu. Instead, we will try to 
identify the portion of these values that can be explained by 
individual user or item effects (biases). The separation of 
interaction and biases will allow us to subject only the true 
interaction portion of the data to factor modeling.

We will encapsulate those effects, which do not involve 
user–item interaction, within the baseline predictors. These 
baseline predictors tend to capture much of the observed 
signal, in particular much of the temporal dynamics within 
the data. Hence, it is vital to model them accurately, which 
enables better identification of the part of the signal that 
truly represents user–item interaction and should be sub-
ject to factorization.

A suitable way to construct a static baseline predictor is 
as follows. Denote by m the overall average rating. A base-
line predictor for an unknown rating rui is denoted by bui and 
accounts for the user and item main effects:

 bui = m + bu + bi . (3)

The parameters bu and bi indicate the observed deviations of 
user u and item i, respectively, from the average. For exam-
ple, suppose that we want a baseline estimate for the rating 
of the movie Titanic by user Joe. Now, say that the average 
rating over all movies, m, is 3.7 stars. Furthermore, Titanic is 
better than an average movie, so it tends to be rated 0.5 stars 
above the average. On the other hand, Joe is a critical user, 
who tends to rate 0.3 stars lower than the average. Thus, the 
baseline estimate for Titanic’s rating by Joe would be 3.9 
stars by calculating 3.7 − 0.3 + 0.5.

The baseline predictor should be integrated back into the 
factor model. To achieve this we extend rule (1) to be

  (4)

Here, the observed rating is separated to its four components: 
global average, item-bias, user-bias, and user–item interac-
tion. The separation allows each component to explain only 
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 (3) ( ) dev ( ) .u u u u utb t b t b= + ⋅ +a  (9)

A baseline predictor on its own cannot yield personal-
ized recommendations, as it misses all interactions between 
users and items. In a sense, it is capturing the portion of the 
data that is less relevant for establishing recommendations. 
Nonetheless, to better assess the relative merits of the various 
choices of time-dependent user-bias, we compare their accu-
racy as stand-alone predictors. In order to learn the involved 
parameters we minimize the associated regularized squared 
error by using stochastic gradient descent. For example, in 
our actual implementation we adopt rule (9) for modeling 
the drifting user-bias, thus arriving at the baseline predictor

 
, , Bin( )dev ( ) .
ui uiui u u u ui u t i i tb b t b b b= + + ⋅ + + +m a  (10)

To learn the involved parameters, bu, au, but, bi, and bi,Bin(t), 
one should solve

Here, the first term strives to construct parameters that fit 
the given ratings. The regularization term, l7 (b2

u + . . .) , avoids 
overfitting by penalizing the magnitudes of the parameters, 
assuming a neutral 0 prior. Learning is done by a stochastic 
gradient descent algorithm running 20–30 iterations, with 
l7 = 0.01.

Table 1 compares the ability of various suggested baseline 
predictors to explain signal in the data. As usual, the amount 
of captured signal is measured by the RMSE on the test set. 
As a reminder, test cases come later in time than the training 
cases for the same user, so predictions often involve extrapo-
lation in terms of time. We code the predictors as follows:

•	 static, no temporal effects: bui = m + bu + bi,
•	 mov, accounting only for movie-related temporal 

effects: bui = m + bu + bi + bi,Bin(tui)
,

•	 linear, linear modeling of user-biases: bui = m + bu +  
au· devu(tui) + bi + bi,Bin(tui), and

•	 linear+, linear modeling of user-biases and single day 
effect: bui = m + bu + au · devu(tui) + bu, tui

 + bi + bi, Bin(tui)
.

The table shows that while temporal movie effects reside in 
the data (lowering RMSE from 0.9799 to 0.9771), the drift in 
user-biases is much more influential. In particular, sudden 
changes in user-biases, which are captured by the per-day 
parameters, are most significant.

Beyond the temporal effects described so far, one can 

balance the desire to achieve finer resolution (hence, smaller 
bins) with the need for enough ratings per bin (hence, larger 
bins). For the movie-rating data, there is a wide variety of bin 
sizes that yield about the same accuracy. In our implementa-
tion, each bin corresponds to roughly 10 consecutive weeks 
of data, leading to 30 bins spanning all days in the dataset.  
A day t is associated with an integer Bin(t) (a number between 
1 and 30 in our data), such that the movie bias is split into  
a stationary part and a time changing part:

 bi(t) = bi + bi, Bin(t)
. (7)

While binning the parameters works well on the items, it 
is more of a challenge on the users’ side. On the one hand, 
we would like a finer resolution for users to detect very short-
lived temporal effects. On the other hand, we do not expect 
enough ratings per user to produce reliable estimates for 
isolated bins. Different functional forms can be considered 
for parameterizing temporal user behavior, with varying 
complexity and accuracy.

One simple modeling choice uses a linear function to 
capture a possible gradual drift of user-bias. For each user 
u, we denote the mean date of rating by tu. Now, if u rated 
a movie on day t, then the associated time deviation of this 
rating is defined as

devu(t) = sign(t – tu) · |t – tu|b.

Here |t – tu| measures the number of days between dates t 
and tu. We set the value of b by cross-validation; in our imple-
mentation b = 0.4. We introduce a single new parameter for 
each user called au so that we get our first definition of a 
time-dependent user-bias

  (8)

A more flexible spline-based rule is described in Koren.8

A smooth function for modeling the user-bias meshes 
well with gradual concept drift. However, in many applica-
tions there are sudden drifts emerging as “spikes” associated 
with a single day or session. For example, in the movie-rat-
ing dataset we have found that multiple ratings, a user gives 
in a single day, tend to concentrate around a single value. 
Such an effect need not span more than a single day. The 
effect may reflect the mood of the user that day, the impact 
of ratings given in a single day on each other, or changes in 
the actual rater in multiperson accounts. To address such 
short-lived effects, we assign a single parameter per user 
and day, absorbing the day-specific variability. This param-
eter is denoted by but. Notice that in some applications the 
basic primitive time unit to work with can be shorter or lon-
ger than a day.

In the Netflix movie-rating data, a user rates on 40 different 
days on average. Thus, working with but requires, on average, 
40 parameters to describe each user-bias. It is expected that 
but is inadequate as a stand-alone for capturing the user-bias, 
since it misses all sorts of signals that span more than a single 
day. Thus, it serves as an additive component within the previ-
ously described schemes. The time-linear model (8) becomes

table 1. Comparing baseline predictors capturing main movie and 
user effects. As temporal modeling becomes more accurate,  
prediction accuracy improves (lowering RmSE).

Model Static Mov Linear Linear+

RMSe 0.9799 0.9771 0.9731 0.9605
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again, we need to model those changes at the very fine level 
of a daily basis, while facing the built-in scarcity of user rat-
ings. In fact, these temporal effects are the hardest to cap-
ture, because preferences are not as pronounced as main 
effects (user-biases), but are split over many factors.

We modeled each component of the user preferences 
pu(t)T = ( pu(t)[1], pu(t)[2], …, pu(t)[ f ]) in the same way that 
we treated user-biases. Within the movie-rating dataset, we 
have found modeling after (9) effective, leading to

  (12)

Here puk captures the stationary portion of the factor,  
auk · devu(t) approximates a possible portion that changes 
linearly over time, and pukt absorbs the very local, day-spe-
cific variability.

At this point, we can tie all pieces together and extend the 
SVD factor model (4) by incorporating the time changing 
parameters. The resulting model will be denoted as timeSVD, 
where the prediction rule is as follows:

  (13)

The exact definitions of the time drifting parameters bi(t), 
bu(t), and pu(t) were given in Equations 7, 9, and 12. Learning 
is performed by minimizing the associated squared error 
function on the training set using a regularized stochastic 
gradient descent algorithm. The procedure is analogous to 
the one involving the original SVD algorithm. Time com-
plexity per iteration is still linear with the input size, while 
wall clock running time is approximately doubled compared 
to SVD, due to the extra overhead required for updating the 
temporal parameters. Importantly, convergence rate was 
not affected by the temporal parameterization, and the pro-
cess converges in around 30 iterations.

4.4. Comparison
The factor model we are using in practice is slightly more 
involved than the one described so far. The model, which 
is known as SVD++,7 offers an improved accuracy by also 
accounting for the more implicit information recorded by 
which items were rated (regardless of their rating value). 
While details of the SVD++ algorithm are beyond the scope 
of this article, they do not influence the introduction of tem-
poral effects, and the model is extended to account for tem-
poral effects following exactly the same procedure described 
in this section. The resulting model is known as timeSVD++, 
and is described in Koren.8

In Table 2 we compare results of three matrix factoriza-
tion algorithms. First is SVD, the plain matrix factorization 
algorithm. Second is the SVD++ method, which improves 
upon SVD by incorporating a kind of implicit feedback.  
Third is timeSVD++, which also accounts for temporal 
effects. The three methods are compared over a range of fac-
torization dimensions ( f ). All benefit from a growing num-
ber of factor dimensions that enables them to better express 
complex movie–user interactions. Addressing implicit feed-
back by the SVD++ model leads to accuracy gains within the 
movie-rating dataset. Yet, the improvement delivered by 

use the same methodology to capture more effects. A prime 
example is capturing periodic effects. For example, some 
products may be more popular in specific seasons or near 
certain holidays. Similarly, different types of television or 
radio shows are popular throughout different segments 
of the day (known as “dayparting”). Periodic effects can be 
found also on the user side. As an example, a user may have 
different attitudes or buying patterns during the weekend 
compared to the working week. A way to model such periodic 
effects is to dedicate a parameter for the combinations of  
time periods with items or users. This way, the item bias  
of (7) becomes

For example, if we try to capture the change of item bias with 
the season of the year, then period(t) ∈ {fall, winter, spring, 
summer}. Similarly, recurring user effects may be modeled 
by modifying (9) to be

However, we have not found periodic effects with a signifi-
cant predictive power within the movie-rating dataset, thus 
our reported results do not include those.

Another temporal effect within the scope of basic predic-
tors is related to the changing scale of user ratings. While 
bi(t) is a user-independent measure for the merit of item  
i at time t, users tend to respond to such a measure differ-
ently. For example, different users employ different rating 
scales, and a single user can change his rating scale over 
time. Accordingly, the raw value of the movie bias is not 
completely user-independent. To address this, we add a 
time-dependent scaling feature to the baseline predictors, 
denoted by cu(t). Thus, the baseline predictor (10) becomes

  (11)

All discussed ways to implement bu(t) would be valid for imple-
menting cu(t) as well. We chose to dedicate a separate param-
eter per day, resulting in: cu(t) = cu + cut. As usual, cu is the stable 
part of cu(t), whereas cut represents day-specific variability. 
Adding the multiplicative factor cu(t) to the baseline predictor 
lowers RMSE to 0.9555. Interestingly, this basic model, which 
captures just main effects disregarding user–item interac-
tions, can explain almost as much of the data variability as the 
commercial Netflix Cinematch recommender system, whose 
published RMSE on the same test set is 0.9514.3

4.3. time changing factor model
In Section 4.2 we discussed the way time affects baseline 
predictors. However, as hinted earlier, temporal dynamics 
go beyond this, they also affect user preferences and thereby 
the interaction between users and items. Users change their 
preferences over time. For example, a fan of the “psychologi-
cal thrillers” genre may become a fan of “crime dramas” a 
year later. Similarly, humans change their perception on cer-
tain actors and directors. This effect is modeled by taking 
the user factors (the vector pu) as a function of time. Once 
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reasoning behind computed recommendations, and seam-
lessly accounting for new entered ratings.

Recently, we suggested an item–item model based on 
global optimization,7 which will enable us here to capture 
time dynamics in a principled manner. The static model, 
without temporal dynamics, is centered on the following 
prediction rule:

  (14)

Here, the set R(u) contains the items rated by user u. The 
item–item weights wij and cij represent the adjustments 
we need to make to the predicted rating of item i, given a 
known rating of item j. It was proven greatly beneficial to 
use two sets of item–item weights: one (the wijs) is related 
to the values of the ratings, and the other disregards the 
rating value, considering only which items were rated (the 
cijs). These weights are automatically learned from the data 
together with the biases bi and bu. The constants buj are pre-
computed according to Equation 3. Recall that R(u) is the 
set of items rated by user u.

When adapting rule (14) to address temporal dynamics, 
two components should be considered separately. First 
component, m + bi + bu, corresponds to the the baseline pre-
dictor portion. Typically, this component explains most  
variability in the observed signal. Second component, 

, captures the more informative 
signal, which deals with user–item interaction. As for the 
baseline part, nothing changes from the factor model, and 
we replace it with m + bi(tui) + bu(tui), according to Equations 
7 and 9. However, capturing temporal dynamics within the 
interaction part requires a different strategy.

Item–item weights (wij and cij) reflect inherent item 
characteristics and are not expected to drift over time. 
The learning process should capture unbiased long-term 
values, without being too affected from drifting aspects. 
Indeed, the time changing nature of the data can mask 
much of the longer term item–item relationships if not 
treated adequately. For instance, a user rating both items i 
and j high within a short time period is a good indicator for 
relating them, thereby pushing higher the value of wij. On 
the other hand, if those two ratings are given 5 years apart, 
while the user’s taste (if not her identity) could considerably 
change, this provides less evidence of any relation between 
the items. On top of this, we would argue that those consid-
erations are pretty much user dependent; some users are 
more consistent than others and allow relating their longer 
term actions.

Our goal here is to distill accurate values for the item–
item weights, despite the interfering temporal effects. First 
we need to parameterize the decaying relations between two 
items rated by user u. We adopt exponential decay formed 
by the function , where bu > 0 controls the user-specific 
decay rate and should be learned from the data. We also 
experimented with other decay forms, like the computation-
ally cheaper (1 + buDt)−1, which resulted in about the same 
accuracy, with an improved running time.

This leads to the prediction rule

timeSVD++ over SVD++ is consistently more significant. We 
are not aware of any single algorithm in the literature that 
could deliver such accuracy. We attribute this to the impor-
tance of properly addressing temporal effects. Further 
evidence of the importance of capturing temporal dynam-
ics is the fact that a timeSVD++ model of dimension 10 is 
already more accurate than an SVD model of dimension 200. 
Similarly, a timeSVD++ model of dimension 20 is enough to 
outperform an SVD++ model of dimension 200.

4.5. Predicting future days
Our models include day-specific parameters. An aparaent 
question would be how these models can be used for pre-
dicting ratings in the future, on new dates for which we can-
not train the day-specific parameters? The simple answer 
is that for those future (untrained) dates, the day-specific 
parameters should take their default value. In particular 
for Equation 11, cu(tui) is set to cu, and bu,tui is set to zero. Yet, 
one wonders, if we cannot use the day-specific parameters 
for predicting the future, why are they good at all? After all, 
prediction is interesting only when it is about the future. To 
further sharpen the question, we should mention the fact 
that the Netflix test sets include many ratings on dates for 
which we have no other rating by the same user and hence 
day-specific parameters cannot be exploited.

To answer this, notice that our temporal modeling 
makes no attempt to capture future changes. All it is trying 
to do is to capture transient temporal effects, which had 
a significant influence on past user feedback. When such 
effects are identified, they must be tuned down, so that 
we can model the more enduring signal. This allows our 
model to better capture the long-term characteristics of 
the data, while letting dedicated parameters absorb short-
term fluctuations. For example, if a user gave many higher 
than usual ratings on a particular single day, our models 
discount those by accounting for a possible day-specific 
good mood, which does not reflect the longer term behav-
ior of this user. This way, the day-specific parameters con-
tribute to cleaning the data, which improves prediction of 
future dates.

5. tEmPoRAL DynAmiCS At nEiGhBoRhooD moDELS
The most common approach to CF is based on neighborhood 
models. While typically less accurate than their factoriza-
tion counterparts, neighborhood methods enjoy popular-
ity thanks to some of their merits, such as explaining the 

table 2. Comparison of three factor models: prediction accuracy is 
measured by RmSE (lower is better) for varying factor  dimensionality 
(f). for all models accuracy improves with growing number of 
 dimensions. most significant accuracy gains are achieved by address-
ing the temporal dynamics in the data through the timeSVD++ model.

model f = 10 f = 20 f = 50 f = 100 f = 200

SvD 0.9140 0.9074 0.9046 0.9025 0.9009

SvD++ 0.9131 0.9032 0.8952 0.8924 0.8911

timeSvD++ 0.8971 0.8891 0.8824 0.8805 0.8799
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changes within a single model thereby interconnecting users 
(or, products) to each other to identify communal patterns 
of behavior. A mere decay of older instances or usage of mul-
tiple separate models lose too many signals, thus degrading 
prediction accuracy. The solution we adopted is to model the 
temporal dynamics along the whole time period, allowing us 
to intelligently separate transient factors from lasting ones. 
We applied this methodology to two leading recommender 
techniques. In a factorization model, we modeled the way 
user and product characteristics change over time, in order 
to distill longer term trends from noisy patterns. In an item–
item neighborhood model, we showed how the more funda-
mental relations among items can be revealed by learning 
how influence between two items rated by a user decays 
over time. In both factorization and neighborhood models, 
the inclusion of temporal dynamics proved very useful in 
improving quality of predictions, more than various algorith-
mic enhancements. This led to the best results published so 
far on a widely analyzed movie-rating dataset. 

  (15)

The involved parameters, bi(tui) = bi + bi,Bin(tui), bu(tui) =  
bu + au · devu(tui) + bu,tui, bu, wij and cij, are learned by minimiz-
ing the associated regularized squared error

 

 (16)

Minimization is performed by stochastic gradient descent. 
As in the factor case, properly considering temporal dynam-
ics improves the accuracy of the neighborhood model 
within the movie-ratings dataset. The RMSE decreases 
from 0.90027 to 0.8885. To our best knowledge, this is sig-
nificantly better than previously known results by neigh-
borhood methods. To put this in some perspective, this 
result is even better than those reported by using hybrid 
approaches such as applying a neighborhood approach on 
residuals of other algorithms.2, 11, 18 A lesson is that address-
ing temporal dynamics in the data can have a more sig-
nificant impact on accuracy than designing more complex 
learning algorithms.

We would like to highlight an interesting point related to 
the basic methodology described in Section 3. Let u be a user 
whose preferences are quickly drifting (bu is large). Hence, 
old ratings by u should not be very influential on his status at 
the current time t. One could be tempted to decay the weight 
of u’s older ratings, leading to “instance weighting” through 
a cost function like

Such a function is focused at the current state of the user (at 
time t), while de-emphasizing past actions. We would argue 
against this choice, and opt for equally weighting the predic-
tion error at all past ratings as in Equation 16, thereby model-
ing all past user behavior. Therefore, equal-weighting allows us 
to exploit the signal at each of the past ratings, a signal that is 
extracted as item–item weights. Learning those weights would 
equally benefit from all ratings by a user. In other words, we can 
deduce that two items are related if users rated them similarly 
within a short time frame, even if this happened long ago.

6. ConCLuSion
Tracking the temporal dynamics of customer preferences to 
products raises unique challenges. Each user and product 
potentially goes through a distinct series of changes in their 
characteristics. Moreover, we often need to model all those 
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