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Recommender systems provide users with personalized suggestions for products or services. These
systems often rely on collaborating filtering (CF), where past transactions are analyzed in order
to establish connections between users and products. The most common approach to CF is based
on neighborhood models, which originate from similarities between products or users. In this work
we introduce a new neighborhood model with an improved prediction accuracy. Unlike previous
approaches that are based on heuristic similarities, we model neighborhood relations by minimizing
a global cost function. Further accuracy improvements are achieved by extending the model to
exploit both explicit and implicit feedback by the users. Past models were limited by the need to
compute all pairwise similarities between items or users, which grow quadratically with input size.
In particular, this limitation vastly complicates adopting user similarity models, due to the typical
large number of users. Our new model solves these limitations by factoring the neighborhood model,
thus making both item-item and user-user implementations scale linearly with the size of the data.
The methods are tested on the Netflix data, with encouraging results.
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1. INTRODUCTION

Modern consumers are inundated with choices. Electronic retailers and content
providers offer a huge selection of products, with unprecedented opportunities
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to meet a variety of special needs and tastes. Matching consumers with the
most appropriate products is not trivial, yet it is key in enhancing user satis-
faction and loyalty. This emphasizes the prominence of recommender systems,
which provide personalized recommendations for products that suit a user’s
taste [Adomavicius and Tuzhilin 2005]. Internet leaders like Amazon [Linden
et al. 2003], Google [Das et al. 2007], Netflix [Bennett and Lanning 2007], TiVo
[Ali and van Stam 2004] and Yahoo! [Park and Pennock 2007] are increasingly
adopting such recommenders.

Recommender systems are often based on Collaborative Filtering (CF)
[Goldberg et al. 1992], which relies only on past user behavior—for example,
their previous transactions or product ratings—and does not require the cre-
ation of explicit profiles. Notably, CF techniques do not require domain knowl-
edge and avoid the need for extensive data collection. In addition, relying di-
rectly on user behavior allows uncovering complex and unexpected patterns
that would be difficult or impossible to profile using known data attributes. As
a consequence, CF attracted much of attention in the past decade, resulting
in significant progress and being adopted by some successful commercial sys-
tems, including Amazon [Linden et al. 2003], TiVo [Ali and van Stam 2004] and
Netflix.

In order to establish recommendations, CF systems need to compare fun-
damentally different objects: items against users. There are two primary ap-
proaches to facilitate such a comparison, which constitute the two main disci-
plines of CF: the neighborhood approach and latent factor models.

Neighborhood methods are centered on computing the relationships between
items or alternatively, between users. An item-item approach evaluates the
preference of a user for an item based on ratings of similar items by the same
user. In a sense, these methods transform users to the item space by viewing
them as baskets of rated items. This way we no longer need to compare users
to items, but rather directly relate items to items.

Latent factor models, such as singular value decomposition (SVD), comprise
an alternative approach by transforming both items and users to the same
latent factor space, thus making them directly comparable. The latent space
tries to explain ratings by characterizing both products and users on factors
automatically inferred from user feedback. For example, when the products are
movies, factors might measure obvious dimensions such as comedy vs. drama,
amount of action, or orientation to children; less well defined dimensions such
as depth of character development or quirkiness; or completely uninterpretable
dimensions. For users, each factor measures how much the user likes movies
that score high on the corresponding movie factor.

Latent factor models offer highly expressive ability to describe various as-
pects of the data. Thus they tend to provide more accurate results than neigh-
borhood models; see, for example, Bell and Koren [2007a]; Canny [2002];
Hofmann [2004]; Koren [2008]; Paterek [2007]; and Takács et al. [2007]. How-
ever most literature and commercial systems (e.g., those of Amazon [Linden
et al. 2003], TiVo [Ali and van Stam 2004] and Netflix1) are based on the

1Based on personal knowledge.
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neighborhood models. The prevalence of neighborhood models is partly thanks
to their relative simplicity and intuitiveness. However, there are more impor-
tant reasons for real life systems to stick with those less accurate models. First,
they naturally provide intuitive explanations of the reasoning behind recom-
mendations, which often enhance user experience beyond what improved ac-
curacy might achieve. Second, they can immediately provide recommendations
based on just entered user feedback.

In this work we introduce a new neighborhood model with an improved ac-
curacy on par with recent latent factor models. At the same time, the model re-
tains the two aforementioned fundamental advantages of neighborhood models.
Namely, it can explain its recommendations and handle new ratings without
requiring retraining. Admittedly, the new model is not as simple as common
neighborhood models, because it requires a training stage much like latent
factor models. This reflects a more principled way to modeling neighborhood
relations, which rewards the model not only with improved accuracy, but also
with greater flexibility to address different aspects of the data and to integrate
other models. In particular, we can make the model significantly more scal-
able than previous neighborhood models, without compromising its accuracy
or other desired properties.

The CF field has enjoyed a surge of interest since October 2006, when the
Netflix Prize competition [Bennett and Lanning 2007] commenced. Netflix re-
leased a dataset containing 100 million movie ratings and challenged the re-
search community to develop algorithms that could beat the accuracy of its
recommendation system, Cinematch.

A lesson that we learned through this competition is the importance of inte-
grating different forms of user input into the models [Bell and Koren 2007a].
Recommender systems rely on different types of input. Most convenient is the
high quality explicit feedback, which includes explicit input by users regarding
their interest in products. For example, Netflix collects star ratings for movies
and TiVo users indicate their preferences for TV shows by hitting thumbs-
up/down buttons. However, explicit feedback is not always available. Thus, rec-
ommenders can infer user preferences from the more abundant implicit feed-
back, which indirectly reflects opinion through observing user behavior [Oard
and Kim 1998]. Types of implicit feedback include purchase history, browsing
history, search patterns, or even mouse movements. For example, a user who
purchased many books by the same author probably likes that author. Our
main focus is on cases where explicit feedback is available. Nonetheless, we
recognize the importance of implicit feedback, which can illuminate users who
did not provide enough explicit feedback. Hence, our models integrate explicit
and implicit feedback.

The structure of the rest of the article is as follows. We start with prelimi-
naries and related work in Section 2. Then, we describe a new, more accurate
neighborhood model in Section 3. The new model is based on an optimization
framework that allows smooth integration with other models, and also inclu-
sion of implicit user feedback. Section 4 shows how to make the model highly
scalable by introducing novel factorization techniques. Relevant experimental
results are cited within each section. In addition, we suggest a new methodology
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to evaluate effectiveness of the models, as described in Section 5, with encour-
aging results.

2. PRELIMINARIES

We are given ratings about m users and n items. We reserve special indexing
letters for distinguishing users from items: for users u, v, and for items i, j . A
rating rui indicates the preference by user u of item i, where high values mean
stronger preference. For example, values can be integers ranging from 1 (star)
indicating no interest to 5 (stars) indicating a strong interest. We distinguish
predicted ratings from known ones, by using the notation r̂ui for the predicted
value of rui. Usually the vast majority of ratings are unknown. For example, in
the Netflix data 99% of the possible ratings are missing because a user typically
rates only a small portion of the movies. The (u, i) pairs for which rui is known
are stored in the set K = {(u, i) | rui is known}. In order to combat overfitting
the sparse rating data, models are regularized so estimates are shrunk towards
baseline defaults. Regularization is controlled by constants that are denoted as:
λ1, λ2, . . . Exact values of these constants are determined by cross validation.
As they grow, regularization becomes heavier.

2.1 Baseline Estimates

Typical CF data exhibit large user and item effects—systematic tendencies for
some users to give higher ratings than others—and for some items to receive
higher ratings than others. It is customary to adjust the data by accounting for
these effects, which we encapsulate within the baseline estimates. Denote by
μ the overall average rating. A baseline estimate for an unknown rating rui is
denoted by bui and accounts for the user and item effects:

bui = μ + bu + bi. (1)

The parameters bu and bi indicate the observed deviations of user u and item i,
respectively, from the average. For example, suppose that we want a baseline
estimate for the rating of the movie Titanic by user Joe. Now, say that the
average rating over all movies, μ, is 3.7 stars. Furthermore, Titanic is better
than an average movie, so it tends to be rated 0.5 stars above the average. On
the other hand, Joe is a critical user, who tends to rate 0.3 stars lower than the
average. Thus, the baseline estimate for Titanic’s rating by Joe would be 3.9
stars by calculating 3.7 − 0.3 + 0.5. In order to estimate bu and bi one can solve
the least squares problem:

min
b∗

∑
(u,i)∈K

(rui − μ − bu − bi)2 + λ1

(∑
u

b2
u +

∑
i

b2
i

)
.

Here, the first term,
∑

(u,i)∈K(rui −μ+bu +bi)2, strives to find bus and bis that fit
the given ratings. The regularizing term—λ1(

∑
u b2

u+∑
i b2

i )—avoids overfitting
by penalizing the magnitudes of the parameters.

An easier, yet somewhat less accurate way to estimate the parameters is by
decoupling the calculation of the bis from the calculation of the bus. First, for
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each item i we set:

bi =
∑

u:(u,i)∈K(rui − μ)
λ2 + |{u|(u, i) ∈ K}| .

Then, for each user u we set:

bu =
∑

i:(u,i)∈K(rui − μ − bi)
λ3 + |{i|(u, i) ∈ K}| .

Averages are shrunk towards zero by using the regularization parameters,
λ2.λ3, which are determined by cross validation. Typical values in the Netflix
dataset are: λ2 = 25, λ3 = 10.

2.2 Neighborhood Models

The most common approach to CF is based on neighborhood models. Its orig-
inal form, which was shared by virtually all earlier CF systems, is user-user
based; see Herlocker et al. [1999] for a good analysis. Such user-user meth-
ods estimate unknown ratings based on recorded ratings of like-minded users.
Later, an analogous item-item approach [Linden et al. 2003; Sarwar et al. 2001]
became popular. In those methods, a rating is estimated using known ratings
made by the same user on similar items. Better scalability and improved ac-
curacy make the item-item approach more favorable in many cases [Bell and
Koren 2007b; Sarwar et al. 2001; Takács et al. 2007]. In addition, item-item
methods are more amenable to explaining the reasoning behind predictions.
This is because users are familiar with items previously preferred by them,
but do not know those allegedly like-minded users. We focus mostly on item-
item approaches, but techniques developed in this work make the user-user
approach as computationally efficient; see Section 4.1.

Central to most item-item approaches is a similarity measure between items.
Frequently, it is based on the Pearson correlation coefficient, ρij, which mea-
sures the tendency of users to rate items i and j similarly. Since many ratings
are unknown, it is expected that some items share only a handful of common
raters. Computation of the correlation coefficient is based only on the common
user support. Accordingly, similarities based on a greater user support are more
reliable. An appropriate similarity measure, denoted by sij, would be a shrunk
correlation coefficient:

sij
def= nij

nij + λ4
ρij. (2)

The variable nij denotes the number of users who rated both i and j . A typical
value for λ4 is 100. Notice that the literature suggests additional alternatives
for a similarity measure [Sarwar et al. 2001; Takács et al. 2007].

Our goal is to predict rui—the unobserved rating by user u for item i. Using
the similarity measure, we identify the k items rated by u, which are most
similar to i. This set of k neighbors is denoted by Sk(i; u). The predicted value
of rui is taken as a weighted average of the ratings of neighboring items, while
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adjusting for user and item effects through the baseline estimates:

r̂ui = bui +
∑

j∈Sk (i;u) sij(ruj − buj)∑
j∈Sk (i;u) sij

. (3)

Neighborhood-based methods of this form became very popular because they
are intuitive and relatively simple to implement. They also offer the following
two useful properties.

(1) Explainability. Users expect a system to give a reason for its predictions,
rather than facing “black box” recommendations. This not only enriches the
user experience, but also encourages users to interact with the system, fix
wrong impressions, and improve long-term accuracy. In fact, the importance
of explaining automated recommendations is widely recognized [Herlocker
et al. 2000; Tintarev and Masthoff 2007]. The neighborhood framework
allows identifying which of the past user actions are most influential on
the computed prediction. In prediction rule (3), each past rating (ruj for
j ∈ Sk(i; u)) receives a separate term in forming the predicted r̂ui, and thus
we can isolate its unique contributions. The past ratings associated with
highest contributions are identified as the major explanation behind the
recommendation.

(2) New ratings. Item-item neighborhood models can provide updated recom-
mendations immediately after users enter new ratings. This includes han-
dling new users as soon as they provide feedback to the system, without
needing to retrain the model and estimate new parameters. Here we as-
sume that relationships between items (the sij values) are stable and barely
change on a daily basis. Thus, prediction rule (3) can be reliably used with
the most recent set of ratings given by the user. Notice that for items new to
the system we do have to learn new parameters. Interestingly, this asymme-
try between users and items meshes well with common practices: systems
need to provide immediate recommendations to new users (or new ratings
by old users) who expect quality service. On the other hand, it is reasonable
to require a waiting period before recommending items new to the system.

However, in a recent work [Bell and Koren 2007b], we raised a few concerns
about traditional neighborhood schemes. Most notably, these methods are not
justified by a formal model. We also questioned the suitability of a similarity
measure that isolates the relations between two items, without analyzing the
interactions within the full set of neighbors. In addition, the fact that interpo-
lation weights in (3) sum to one, forces the method to fully rely on the neighbors
even in cases where neighborhood information is absent (user u did not rate
items similar to i), and it would be preferable to rely on baseline estimates.

This led us to propose a more accurate neighborhood model, which overcomes
these difficulties. Given a set of neighbors Sk(i; u), we need to compute inter-
polation weights {θu

ij | j ∈ Sk(i; u)} that enable the best prediction rule of the
form:

r̂ui = bui +
∑

j∈Sk (i;u)

θu
ij (ruj − buj). (4)
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Derivation of the interpolation weights can be done efficiently by estimating
all inner products between item ratings; for a full description refer to Bell and
Koren [2007b].

2.3 Latent Factor Models

Latent factor models comprise an alternative approach to collaborative fil-
tering with the more holistic goal to uncover latent features that explain
observed ratings; examples include pLSA [Hofmann 2004], neural networks
[Salakhutdinov et al. 2007], latent Dirichlet allocation [Blei et al. 2003], or
models that are induced by singular value decomposition (SVD) on the user-
item ratings matrix. Recently, SVD models have gained popularity, thanks to
their attractive accuracy and scalability. A typical model associates each user u
with a user-factors vector pu ∈ R

f , and each item i with an item-factors vector
qi ∈ R

f . The prediction is done by taking an inner product: r̂ui = bui + pT
u qi.

The more involved part is parameter estimation.
In information retrieval it is well established to harness SVD for identify-

ing latent semantic factors [Deerwester et al. 1990]. However, applying SVD
in the CF domain raises difficulties due to the high portion of missing ratings.
Conventional SVD is undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively few known entries is
highly prone to overfitting. Earlier works [Kim and Yum 2005; Sarwar et al.
2000] relied on imputation to fill in missing ratings and make the rating matrix
dense. However, imputation can be very expensive as it significantly increases
the amount of data. In addition, the data may be considerably distorted due to
inaccurate imputation. Hence, more recent works [Bell et al. 2007; Canny 2002;
Piatetsky 2007; Koren 2008; Paterek 2007; Salakhutdinov et al. 2007; Takács
et al. 2007] suggested modeling directly only the observed ratings, while avoid-
ing overfitting through an adequate regularized model. The reported results
compare very favorably with neighborhood models.

However, Latent factor models such as SVD face real difficulties when needed
to explain predictions. After all, a key to these models is abstracting users via an
intermediate layer of user factors. This intermediate layer separates the com-
puted predictions from past user actions and complicates explanations. Sim-
ilarly, reflecting new ratings requires relearning the user factors, and cannot
be done as in the neighborhood models, at virtually no cost. Thus, we believe
that for practical applications neighborhood models are still expected to be a
common choice.

2.4 The Netflix Data

We evaluated our algorithms on the Netflix data of more than 100 million movie
ratings performed by anonymous Netflix customers [Bennett and Lanning
2007]. We are not aware of any publicly available CF dataset that is close to
the scope and quality of this dataset. To maintain compatibility with results
published by others, we adopted some standards that were set by Netflix, as
follows. First, quality of the results is usually measured by their root mean
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squared error (RMSE):

√ ∑
(u,i)∈TestSet

(rui − r̂ui)2/|TestSet|,

a measure that puts more emphasis on large errors compared with the alterna-
tive of mean absolute error. In addition, we report results on a test set provided
by Netflix (also known as the quiz set), which contains over 1.4 million recent
ratings. Netflix compiled another 1.4 million recent ratings into a validation
set, known as the probe set, which we employ in Section 5. The two sets contain
many more ratings by users who do not rate much and are harder to predict.
In a way, they represent real requirements from a CF system, which needs to
predict new ratings from older ones, and to equally address all users, not only
the heavy raters.

The Netflix data is part of the ongoing Netflix Prize competition, where the
benchmark is Netflix’s proprietary system, Cinematch, which achieved a RMSE
of 0.9514 on the test set. The grand prize will be awarded to a team that manages
to drive this RMSE below 0.8563 (10% improvement).

2.5 Implicit Feedback

As stated earlier, an important goal of this work is devising models that allow
integration of explicit and implicit user feedback. For a dataset such as the
Netflix data, the most natural choice for implicit feedback would probably be
movie rental history, which tells us about user preferences without requiring
them to explicitly provide their ratings. However, such data is not available to
us. Nonetheless, a less obvious kind of implicit data does exist within the Netflix
dataset. The dataset not only tells us the rating values, but also which movies
users rate, regardless of how they rated these movies. In other words, a user
implicitly tells us about her preferences by choosing to voice her opinion and
vote a (high or low) rating. This reduces the ratings matrix into a binary matrix,
where “1” stands for “rated,” and “0” for “not rated.” Admittedly, this binary data
is not as vast and independent as other sources of implicit feedback could be.
Nonetheless, we have found that incorporating this kind of implicit data—which
inherently exist in every rating based recommender system—significantly im-
proves prediction accuracy. Some prior techniques, such as conditional RBMs
[Salakhutdinov et al. 2007], also capitalized on the same binary view of the
data. The benefit of using the binary data is closely related to the fact that
ratings do not miss at random, but users are deliberate in which items they
choose to rate; see Marlin et al. [2007].

The models that we suggest are not limited to a certain kind of implicit
data. To keep generality, each user u is associated with two sets of items, one is
denoted by R(u), and contains all the items for which ratings by u are available.
The other one, denoted by N(u), contains all items for which u provided an
implicit preference.
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3. A NEIGHBORHOOD MODEL

In this section we introduce a new neighborhood model. The major advantages
and differences compared to previous neighborhood models are summarized as
follows.

(1) No reliance on arbitrary or heuristic item-item similarities: the new model
is cast as the solution to a global optimization problem.

(2) Inherent overfitting prevention or risk control: the model will revert
to robust baseline estimates, unless the user entered sufficiently many
relevant ratings.

(3) The model can capture the totality of weak signals encompassed in all of
a user’s ratings. It does not need to concentrate only on the few ratings for
most similar items.

(4) A highly scalable implementation (Section 4) allows linear time and space
complexity, thus facilitating both item-item and user-user implementations
to scale well to very large datasets.

(5) The model naturally allows integrating different forms of user input, such
as explicit and implicit feedback.

We will gradually construct the various components of the model, through an
ongoing refinement of our formulations. Previous models were centered around
user-specific interpolation weights—θu

ij in (4) or sij/
∑

j∈Sk (i;u) sij in (3)—relating
item i to the items in a user-specific neighborhood Sk(i; u). In order to facilitate
global optimization, we would like to abandon such user-specific weights in
favor of global item-item weights independent of a specific user. The weight from
j to i is denoted by wij and will be learned from the data through optimization.
An initial sketch of the model describes each rating rui by the equation:

r̂ui = bui +
∑

j∈R(u)

(ruj − buj)wij. (5)

This rule starts with the crude, yet robust, baseline estimates (bui). Then,
the estimate is adjusted by summing over all ratings by u.

Let us consider the interpretation of the weights. Usually the weights in
a neighborhood model represent interpolation coefficients relating unknown
ratings to existing ones. Here, we adopt a different viewpoint, where weights
represent offsets to baseline estimates. Now, the residuals, ruj − buj, are viewed
as the coefficients multiplying those offsets. For two related items i and j , we
expect wij to be high. Thus, whenever a user u rated j higher than expected
(ruj − buj is high), we would like to increase our estimate for u’s rating of i by
adding (ruj − buj)wij to the baseline estimate. Likewise, our estimate will not
deviate much from the baseline by an item j that u rated, just as expected
(ruj − buj is around zero), or by an item j that is not known to be predictive
on i (wij is close to zero). This viewpoint suggests several enhancements to (5).
First, we can use implicit feedback, which provides an alternative way to learn
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user preferences. To this end, we add another set of weights, and rewrite (5) as:

r̂ui = bui +
∑

j∈R(u)

(ruj − buj)wij +
∑

j∈N(u)

cij. (6)

Much like the wijs, the cijs are offsets added to baseline estimates. For two
items, i and j , an implicit preference by u to j leads us to modify our estimate
of rui by cij, which is expected to be high if j is predictive on i.2

Viewing the weights as global offsets, rather than as user-specific interpola-
tion coefficients, emphasizes the influence of missing ratings. In other words, a
user’s opinion is formed not only by what he rated, but also by what he did not
rate. For example, suppose that a movie ratings dataset shows that users that
rate “Lord of the Rings 3” high also gave high ratings to “Lord of the Rings 1–2.”
This will establish high weights from “Lord of the Rings 1–2” to “Lord of the
Rings 3.” Now, if a user did not rate “Lord of the Rings 1–2” at all, his predicted
rating for “Lord of the Rings 3” will be penalized, as some necessary weights
cannot be added to the sum.

For prior models ((3), (4)) that interpolated rui−bui from {ruj−buj| j ∈ Sk(i; u)},
it was necessary to maintain compatibility between the bui values and the buj
values. However, here we do not use interpolation, so we can decouple the def-
initions of bui and buj. Accordingly, a more general prediction rule would be:
r̂ui = b̃ui + ∑

j∈R(u)(ruj − buj)wij +
∑

j∈N(u) cij. The constant b̃ui can represent pre-
dictions of rui by other methods such as a latent factor model. Here, we suggest
the following rule that was found to work well:

r̂ui = μ + bu + bi +
∑

j∈R(u)

(ruj − buj)wij +
∑

j∈N(u)

cij. (7)

Importantly, the bujs remain constants, which are derived as explained in
Section 2.1. However, the bus and bis become parameters, which are optimized
much like the wijs and cijs.

We have found that it is beneficial to normalize sums in the model leading
to the form:

r̂ui = μ + bu + bi + |R(u)|−α
∑

j∈R(u)

(ruj − buj)wij + |N(u)|−α
∑

j∈N(u)

cij. (8)

The constant α controls the extent of normalization. A non-normalized rule
(α = 0), encourages greater deviations from baseline estimates for users that
provided many ratings (high |R(u)|) or plenty of implicit feedback (high |N(u)|).
On the other hand, a fully normalized rule, with α = 1, will eliminate the effect
of number of ratings on deviations from baseline estimates. In many cases it
would be a good practice for recommender systems to have greater deviation
from baselines for users that rate a lot. This way, we take more risk with well
modeled users that provided much input. For such users we are willing to pre-
dict quirkier and less common recommendations. At the same time, we are less
certain about the modeling of users who provided only a little input, in which
case we would like to stay with safe estimates close to the baseline values. Our

2In many cases it would be reasonable to attach significance weights to implicit feedback. This
requires a modification to our formula which, for simplicity, will not be considered here.
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experience with the Netflix dataset shows that best results are achieved with
partial normalization, which allows moderately higher deviations for heavy
raters. Thus, we set α = 0.5, as in the prediction rule:

r̂ui = μ + bu + bi + |R(u)|− 1
2

∑
j∈R(u)

(ruj − buj)wij + |N(u)|− 1
2

∑
j∈N(u)

cij. (9)

As an optional refinement, complexity of the model can be reduced by pruning
parameters corresponding to unlikely item-item relations. Let us denote by Sk(i)
the set of k items most similar to i, as determined by for example, a similarity
measure sij or a natural hierarchy associated with the item set. Additionally, we

use Rk(i; u) def= R(u) ∩ Sk(i) and Nk(i; u) def= N(u) ∩ Sk(i).3 Now, when predicting
rui according to (9), it is expected that the most influential weights will be
associated with items similar to i. Hence, we replace (9) with:

r̂ui = μ + bu + bi + |Rk(i; u)|− 1
2

∑
j∈Rk (i;u)

(ruj − buj)wij + |Nk(i; u)|− 1
2

∑
j∈Nk (i;u)

cij. (10)

When k = ∞, rule (10) coincides with (9). However, for other values of k it offers
the potential to significantly reduce the number of variables involved.

This is our final prediction rule, which allows fast online prediction. More
computational work is needed at a preprocessing stage where parameters are
estimated. A major design goal of the new neighborhood model was facilitating
an efficient global optimization procedure, which prior neighborhood models
lacked. Thus, model parameters are learned by solving the regularized least
squares problem associated with (10):

min
b∗,w∗,c∗

∑
(u,i)∈K

⎛
⎝rui − μ − bu − bi − |Nk(i; u)|− 1

2

∑
j∈Nk (i;u)

cij

− |Rk(i; u)|− 1
2

∑
j∈Rk (i;u)

(ruj − buj)wij

⎞
⎠

2

+ λ5

⎛
⎝b2

u + b2
i +

∑
j∈Rk (i;u)

w2
ij +

∑
j∈Nk (i;u)

c2
ij

⎞
⎠ . (11)

An optimal solution of this convex problem can be obtained by least square
solvers, which are part of standard linear algebra packages. However, we have
found that the following simple stochastic gradient descent solver works much
faster. Let us denote the prediction error, rui − r̂ui, by eui. We loop through all
known ratings in K. For a given training case rui, we modify the parameters by
moving in the opposite direction of the gradient, yielding:

—bu ← bu + γ · (eui − λ5 · bu)

3Notational clarification: with other neighborhood models it was beneficial to use Sk(i; u), which
denotes the k items most similar to i among those rated by u. Hence, if u rated at least k items, we
will always have |Sk(i; u)| = k, regardless of how similar those items are to i. However, |Rk(i; u)| is
typically smaller than k, as some of those items most similar to i were not rated by u.

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 1, Article 1, Publication date: January 2010.



1:12 • Y. Koren

—bi ← bi + γ · (eui − λ5 · bi)
—∀ j ∈ Rk(i; u) :

wij ← wij + γ ·
(
|Rk(i; u)|− 1

2 · eui · (ruj − buj) − λ5 · wij

)
—∀ j ∈ Nk(i; u) :

cij ← cij + γ ·
(
|Nk(i; u)|− 1

2 · eui − λ5 · cij

)
.

The metaparameters γ (step size), and λ5, are determined by cross-
validation. We used γ = 0.005 and λ5 = 0.002 for the Netflix data. Another
important parameter is k, which controls the neighborhood size. Our experi-
ence shows that increasing k always benefits the accuracy of the results on the
test set. Hence, the choice of k should reflect a tradeoff between prediction ac-
curacy and computational cost. In the next section we will describe a factored
version of the model, which cancels this tradeoff by allowing us to work with
the most accurate k = ∞ while lowering running time.

A typical number of iterations throughout the training data is 15–20. As
for time complexity per iteration, let us analyze the most accurate case, where
k = ∞, which is equivalent to using prediction rule (9). For each user u and
item i ∈ R(u), we need to modify both {wij| j ∈ R(u)} and {cij| j ∈ N(u)}. Thus the
overall time complexity of the training phase is O(

∑
u |R(u)|(|R(u)| + |N(u)|)).

Experimental results on the Netflix data with the new neighborhood model
are presented in Figure 1. We studied the model under different values of pa-
rameter k. The solid black curve shows that accuracy monotonically improves
with rising k values, as root mean squared error (RMSE) falls from 0.9139 for
k = 250 to 0.9002 for k = ∞. (Notice that since the Netflix data contains 17,770
movies, k = ∞ is equivalent to k =17,769, where all item-item relations are
explored.) We repeated the experiments without using the implicit feedback,
that is, dropping the cij parameters from our model. The results depicted by the
solid gray curve show a significant decline in estimation accuracy, which widens
as k grows. This demonstrates the value of incorporating implicit feedback into
the model.

For comparison, we provide the results of two previous neighborhood mod-
els. First is a correlation-based neighborhood model (following (3)), which is the
most popular CF method in the literature. We denote this model as CorNgbr.
Second is a newer model [Bell and Koren 2007b] that follows (4), which will be
denoted as WgtNgbr. For both of these models, we tried to pick optimal param-
eters and neighborhood sizes, which were 20 for CorNgbr, and 50 for WgtNgbr.
The results are depicted by the dashed lines. It is clear that the popular CorNgbr
method is noticeably less accurate than the other neighborhood models, though
its 0.9406 RMSE is still better than the published Netflix’s Cinematch RMSE
of 0.9514. On the opposite side, our new model delivers more accurate results
even when compared with WgtNgbr, as long as the value of k is at least 500.
Notice that the k value (the x-axis) is irrelevant to previous models, as their dif-
ferent notion of neighborhood makes neighborhood sizes incompatible. Yet, we
observed that while the performance of our algorithm keeps improving as more
neighbors are added, this was not true with previous models. For those past
models, performance peaks with a relatively small number of neighbors and
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Fig. 1. Comparison of neighborhood-based models. We measure the accuracy of the new model
with and without implicit feedback. Accuracy is measured by RMSE on the Netflix test set, so
lower values indicate better performance. RMSE is shown as a function of varying values of k,
which dictates the neighborhood size. For reference, we present the accuracy of two prior models as
two horizontal lines: the black dashed line represents a popular method using Pearson correlations,
and the gray dashed line represents a more recent neighborhood model.

then declines. This may be explained by the fact that in our model, parameters
are directly learned from the data through a formal optimization procedure,
which facilitates using many more parameters effectively.

Finally, let us consider running time. Previous neighborhood models required
very light preprocessing, though WgtNgbr [Bell and Koren 2007b] requires solv-
ing a small system of equations for each provided prediction. The new model
does involve preprocessing where parameters are estimated. However, online
prediction is immediate by following rule (10). Preprocessing time grows with
the value of k. Typical running times per iteration on the Netflix data, as mea-
sured on a single 3.4 GHz Pentium 4 PC processor, are shown in Figure 2.

4. A FACTORIZED NEIGHBORHOOD MODEL

In the previous section we presented our most accurate neighborhood
model, which is based on prediction rule (9) with training time complexity
O(

∑
u |R(u)|(|R(u)| + |N(u)|)) and space complexity O(m + n2). (Recall that m is

the number of users, and n is the number of items.) We could improve time and
space complexity by sparsifying the model through pruning unlikely item-item
relations. Sparsification was controlled by the parameter k ≤ n, which reduced
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Fig. 2. Running times (minutes) per iteration of the neighborhood model, as a function of the
parameter k.

running time and allowed space complexity of O(m + nk). However as k gets
lower, the accuracy of the model declines as well. In addition, sparsification
required relying on an external, less natural, similarity measure, which we
would have liked to avoid. Thus we will now show how to retain the accuracy
of the full dense prediction rule (9), while significantly lowering time and space
complexity.

We factor item-item relationships by associating each item i with three vec-
tors: qi, xi, yi ∈ R

f . This way, we confine wij to be qT
i xi. Similarly, we impose

the structure cij = qT
i y j . Essentially, these vectors strive to map items into an

f -dimensional latent factor space where they are measured against various
aspects that are automatically revealed by learning the data. By substituting
this into (9) we get the following prediction rule:

r̂ui = μ + bu + bi + |R(u)|− 1
2

∑
j∈R(u)

(ruj − buj)qT
i xi + |N(u)|− 1

2

∑
j∈N(u)

qT
i y j . (12)

Computational gains become more obvious by using the equivalent rule:

r̂ui = μ + bu + bi + qT
i

(
|R(u)|− 1

2

∑
j∈R(u)

(ruj − buj)x j + |N(u)|− 1
2

∑
j∈N(u)

y j

)
. (13)

Notice that the bulk of the rule—(|R(u)|− 1
2
∑

j∈R(u)(ruj − buj)x j + |N(u)|− 1
2 .∑

j∈N(u) y j )—depends only on u, while being independent of i. This leads to
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an efficient way to learn the model parameters. As usual, we minimize the
regularized squared error function associated with (13):

min
q∗,x∗, y∗,b∗

∑
(u,i)∈K

(
rui − μ − bu − bi

− qT
i

(
|R(u)|− 1

2

∑
j∈R(u)

(ruj − buj)x j + |N(u)|− 1
2

∑
j∈N(u)

y j

))2

+ λ6

(
b2

u + b2
i + ‖qi‖2 +

∑
j∈R(u)

‖x j ‖2 +
∑

j∈N(u)

‖ y j ‖2

)
. (14)

Optimization is done by a stochastic gradient descent scheme, which is de-
scribed in the following pseudocode:

LearnFactorizedNeighborhoodModel(Known ratings: rui, rank: f )
% For each item i compute qi , xi , yi ∈ R

f

% which form a neighborhood model
Const #Iterations = 20, γ = 0.002, λ = 0.04
% Gradient descent sweeps:
for count = 1, . . . , #Iterations do

for u = 1, . . . , m do
% Compute the component independent of i:
pu ← |R(u)|− 1

2
∑

j∈R(u)(ruj − buj)x j

pu ← pu + |N(u)|− 1
2
∑

j∈N(u) y j

sum ← 0
for all i ∈ R(u) do

r̂ui ← μ + bu + bi + qT
i pu

eui ← rui − r̂ui
% Accumulate information for gradient steps on xi , yi:
sum ← sum + eui · qi

% Perform gradient step on qi , bu, bi:
qi ← qi + γ · (eui · pu − λ · qi)
bu ← bu + γ · (eui − λ · bu)
bi ← bi + γ · (eui − λ · bi)

for all i ∈ R(u) do
% Perform gradient step on xi:
xi ← xi + γ · (|R(u)|− 1

2 · (rui − bui) · sum − λ · xi)
for all i ∈ N(u) do

% Perform gradient step on yi:
yi ← yi + γ · (|N(u)|− 1

2 · sum − λ · yi)
return {qi , xi , yi|i = 1, . . . , n}

The time complexity of this model is linear with the input size—O( f ·∑
u(|R(u)|+ |N(u)|)), which is significantly better than the nonfactorized model,

required time O(
∑

u |R(u)|(|R(u)| + |N(u)|)). We measured the performance of
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Table I. Performance of the Factorized Item-Item
Neighborhood Model. The Models with ≥ 200 Factors
Slightly Outperform the Nonfactorized Model, while

Providing Much Shorter Running Time

#factors 50 100 200 500
RMSE 0.9037 0.9013 0.9000 0.8998
time/iteration 4.5 min 8 min 14 min 34 min

the model on the Netflix data; see Table I. Accuracy is improved as we use
more factors (increasing f ). However, going beyond 200, factors could barely
improve performance, while slowing running time. Interestingly, we have found
that with f ≥ 200, accuracy negligibly exceeds that of the best nonfactorized
model (with k = ∞). In addition, the improved time complexity translates into
a big difference in wall-clock measured running time. For example, the time-
per-iteration for the nonfactorized model (with k = ∞) was close to 58 minutes.
On the other hand, a factorized model with f = 200 could complete an iteration
in 14 minutes without degrading accuracy at all.

The most important benefit of the factorized model is the reduced space
complexity, which is O(m + nf )—linear in the input size. Previous neighbor-
hood models required storing all pairwise relations between items, leading to
a quadratic space complexity of O(m + n2). For the Netflix dataset, which con-
tains 17,770 movies, such quadratic space can still fit within core memory.
Some commercial recommenders process a much higher number of items. For
example, a leading online movie rental service is currently advertising offering
over 100,000 titles. Music download shops offer even more titles. Such more
comprehensive systems with data on 100,000s items eventually need to re-
sort to external storage in order to fit the entire set of pairwise relations.
However, as number of items is growing towards millions, as in the Amazon
item-item recommender system, which accesses stored similarity information
for several million catalog items [Linden et al. 2003], designers must keep a
sparsified version of the pairwise relations. To this end, only values relating
an item to its top-k most similar neighbors are stored, thereby reducing space
complexity to O(m + nk). However, a sparsification technique will inevitably
degrade accuracy by missing important relations, as demonstrated in the pre-
vious section. In addition, identification of the top k most similar items in such
a high dimensional space is a nontrivial task that can require considerable
computational effort. None of these issues exist in our factorized neighbor-
hood model, which offers linear time and space complexity without trading off
accuracy.

The factorized neighborhood model resembles principles of some latent fac-
tor models. The important distinction is that here we factorize the item-item
relationships, rather than the ratings themselves. The results reported in
Table I are comparable to those of the widely used SVD model, which gen-
erates results with RMSEs ranging over 0.9046–0.9009 for 50–200 factors
[Koren 2008]. However, some sophisticated extensions of the SVD model would
result in even better accuracy [Koren 2008]. Nonetheless, the factorized neigh-
borhood model retains the practical advantages of traditional neighborhood
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models, which are difficult to achieve with latent factor models. Here, we re-
fer to the ability to explain recommendations and to immediately reflect new
ratings, as discussed in Section 2.2.

As a side remark, we would like to mention that the decision to use three
separate sets of factors was intended to give us more flexibility. Indeed, on the
Netflix data this allowed achieving most accurate results. However, another
reasonable choice could be using a smaller set of vectors, for example, by re-
quiring: qi = xi (implying symmetric weights: wij = wji).

4.1 A User-User Model

A user-user neighborhood model predicts ratings by considering how like-
minded users rated the same items. Such models can be implemented by switch-
ing the roles of users and items throughout our derivation of the item-item
model. Here, we would like to concentrate on a user-user model, which is dual
to the item-item model of (9). The major difference is replacing the wij weights
relating item pairs, with weights relating user pairs:

r̂ui = μ + bu + bi + |R(i)|− 1
2

∑
v∈R(i)

(rvj − bvj)wuv. (15)

The set R(i) contains all the users who rated item i. Notice that here we de-
cided to not account for implicit feedback. This is because adding such feedback
was not very beneficial for the user-user model when working with the Netflix
data.

User-user models can become useful in various situations. For example, some
recommenders may deal with items that are rapidly replaced, thus making
item-item relations very volatile. On the other hand, the user base is pretty
stable enabling the establishment of long-term relations between users. An
example of such a case is a recommender system for Web articles or news items,
which are rapidly changing by their nature; see, for example, Das et al. [2007].
In such cases, systems centered around user-user relations are more appealing.

In addition, user-user approaches identify different kinds of relations that
item-item approaches may fail to recognize, and thus can be useful on certain
occasions. For example, suppose that we want to predict rui, but none of the
items rated by user u are really relevant to i. In this case, an item-item approach
will face obvious difficulties. However, when employing a user-user perspective,
we may find a set of users similar to u, who rated i. The ratings of i by these
users would allow us to improve prediction of rui.

The major disadvantage of user-user models is computational. Since typically
there are many more users than items, precomputing and storing all user-user
relations, or even a reasonably sparsified version thereof, is overly expensive
or completely impractical. In addition to the high O(m2) space complexity, the
time complexity for optimizing model (15) is also much higher than its item-
item counterpart, being O(

∑
i |R(i)|2) (notice that |R(i)| is expected to be much

higher than |R(u)|). These issues render user-user models as a less practical
choice.
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Table II. Performance of the Factorized User-User
Neighborhood Model

#factors 50 100 200 500
RMSE 0.9119 0.9110 0.9101 0.9093
time/iteration 3 min 5 min 8.5 min 18 min

A factorized model. All those computational differences disappear by fac-
torizing the user-user model along the same lines as in the item-item model.
Now, we associate each user u with two vectors pu, zu ∈ R

f . We assume the user-
user relations to be structured as: wuv = pT

u zv. Let us substitute this into (15)
to get:

r̂ui = μ + bu + bi + |R(i)|− 1
2

∑
v∈R(i)

(rvj − bvj)pT
u zv. (16)

Once again, an efficient computation is achieved by including the terms that
depend on i but are independent of u in a separate sum, so the prediction rule
is presented in the equivalent form:

r̂ui = μ + bu + bi + pT
u |R(i)|− 1

2

∑
v∈R(i)

(rvj − bvj)zv. (17)

In a parallel fashion to the item-item model, all parameters are learned in lin-
ear time O( f · ∑

i |R(i)|). The space complexity is also linear with the input
size being O(n + mf ). This significantly lowers the complexity of the user-user
model compared to previously known results. In fact, running time measured
on the Netflix data shows that now the user-user model is even faster than
the item-item model; see Table II. We should remark that unlike the item-item
model, our implementation of the user-user model did not account for implicit
feedback, which probably led to its shorter running time. Accuracy of the user-
user model is significantly better than that of the widely-used correlation-based
item-item models, which achieve RMSE = 0.9406, as reported in Section 3.
Furthermore, accuracy is slightly better than the variant of the item-item
model that also did not account for implicit feedback (yellow curve in Figure 1).
This is quite surprising given the common wisdom that item-item methods
are more accurate than user-user ones. It appears that a well implemented
user-user model can match speed and accuracy of an item-item model. How-
ever, our item-item model could significantly benefit by accounting for implicit
feedback.

Fusing item-item and user-user models. Since item-item and user-user mod-
els address different aspects of the data, overall accuracy is expected to improve
by combining predictions of both models. Such an approach was previously sug-
gested and was shown to improve accuracy; see, for example, Bell et al. [2007]
and Wang et al. [2006]. However, past efforts were based on blending the item-
item and user-user predictions during a post-processing stage, after each indi-
vidual model is separately trained independently of the other model. A more
principled approach will optimize the two models simultaneously, letting them
know of each other while parameters are being learned. Thus, throughout the
entire training phase each model is aware of the capabilities of the other model
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and strives to complement it. Our approach, which states the neighborhood
models as formal optimization problems, allows doing that naturally. We de-
vise a model that sums the item-item model (12) and the user-user model (16),
leading to:

r̂ui = μ + bu + bi + |R(u)|− 1
2

∑
j∈R(u)

(ruj − buj)qT
i x j

+ |N(u)|− 1
2

∑
j∈N(u)

qT
i y j

+ |R(i)|− 1
2

∑
v∈R(i)

(rvj − bvj)pT
u zv. (18)

Model parameters are learned by gradient descent optimization of the as-
sociated squared error function. Our experiments with the Netflix data show
that prediction accuracy is indeed better than that of each individual model.
For example, with 100 factors the obtained RMSE is 0.8966, while with 200
factors the obtained RMSE is 0.8953.

Here we would like to comment that our approach allows integrating the
neighborhood models with completely different models in a similar way. For
example, in Koren [2008] we showed an integrated model that combines the
item-item model with a latent factor model (called SVD++), thereby achieving
improved prediction accuracy with RMSE below 0.887. Therefore, other possi-
blities with potentially better accuracy should be explored before considering
the integration of item-item and user-user models.

5. EVALUATION THROUGH A TOP-K RECOMMENDER

So far, we have followed a common practice with the Netflix dataset to eval-
uate prediction accuracy by the RMSE measure. Achievable RMSE values on
the Netflix test data lie in a quite narrow range. A simple prediction rule,
which estimates rui as the mean rating of movie i, will result in RMSE = 1.053.
Notice that this rule represents a sensible “best sellers list” approach, where
the same recommendation applies to all users. By applying personalization,
more accurate predictions are obtained. This way, the Netflix Cinematch sys-
tem could achieve a RMSE of 0.9514. In this article, we suggested methods
that lower the RMSE to below 0.9. Successful improvements of recommen-
dation quality depend on achieving the elusive goal of enhancing users’ sat-
isfaction. Thus, a crucial question is: what effect on user experience should
we expect by lowering the RMSE by, say, 5%? For example, is it possible
that a solution with a slightly better RMSE will lead to completely differ-
ent and better recommendations? This is central to justifying research on ac-
curacy improvements in recommender systems. We would like to shed some
light on the issue, by examining the effect of lowered RMSE on a practical
situation.

A common case facing recommender systems is providing “top K recommen-
dations.” That is, the system needs to suggest the top K products to a user. For
example, recommending to the user, a few specific movies that are supposed to
be most appealing to him. We would like to investigate the effect of lowering
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the RMSE on the quality of top K recommendations. Somewhat surprisingly,
the Netflix dataset can be used to evaluate this.

Recall that in addition to the test set, Netflix also provided a validation set
for which the true ratings are published. We used all five-star ratings from
the validation set as a proxy for movies that interest users.4 Our goal is to
find the relative place of these “interesting movies” within the total order of
movies sorted by predicted ratings for a specific user. To this end, for each such
movie i, rated five-stars by user u, we select 1000 additional random movies
and predict the ratings by u for i and for the other 1000 movies. Finally, we
order the 1001 movies based on their predicted rating, in a decreasing order.
This simulates a situation where the system needs to recommend movies out
of 1001 available ones. Thus those movies with the highest predictions will be
recommended to user u. Notice that the 1000 movies are random, some of which
may be of interest to user u, but most of them are probably of no interest to
u. Hence, the best hoped for result is that i (for which we know u gave the
highest rating of five) will precede the rest of the 1000 random movies, thereby
improving the appeal of a top-K recommender. There are 1001 different possible
ranks for i, ranging from the best case where none (0%) of the random movies
appears before i, to the worst case where all (100%) of the random movies
appear before i in the sorted order. Overall, the validation set contains 384,573
five-star ratings. For each of them (separately) we draw 1000 random movies,
predict associated ratings, and derive a ranking between 0 and 100%. Then,
the distribution of the 384,573 ranks is analyzed. (Remark: the number 1000
is arbitrary, and changing it should not affect results. Hence, reported results
are in percentiles (0%–100%), rather than in absolute ranks (0–1000).)

This way, we estimated the rank distribution of five-star ratings, by sampling
384,573 cases. This probability distribution significantly varies across different
algorithms. We will favor algorithms for which the distribution is skewed to-
wards the left (that is tending to place five-star movies at the first places). For
example, a random algorithm, will place a five-star rated movie at rank = 50%
on average. On the other hand, an optimal algorithm packs all five-star rated
movies at the prefix of the total order.

We used this methodology to evaluate five different methods. The first
method is the aforementioned nonpersonalized prediction rule, which em-
ploys movie means to yield RMSE = 1.053. Henceforth, it will be denoted
as MovieAvg. The second method is a correlation-based neighborhood model,
which is the most popular approach in the CF literature. As mentioned in Sec-
tion 3, it achieves an RMSE of 0.9406 on the test set, and was named CorNgbr.
The third method is the improved neighborhood approach of Bell and Koren
[2007b], which we named WgtNgbr and could achieve RMSE = 0.9107 on the
test set. Fourth is the SVD latent factor model with 100 factors, thereby achiev-
ing RMSE = 0.9025 (see Koren [2008]). Finally, we consider our new neighbor-
hood model with a full set of neighbors (k = ∞), achieving RMSE = 0.9002.

Figure 3 plots the cumulative distribution of the computed percentile ranks
for the five methods over the 384,573 evaluated cases. In order to get into the

4In this study, the validation set is excluded from the training data.
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Fig. 3. Comparing the performance of five methods on a top-K recommendation task, where a few
products need to be suggested to a user. Values on the x-axis stand for the percentile ranking of a
5-star rated movie; lower values represent more successful recommendations. We experiment with
384,573 cases and show the cumulative distribution of the results. The plot concentrates on the more
relevant region, pertaining to low x-axis values. The new neighborhood method has the highest
probability of placing a 5-star rated movie within the top-K recommendations. On the other hand,
the nonpersonalized MovieAvg method and the popular correlation-based neighborhood method
(CorNgbr) achieve the lowest probabilities.

top-K recommendations, a product should be ranked before almost all others.
For example, if 600 products are considered and three of them will be suggested
to the user, only those ranked 0.5% or lower are relevant. In a sense, there is no
difference between placing a desired 5-star movie at the top 5%, top 20% or top
80%, as none of them is good enough to be presented to the user. Accordingly,
we concentrate on cumulative rank distribution between 0% and 2% (top 20
ranked items out of 1000).

As the figure shows, there are very significant differences among the meth-
ods. For example, the new neighborhood (NewNgbr) method has a probability
of 0.077 to place a 5-star movie before all other 1000 movies (rank = 0%). This is
more than 3.5 times better than the chance of the MovieAvg method to achieve
the same. In addition, it is over three times better than the chance of the pop-
ular CorNgbr to achieve the same. The other two methods, WgtNgbr and SVD,
have a probability of around 0.043 to achieve the same. The practical inter-
pretation is that if about 0.1% of the items are selected to be suggested to the
user, the new neighborhood method has a significantly higher chance to pick
a specified 5-star rated movie. Similarly, NewNgbr has a probability of 0.163
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to place the 5-star movie before at least 99.8% of the random movies (rank ≤
0.2%). For comparison, MovieAvg and CorNgbr have much slimmer chances of
achieving the same: 0.050 and 0.065, respectively. The remaining two methods,
WgtNgbr and SVD, lie between, with probabilities of 0.107 and 0.115, respec-
tively. Thus if one movie out of 500 is to be suggested, its probability of being a
specific 5-star rated one becomes noticeably higher with the new neighborhood
model.

We are encouraged, even somewhat surprised, by the results. It is evident
that small improvements in RMSE translate into significant improvements in
quality of the top K products. In fact, based on RMSE differences, we did not
expect the new neighborhood model to deliver such an emphasized improve-
ment in the test. Similarly, we did not expect the very weak performance of
the popular correlation based neighborhood scheme, which could not improve
much upon a nonpersonalized scheme.

Notice that our evaluation answers the question: given a user and a 5-star
rated movie, what is the chance that a particular method will rank this movie
within the top X%? One can come up with other related questions, which we did
not analyze here. For example, we can move from a single specific 5-star movie,
to all movies in which the user is interested, thus answering a question like:
given a user and set of all movies she would rate 5 stars, what is the chance
that a method will rank at least one 5-star rated movie within the top X%?
However since the validation set provides us with a very limited view of user
preferences, we do not really know the full set of movies that she likes, and
hence could not evaluate performance regarding the latter question.

6. CONCLUSIONS

This work proposed a new neighborhood based model, which unlike previous
neighborhood methods is based on formally optimizing a global cost function.
This leads to improved prediction accuracy, while maintaining merits of the
neighborhood approach such as explainability of predictions and ability to han-
dle new ratings (or new users) without retraining the model.

In addition we suggested a factorized version of the neighborhood model,
which improves its computational complexity while retaining prediction ac-
curacy. In particular, it is free from the quadratic storage requirements that
limited past neighborhood models. Thus, the new method offers scalability to a
very large number of items without resorting to complicated sparsification tech-
niques that tend to lower accuracy. The improved complexity of the factorized
model is especially emphasized with the user-user models, which were consid-
ered so far, as computationally inefficient. Now they become as efficient as the
item-item ones, thus making them a viable option. In fact, thanks to their vastly
improved efficiency, we could build full user-user models that achieve accuracy
competitive with item-item models.

Quality of a recommender system is expressed through multiple dimensions
including: accuracy, diversity, ability to surprise with unexpected recommenda-
tions, explainability, appropriate top-K recommendations, and computational
efficiency. Some of those criteria are relatively easy to measure, such as accuracy
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and efficiency. Some other aspects are more elusive and harder to quantify. We
suggested a novel approach for measuring the success of a top-K recommender,
which is central to most systems where a few products should be suggested to
each user. It is notable that evaluating top-K recommenders significantly sharp-
ens the differences between the methods, beyond what a traditional accuracy
measure could show.
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