

- Taylor Series: quadratic approximations

- Newton-Raphson quadratic convergence
- Multi-Dimensional Approximations (Planes)
- Directional Differentials, Total Differentials
- Vector plots, contour plots
- Gradient Descent
- Linear regression
- Predicting Click Through Rates
- Linear Regression
- Logistic Regression

Notes	
- Gradient Descent - Bisection, Newton-Raphson, Secant Method avoid the calculation of derivative $f^{\prime}(x)$ (see cheney, kincaid book, page 126 for description and examples) - Linear Regression - Closed form - Gradient descent - My slides - Maximum Likelihood - http://www.mayin.ora/ajayshah/KB/R/index.html (see MLE) \qquad - Bayesian Model - Show in R ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com	

Disclaimer

- The Authors retains all rights, including copyrights and distribution rights.
- No publication or further distribution in full or in part permitted without explicit written permission from the author
- Living vicariously!

Lecture Outline

- R

- Lines, Tangents, Taylors Theorem, Roots of an equation
- Newton-Raphson quadratic convergence
- Taylor Series: quadratic approximations
- Multi-Dimensional Approximations (Planes)
- Directional Differentials, Total Differentials
- Vector plots, contour plots
- Gradient Descent
- Linear regression
- Predicting Click Through Rates
- Linear Regression

R: A History (from 1993 -

- In computing, \mathbf{R} is a programming language and software environment for general purpose statistical and analytics computing and graphics.
- It is an implementation of the S programming lanquage with lexical scoping semantics inspired by Scheme.
- S was developed at Bell Laboratories in 1976; it was inspired by C and Unix (also developed at Bell Labs)
- R was created by Ross Ihaka and Robert Gentleman ${ }^{[2]}$ at the Andand, New Zealand, and is now developed by the R Development Core Team.
- It is named partly after the first names of the first two R authors (Robert Gentleman and Ross Ihaka), and partly as a play on the name of S .
- The R language has become a de facto standard among statisticians/engineers for the development of statistical and engineering software, and is widely used for statistical software development and data analysis. [Wikipedia] ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com
- The S statistical programming language and computing environment has become the de-facto standard among machine learners, statisticians, operation research (kitchen sink, gateway).
- The S language has two implementations: the commercial product S-PLUS, and the free, opensource R.
- Both are available for Windows and Unix/Linux systems; \mathbf{R}, in addition, runs on Macintoshes.
- This lecture series will use \mathbf{R}.
ism 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

Scripting languages

- R has its own language

- R functionality has been made accessible from several scripting languages. E.g.,

$$
\text { - Python (by the RPy }{ }^{[171} \text { interface package) }
$$

- Perl (by the Statistics::R ${ }^{18]}$ module).

- Packages:

- Optimization packages are available
- It can also be used as a general matrix calculation toolbox with comparable benchmark results to GNU Octave and its proprietary counterpart,
- An RWeka interface has been added to the popular data mining software weka which allows the capability to read/write into the arff data format thus allowing the usage of data mining capabilities in Weka and statistical in R.

1SM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

Installing R and an Editor			
- Installing an editor: EditPlus (for Windows) - Useful Editor on Windows (30 temporary license) - \qquad - Installing R (Windows, also on Linux and Mac) - Click here to download an installer EXE: \qquad The distribution is distributed as a 30 Mb installer R-2.10.0-win32.exe. Just run this for a Windows-XP style installer. It contains all the R components, and you can select what want installed. For more details, including command-line options for the installer and how to uninstall, see the rw-FAQ (ho \qquad project.org/bin/windows/base/rw-FAQ.html).			
ISM 280: Stochastic Gradient Descent	(12011 James G. Shanahan	James.Shanahan_AT_gmail.com	

Install R Packages

See example.setupPackages() in course R script file

- Install via command line or via the menu
- install.packages("Rcmdr", dependencies=TRUE)
- install.packages('e1071')
- Install.packages ("MASS")
- Install.packages("tree")
- Install.packages("Rcmdr")
- Via MENU
- Packages->install; then select a repository and the package needed to be installed
- To use a library just type
- library('Rcmdr')
- library('e1071')

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com $\quad 17$

Online Resources

- \mathbf{R} http://www.r-project.ora)
- R books online

STATISTICS: AN INTRODUCTION USING R (Crawley)

- Resources at Stanford
- hatto:/WwW- stat.stanford.edu/~itavlo/courses/stats191/R/logistic/flu.R
- hitto://www-
stat.stanford.edu/~itaylo/courses/stats191/R/logistic/fluout.htm

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

Required Files And Things to do

When you see example.ABC () check R script file

- Examples available as Functions in script files
- Download JimisMLCourse_2.R
example.learnLSUsingClosedFormSolution = function() \{
dataEx1 $=$ matrix (c(......),
byrow=TRUE,
ncol = 2)
colnames(dataEx1)=c("time", "temperature")
designMatrix=as.matrix(dataEx1[,1]) \#input variable data
X=designMatrix=cbind(1, designMatrix) \#append a
constant 1 for bias term
.....
$y=$ targetValues=as.matrix(dataEx1[,2]);
ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmaii.com

Rcmdr: a tool for demos and teaching

\# Rcmdr

\#
http://socserv.memaster.ca/jfox/Misc/Remdr/insta Ilation-notes.html
\# install.packages("Rcmdr", dependencies=TRUE) library(Rcmdr)
library(car)
mod.duncan <- Im(prestige ~ income + education, data=Duncan) summary(mod.duncan)

RCmdr Output	
See example.BocPlotsAnd3DScatterPlots() example.BocPlotsAnd3DScatterPlots $=$ function() $\{$ \# data() Duncan <- read.table("http://socserv.mcmaster.ca/jfox/Courses/R-course/Duncan.txt") Hist(Duncan\$education, scale="frequency", breaks="Sturges", col="darkgray") .Table <- table(Duncan\$type) .Table \# counts for type 100*.Table/sum(.Table) \# percentages for type remove(.Table) boxplot(Duncan\$education, ylab="education") \#plot income as a function of job type boxplot(income~type, ylab="income", xlab="type", data=Duncan) \#plot prestige as a function of job type boxplot(prestige~type, ylab="prestige", xlab="type", data=Duncan) library(Remdr) \# 3Dplot income as function of eduction and prestige \# with residuals scatter3d(Duncan\$education, Duncan\$income, Duncan\$prestige, fit="linear", residuals=TRUE, bg="white", axis.scales=TRUE, grid=TRUE, ellipsoid=FALSE,	

Built in Optimization Tools in R

- ?optim
- General-purpose optimization based on Nelder-Mead, quasi-Newton and conjugate-gradient algorithms. It includes an option for box-constrained optimization and simulated annealing.
- Usage
optim(par, fn, gr = NULL, \ldots, method $=c$ ("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN"), lower = -Inf, upper = Inf, control = list(), hessian = FALSE)
- ?constrOptim
- Minimise a function subject to linear inequality constraints using an adaptive barrier algorithm.

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

Lecture Outline

- R
- Lines, Tangents, Taylors Theorem
- Newton-Raphson quadratic convergence
- Taylor Series: quadratic approximations
- Multi-Dimensional Approximations (Planes)
- Directional Differentials, Total Differentials
- Vector plots, contour plots
- Gradient Descent
- Linear regression
- Predicting Click Through Rates
- Linear Regression
- Logistic Regresion

Equation of Line from slope and intercept

$$
y=m x+b
$$

- Find the equation of the straight line that has slope $m=4$ and passes through the point $(-1,-6)$.
- A: In this case, $m=4, x=-1$ and $y=-6$.
- In the slope-intercept form of a straight line, I have y, m, x, and b.
- So the only thing I don't have so far is a value for is b (which gives me the y-intercept).
- Plug in m, y, x and solve for b :
$y=m x+b$
$y=m x+b$
$(-6)=(4)(-1)+b$
$-6=-4+b$
$-2=b$
- Then the line equation must be " $y=4 x-2$ ".

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

Slope and Equation of a Line

- Slope = rise/run
- The slope of a line is defined as the rise over the run, $m=\Delta y / \Delta x$.
- Given two points (x_{1}, y_{1}) and (x_{2}, y_{2}) on a line, the slope m of the line is

Equation of Line from a point and slope
 Point ($\mathrm{x} 1, \mathrm{y} 1$), Slope (m)

- The other format for straight-line equations is called the "point-slope" form.
- For this one, they give you a point (x_{1}, y_{1}) and a slope m, and have you plug it into this formula:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

versus

```
y=mx+b
```

1SM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

Tangent Line: Best Approx of curve

- In geometry, the tangent line (or simply the tangent) to a curve at a given point is the straight line that "just touches" the curve at that point.
- Best straight-line approximation to the curve at that point
- As it passes through the point of tangency, the tangent line is "going in the same direction" as the curve, and in this sense it is the best straight-line approximation to the curve at that point. The same definition applies to space curves and curves in n-dimensional
- The word "tangent" comes from the Latin tangere, meaning "to touch".

Tangent: Best straight-line approximation to the curve at that point

Limit of secant's slope is that of the tangent

- It can be used to approximate the \qquad to a curve, at some point f.
- If the secant to a curve is defined by two points, \boldsymbol{P} and Q, with P fixed and Q variable, as Q approaches P along the curve, the direction of the secant approaches that of the tangent at P, assuming there is just one.
- As a consequence, one could say that the limit of the secant's slope, or direction, is that of the tangent.
- In calculus, this idea is the basis of the geometric definition of the derivative.

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

How steep is a road or railroad?

One is by the angle in degrees, and the other is by the slope (m) in a percentage.

- To calculate a percent slope simply you apply the following formula:
- If I cover one meter and I rise 30 cm the percentage of slope is 30%.
- Make attention don't confuse percentage and degrees. A 100% slope is a 45° slope... (try with the just explained method!)
- WARNING: Gradeability for vehicles is measured in percentage, and it differs from the slope in degrees, for example, a 100% slope is a 45 degrees slope. The slope in percent and the slope in degrees are

Slope versus Derivative?
In mathematics, the slope or gradient of a line describes its steepness, incline, or grade.

- A higher slope value indicates a steeper incline.

- Derivative (calculus) is

- A function of many (independent) variables
- The derivative is a measure of how a function changes as its input changes
- The process of finding a derivative is called differentiation.
- Corresponds to the slope of the line tangent to the curve

Slope of a Line

The slope m of a non-vertical line is the number of units the line rises or falls for each unit of horizontal change from left to right.
slope $=m=\frac{\text { rise }}{\text { run }}=\frac{\Delta y}{\Delta x}=\frac{5}{2}$
$m=\tan \theta$.
$\theta=\arctan m$

NOTE: The gradient is a generalization
of the concept of slope for functions of more than one variable
ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan

The slope of the secant lines
gets closer
to the slope of the tangent line...
...as the values of x
get closer to a
Translates to....

$$
\begin{aligned}
& \text { In the limit as } \boldsymbol{x} \text { tends towards a } \\
& \text { slope }=m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& \lim \frac{f(x)-f(a)}{x-a}=\lim \frac{x^{2}-a^{2}}{x-a}=\lim \frac{(x-a)(x+a)}{x-a} \\
& \text { Now as } \mathrm{x} \rightarrow \mathrm{a}=2 \text { we get } \\
& \lim (x+a)=\lim (x+2)=4
\end{aligned}
$$

Which one should I use?
(doesn't really matter)

$$
\begin{gathered}
\text { Give two points on the secant ... } \\
\lim \frac{f(x+h)-f(x)}{h}=\lim \frac{(x+h)^{2}-x^{2}}{h} \\
=\lim \frac{x^{2}+2 x h+h^{2}-x^{2}}{h}=\lim \frac{h(2 x+h)}{h}
\end{gathered}
$$

For $\mathrm{X}=2$

$$
\lim (2 x+h)=4
$$

As $\mathrm{h} \rightarrow 0$
ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan

in conclusion...

- The derivative is the slope of the line tangent to the curve (evaluated at a point); having contact at a single point or along a line without crossing
- It is a limit (2 ways to define it)
- The rules of derivatives WILL help one forget these limit definitions..see next
- cool site to go to for additional explanations:
http://archives.math.utk.edu/visual.calculus/2/

back to our example...	
$y=x^{2}$	$\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}$

Slope via Differential Calculus

- Through differential calculus, one can calculate the slope of the tangent line to a curve $f(x)$ at a point $x 0$. - Slope $=\mathrm{f}^{\prime}(\mathrm{x} 0)$
- At each point $x 0$, the derivative is the slope of a line that is tangent to the curve.
- Differentiation is a method to compute the rate at which a dependent output y changes with respect to the change in the independent input x.
- This rate of change is called the derivative of y with respect to x.
- In more precise language, the dependence of y upon x means that
y is a function of x. This functional relationship is often denoted $y=$
$f(x)$, where f denotes the function. If x and y are
and if the graph of y is plotted against x, the derivative measures the slope of this graph at each point.
ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

Equation of a line given a pt and slope

- Equation of a tangent line:

$$
y-y 0=f^{\prime}(x 0)(x-x 0) \quad \# \# y-y 0=m(x-x 0)
$$

- Give a point (a, $f(a))$ and Tangent line to the curve at ($a, f(a)$), we can approximate $f(x)$ in the vicinity of a.
- Approximate $f(x)$ linearly by the tangent
- (i.e., take $\mathrm{n}=1$ in the Taylor series)

R Basics			
example.GettingStarted.Chapter1.Fox()			
- R via a GUI R Commander - Examine data; plot data - Scripting in R - Variables, vectors, data.frames, functions, graphics - Check out example.GettingStarted.Chapter1.Fox()			

R Basics			
example.GettingStarted.Chapter1.Fox()			
- R via a GUI R Commander - Examine data; plot data - Scripting in R - Variables, vectors, data.frames, functions, graphics			
- Check out example.GettingStarted.Chapter1.Fox()			

Simple Plotting Example with text	
\# Example 1 \# make a very simple plot $\begin{aligned} & x<-c(1,3,6,9,12) \\ & y<-c(1.5,2,7,8,15) \end{aligned}$ plot(x, y) text(c(3,10), $\mathrm{c}(3,10)$, labels=c col="red")	The text() function allows us to put text on the plot where we want it. ("Case1","Case4"),
	James.Shanahan_A

Plot a line

$x<-c(1,3,6,9,12)$
 $y<-c(1.5,2,7,8,15)$

\# Example 2. Draw a plot, set a bunch of parameters.
plot(x,y, xlab="x axis", ylab="y axis", main="my plot",
ylim=c(0,20), xlim=c(0,20), pch=15, col="blue")
\# fit a line to the points
myline.fit <- $\operatorname{Im}(y \sim x)$
\# get information about the fit
summary(myline.fit)
\# draw the fit line on the plot abline(myline.fit)
Revo: Stochastic Gradient Descent
© 2011 James G. Shanahan

| Plotting Example with margin text |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Approximate a curve using a Tangent

- Given a point on the curve, ($\mathbf{x 0}, \mathrm{f}(\mathrm{x} 0)$) and a slope, $\mathrm{f}^{\prime}(\mathrm{x} 0)$, we can calculate the equation of the tangent at ($\mathrm{x} 0, \mathrm{f}(\mathrm{x} 0$)) as follows:
$-y-y 0=f^{\prime}(x 0)(x-x 0) \quad \# \# y-y 0=m(x-x 0)$
$-f(X)-f(x 0)=f^{\prime}(x 0)(X-x 0)$ where X is a free variable, $f^{\prime}(x)$ is the slope
- Then for any X in the neighbourhood of $X 0$ we can approximate it by the tangent at ($\mathrm{x}, \mathrm{f}(\mathrm{x} 0)$)
- Of course it will not be that accurate but can be reasonably approximate if X is not too far from x 0 .

Exercise 1.1

- Given function $f(x)=x^{3}-12 x+1$ approximate the curve at ($-1, f(-1)$) in the x range of $[-3,3]$ using the tangent to $(-1, f(-1))$ [also know as the first order Taylor approximation]
- In R, plot the curves $f(x), f^{\prime}(x)$ and the tangent approximation and label appropriately
- Add text and arrows to highlight (-1,f(-1)) and its tangent line
- Comment on the approximation of $f(x)$ at $x=-3$
$f_{\text {Tangent }}(x=-3)$
- HINT: review material on slides before this and after this.
ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com $\quad 83$

Guidelines for Homework

- GENERAL Guidelines for Homework
- Please provide code, graphs and comments in a PDF report. Don't forget to put your name, email and date of submission on each report.
- Please provide R code in separate file. Please comment your so that I or anybody else can understand it and please cross reference code with problem numbers
- If you have questions please raise them in class or via email or during office hours
- Homework is due on TBD.
- Please submit your homework by email to:

Homework 1
_ Have fun!

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

Derivatives in R using deriv(), $\mathrm{D}($)


```
    }
    fprime = function (x){ F(x)=\mp@subsup{X}{}{\wedge}2; f'(x)=2x; df(x)/dx)=f'(x)
        6*x^2-6*x-12
    }
    dx2x <- deriv(~ x^2, "x", TRUE)
    >dx2x >dx2x(2)
    function (x)
    {
        .value <- x^2
        .grad <- array(0, c(length(.value), 1L), list(NULL, c("x")))
        .grad[, "x"] <- 2 * x
        attr(.value, "gradient") <-.grad
        value
ISM 280: Stpchastic Gradient Descent © 2011 James G.Shanahan James.Shanahan_AT_gmail.com 
```

Derivatives in R using deriv(), $\mathrm{D}($)	
	$F(x)=X^{\wedge} 2 ; f^{\prime}(x)=2 x ;$
$>d x 2 x<-\operatorname{deriv}\left(\sim x^{\wedge} 2, " x ",\right. \text { TRUE) ; dx2x }$ function (x)	
	\{ See example.drawTangent()
```.value <- x^2 .grad <- array(0, c(length(.value), 1L), list(NULL, c("x")) .grad[, "x"] <- 2 *x attr(value, "gradient") <- .grad .value```	



## Lecture Outline

- R
- Lines, Tangents, Taylors Theorem
- Turning points, Roots, Newton-Raphson
- Taylor Series: quadratic approximations
- Multi-Dimensional Approximations (Planes)
- Directional Differentials, Total Differentials
- Vector plots, contour plots
- Gradient Descent
- Linear regression
- Predicting Click Through Rates
- Linear Regression
- Logistic Regression 280: Stochastic Gradient Descent ${ }_{\text {© }}$ 2011 James G. Shanahan James.Shanahan_AT_gmail.com


## At the turning point

- The tangent will be horizontal
- The gradient of the tangent must be ???

- Find the roots of the gradient function
- Find the root or zeros of an equation analytically by hand or numerically using iterative approaches such as NewtonRaphson, gradient descent, etc.
- What value(s) of $x$ will $f^{\prime}(x)=0$ (gradient be zero).

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com



## Recall: approximate a curve using a Tangent

- Given a point on the curve, ( $x 0, f(x 0)$ ) and a slope, $f^{\prime}(x 0)$, we can calculate the equation of the tangent at ( $x 0, f(x 0)$ )
$-y-y 0=f^{\prime}(x 0)(x-x 0) \quad \# \# y-y 0=m(x-x 0)$
$-f(X)=f(x 0)+f^{\prime}(x 0)(X-x 0)$ where $X$ is a free variable
- Then for any X1 in the neighbourhood of X0 we can approximate $f(x 1)$ it by the tangent at ( $x, f(x 0)$ ),
- i.e., $f(\mathbf{x} 1) \sim f_{\text {tangent }}(\mathbf{x} 1)=f(x 0)+f^{\prime}(x 0)(\mathbf{X} 1-x 0)$


Newton-Raphson Method: A History

- Solving a nonlinear equation of the form $f(x)=0$
- Isaac Newton developed an initial version of this algorithm in 1669 and published it in 1685; Raphson tweaked it 1690
- Extending it to a system of two equations
- In 1740, Thomas Simpson described Newton's method as an iterative method for solving general nonlinear equations using fluxional calculus, essentially giving the description above
- In the same publication, Simpson also gives the generalization to systems of two equations and notes that Newton's method can be used for solving optimization problems by setting the gradient to zero.
http://en.wikipedia.org/wiki/Newton\'s method
ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com


Focus on Convex Univariate problems


## Nonlinear Equations - Iterative Methods <br> Find the roots <br> Computers can NOT solve the roots in closed form (easily) <br> Iterative Algorithm

- Start from an initial value $x^{0}$ as a candidate root (and also bracket the extrema).
- Generate a sequence of iterate $x^{n-1}, x^{n}, x^{n+1}$ which hopefully converges to the solution $x^{*}$ (the root of $f(x)$ )
- Iterates are generated according to an iteration function $F: x^{n+1}=F\left(x^{n}\right)$

Question

- When does it converge to correct solution?
- What is the convergence rate ?



## Deriving Newton-Raphson Method

- Solving a nonlinear equation of the form $f(x)=0$
- Generate a sequence of iterate $x^{n-1}, x^{n}, x^{n+1}$ which hopefully converges to the solution $x^{\star}$ (the root of $f(x)$ )
$f(x) \approx f\left(x^{0}\right)+f^{\prime}\left(x^{0}\right)\left(x-x^{0}\right) \forall \mathrm{x}$ surrounding $x^{0}$
$f\left(x^{i+1}\right) \approx f\left(x^{i}\right)+f^{\prime}\left(x^{i}\right)\left(x^{i+1}-x^{i}\right) \forall \mathrm{x}$ surrounding $x^{i}$
$0=f\left(x^{i}\right)+f^{\prime}\left(x^{i}\right)\left(x^{i+1}-x^{i}\right) \quad$ Wedesire a root (i.e., $\mathrm{f}\left(\mathrm{x}^{\text {i+1 }}\right)=0$ )
$f^{\prime}\left(x^{i}\right)\left(x^{i+1}-x^{i}\right)=-f\left(x^{1}\right)$
$x^{i+1}=-\frac{f\left(x^{i}\right)}{f^{\prime}\left(x^{i}\right)}+x^{i}$
$x^{i+1}=x^{i}-\left[\frac{d f}{d x}\left(x^{i}\right)\right]^{-1} f\left(x^{i}\right)$
Iteration function
sometimes written as
ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com



1. Initial guess: $x^{0}$ Letting $i=0 x^{i}=x^{0}$
2. Approximate $f(x)$ by tangent at $\left(x^{i}, f\left(x^{1}\right)\right) \#\left(x^{0}, f\left(x^{0}\right)\right)$ for the first iteration
3. Find where $f_{\text {Tangent_x0 }}(x)=0$, i.e., $x^{i+1}$; better approx. of the root $\left(x^{*}\right)$
4. Repeat until convergence

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

## Newton-Raphson Method - Convergence Local Convergence

Convergence Depends on a Good Initial Guess


## Homework Problem: Find $2^{\text {nd }}$ approx.

$$
x^{i+1}=-\frac{f\left(x^{i}\right)}{f^{\prime}\left(x^{i}\right)}+x^{i}=x^{i}-\left[\frac{d f}{d x}\left(x^{i}\right)\right]^{-1} f\left(x^{i}\right) \text { Iteration function }
$$

Taking 1 as the first approximation of a root of $x^{3}+2 x-4=0$, use the Newton-Raphson method to calculate the secondapproximation of this root.

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+2 \mathrm{x}-4 \quad \mathrm{f}^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}+2 \quad f(x) \approx f\left(x^{0}\right)+f^{\prime}\left(x^{0}\right)\left(x-x^{0}\right) \\
& \mathrm{f}(1)=1+2-4=-1 \\
& \mathrm{f}^{\prime}(1)=3+2=5 \quad \mathrm{x}_{2}=1-\frac{-1}{5}=1+\frac{1}{5}=1.2 \\
& \text { ISM 280: Stochastic Gradient Descent © } 2011 \text { James G. Shanahan James.Shanahan_AT_gmail.com }
\end{aligned}
$$

## Newton-Raphson Method - Convergence

We require that $x^{0}$ be "close" to the solution $x^{*}$


ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

Exercise 1.2 example.FindZerosOfDerivativeFunction()

- In R write a function that:

1. Find the zeros of the function $x^{\wedge} 3+2^{\star} x-4,1$ in the interval $c(0.5$, 1.5) starting with an initial guess of 1.4 using the NewtonRaphson method.
2. Plot the progress of the algorithm (See figure below for inspiration)
3. Comment on the convergence
4. HINT: you can use a publicly available function
newton.method(function(x) $x^{\wedge} 3+2^{\star} x-4,1, c(0.5,1.5)$ ) but for an extra little challenge please code your own Newton.Rapshon method and plot the progress
5. Save graphic animations to PDF (ușing pdf())




## Let's assume convex problems

- One global maximum or minimum of a univariate function, e.g., $f(x)=x^{\wedge} 2$
- Will provide more formal definition shortly
- Assume function $f(x)=x^{\wedge} 2$, find the $x$ value that minimizes $f(x)$

$$
\underset{x \in \Omega_{X}}{\arg \min } f(x)
$$

The value of $x$ that maximises $f(x)$. For example,

$$
\arg \min f\left(x^{2}\right)=1
$$

$$
x \in\{1,2,-3\}
$$

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT gmail.com

Find zero of $f(x)$ in $R$ with Graphics



## Exercise (not required)

- Calculate the root of the following equation
- x^3
- HINT: use newton.method(function( x$) \mathrm{x}^{\wedge} 3,-4, \mathrm{c}(-10,4)$ )
- How many iterations does of the Newton-Raphson algorithm?
- Save graphic animations to PDF (using pdf())

Homework Problem: Find $2^{\text {nd }}$ approx.

$$
x^{i+1}=-\frac{f\left(x^{i}\right)}{f^{\prime}\left(x^{i}\right)}+x^{i} \text { Iteration function }
$$

Taking 1 as the first approximation of a root of $x^{3}+2 x-4=0$,
use the Newton-Raphson method to calculate the second approximation of this root.

$$
\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+2 \mathrm{x}-4 \quad \mathrm{f}^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}+2 \quad f(x) \approx f\left(x^{0}\right)+f^{\prime}\left(x^{0}\right)\left(x-x^{0}\right)
$$

$\mathrm{f}(1)=1+2-4=-1$
$f^{\prime}(1)=3+2=5 \quad x_{2}=1-\frac{-1}{5}=1+\frac{1}{5}=1.2$
ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com





## Solve a System of Equations in R

Solve the system of linear equations.
$-2 x+3 y=8$
$3 x-y=-5$
multiply all terms in the second equation by 3
$-2 x+3 y=8$
$9 x-3 y=-15$
$7 x=-7 \quad \#$ add the two equations
Note: $y$ has been eliminated, hence the name: method of elimination solve the above equation for $x$ $x=-1$
substitute $x$ by -1 in the first equation
$-2(-1)+3 y=8$
solve the above equation for $y$
$2+3 y=8$
$3 y=6$
$y=2$

-R Break

Matrices	
See example.Matrices()	
See local file $\qquad$   - To calculate inverse of a matrix   - \# division for matrices   - ginv() \# from library(MASS)   - Other useful matrix commands   - matrix()   $-\operatorname{det}()$   - diag()   - t() \#transpose of a matrix   - eigen()   - solve() \#compute inverse or solve system of equations	
Matrix Algebra,The R Book, M. Crawley page 259   ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com	${ }^{136}$




## Vectors

- In elementary mathematics, physics, and engineering, a vector (sometimes called a geometric or spatial vector) is a geometric object that has both a magnitude (or length) and direction.
- A vector is frequently represented by a line segment with a definite direction, or graphically as an arrow, connecting an initial point $A$ with a terminal point $B$, and denoted by $\overrightarrow{A B}$.





## Debugging in $\mathbf{R}$

- Use browser() \#?browser commands like c/c++ debugger
- n \#next
- c \# continue
- Q quit
- For more details on debugging on R RTFM (see next slide for useful example) !!
- hitt:://www.stats.uwo.ca/faculty/murdoch/software/debuggingR/de
bug.shtm
- Locating an error: traceback().
- Setting a breakpoint and examining the local environment of an executing function: browser().
- A simple interactive debugger: debug().
- A more sophisticated debugger: the debug package





## Recap: Lines, Tangents, Slopes

- Approximate $f(X)$ for $X$ around point $a$ by the tangent at a point (a, f(a))
$y-y 1=m(x-x 1)$
$f(x)-y 1=m(x-x 1)$
$f(x)=f(a)+f^{\prime}(a)(x-a)$
$f(x)=y 1+m(x-x 1)$
$f(x)=f(a)+f^{\prime}(a)(x-a) \quad$ AT (a, $\left.\mathrm{f}(\mathrm{a})\right)$ slope $=\mathrm{f}^{\prime}(\mathrm{a})$
- Taylor Series explores different approximations of $f(\mathbf{X})$;
- the above tangential form is linear approximation
- General Form of a Taylor Series
$f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}$ More compactly $f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$ ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahanan James.Shanahan_AT_gmail.com


## Lecture Outline

- R
- Lines, Tangents, Taylors Theorem
- Turning points, Roots, Newton-Raphson
- Taylor Series: quadratic approximations
- Multi-Dimensional Approximations (Planes)
- Directional Differentials, Total Differentials
- Vector plots, contour plots
- Gradient Descent
- Linear regression
- Predicting Click Through Rates
- Linear Regression
- Logistic Regression

ISm 280: Stochastic Gradient Descent ${ }_{\ominus}$ 2011 James G. Shanahan James.Shanahan_AT_gmail.com

## Taylor Series And Tangent Approximations

- Taylor series is a representation of a function as an infinite sum of terms calculated from the values of its derivatives at a single point.
- If the series is centered at zero, the series is also called a Maclaurin series, named after the Scottish mathematician
- It is common practice to use a finite number of terms of the series to approximate a function.

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com


1. Initial guess: $\mathrm{x}^{0}$ Letting $\mathrm{i}=0 \mathrm{x}^{\mathrm{i}}=\mathrm{x}^{0}$
2. Repeat
3. Approximate $f(x)$ by tangent at $\left(x^{i}, f\left(x^{\prime}\right)\right)$ \# $\left(x^{0}, f\left(x^{0}\right)\right)$ for the first itern. 2. Find where $f_{\text {Tangent_x0 }}(x)=0$, i.e., $x^{i+1}$; better approx. of the root ( $x^{*}$ ) 3. Repeat until convergence

## Make Tangential Approximation Better?

- Approximate $f(X)$ for $X$ around point $a$ by the tangent at a point (a, f(a))

$$
y-y 1=m(x-x 1)
$$

$$
\begin{aligned}
& f(x)-y 1=m(x-x 1) \\
& f(x)=y 1+m(x-x 1)
\end{aligned} \quad f(x)=f(a)+f^{\prime}(a)(x-a)
$$

$$
f(x)=f(a)+f^{\prime}(a)(x-a) \quad \text { AT } \quad(\mathrm{a}, \mathrm{f}(\mathrm{a})) \quad \text { slope }=\mathrm{f}^{\prime}(\mathrm{a})
$$

- Taylor Series explores different approximations of $\mathbf{f}(\mathbf{X})$;
- the above tangential form is linear approximation
- General Form of a Taylor Series
$f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}$
More compactly $f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$
ISM 280: Stochastic Gradient Descent © 2011 James G. Shananaan James.Shanahan_AT_gmail.com


## Taylor Series: Written Different Ways

[^0]```
\(F(x)=\cos (x)\) : Taylor series expansion, \(x^{x=0}\)
Given \(F(X)=\cos (x)\) and a Taylor Series expansion at \(x^{\star}=0\)
    \(F(x)=\cos (x)\)
    \(=\cos (0)-\sin (0)(x-0)-\frac{1}{2} \cos (0)(x-0)^{2}+\frac{1}{6} \sin (0)(x-0)^{3}+\ldots\)
    \(=1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+\ldots\)
The zeroth-order approximation of \(F(x)\) is
\[
F(x) \approx F_{0}(x)=1=F_{1}(x)
\]
- (Note that in this case the first-order approximation is the same as the zeroth-order approximation, since the first derivative is zero, i.e., \(\sin (0)=0)\).
The second-order approximation is
\[
F(x) \approx F_{2}(x)=1-\frac{1}{2} x^{2}=F_{3}(x)
\]
The fourth-order approximation is
\[
(x) \approx F_{4}(x)=1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}
\]
ISM 280: Stochastic Gradient Descent \(\quad\) © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

\section*{Taylor Series Approxn. Of \(\operatorname{Sin}(x)\) at 0}
- Approximating \(f(x)=\boldsymbol{s i n} x\) when it is centred around 0 (I.e., \(a=0\) ), Taylor Polynomial of degree 7 \((\sin (0)=; \cos (0)=1)\)
\[
\begin{array}{ll}
\qquad f(x) \quad & =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
\sin { }_{T 7}(x) & \approx \sin (0)+\cos (0)(x-0)-\frac{\sin (0)}{2!}(x-0)^{0}-\frac{\cos (0)}{3!}(x-0)^{3}+\ldots \ldots . \\
\sin x & \approx M_{7}(x)=0+x+0 \cdot \frac{x^{2}}{2!}-\frac{x^{3}}{3!}+ \\
0 \cdot \frac{x^{4}}{4!}+\frac{x^{5}}{5!}+0 \cdot \frac{x^{6}}{6!}-\frac{x^{7}}{7!} & \frac{d(\sin x)}{d x}=\cos \\
\frac{d(\cos x)}{d x}=-8 \\
\frac{d(\tan x)}{d x}=\mathbf{s e c}
\end{array}
\]

\section*{Sine Function Approximated by Taylor Polynomial of degree 7}


The sine function (blue) is closely approximated by its Taylor polynomial of degree 7 (pink) for a full period centered at the origin.

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

Problem: Plot Taylor Approxns of \(\sin (\mathrm{x})\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\# Taylor series in one-dim for \(f(x)=\boldsymbol{\operatorname { s i n }}(\mathrm{x})\) at a=0} \\
\hline \multicolumn{2}{|l|}{\#------------------------------------------------} \\
\hline \multicolumn{2}{|l|}{\# plot \(\sin (\mathrm{x})\) and its Taylor series approximation in} \\
\hline \multicolumn{2}{|l|}{See example.TaylorSeries()} \\
\hline \multicolumn{2}{|l|}{\#\# Higher derivatives (boiler plate):} \\
\hline \multicolumn{2}{|l|}{DD <- function(expr, name, order = 1) \{} \\
\hline \multicolumn{2}{|l|}{if(order < 1) stop("'order' must be >= 1")} \\
\hline \multicolumn{2}{|l|}{if(order == 1) D(expr,name)} \\
\hline \multicolumn{2}{|l|}{else \(\operatorname{DD}(\mathrm{D}(\) expr, name), name, order - 1)} \\
\hline \multicolumn{2}{|l|}{\}} \\
\hline \multicolumn{2}{|l|}{\#e.g., DD(expression( \(\left.\sin \left(x^{\wedge} 2\right)\right)\), "x", 3)} \\
\hline \(\mathrm{f}=\) function \((\mathrm{x})\{\boldsymbol{\operatorname { s i n }}(\mathrm{x})\) \} & \\
\hline fPrime.order =function(a, order)\{eval(DD(expression(sin(a)), "a", order))\} & \\
\hline  & 161 \\
\hline
\end{tabular}

Plot Taylor Approximations of \(\operatorname{Sin}(x)\)


\section*{Taylor Approximations of Different Degrees}
- Linear Approximation of the function \(f\) at a
\[
f(x)=f(a)+f^{\prime}(a)(x-a)
\]
- Quadratic Approximation
\[
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}
\]

\section*{- General Form of a Taylor Series}
\[
\begin{aligned}
& f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& \quad \text { More compactly } f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
\end{aligned}
\]

\section*{Gradient and Hessian}


\section*{Taylor Approx around \(x^{1}=\left[\begin{array}{ll}-0.42 & 0.42\end{array}\right]^{\top}\)}
- Noting that for the minima at \(x^{1}=\left[\begin{array}{ll}-0.42 & 0.42\end{array}\right]^{\top}\), the gradient is zero (so drop linear term) and \(F\left(x^{1}\right)=\) 2.93 (by direct substitution). Here is the expansion:
\[
F^{1}(\mathbf{x})=F\left(\mathbf{x}^{1}\right)+\left.\frac{1}{2}\left(\mathbf{x}-\mathbf{x}^{1}\right)^{T} \nabla^{2} F(\mathbf{x})\right|_{\mathbf{x}=\mathbf{x}^{1}}\left(\mathbf{x}-\mathbf{x}^{1}\right)
\]
\[
=4.49-\left(-3.7128 x_{1}+3.7128 x_{2}\right)+\frac{1}{2}\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{cc}
8.42 & -0.42 \\
-0.42 & 8.42
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\]

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

\section*{Multivariate Taylor Series}

A second-order Taylor series expansion of a scalar-valued function of more than one variable can be written compactly as
\(T(\mathbf{x})=f(\mathbf{a})+(\mathbf{x}-\mathbf{a})^{T} \mathrm{D} f(\mathbf{a})+\frac{1}{2!}(\mathbf{x}-\mathbf{a})^{T}\left\{\mathrm{D}^{2} f(\mathbf{a})\right\}(\mathbf{x}-\mathbf{a})+\cdots\),
where \(D f(a)\) is the gradient (partial derivatives) of \(f\) evaluated at \(x=a\) (Df() is sometimes written as \(\nabla \mathrm{f}\) )
\[
\operatorname{Df}(\mathrm{a})=\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right) .
\]
and \(D^{2} f(a)\) is the Hessian matrix. sometimes represented as \(H(f)\) as D2f(a) \(=H(f)=\left[\begin{array}{ccccc}\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \text { follows:. } \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}\end{array}\right]_{n-A T \text { Stochastic Grail.com }} \quad 1\) 164
\[
=2.93+\frac{1}{2}\left[\begin{array}{ll}
x_{1}+0.42 & x_{2}-0.42
\end{array}\right]\left[\begin{array}{cc}
8.42 & -0.42 \\
-0.42 & 8.42
\end{array}\right]\left[\begin{array}{l}
x_{1}+0.42 \\
x_{2}-0.42
\end{array}\right]
\]

\(f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{(2)}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+R_{n}(x)\).
- Here, \(n\) ! denotes the factorial of \(n\), and \(R_{n}(x)\) is a remainder term, denoting the difference between the Taylor polynomial of degree \(n\) and the original function.
- The remainder term \(R_{n}(x)\) depends on \(x\) and is small if \(x\) is close enough to \(a\). Several expressions are available for it.
- The Lagrange form \({ }^{[1]}\) of the remainder term states that there exists a number \(\xi\) between \(a\) and \(x\) such that
\[
R_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}
\]

\section*{Why/where are they used?}
- Taylor polynomials (finite versions of Taylor series) approximate functions near the center.
- The more terms you take, the better your estimate of \(f(x)\).
- Used extensively in finding the roots of an equation or system of equations (e.g., \(f^{\prime}(x)\) )and therefore maxima or minima (of \(f(x)\) ),
- in operations research,
- machine learning
- Tells us about convexity and concavity of a function
- If concave or convex then global max or min exists and numerical approaches can be used to iteratively find the global \(\mathrm{min} / \mathrm{max}\)
- Otherwise need to resort to heuristic approaches to find min/max (generally, these will be local min or max)
ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com


\section*{Lecture Outline}

\section*{- R}
- Lines, Tangents, Taylors Theorem
- Turning points, Roots, Newton-Raphson
- Taylor Series: quadratic approximations
- Newton-Raphson quadratic convergence
- Multi-Dimensional Approximations (Planes)
- Directional Differentials, Total Differentials
- Vector plots, contour plots
- Gradient Descent
- Linear regression
- Predicting Click Through Rates
- Linear Regression





\section*{Quadratic Convergence 2/2}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Trat 5. \(\quad\) Quadratic convergence for Newton's iterative method} \\
\hline \multicolumn{4}{|l|}{\[
\epsilon_{n+1}=\frac{-f^{\prime \prime}\left(\xi_{n}\right)}{2 f^{\prime}\left(x_{n}\right)} \epsilon_{n}^{2} .
\]} \\
\hline Taking absolute value of both sides gives & & Quadratic converge & \\
\hline \[
\left|\xi_{n+1}\right|=\left.\frac{\left|f^{\prime \prime}\left(\xi_{n}\right)\right|}{2\left|f^{\prime}\left(x_{n}\right)\right|}\right|_{n^{2}}{ }^{2}
\] & & the conditions met & \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
1. \(f^{\prime}(x) \neq 0 ; \forall x \in I\), where \(I\) is the interval \([\alpha-r, \alpha+r]\) for some \(r \geq\left|\left(\alpha-x_{0}\right)\right|\); \\
2. \(f^{\prime \prime}(x)\) is finite, \(\forall x \in I\); \\
3. \(x_{0}\) sutrimeny cbee to the rox \(\alpha\)
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{(0) \(\left.\frac{1}{2}\left|\frac{f^{\prime \prime}\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right|<C \right\rvert\, \frac{f^{\prime \prime}(\alpha)}{f^{\prime}(\alpha)}\), for some \(C<\infty\),} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\({ }^{(\alpha)} C\left|\frac{f^{\prime \prime}(\alpha)}{f^{\prime}(\alpha)}\right| \epsilon_{n}<1\), for \(n \in \mathrm{Z}^{+} \cup\{0\}\) and \(C\) satisfying conditio}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{Finaly, (7) can be expressed in the following way
\[
\left|\epsilon_{n+1}\right| \leq M \epsilon_{n}^{2}
\]} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{\[
\left.M=\sup _{x \in \in} \frac{1}{2} \frac{f^{\prime \prime \prime}(x)}{f^{\prime}(x)} \right\rvert\,
\]} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & \\
\hline M 280: Stochastic Gradient Descent & © 2011 James G. Shanahan & James.Shanahan_AT_gmail.com & 178 \\
\hline
\end{tabular}

\section*{Exercise (not required)}
- One algorithmic criterion for the convergence of the Newton-Rhapson root finding algorithm is \(\left|x_{i+1}-x_{i}\right|\) \(<\varepsilon\) (i.e., has become sufficiently small).
- Can you describe at least one other criterion for convergence besides the one described here?
- Can you describe a third criterion for extra points?


\section*{Lecture Outline}
- R
- Lines, Tangents, Taylors Theorem
- Turning points, Roots, Newton-Raphson
- Taylor Series: quadratic approximations
- Newton-Raphson quadratic convergence
- Multi-Dimensional Approximations (Planes)
- Directional Differentials, Total Differentials
- Vector plots, contour plots
- Gradient Descent
- Linear regression
- Predicting Click Through Rates
- Linear Regression


\section*{Orthogonality}

In mathematics, two vectors \(A\) and \(B\) are orthogonal if they are perpendicular, i.e., they form a right angle and \(A^{*} B=0\).
- The vectors \((1,3,2),(3,-1,0),(1 / 3,1,-5 / 3)\) are orthogonal to each other
- since \((1)(3)+(3)(-1)+(2)(0)=0,(3)(1 / 3)+(-1)(1)+(0)(-5 / 3)=0\), \((1)(1 / 3)+(3)(1)-(2)(5 / 3)=0\).
- Observe also that the dot product of the vectors with themselves are the norms of those vectors, so to check for orthogonality, we need only check the dot product with every other vector.




\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Notation} \\
\hline \(f(x)=f(a)+f^{\prime}(a)(x-a) \quad 1 \mathrm{D}\) & Linear Approximation \\
\hline \[
F(x)=F\left(\mathbf{x}^{*}\right)+\left.\nabla F(\mathbf{x})^{T}\right|_{\mathbf{x x} \mathbf{x}^{*}}\left(\mathbf{x}-\mathbf{x}^{*}\right)+\ldots \ldots
\] & \\
\hline \(\left.\nabla F(\mathbf{x})\right|_{\mathrm{x}=\mathrm{x}^{*}}\) is the gradient of \(\mathrm{F}(\mathrm{x})\) evaluated at \(\mathrm{x}^{*}\) & Multi Variable Linear Approx. \\
\hline \[
\begin{aligned}
& \nabla F(\mathbf{x})=\left[\frac{\partial}{\partial x_{1}} F(\mathbf{x}), \frac{\partial}{\partial x_{2}} F(\mathbf{x}), \ldots, \cdots \frac{\partial}{\partial_{x_{n}}} F(\mathbf{x})\right]^{T} \\
& \nabla F(\mathbf{x})=\left[F_{x_{1}}(\mathbf{x}), F_{x_{1}}(\mathbf{x}), F_{x_{m}(\mathbf{x}),}{ }^{T}\right. \\
& \nabla F(\mathbf{x})=\left[F_{x_{1}}^{\prime}(\mathbf{x}), F_{x_{1}}^{\prime}(\mathbf{x}), F_{x_{m}}^{\prime}(\mathbf{x}),\right]^{T}
\end{aligned}
\] & \\
\hline \(F(x)=F\left(\mathbf{x}^{*}\right)\) & \(\nabla F\left(\mathbf{x}^{*}\right)^{T}\left(\mathbf{x}-\mathbf{x}^{*}\right)\) \\
\hline
\end{tabular}


\section*{Lecture 2 Outline}
- Taylor Series: quadratic approximations
- Newton-Raphson quadratic convergence
- Multi-Dimensional Approximations (Planes)
- Directional Differentials, Total Differentials
- Vector plots, contour plots
- Gradient Descent
- Linear regression
- Predicting Click Through Rates
- Linear Regression (using gradient descent, MCMC version on 1/26)
- Logistic Regression (using gradient descent, MCMC on 1/26)
- Convexity, extreme values, mathematical programming

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com


\section*{Linear and Quadratic Approximations}
- Approximate \(f(X)\) for \(X\) around point \(a\) by the tangent at a point (a, \(f(a)\) )
\(y-y 1=m(x-x 1)\)
\(f(x)-y 1=m(x-x 1) \quad f(x)=f(a)+f^{\prime}(a)(x-a)\)
\(f(x)=y 1+m(x-x 1)\)
\(f(x)=f(a)+f^{\prime}(a)(x-a) \quad\) AT \(\quad(\mathrm{a}, \mathrm{f}(\mathrm{a})) \quad\) slope \(=\mathrm{f}^{\prime}(\mathrm{a})\)
- Taylor Series explores different approximations of \(f(X)\);
- the above tangential form is linear approximation
- General Form of a Taylor Series
\(f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}\)
More compactly \(f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}\)
ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahanan James.Shanahan_AT_gmail.com


Total Differential in 2D: An Example



\section*{Gradient and the Directional Derivative}
- When you are hiking on a mountain or a slope you have a choice of many directions in which you can go. Starting at the same point some directions head generally upward; some directions head generally downward; and some directions are steeper than others.
- The directional derivative of a function, \(\mathbf{z = f} \mathbf{f} \mathbf{x}, \mathbf{y})\), that is, the slope of the surface described by this function as we go in different directions starting from the same point.
- As an example consider the function \(z=x y\)



\section*{Directional Derivatives}
- Suppose that we start at the point \((\mathbf{0}, \mathbf{0})\) and go one unit in several different directions.
- The graph below shows four different directions marked by curves starting at the origin and it also shows all the points we would reach if we tried all possible directions and walked one unit.
- When we say "we walk one unit," we mean one unit in the xy-direction. Thus, we walk from ( 0 , \(0)\) to the point \((\cos \theta, \sin \theta)\) where \(\theta\) is any


\section*{Directional Derivative}
- We are interested in the rate at which \(\mathbf{z}\) changes as we move away from \(\mathbf{x}\) in various different directions. Each possible direction is indicated by a unit vector,
- \(\mathbf{u}=\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots \mathrm{u}_{\mathrm{n}}\right)\)
- The directional derivative in the direction \(\mathbf{u}\) is given by
\(D_{\bar{u}} g=\lim _{\pi \rightarrow 0} \frac{f\left(x_{1}+h u_{1}, x_{2}+h u_{2}, \ldots x_{n}+h u_{n}\right)-f\left(x_{1}, x_{2}, \ldots x_{n}\right)}{h}\)
- Sometimes we use the notation \(f_{u}\) for the directional derivative.
\(-\quad f_{u}=\operatorname{grad} f \cdot u\)

\section*{Directional Derivatives}
- The directional derivative of a multivariate differentiable function along a given vector \(V\) at a given point \(P\) intuitively represents the instantaneous rate of change of the function, moving through \(P\), in the direction of \(V\).
- It therefore generalizes the notion of a partial derivative, in which the direction is always taken parallel to one of the coordinate axes.

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan
A The directional derivative \(D_{\mathrm{u}} f(1,2)\) in Example 2 represents the rate of change of \(z\) in the direction of \(\mathbf{u}\). This is the slope of the tangent line to the curve of intersection of the surface \(z=x^{3}-3 x y+4 y^{2}\) and the vertical plane through \((1,2,0)\) in the direction of u shown in figure 5 .


\section*{Maximizing the Directional Derivative}

Suppose we have a function \(f\) of two or three variables and we consider all possible directional derivatives of \(f\) at a given point. These give the rates of change of \(f\) in all possible directions. We can then ask the questions: In which of these directions does \(f\) change fastest and what is the maximum rate of change? The answers are provided by the following theorem.

15 Theorem Suppose \(f\) is a differentiable function of two or three variables. The maximum value of the directional derivative \(D_{\mathbf{u}} f(\mathbf{x})\) is \(|\nabla f(\mathbf{x})|\) and it occurs when \(\mathbf{u}\) has the same direction as the gradient vector \(\nabla f(\mathbf{x})\).

Proof From Equation 9 or 14 we have
\[
D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}=|\nabla f \| \mathbf{u}| \cos \theta=|\nabla f| \cos \theta
\]
where \(\theta\) is the angle between \(\nabla f\) and \(\mathbf{u}\). The maximum value of \(\cos \theta\) is 1 and this occurs when \(\theta=0\). Therefore, the maximum value of \(D_{\mathbf{u}} f\) is \(|\nabla f|\) and it occurs when \(\theta=0\), that is, when \(\mathbf{u}\) has the same direction as \(\nabla f\).

\section*{Total Differential (Directional derivative)}
- Most relationships depend on several variables
- \(\quad y=f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{N}\right)\)
- Recall that the partial derivative, \(\partial y / \partial x_{1}\), is the change in \(y\) when we change \(x_{1}\), etc.
- Now we're interested in the total effect on \(y\) when all the \(x\) s are changed by a small amount.
- This is the Total Differential of \(f\) and is denoted by \(d y\) in direction \(\mathbf{d x}\) at \(\mathbf{d f} / \mathbf{d x}\) |
\[
d y=\frac{\partial f}{\partial x_{1}} d x_{1}+\frac{\partial f}{\partial x_{2}} d x_{2}+\ldots+\frac{\partial f}{\partial x_{N}} d x_{N}
\]

\section*{Questions for Thought}
1. Gradient Vector: Find the rate of change in the direction of a given vector WRT a given point (and tangential approximation)?
2. In what direction does \(f()\) have the maximum rate of change?
3. What is this maximum rate of change?

\section*{Cosine of the angle}
- the cosine of the angle between the vectors instead of the angle
\[
\cos \theta=\frac{\left\langle q, d_{1}\right\rangle}{\|q\| *\left\|d_{1}\right\|}
\]
\(\left\langle q, d_{1}\right\rangle=\|q\| *\left\|d_{1}\right\| \cos \theta\)


ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan AT gmail.com
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Which direction is maximising \(f(x, y) ?\)} \\
\hline \multicolumn{2}{|r|}{Recall: Directional derivative \(\mathrm{D}_{\mathrm{u}} \mathrm{f}(\mathrm{x}, \mathrm{y})\) (approximated difference in \(f(x, y)\) if we travel in direction \(u\) from \((x, y)\) )} \\
\hline \multicolumn{2}{|l|}{\(D_{u} f \quad=\nabla f^{T} \cdot u \quad \quad \mathrm{D}_{\mathrm{u}} \mathbf{f}(\mathbf{x}, \mathrm{y})=\nabla \mathbf{f}(\mathbf{x}, \mathrm{y}) \cdot \mathrm{u}\)} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
\nabla f^{T} \cdot u & =\|\nabla f\| \cdot\|u\| \cos \theta \quad \text { Where } \mathbf{u}=(\mathbf{x}-\mathrm{a}, \mathbf{y}-\mathrm{b}) \\
& =\|\nabla f\| \cos \theta
\end{aligned}
\]} \\
\hline \multicolumn{2}{|l|}{\(\nabla f^{T} \cdot u=\|\nabla f\|\)} \\
\hline \[
\begin{aligned}
\nabla f^{T} \cdot u & =\nabla f^{T} \cdot \nabla f \\
u & =\nabla f
\end{aligned}
\] & \[
\underline{u}=(x-a, y-b)
\] \\
\hline \multicolumn{2}{|l|}{- \(\cos (\theta)\) maxes at 1 when
\[
\theta=0
\]} \\
\hline - So \(D_{u} f(x, y)\) maxes when \(u\) equals \(\nabla f\) & Thus, the direction of steepest ascent is \(\nabla f(x, y)\) and the direction of steepest descent is \(-\nabla f(x, y)\) \\
\hline steenest change & lames G. Shanahan James.Shanahan_AT_gmail.com \\
\hline
\end{tabular}

\section*{Steepest Ascent/Descent}
- Since \(\mathbf{u}\) is a unit vector and
- \(f_{u}=\operatorname{grad} f \cdot u=\|u\|\|\operatorname{grad} f\| \cos (\theta)\)
- \(\quad=\| \operatorname{grad} f| | \cos (\theta)\)
- where theta is the angle between grad \(\mathbf{f}\) and \(\mathbf{u}\), we see that the directional derivative is at its maximum when \(\mathbf{u}\) is pointing in the same direction as grad \(\mathbf{f}\) and is at a minimum when \(\mathbf{u}\) is pointing in the opposite direction. (zero angle \((\cos (0)=1\) )
- Thus, the direction of steepest ascent is grad fand the direction of steepest descent is -grad f.

\section*{Significance of the Gradient Vector}

The gradient vector, \(\nabla f(x, y)\), gives the direction of fastest increase of \(\mathrm{f}(\mathrm{x}, \mathrm{y})\) (assuming a two-variable function here). [Newton-Raphson]
The gradient vector, \(\nabla \mathrm{f}(\mathrm{x}, \mathrm{y})\), is orthogonal to the contour lines
Imagine climbing an upside-down bowl from below, where I can move in any \(<x, y>\) direction (NOTE I cant move in \(z\) ); \(x\), and \(y\) are independent variables.
- If I follow the level curve \((f(x, y)=k)\) then I make no progress to the summit or bottom but if I move perpendicular to the level curve then I make the quickest progress to the summit (of the bowl).


\section*{Gradients and Contour Curves}
- Examine the relation between contour curves, or by another name, level sets, and gradients
- [moving along a direction bring no change in \(f(x, y)\) ]
- Theorem on Gradients and Contour Curves
- Consider any point ( \(\mathrm{x}_{0}, \mathrm{y}_{0}\) ), and the level curve of \(f\) through this point (i.e., the level curve of \(f\) at value \(f\left(x_{0}, y_{0}\right)\) ).
- Then the gradient of \(f\) at \(f\left(x_{0}, y_{0}\right)\) is perpendicular to the tangent direction along the level curve of \(f\) though ( \(\mathrm{x}_{0}, \mathrm{y}_{0}\) ).
- It is very easy to see why this theorem is true.
- Suppose that ( \(\mathrm{a}, \mathrm{b}\) ) is any vector that is tangent to the leve curve of \(f\) through ( \(\mathrm{x}_{0}, \mathrm{y}_{0}\) ). Then, as you move in the ( \(\mathrm{a}, \mathrm{b}\) ) direction, you are at that instant moving along the level curve, and the value of \(f\) does not change.
- So the directional derivative in this direction is zero; i.e., \(\operatorname{dot}\left(\operatorname{gradf}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right),(\mathrm{a}, \mathrm{b})\right)=0\)
Ism 280: Stochastic Graisisn is the peene perpendicularity that we wanted to establish.
- http://www users.math.umd.edu/~imr/241/gradients.html

M 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan AT gmail.com



\section*{Significance of the Gradient Vector}
- The gradient vector, \(\nabla f(x, y, z)\), gives the direction of fastest increase of \(f(x, y, z)\) (assuming a three-variable function here).
- The gradient vector, \(\nabla f(x, y, z)\), is orthogonal to the level surface \(S\) of fthrough P (i.e., \(x_{0}, y_{0}, z_{0}\) ))
- Imagine climbing an upside-down bowl from below; where I can move in any <x, \(y>\) direction (I cant move in \(z\) ). If I follow the level curve ( \(f(x, y)=k\) ) then I make no progress to the summit or bottom but if I move perpendicular to the level curve then I make the quickest progress to the summit (of the bowl).


\section*{Gradient Vector: Hiker's Perspective}
- If we consider a topographical map of a hill and let \(f(x, y)\) represent the height above sea level at a point with coordinates ( \(x, y\) ), then a curve of steepest ascent can be drawn by making it perpendicular to all of the contour lines.
- This phenomenon can also be noticed here where Lonesome Creek follows a curve of steepest descent.


\section*{Lecture Outline}
- R
- Lines, Tangents, Taylors Theorem
- Turning points, Roots, Newton-Raphson
- Taylor Series: quadratic approximations
- Newton-Raphson quadratic convergence
- Multi-Dimensional Approximations (Planes)
- Directional Differentials, Total Differentials
- Vector plots, contour plots
- Gradient Descent
- Linear regression
- Predicting Click Through Rates
- Linear Regression


\section*{Follow Gradient for Maximization}

Follow negative of Gradient for Minimization
- Gradient descent is a first-order optimization algorithm.
- To find a local minimum of a function using gradient descent, one takes steps proportional to the negative of the gradient (or of the approximate gradient) of the function at the current point.
- If instead one takes steps proportional to the gradient, one approaches a local maximum of that function; the procedure is then known as gradient ascent.

\section*{Plotting 3D Surfaces in R}
\#put two plots side by side (i.e., 1 row and 2 columns) par(mfrow=c(1, 2))
\(x<-\) seq( \(-3,3\), length \(=30\) )
y<-x
\(f<-\) function \((x, y)\left\{x^{\wedge} 2+2{ }^{*} y^{\wedge} 2\right\}\)
z<- outer( \(\mathbf{x}, \mathrm{y}, \mathrm{f}\) )
\#Plot 3D surface of function
\#Modify theta and phi for different perspective
 \(\operatorname{persp}(x, y, z\), theta \(=135, p h i=30\), col = "blue", scaie \(=\) r'AL'SE, Itheta \(=-120\), shade \(=0.75\), ticktype \(=\) "detailed", expand \(=0.2\), )

\section*{R : outer()}

The outer product of the arrays \(X\) and \(Y\) is the The outer product of tion \(c(\operatorname{dim}(X), \operatorname{dim}(Y))\) where arrent
A[g(arrayindex \(x\) arrayindex. \(y)]=\)
A[c(arrayindex.X, arrayindex.y ) \(=\). 1 . ..).


\section*{Gradient Vector Plots}
- The gradient gives us a vector at each point ( \(\mathbf{x}, \mathrm{y}\) ) that is pointing uphill
- We can visualize these using a gradient vector plot

See example.gradientPlots()
- Plot 3 dimensional surfaces \(f(x, y)\)
- Heat maps
- Gradient vector plots
- Gradient vector plots superimposed on heat maps






\section*{Prettified Gradient Plot}
(looks like a quiver!)
\#prettified gradient vector plot using quiver()
\#f <- expression ( \(\left.\left(3^{*} x^{\wedge} 2+y\right)^{*} \exp \left(-x^{\wedge} 2-y^{\wedge} 2\right)\right)\)
f<- expression ( ( \(\mathrm{x}^{\wedge} 2\) ) - ( \(\left.\mathrm{y}^{\wedge} 2\right)\) )
\#f <-expression(( \(\left.\mathrm{x}^{\wedge} 2+\mathrm{x}^{\wedge} 2\right)\) )
\(x<-y<-\operatorname{seq}(-5,5, b y=0.5)\)
\(\operatorname{par}(\) mar \(=c(3,3,3,3))\)
quiver2(f,x,y, color.palette=terrain.colors, main \(=" f(x, y)=X^{\wedge} 2-y^{\wedge} 2 \backslash n M a x e s\) out when \(y\) is \(\left.0^{\prime \prime}\right)\)

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

\section*{Gradient Vector at Extrema is \(<0,0\), ..>}
- The gradient is a fancy word for derivative, or the rate of change of a function.
- It's a vector (a direction to move) that points in the direction of greatest increase of a function is zero at a local maximum or local minimum (because there is no single direction of increase); the magnitude of the vector is zero. Gradient at turning points \(=<0,0,0 \ldots, 0\) )
- The term gradient typically refers to the derivative of vector functions, or functions of more than one variable. Yes, you can say a line has a gradient (its slope), but using the term gradient for single-variable functions is unnecessarily confusing. Keep it simple.
- http:/beeterexplained.com/articles vector-calculus. understandinc-the-gradient
- The gradient of the function \(\mathrm{f}(x, y)=-\left(\cos ^{2} x+\right.\) \(\left.\cos ^{2} y\right)^{2}\) depicted as a vector field on the bottom plane

\section*{Gradient Example}



\section*{Exercise 1.4 : Vector Field vs. 3DPlot}

\section*{quiver2() available in R code}
- Compute the gradient of the following function. \(-z=f(x, y)=x^{2}+y\)
- This gives us a vector at each point ( \(x, y\) ) that is pointing uphill.
- In R plot the these vectors. This plot is also known as a vector field. Hint: use quiver2(); provided in R Code.
- Plot the 3D of this function
- Compare the vector field plot with a threedimensional plot of the indicated function. Does the vector field appear to be pointing upward?
filled.contour( \(x x\), yy, fxy, nlevels=nlevels,
plot.axes \(=1\)
contour(xx, yy, fxy, add=T, col="gray"
nlevels=nlevels, drawlabels=FALSE)
arrows(x0 \(=x\),
\(\mathrm{x} 1=\mathrm{x}+\)
\(\mathrm{y} 0=\mathrm{y}\),
\(y 1=y+\) grad \(y\),
length \(=\) length
length \(=\) lengtht'min(par.uin())
axis(1)
axis(2)
…)
\({ }^{\text {, }}{ }^{. . .}\)
\#prettified gradient vector plot using quiver()
\#f <- expression( ( \(\left.\left.3^{*} x^{\wedge} 2+y\right)^{*} \exp \left(-x^{\wedge} 2-y^{\wedge} 2\right)\right)\)
\(\mathrm{f}<-\) expression \(\left(\left(^{\wedge} 2\right)-\left(y^{\wedge} 2\right)\right.\) )
\#f <-expression(( \(\left.\left.x^{\wedge} 2+y\right)\right)\)
\(\mathrm{x}<-\mathrm{y}<-\operatorname{seq}(-5,5\), by=0.5)
\(\operatorname{par}(\operatorname{mar}=c(3,3,3,3)\) )
quiver2(f,x,y, color.palette=terrain.colors, main="f(x,y)=X^2 - \(\mathrm{y}^{\wedge} 2\) \nMaxes out when y is \(0^{\prime \prime}\) )

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

\section*{Recap on finding minimum or maximum}
\[
\begin{array}{ll}
\max / \min & f(x)=f\left(x_{1}, \ldots, x_{n}\right) \\
\text { subject to } & x \in R^{n}
\end{array}
\]

Given \(f(x 1, x 2, \ldots)\) find a candidate minimum or maximum (stationary points)
Assume \(f^{\prime}(x)\) and \(H(x)\) exists for all \(x \in S\)


Locate candidate extrema using \(f^{\prime}(x)=0\) and boundary points

\section*{Steps}
- Find roots of the gradient equation \(f^{\prime}(X)\)
- Use Newton-Raphson

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com 241

\section*{Operational Algorithms}

Quasi-Newton (BFGS) - Popular in practice
- Avoid computing the inverse of Hessian matrix
- But, it still requires computing the \(\mathbf{B}\) matrix (approximate Hessian) \(\rightarrow\) larg storage
- Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is a method for solving nonlinear optimization problems
- The BFGS method approximates Newton's method,
- a class of hill-climbing optimization techniques that seeks a stationary point of a (twice continuously differentiable) function:
- For such problems, a necessary condition for optimality is that the gradient be zero.
- Newton's method and the BFGS methods need not converge unless the function has a quadratic Taylor expansion near an optimum. These methods use the first and second derivatives.
- Limited-Memory Quasi-Newton (L-BFGS)



\section*{Multivariate Newton's Method}

Suppose that the objective \(f\) is a function of multiple arguments, \(f\left(w_{1}, w_{2}, \ldots w_{p}\right)\) Let's bundle the parameters into a single vector, \(\vec{w}\). Then the Newton update is
\[
\begin{equation*}
\vec{w}_{n+1}=\vec{w}_{n}-H^{-1}\left(w_{n}\right) \nabla f\left(\vec{w}_{n}\right) \tag{16}
\end{equation*}
\]

Find the roots of an equation or system of equation Filcuating gradient and Hessian not very timewhere \(\nabla f\) is the gradient ofalculating gradient and and \(H\) is the Hessian of gonsuming brtecalg partial derivatives, \(H_{i j}=\) \(\partial^{2} f / \partial w_{i} \partial w_{j}\).

Calculating \(H\) and \(\nabla f\) isn't usually very time-consuming, but taking the inverse of \(H\) is, unless it happens to be a diagonal matrix. This leads to various quasi-Newton methods, which either approximate \(H\) by a diagonal matrix, or take a proper inverse of \(H\) only rarely (maybe just once), and then try to update an estimate of \(H^{-1}\left(w_{n}\right)\) as \(w_{n}\) changes. (See section 8.3 in the textbook for more.)
In R, have a look at
?optim \#method=BFGS
http://www.stat.cmu.edu/~cshalizi/350/2008/ectur
[Hand, Manilla, Smith, Data Mining, Section 8.3]
ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan \(\quad\) James.Shanahan_AT_gmail.com

\section*{Quasi-Newton Method}
- Approximate the Hessian matrix \(\mathrm{H}^{-1}\) with another B matrix:
\[
\vec{x}^{\text {new }} \leftarrow \vec{x}^{\text {old }}-\mathbf{B} \frac{\partial f(\vec{x})}{\partial \vec{x}}
\]
- \(B\) is updated iteratively (BFGS):
\[
\begin{aligned}
& \mathbf{B}_{k+1}=\mathbf{B}_{k}-\frac{\left(\mathbf{B}_{k} \vec{p}_{k}\right)\left(\mathbf{B}_{k} \vec{p}_{k}\right)^{T}}{\vec{p}_{k}^{T} \mathbf{B}_{k} \vec{p}_{k}}+\frac{\vec{y}_{k} \vec{y}_{k}^{T}}{\vec{y}_{k}^{T} \vec{p}_{k}} \\
& \vec{p}_{k}=\vec{x}_{k+1}-\vec{x}_{k}, \vec{y}_{k}=\vec{g}_{k+1}-\vec{g}_{k}
\end{aligned}
\]
- Utilizing derivatives of previous iterations

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan AT gmail.com

\section*{General Approach to Finding Extrema}
- Well-behaved version spaces
- Convex or concave function ( \(\pm\) definiteness)

- Algorithms seek a local extrema knowing that it will be global
- If \(f()\) is a concave function then local maximum is a global maximum
- If \(f()\) is a convex function then local minimum is a global minimum
- Otherwise
- We resort to local approximations
- Hill-Climbing
- Simulated annealing

- Commonly used in Neural Networks

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Lecture Outline} \\
\hline \begin{tabular}{l}
- \(\mathbf{R}\) \\
- Lines, Tangents, Taylors Theorem \\
- Turning points, Roots, Newton-Raphson \\
- Taylor Series: quadratic approximations \\
- Newton-Raphson quadratic convergence \\
- Multi-Dimensional Approximations (Planes) \\
- Directional Differentials, Total Differentials \\
- Vector plots, contour plots
\end{tabular} & \\
\hline - Gradient Descent & \\
\hline \begin{tabular}{l}
- Linear regression \\
- Predicting Click Through Rates \\
- Linear Regression \\
- Logistic Regression
\end{tabular} & 247 \\
\hline
\end{tabular}






\section*{Notes on previous two slides}
- There is an intuitive reason why we should expect these vectors to be orthogonal at the minimum.
- Figure on previous slide shows the gradient vectors at various points along the search line. The slope of the parabola (Figure (c) of the second previous slide) at any point is equal to the magnitude of the projection of the gradient onto the line (Figure on previous slide,dotted arrows). These projections represent the rate of increase of \(f\) as one traverses the search line.
- \(f\) is minimized where the projection is zero-where the gradient is orthogonal to the search line.

\section*{Iterations of Steepest Descent Method}



```

 presions for the x, in tems of t that need to be subsitiuted intof(X) to give the fifth column.
    ```


```

 \nablaf(1,) = (0,0).
 TABLE 13.2 Appliction of the gradient search procedure to the example
 lol
 1
 However. because this converging sequence of trialsolutions never reaches its limit, the
 Mnal appoximation of }\mp@subsup{\textrm{v}}{}{*}\mathrm{ As Fig. 13.1 suggest, the gradient search procedure zigzags to the opimal solution
 As Fig. 13.14 suggests, the gradient search procedure zigzags to the optimal solution
 veloped that accelerate movement toward the opimal solution by taking this zigzag be-
 Mavior into account.
 If f(x) wcre not a conavec function, the gradicnt sarch procdurc still would con-
 ccose is that t* now would correspond to the first local marimum of f(\mp@subsup{x}{}{\prime}+t\nablaf(\mp@subsup{x}{}{\prime})\mathrm{) as }t
 is incrased from 0. © If the objective were to minimize}f(x)\mathrm{ instead, one change in the procedure would be
 to move in the opposite dircction of the gradient at cach iteration. In othcr words, the mule
 for obaining the next point would
    ```

```

 The onty ofrer change is hat [}\mp@subsup{|}{}{*}\mathrm{ now would be the nonnegative value of }t\mathrm{ that minimizes
 ISM: f(\mp@subsup{x}{}{\prime}-\mp@subsup{t}{}{*}\nablaf(\mp@subsup{x}{}{\prime}))=\operatorname{min}f(\mp@subsup{x}{}{\prime}-t\nablaf(\mp@subsup{x}{}{\prime})).

FIGURE 13.14
Illustration of the
search ution of the gradient
search procedure when
$f\left(x_{1}, x_{2}\right)=2 x_{1} x_{2}+2 x_{2}-$
$x_{1}-2 x_{2}$

Exercise (not required)

- Perform iteration 3 and 4 of the of the above example; show the worked out details by hand (follow the style of the example present here)
- Plot the isolines plot and the vector plot (quiver2)
- Overlay the path for steps 1, 2, 3, and 4 on the isoline-vector plot
- Plot the surface plot (3D) also

Unconstrained optimization

- A point x where $\nabla f(x)=0$ is called a stationary point of f
- Let x^{\star} be a stationary point, i.e., $\nabla f\left(x^{*}\right)=0$
- If all leading principal minors of $H\left(x^{*}\right)$ are positive then x^{*} is a local minimum
- If the leading principal minors of $H\left(x^{*}\right)$ of order k has the same sign as $(-1)^{k}$ (for all k) then x^{*} is a local maximum

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan

Unconstrained optimization
For noncovex/non-concave
$\max / \min \quad f(x)=f\left(x_{1}, \ldots, x_{n}\right)$
subject to

$$
x \in R^{n}
$$

- Assume $f^{\prime}(x)$ and $H(x)$ exists for all $x \in S$
- Locate candidate extrema using $f^{\prime}(x)=0$ and boundary points
- Then candidate x is
$-f(x)$ is a convex function on S if and only if all principal minors of $H(x)$ are nonnegative for all $x \in S$
- $f(x)$ is a concave function on S if and only if the principal minors of $H(x)$ of order k_{-}have the same sign as $(-1)^{k}$ for all $x \in S$ and all k
1SM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

Issues in Gradient Descent

$$
\begin{aligned}
& x^{i+1}=x^{i}-\frac{f\left(x^{i}\right)}{f^{\prime}\left(x^{i}\right)} \\
& \Rightarrow x^{i+1}=x^{i}-\left[\frac{d f}{d x}\left(x^{i}\right)\right]^{-1} f\left(x^{i}\right) \\
& x_{(i+1)}=x_{(i)}-a_{(i)} p_{(i)} \quad \begin{array}{l}
p_{(i)} \quad \text { Iteration function } \\
a_{(i)} \quad \text { Step Size }
\end{array}
\end{aligned}
$$

- How large should I step in the positive gradient direction (gradient ascent) or in the negative gradient direction (gradient descent)
\qquad

Non-stationary Iterative Method

- Start from initial guess $x 0$, adjust it until close enough to the exact solution

$$
\begin{aligned}
& x_{(i+1)}=x_{(i)}+a_{(i)} p_{(i)} \quad \text { i=0,1,2,3,...... } \\
& p_{(i)} \quad \text { Adjustment Direction } \\
& a_{(i)} \quad \text { Step Size }
\end{aligned}
$$

- How to choose direction and step size?

Lecture Outline

- R
- Lines, Tangents, Taylors Theorem
- Turning points, Roots, Newton-Raphson
- Taylor Series: quadratic approximations
- Newton-Raphson quadratic convergence
- Multi-Dimensional Approximations (Planes)
- Directional Differentials, Total Differentials
- Vector plots, contour plots
- Gradient Descent
- Linear regression
- Predicting Click Through Rates
- Linear Regression

ISM 280: Stochastic Logisticient Rescegresşion 2011 James G. Shanahan James.Shanahan_AT_gmail.com $\quad 267$

Lecture Outline

- R

- Lines, Tangents, Taylors Theorem
- Turning points, Roots, Newton-Raphson
- Taylor Series: quadratic approximations
- Newton-Raphson quadratic convergence
- Multi-Dimensional Approximations (Planes)
- Directional Differentials, Total Differentials
- Vector plots, contour plots
- Gradient Descent
- Linear regression
- Predicting Click Through Rates
- Linear Regression

| ISM 280: Stochastictractient Rescegrin | | |
| :--- | :--- | :--- | :--- |

Closed Form versus Iterative Procs

- Linear least squares problems are convex and have a closed-form solution that is unique, except in special degenerate situations.
- In contrast, non-linear least squares problems generally must be solved by an iterative

> , and often are non-convex with multiple local solutions.

General Approach to Finding Extrema

- Well-behaved version spaces
- Convex or concave function (\pm definiteness)
- Algorithms seek a local extrema knowing that it $\mathrm{w}^{x_{2}}$
- If $f()$ is a concave function then local maximum is a gioda maximum
- If $f()$ is a convex function then local minimum is a global minimum
- Newton-Raphson, Gradient Descent, Conjugate Gradient Descent
- Otherwise
- We resort to local approximations
- Hill-Climbing
- Simulated annealing
- Commonly used in Neural Networks

1SM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

Types of Learning

- Supervised learning - Generates a function that maps inputs to desired outputs. For example, in a classification problem, the learner approximates a function mapping a vector into classes by looking at input-output examples of the function.
- Unsupervised learning - Models a set of inputs: like clustering
- Semi-supervised learning - Combines both labeled and unlabeled examples to generate an appropriate function or classifier.
- Reinforcement learning - Learns how to act given an observation of the world. Every action has some impact in the environment, and the environment provides feedback in the form of rewards that guides the learning algorithm.
Transduction - Tries to predict new outputs based on training inputs, training outputs, and test inputs.

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com 272

| Terminology: linear regression |
| :--- | :--- | :--- |

Generate Your Own Data
\# You can generate data by clicking on a plot.
\# Create data that illustrates the effect of varying 'f' and 'iter' in 'lowess'.
example.generateYourOwnData = function($)$ (

Least Square Fit Approximations

Suppose we want to fit the data set.

| $\#$ | x | y |
| :--- | :--- | :--- |
| 1 | 1 | 2 |
| . | 2 | 3 |
| . | 3 | 7 |
| . | 4 | 8 |
| m | 5 | 9 |

We would like to find the best straight line to fit the data?
ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan

Fit a line based on...

| - If we assume that the first two points are correct$y=m x+b$
 and choose the line that goes through them, we
 get the line $\boldsymbol{y}=\mathbf{1}+\boldsymbol{x}$.$.$$m=\frac{y_{2}-y_{1}}{x_{2}-x}$ |
| :--- |

- If we substitute our points (x-values) into this equation, we get the following chart.
- How good is this line?
- The sum of the squares of the errors is 27 .

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

Linear Model: Ordinary Least Squares Measuring Quality

- How do we pick, or learn, the parameters W (aka θ)?
- One reasonable method seems to be to make $f(x)$ close to y, at least for the training examples.
- To formalize, let's define a function that measures, for each possible model/hypothesis, W, how close $\mathrm{f}_{\theta}\left(\mathbf{x}^{\mathrm{i}}\right)$'s are to the corresponding y^{i} 's:

$$
\begin{gathered}
J(W)=\sum_{i=1}^{m}\left|W X^{i}-y^{i}\right| \begin{array}{l}
\text { This error minimization is } \\
\text { going to have problems? }
\end{array} \\
J(W)=\frac{1}{2} \sum_{i=1}^{m}\left(W X^{i}-y^{i}\right)^{2} \quad \text { Residual sum of squares }
\end{gathered}
$$

- Sum of squared error

Can we do better than guesswork?

- Let's try the line that is half way between these two lines. The equation would be $\boldsymbol{y}=2.5+\boldsymbol{x}$.
- Is there a more scientific or efficient way than guessing at which line would give the best fit.
- Surely there is a methodical way to determine the best fit line. Let's think about what we want.

SSE = 11.25. Getting better but can we do better?
ISM 280: Stochastic Gradient Descent
© 2011 James G. Shanahan James.Shanahan_AT_gmail.com

Hypothesis Space of Linear Models

- Here the W's are the parameters (also called weights) parameterizing the space of linear function mapping from $X \rightarrow Y=f(X)$
- Augment Training Data with dummy intercept variable (simplifies notation and modeling)

$$
y=f\left(x_{0}, x_{1}\right)=w_{0} x_{0}+w_{1} x_{1}
$$

$$
=\sum_{i=1}^{n} w_{i} x_{i}=W^{T} X
$$

- $1 \begin{array}{llll}4 & 8 & \text { Sometimesuse } \theta \text { insteadof } W\end{array}$
$\begin{array}{llll}\mathrm{m} & 1 & 5 & 9\end{array}$

$$
y=f\left(x_{0}, x_{1}\right)=\sum_{i=1}^{n} \theta_{i} x_{i}=\theta^{T} X
$$

- Each model is in our case a coefficient for the y-intercept (bias) and a coefficient for the feature-variable (time)
- Plot weight-space in 2D where the third dimesion is the error $J(W)=\frac{1}{2} \sum\left(W^{i} X^{i}-y^{i}\right)^{2}$
- Select combination that minimizes the sum of square error example.OLS_Heatmap()

HeatMap with iscơtines overlayed
$\underset{\text { ISM 280: Stochastic Gradient Descent }}{\text { HeatMa }}$ James.Shanahan_AT_gmail.com

- Recall, a line in slope-intercept form looks like $y=$ $w_{0}+w_{1} x$ where w_{0} is the \boldsymbol{y}-intercept and w_{1} is the slope.
- We want to find w_{0} and w_{1} such that $w_{0}+w_{1} x_{i}=y_{i}$ is true for all our data points:
$w_{0}+1 w_{1}=2$
$w_{0}+2 w_{1}=3$
$w_{0}+3 w_{1}=7$
$w_{0}+4 w_{1}=8$
$w_{0}+5 w_{1}=9$
- We know that there may not exist w_{0} and w_{1} that fit all these equations, so we try to find the best fit.

Hypothesis Space of Linear Models

- Here the W's are the parameters (also called weights) parameterizing the space of linear function mapping from $X \rightarrow Y F(x)$
- Augment Training Data with dummy intercept variable (simplifies notation and modeling)

- Several Approaches to finding the best-fit line
- Select a couple of data points and solve analytically (high variance)
- Brute-force Search
- Iterative approaches (via the gradient)
- Closed Form
- Probabilistic interpretation/justification via maximum likelihood
- Bayesian modeling [will be covered in Lecture 4]

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

$$
\begin{aligned}
y=f\left(x_{0}, x_{1}\right) & =w_{0} x_{0}+w_{1} x_{1} \\
& =\sum_{i=1}^{n} w_{i} x_{i}=W^{T} X
\end{aligned}
$$

Sometimes use θ instead of W

$$
y=f\left(x_{0}, x_{1}\right)=\sum_{i=1}^{n} \theta_{i} x_{i}=\theta^{T} X
$$

Iterative approach to Learning the Line

- Can we navigate the error surface in an efficient manner in the hope of getting to minimum?
- Can we leverage other properties of the function? (Hint convexity)
- Yes we can!
- We can navigate this surface using the gradient (slope)
- OLS is convex so what [well-behaved function! More about this later this lecture and next lecture]

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James Shanatan an

Brute Force Search of Weights

- Very inefficient; at best we can only approximate the surface
- Not scaleable
- Avoid this approach...

Exploiting the Gradient of Error Surface

- Gradient Descent (a simpler alternative to Newton-Raphson)
- A work horse
- Newton-Raphson
- Quasi-versions
- Commonly used
- Conjugate-Gradient Descent
- Not covered here but effective and commonly used
- Practically speaking we will use off-the-shelf software
- R built-in solvers such as optim()
- Or built-in linear regression algorithms, glm(), Im()) etc.

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

OLS Via Gradient Descent: The Gradient

$$
W_{j, t+1}=W_{j, t}-\alpha * \nabla J_{w_{j}}\left(W_{j, t}\right)
$$

- In order to implement this algorithm, we have to work out what is the partial derivative term at time t on the right hand side $\nabla \mathrm{f}_{\mathrm{wj}}(\mathrm{W})=\mathrm{dF}(\mathrm{W}) / \mathrm{dw}_{\mathrm{i}}$.
- Assume we have only one training example (x, y), so that we can drop the sum in the definition of J .

OLS Via Gradient Descent in R

OLSUsingGradientDescent = function(..)

w=rep(-2, numVariables); \#initialize weight vector
wOId $=\mathbf{w}$;
it = 1 \# iteration index
while (it <= max.iter)\{
$\mathrm{p}=$ designMatrix $\% \% \mathrm{w}$ \#prediction for each training example $\mathbf{w}=\mathbf{w}+$ alpha* drop(t(designMatrix) $\% * \%($ targetValues - p)) \#drop yields a scalar from errV* ${ }^{\star}$ _
 break
it = it + $\mathbf{1}$ \# ir
wOId=w
if (it > max.it
SM 280:
\}) Stochastic Gradient De

Ordinary Least Squares Algorithm

Single-sample Primal For

- Given Training data S where each example i is of the form ($x_{i, 1}, \ldots, x_{i, n}, y_{i}$), and a learning rate η
- Set W_{o} to zeros; $k=0$;
- Repeat
- For $\mathrm{i}=1$ to /Train/ do $W_{k+1}=W_{k}+\eta\left(<W_{k} X_{i}>-y_{i}\right) X_{i}$
- End-For
- Until convergence
- Return W

Iterative, gradient descent based algorithm (as opposed to other versions, such as closed form version, quadratic programming version, maximum likelihood. What could they look like?)

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT amailco

Gradient Descent for Ordinary Least Squares

OLS with this objective has no local minima (convex as the Hessian, n by n matrix of second derivatives, of the objective function is positive definite); in this case $\mathrm{n}=2$ variables.

OLS using Gradient Descent (LMS Rule)

- Stochastic update

Stochastic Gradient Descent

Let $\mathrm{W}=(0,0, \ldots$.
$\nabla \mathrm{J}_{\mathrm{wi}}\left(\mathrm{W}_{\mathrm{t}}\right)$
Repeat
Partial derivate WRT to variable of error function $\mathrm{J}(\mathrm{W})$ at point W

For jin 0..n \#each varible
Fori in 1..m \#eachexample

$$
W_{j, t+1}=W_{j, t}+\alpha *\left(y^{i}-W X^{i}\right) X_{j}^{i}
$$

until convergence (i.e., no big changesin W or error)

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

Exercise 1.5 : Code up OLS using LMS

- The learning objective function for weighted ordinary least squares (WOLS) is defined as follows:

$$
J W G T(W)=\frac{1}{2} \sum^{m} w g t^{i}\left(W^{i} X^{i}-y^{i}\right)^{2}
$$

- Derive the gradient for this weighted ${ }^{-}$OLS by hand; showing each step and also explaining the step
- Train a weighted OLS model using gradient descent
- Train OLS model using using LMS (Least Mean Squares) Rule algorithm to predict y (the CTR) given x (the dwelltime on a page)
- Train a model using $\operatorname{Im}($.$) (in R) using the same weights.$
- Train a model using $\operatorname{lm}()$ without the weights
- Analysis
- Use the following dataset (sometimes known as the design matrix)[See next slide]
- Plot the error surface
- Plot the heatmap and contour plot
- Plot the path to convergence
- Comment on convergence and on the mean squared error using your algorithm and the Im(..);

| Exercise 1.5 : Continued | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - Dataset | $J W G T(W)=\frac{1}{2} \sum_{i=1}^{m} w g t^{i}\left(W^{i} X^{i}-y^{i}\right)^{2}$ | | | | |
| | \# | Weight | x | y | |
| | 1 | 0.5 | 1 | 2 | |
| | 2 | 1 | 2 | 3 | |
| | 3 | 5 | 3 | 7 | |
| | 4 | 1 | 4 | 8 | |
| | | 7 | 5 | 9 | |
| ISM 280: Stochastic Graient Descent | - 2011 James ¢. Shanahan | | | James.Shanahan_AT_gmail.com | ${ }^{311}$ |

Closed form solution to OLS

- To minimize J, we set its derivatives to zero, and obtain the normal equations:
$-X^{\top} X W=X^{\top} y$
RSS $=$ Variance of ε

$$
\begin{array}{ll}
0=\frac{\partial \sum \hat{\varepsilon}_{i}^{2}}{\partial W}=\frac{\partial\left(y_{i}-X W\right)^{2}}{\partial W} & 0=\frac{\partial \sum \hat{\varepsilon}_{i}^{2}}{\partial \hat{\beta}_{1}}=\frac{\partial \sum\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)^{2}}{\partial \hat{\beta}_{1}} \\
=-2 X\left(y-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right) & =-2 \sum x_{i}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right) \\
=-2 \sum x_{i}\left(y_{i}-\bar{y}+\hat{\beta}_{1} \bar{x}-\hat{\beta}_{1} x_{i}\right)=-2 \sum x_{i}\left(y_{i}-\bar{y}+\hat{\beta}_{1} \bar{x}-\hat{\beta}_{1} x_{i}\right)
\end{array}
$$

http://www.stanford.edu/class/cs229/notes/cs229notes1.pdf
SIIr 280: Stochis

Closed form solution to OLS

How do we minimize (3.2)? Denote by \mathbf{X} the $N \times(p+1)$ matrix with each row an input vector (with a 1 in the first position), and similarly let
\mathbf{y} be the N-vector of outputs in the training set. Then we can write the
residual sum-of-squares as $\quad \beta$ is W in our notation

$$
\begin{equation*}
\operatorname{RSS}(\beta)=(\mathbf{y}-\mathbf{X} \beta)^{T}(\mathbf{y}-\mathbf{X} \beta) . \tag{3.3}
\end{equation*}
$$

This is a quadratic function in the $p+1$ parameters. Differentiating with respect to β we obtain

$$
\begin{align*}
\frac{\partial \mathrm{RSS}}{\partial \beta} & =-2 \mathbf{X}^{T}(\mathbf{y}-\mathbf{X} \beta) \\
\frac{\partial^{2} \mathrm{RSS}}{\partial \beta \partial \beta^{T}} & =2 \mathbf{X}^{T} \mathbf{X} . \tag{3.4}
\end{align*}
$$

Assuming (for the moment) that \mathbf{X} has full column rank, and hence $\mathbf{X}^{T} \mathbf{X}$ is positive definite, we set the first derivative to zero

Normal Equations \rightarrow Closed From Soln. to OLS

- Gradient descent gives one way of minimizing $J(W)$.
- An alternative is to performing the minimization explicitly and without resorting to an iterative algorithm
- In this method, we will minimize J by explicitly taking its derivatives with respect to the W_{j} 's, and setting them to zero.
- Do this via calculus with matrices.

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

Closed form solution to OLS

- To minimize J, we set its derivatives to zero, and obtain the normal equations:
- $X^{\top} X W=X^{\dagger} y$
- Thus the value of W that minimizes $\mathrm{J}(\mathrm{W})$ is give in closed form
$\nabla J_{W_{j}}(W)=\frac{\partial}{\partial W_{j}} J(W)=\frac{\partial}{\partial W_{j}}\left(\frac{1}{2}\left(f_{W}(x)-y\right)^{2}\right)$
$=2 * \frac{1}{2}\left(f_{W}(x)-y\right) \frac{\partial}{\partial W_{j}}\left(f_{W}(x)-y\right)$
$=\left(f_{W}(x)-y\right) \frac{\partial}{\partial W_{j}}\left(\left(\sum_{i=0}^{n} w_{i} x_{i}\right)-y\right)$
$\left(f_{W}(x)-y\right) x_{j} \quad$ foreach j in $1: \mathrm{n}$
$(X W-Y)^{T} X \quad$ overalland in terms of data
$=X^{T} X W-X^{T} Y=0$
$X^{T} X W=X^{T} Y \quad$ NormalEquations
$\mathrm{W}=\left(X^{T} X\right)^{-1} X^{T} Y$
- For a full derivation see: http://www.stanford.edu/class/cs229/notes/cs229-
ism beotendnpdf Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

Lecture Outline

- \mathbf{R}
- Lines, Tangents, Taylors Theorem
- Turning points, Roots, Newton-Raphson
- Taylor Series: quadratic approximations
- Newton-Raphson quadratic convergence
- Multi-Dimensional Approximations (Planes)
- Directional Differentials, Total Differentials
- Vector plots, contour plots
- Gradient Descent
- Linear regression
- Predicting Click Through Rates
- Linear Regression

\square

Derivation of Parameter Equations

- An Alternative Derivation treating the y-intercept and the variable coefficients separately; here we represent W as β.
- Goal: Minimize squared error (WRT to the y-intercept)

$$
\begin{aligned}
& 0=\frac{\partial \sum \hat{\varepsilon}_{i}^{2}}{\partial \hat{\beta}_{0}}=\frac{\partial \sum\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)^{2}}{\partial \hat{\beta}_{0}} \\
& =\sum-2\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right) \\
& =-2\left(n \bar{y}-n \hat{\beta}_{0}-n \hat{\beta}_{1} \bar{x}\right) \\
& \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
\end{aligned}
$$

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan AT gmail.con

-End of lecture

Derivation of Parameter Equations

Derive variable coefficients; here we represent W as $\boldsymbol{\beta}$
$0=\frac{\partial \sum \varepsilon_{i}^{2}}{\partial \hat{\beta}_{1}}=\frac{\partial \sum\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)^{2}}{\partial \hat{\beta}_{1}}$
$=-2 \sum x_{i}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)$
$=-2 \sum x_{i}\left(y_{i}-\bar{y}+\hat{\beta}_{1} \bar{x}-\hat{\beta}_{1} x_{i}\right)$
$\hat{\beta}_{1} \sum x_{i}\left(x_{i}-\bar{x}\right)=\sum x_{i}\left(y_{i}-\bar{y}\right)$
$\hat{\beta}_{1} \sum\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)=\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$
$\hat{\beta}_{1}=\frac{S S_{x y}}{}$
© 2011 James G. Shanahan
James.Shanahan_AT_gmail.com

Exercise 1.6 :OLS: Closed Form Solution in R

- Using matrices and the closed from solution estimate the OLS weight (maximum likelihood) using the dataset in exercise 1.5
- To calculate inverse of a matrix
- ginv() \# from library(MASS)
- Other useful matrix commands
- matrix()
- det() \# division matrix style of a square matrix
- diag()
- $\mathrm{t}($) \#transpose of a matrix
- eigen()

Matrix Algebla, The R Book, M. Crawley page 259
ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

Exercise:OLS: Closed Form Solution in R

- Using matrices and the closed from solution estimate the OLS weight (maximum likelihood)
See example.learnLSUsingClosedFormSolution()
......preamble
\#dataEx is a training set dataframe
designMatrix=as.matrix(dataEx1[,1]) \#input variable data
X=designMatrix=cbind(1, designMatrix) \#append a constant 1 for bias term
$\mathrm{y}=$ targetValues=as.matrix(dataEx1[,2]);
numVariables=ncol(designMatrix);
w=rep(-2, numVariables); \#initialize weight vector
library(MASS) \#make ginv() the inverse of a matrix available
$\mathbf{w}=\operatorname{ginv}(\mathbf{t}(\mathbf{X}) \% * \% \mathbf{X}) \% * \%(\mathbf{X}) \% * \% \mathbf{y}$;

| Conditional Data Likelihood | |
| :---: | :---: |
| $\begin{aligned} & P(Y=0 \mid X)=\frac{1}{1+\exp \left(w_{0}+\sum_{i=1}^{n} w_{i} X_{i}\right)} \\ & P(Y=1 \mid X)=\frac{\exp \left(w_{0}+\sum_{i=1}^{n} w_{i} X_{i}\right)}{1+\exp \left(w_{0}+\sum_{i=1}^{n} w_{i} X_{i}\right)} \end{aligned}$ $\begin{aligned} l(W) & =\sum_{l} Y^{l} \ln P\left(Y^{l}=1 \mid X^{l}, W\right)+\left(1-Y^{l}\right) \ln P\left(Y^{l}=0 \mid X^{l}, W\right) \\ & =\sum_{l} Y^{l} \ln \frac{P\left(Y^{l}=1 \mid X^{l}, W\right)}{P\left(Y^{l}=0 \mid X^{\prime}, W\right)}+\ln P\left(Y^{l}=0 \mid X^{l}, W\right) \\ & =\sum_{l} Y^{l}\left(w_{0}+\sum_{i}^{n} w_{i} X_{i}^{l}\right)-\ln \left(1+\exp \left(w_{0}+\sum_{i}^{n} w_{i} X_{i}^{l}\right)\right) \end{aligned}$ | ${ }^{229}$ |

Limit range of $f(x)$ using a logit function
Intuitively it does not make sence to have $f(x) \gg 1$ or $f(x) \ll 0$ So limit using a sigmoid squashing function.

LR: Maximum Likelihood Estimates

- The expression to the right of the argmax is the conditional data likelihood.

$$
W \leftarrow \arg \max _{W} \prod_{l} P\left(Y^{l} \mid X^{l}, W\right)
$$

Select W s:t likelihood of W generating the data is maximized
Y can take only values 0 or

$$
L(\vec{w}, b)=\prod_{i=1}^{n} p\left(\vec{x}_{i}\right)^{y_{k}}\left(1-p\left(\vec{x}_{i}\right)^{1-y_{i}}\right.
$$ 1, so only one of the two terms in the expression will be non-zero for any given Y^{\prime}; recall $m^{\wedge} 0=1$.

$l(W)=\sum_{l} Y^{l} \ln P\left(Y^{l}=1 \mid X^{l}, W\right)+\left(1-Y^{l}\right) \ln P\left(Y^{l}=0 \mid X^{l}, W\right)$
Working with logs is simpler and more effective computationally;
amenable to off-the-shelf optimization approaches; concave function in
W so gradient ascent will converge to global maximum (though many may exist). L(W) continupus, differentiable \qquad

Estimating Parameters using Gradient Descent

- Unfortunately, there is no closed form solution to maximizing $\mathrm{l}(\mathrm{W})$ with respect to W . Therefore, one common approach is to use gradient ascent, in which we work with the gradient, which is the vector of partial derivatives. The ith component of the vector gradient has the form
$l(W)=\sum_{i} Y^{l}\left(w_{0}+\sum_{i}^{n} w_{i} X_{i}^{l}\right)-\ln \left(1+\exp \left(w_{0}+\sum_{i}^{n} w_{i} X_{i}^{l}\right)\right)$
$\frac{\partial l(W)}{\partial}=\sum \quad$ Beginning with initial weights of zero, $\frac{(I)}{\partial w_{i}}=\sum X_{i}^{l}\left(Y^{l}-\hat{P}\left(Y^{l}=1 \mid X^{l}, W\right)\right) \quad$ we repeatedly update the weights in the direction of the gradient, changing the ith weight according to this
$w_{i} \leftarrow w_{i}+\eta \sum_{l} X_{i}^{l}\left(Y^{l}-\hat{P}\left(Y^{l}=1 \mid X^{l}, W\right) \begin{array}{c}\text { formula, where } \eta \text { is a small constant } \\ \text { e.g., } 0: 01)\end{array}\right.$ (e.g., 0:01) which determines the step
size. Effectively we are pulling weight vector closer to the examples where
ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahalhe makes.shaisidalakeginail.com
${ }_{330}$

Logistic Regression via Gradient Descent

| Stochastic update | Stochastic Gradient Descent |
| :--- | :--- |
| Let $\mathrm{W}=(0,0, \ldots)$. | $\nabla_{\mathrm{wj}}\left(\mathrm{W}_{\mathrm{t}}\right)$
 Partial derivate WRT to variable w_{j}
 of error function I (W) at point W_{t} |
| Repeat | |

For jin 0..n \#each variable
Foriin 1..m \#eachexample

$$
W_{j, t+1}=W_{j, t}+\alpha *(y-p) X_{j}
$$

untilconvergence (i.e., no big changesin W or error)
the term inside the parentheses is simply the prediction
error; pulling the W weight vector closer to the example
Batch LR: do a batch update of W_{i} after a sweep of the data
ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

Logistic Regression in R

- Explore Logistic Regression in \mathbf{R}

- Using Newton-Raphson
- Using general optimization
- Using GLM built-in function
- Using Gradient Descent (homework)
- Book: John Fox (2002), Sage, An R and S-PLUS

Companion to Applied Regression
Accessing man pages in R

- ?glm
- ?solve
- help.search("solve system") in R

Lecture 2 Outline

- Taylor Series: quadratic approximations
- Newton-Raphson quadratic convergence
- Multi-Dimensional Approximations (Planes)
- Directional Differentials, Total Differentials
- Vector plots, contour plots
- Gradient Descent
- Linear regression

- Predicting Click Through Rates

- Linear Regression (using gradient descent, MCMC version on 1/26)
- Logistic Regression (using gradient descent, MCMC on 1/26)
- Convexity, extreme values, mathematical programming

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

Accurate CTR Estimates are Crucial

$$
E C P M_{A d}=C T R_{A d} * B i d_{A d} * 1000
$$

- Very important to have accurate estimates of CTR $_{\text {Ad }}$ for a keyword or publisher page
- for ranking and for revenue purposes
- CTR drop exponentially with position [enquiro.com] ; NDCG Metric
- E.g., A true CTR for an Ad is $\mathbf{2 . 6 \%}$ must be shown 1,000 times before we are 95% confident that this estimate is within 1% of the true CTR, i.e., [1.6, 3.6]
- Very noisy!!

| | ML Features 1/2 |
| :--- | :--- |
| Heatures(KW,AD, LP)->CTR
 Historical data
 - CTR of KW based on other ads with this KW
 - Related terms CTRs
 - Appearance$\quad p_{i}=\frac{1}{1+e^{-\left(\beta_{0}+\beta_{1} x_{1, i}+\cdots+\beta_{k} x_{k, i}\right)}}$. | |

Appearance $\quad p_{i}=\frac{}{1+e^{-\left(\beta_{0}+\beta_{1} x_{1, i}+\cdots+\beta_{k} x_{k, i}\right)}}$

- \#words in title/body; capitalization; punctuation; word length
- Attention Capture
- Title/body contain action words, e.g., buy/join/etc
- Reputation
- .com/.net/etc, length of URL, \#segments in URL, numbers in URL
- Landing page quality
- Contains flash? Fraction of page in images? W3C compliant
- Text Relevance
- keyword match with ad title/body; fraction [Richardson et al., 2007]

ISM 280: Stochastic Gradient Descent 2011 James G. Shanahan James Shar ar

Estimating CTRs using ML

- Estimate CTR using $\operatorname{Pr}_{\text {Ad }}$ (Click|Keyword)
- Frame as machine learning problem
- E.g., Matthew Richardson, Ewa Dominowska, Robert

Ragno: Predicting clicks: estimating the click-through rate for new ads. WWW 2007 pages 521-530

- Model using Logistic Regression and MART (P ? decision trees using stochastic gradient de[Friedman 2000])
- Esteban Feuerstein, Pablo Heiber, Ja d D unez-

Viademonte and Ricardo Baeza-Y , O .ew Stochastic Algorithms for Placing Ads in C^{C} ed Search. LA-Web, Santiago, Chile 2007

- Historical data
- Related terms CTRs
- Appearance
- Attention Capture
- Reputation
- Landing page quality
- Text Relevance
- keyword match with ad title/body; fraction of match
- 10K unigrams (appearing in Ad title and Ad body); bi/trigrams did not bring significant improvement;
- Binary feature; 1 if term occurs in ad 0 otherwise
- Freq of term on web; in query logs
- Many others could be used!!!

Learning Setup

- Error measures

- Mean Squared error between predicted CTR and true CTR
- KL Divergence between the predicted CTR and true CTR (in both cases lower is better; 0 is best)
- Issues?
- Weighted?
- ??

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

Dataset

Proportion Data versus Binary Event

- 10,000 Advertisers

- 1 Million examples of <Keyword, Ad> -> CTR - (view <Keyword, Ad> as <TP, Ad>)
- Keywords are both exact and broad match
- 100,000 unique ad texts
- Required that each example had more than 100 views
- 70-10-20 data split (train, validation, test)
[Richardson et al.]

LR Modeling of Clicks and Impression

- In R, using glm() or you can pass in
- number.of.failures = binomial.denominator number.of.successes
- $y<-$ cbind(number.of.successes, number.of.failures)

[^1]
Logistic Regression: L-BFGS

The logistic regression was trained using the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method [16]. We used a cross-entropy loss function, with zero-mean Gaussian weight priors with a standard-deviation of σ. The best σ was chosen on the validation set from the values $[0.01,0.03,0.1,0.3,1,3$, $10,30,100]$. In all experiments, $\sigma=0.1$ was the best. As is commonly done, we also added a bias feature that is always set to 1 .

> Used regularized LR

| Results | | |
| :---: | :---: | :---: |
| Table 7: Comparison of results for a model trained and tested on ads with over 100 views vs. over 1000 views. | | |
| | \%Imprv | |
| Features | >100 views | >1000 views |
| Baseline ($\overline{C T R}$) | - | - |
| +Term CTR | 13.28 | 25.22 |
| +Related CTR | 19.67 | 32.92 |
| +Ad Quality | 23.45 | 33.90 |
| +Order Specificity | 28.97 | 40.51 |
| +Search Data | 29.47 | 41.88 |
| | | |

Estimating CTRs using ML

Intermediate Conclusions

- Richardson et al. report a very interesting approach and case study
- Despite realistic problem setting results are preliminary
- Transparency of model
- Using many features helps insulate from adversarial attacks (can be useful in adversarial detection)
- Applied to new ads but could be extended to deal with existing ads, display/graphical ads
- Homework!!
- But many issues remain!!

ISM 280: Stochastic Gradient Descent \quad 2011 James G. Shanahan James.Shanahan_AT_gmail.com $\quad 352$

Modeling CTR Challenges

- Extremely rare events (Typical CTRs $<1 \%$ for contextual)
- Biased dataset (the rich get richer; suboptimal locking)
- Very sparse (only a small percentage of <TP, Ad> get impressions; can impede generalization)
- Missed opportunities
- Accuracy of estimates
- ML approaches are hugely biased; bias correction [see Provost and Domingos; Platt]
- Scale and Speed
- Non-Stationary, new ads, changes in network
- Marginalization versus segmentation (resolution vs. sufficient data)
- .

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com 353

Exercise

- Mobile advertising is defined as showing ads on mobile phone contexts such within a browser or app (application).
- What types of features could be leverage within a mobile context to better target consumers?
- Are these features real-valued, nominal, categorical?
EMAIL:

Solve a System of Equations in R

Solve the system of linear equations.

$-2 x+3 y=8$
$3 x-y=-5$
multiply all terms in the second equation by 3
$-2 x+3 y=8$
$9 x-3 y=-15$
$7 x=-7 \quad$ \# add the two equations
Note: y has been eliminated, hence the name: method of elimination solve the above equation for x
$x=-1$
substitute x by -1 in the first equation
$-2(-1)+3 y=8$
solve the above equation for y
$2+3 y=8$
$3 y=6$
$y=2$
$>A<-$ matrix $(c(-2,3,3,-1), 2)$
$>A$
$[, 1][, 2]$
$[1] \quad-,2 \quad 3$
$[2] \quad 3 \quad-$,1
$>b$
$[1] 85$
$>b=c(8,-5)$
$>$ qr.solve(A, b) \# or solve(qr(A), b)
$2[1]-12$

Data in R

See example.DataFrames()

- Datatrames, matrices etc...
- Data input:
- From the keyboard.
- From an ascii (plain text) file.
- From the clipboard.
- Importing data (e.g., from SPSS).
- From a database-management system.
- From an R package.
- The R search path.
- Missing data.
- Numeric variables, character variables, and factors
- http://socserv.mcmaster.ca/jfox/Courses/R-

| Matrices | |
| :---: | :---: |
| See example.Matrices() | |
| See local file \qquad
 - To calculate inverse of a matrix
 - \# division for matrices
 - ginv() \# from library(MASS)
 - Other useful matrix commands
 - matrix()
 $-\operatorname{det}()$
 - diag()
 - t() \#transpose of a matrix
 - eigen()
 - solve() \#compute inverse or solve system of equations | |
| Matrix Algebra,The R Book, M. Crawley page 259
 ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com | 358 |

Debugging in \mathbf{R}

- Use browser() \#?browser commands like c/c++ debugger
- n \#next
- c \# continue
- Q quit
- For more details on debugging on R RTFM (see next slide for useful example) !!
- hitt://www.stats.uwo.ca/faculty/murdoch/software/debuggingR/de
bug.shtml
- Locating an error: traceback().
- Setting a breakpoint and examining the local environment of an executing function: browser().
- A simple interactive debugger: debug().
- A more sophisticated debugger: the debug package.

R Notes

- Matrix Ops
- Solve(a, b)
- \#solve a system of equations $A x=b$ by $b=A^{-1} b ; b$ is combination of the column in A .
- This generic function solves the equation $\mathrm{a} \% * \% \mathrm{x}=\mathrm{b}$ for x , where b can be either a vector or a matrix.
- a: a square numeric or complex matrix containing the coefficients of the linear system.
- b: a numeric or complex vector or matrix giving the righthand side(s) of the linear system.
- If missing, b is taken to be an identity matrix and solve will return the inverse of a.

Multi-Variable Unconstrained Optimization

- Because the objective function $f(\mathbf{x})$ is assumed to be differentiable, it possesses a gradient, denoted by f (\mathbf{x}), at each point \mathbf{x}. In particular, the gradient at a specific point $\mathbf{x}=\mathbf{x}$ ' is the vector whose elements are the respective partial derivatives evaluated at $\mathbf{x}=\mathbf{x}$, so that

$$
\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)
$$

| $F(x)=F\left(\mathbf{x}^{*}\right)+\left.\nabla F(\mathbf{x})^{T}\right\|_{x=x^{*}}\left(\mathbf{x}-\mathbf{x}^{*}\right)+\ldots \ldots . \quad$ MultiVariate Taylor | |
| :---: | :---: |
| where | |
| $\left.\nabla F(\mathbf{x})\right\|_{\mathrm{x}=\mathbf{x}^{*}}$ is the gradient of $\mathrm{F}(\mathrm{x})$ evaluated at x * | |
| I.E. | |
| $\begin{aligned} & \nabla F(\mathbf{x})=\left[\frac{\partial}{\partial x_{1}} F(\mathbf{x}), \frac{\partial}{\partial x_{2}} F(\mathbf{x}), \ldots, \frac{\partial}{\partial x_{n}} F(\mathbf{x})\right]^{2} \\ & \nabla F(\mathbf{x})=\left[F_{x_{1}}(\mathbf{x}), F_{x_{1}}(\mathbf{x}), F_{x n}(\mathbf{x}),\right]^{x} \\ & \nabla F(\mathbf{x})=\left[F_{x_{1}}^{\prime}(\mathbf{x}), F_{x_{1}}(\mathbf{x}), F_{x n}{ }^{\prime}(\mathbf{x}),\right]^{T} \end{aligned}$ | |
| $x^{i+1}=x^{i}-\frac{g\left(x^{i}\right)}{g^{\prime}\left(x^{i}\right)}$ Iteration function where $\mathrm{g}=\mathrm{f}^{\prime}(\mathrm{x})$ $x^{i+1}=x^{i}-\frac{f^{\prime}\left(x^{i}\right)}{f^{\prime \prime}\left(x^{i}\right)}$ Iteration function for finding roots of $\mathrm{f}^{\prime}(\mathrm{x})$ | |
| ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com | 369 |

```
F(x)=F(\mp@subsup{\mathbf{x}}{}{*})+\nablaF(\mathbf{x}\mp@subsup{)}{}{T}\mp@subsup{|}{x=x}{*}
where
\nablaF(x)}\mp@subsup{|}{x=x}{}\mathrm{ is the gradient of F(x) evaluated at X*
and
\nabla
```


| Appendix: Cheat Sheets |
| :--- |
| - Notation |
| - Calculus |
| - Algebra |
| - Matrices |
| |
| |

| | Notation | |
| :---: | :---: | :---: |
| Xor \boldsymbol{X} | Uppercase/Bold letters denotes a vector | |
| $\chi^{\text {x }}$ | Transpose of vector X | |
| ${ }^{x}$ | Lowercase letters denotes a variable | |
| x_{i} | A lowercase subscripted letter denotes a variable component of a vector | |
| y | Output or dependent variable | |
| Xor \boldsymbol{X} | Input vector | |
| n | The dimension or number of input features/variables | |
| Lor m | The number of training examples | |
| w | The weight vector component of a hyperplane | |
| b | Bias or threshold component of a hyperplane | |
| (W, b) | A hyperplane with weight vector W and bias component b | |
| s | Training sample | |
| γ | Margin | |
| ξ | Slack variable | |
| η | Learning rate | |
| Φ (1) | Input feature transformation/remapping function | |
| α | Dual variable or Lagrange multiplier | |
| d | VC dimension | |
| h | A hypothesis or model (e.g., a hyperplane (W, b) | |
| $\sum_{i=1}^{n} x_{i}$ | The sum $\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{x}_{\mathrm{n}}$ | 372 |

| Notation | | | | | | | |
|---|---|---|---|---|---|---|---|
| $\begin{array}{\|l\|} \hline\langle X, Z\rangle=\sum_{i=1}^{n} x_{i} z_{i} \\ \hline K(X, Z)=<\Phi(X), \Phi(Z)\rangle \end{array}$ | The inner product (or dot product) between two vector X and Z | | |
| | A kernel function whose effect is the dot product of two vectors that have been transformed into a new feature space induced by Φ. | | |
| $\prod_{i=1}^{n} x_{i}$ | The product $\mathrm{x}_{1} \times \mathrm{x}_{2} \times \ldots \times \mathrm{x}_{\mathrm{n}}$ | | |
| $\underset{x \in \Omega_{x}}{\arg \max _{x}} f(x)$ | The value of x that maximizes $f(x)$. For example,$\underset{x \in[1,2-3 \mid}{\arg \max } f\left(x^{2}\right)=-3$ | | |
| $\underset{x \in \Omega_{x}}{\arg \min } f(x)$ | The value of x that minimizes $f(x)$. For example,$\underset{x \in\{1,2,-3 \mid}{\arg \min } f\left(x^{2}\right)=1$ | | |
| $\\|\mathrm{W}\\|_{2}$ or $\\|\mathrm{w}\\|$ | $\sqrt[2]{\sum_{i=1}^{n}\left(w_{i}\right)^{2}}$ where W is a vector and w_{i} is a component of W Often referred to as the Euclidean Norm | | |
| $\\|\mathrm{W}\\|_{1}$ | $\sum_{i=1}^{n} a b s\left(w_{i}\right)$ where W is a vector and w_{i} is a component of W and abs(.) denotes the absolute value | | |
| \varnothing | Null set or empty set | | |
| ISM 280: Stochastic Gradient Descent | 2011 James G. Shanahan | James.Shanahan_AT_gmail.com | 373 |

| Cheat Sheets \& Tables
 http://tutorial.math.lamar.edu/ |
| :---: |
| - This is as many common algebra facts, properties, formulas, and functions that I could think of. There is also a page of common algebra errors included. Currently the cheat sheet is four pages long.
 - This is the same cheat sheet as above except it has been reduced so that it will fit onto the front and back of a single piece of paper. It contains all the information that the normal sized cheat sheet does.
 - Here is a set of common trig facts, properties and formulas. A unit circle (completely filled out) is also included. Currently this cheat sheet is four pages long.
 Trig Cheat Sheet (Reduced) - My standard trig cheat sheet reduced to fit onto the front and back of a single piece of paper. It contains all the information that the normal sized cheat sheet does.
 - These are a series of Calculus Cheat Sheets that covers most of a standard Calculus I course and a few topics from a Calculus II course.
 - Here is a set of common derivatives and integrals that are used somewhat regularly in a Calculus I or Calculus II class. Also included are reminders on several integration techniques. Currently this cheat sheet is four pages long.
 - My common derivatives and integrals
 table reduced to fit onto the front and back of a single piece of paper. It contains all the information that the normal sized table does.
 - Here is a list of Laplace transforms for a differential
 equations class. This table gives many of the commonly used Laplace transforms and
 formulas. |

Derivative

how much a function changes as its input changes

- The derivative is a measure of how a function changes as its input changes.
- Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity;
- The derivative of a function at a chosen input value describes the best linear approximation of the function near that input value.
- For a real-valued function of a single real variable, the derivative at a point equals the slope of the tangent line to the graph of the function at that point.
- In higher dimensions, the derivative of a function at a point is a linear transformation called the linearization.

| Unconstrained optimization | | | |
| :---: | :---: | :---: | :---: |
| For noncovex/non-concave | | | |
| $\mathrm{max} / \min \quad f(x)=f\left(x_{1}, \ldots, x_{n}\right)$ | | | |
| subject to $\quad x \in R^{n}$ | | | |
| - Locate candidate extrema using $f^{\prime}(x)=0$ and boundary points | | | |
| - Then candidate \mathbf{x} is | | | |
| - $f(x)$ is a convex function on S if and only if all principal minors of $H(x)$ are nonnegative for all $x \in S$ | | | |
| - $f(x)$ is a concave function on S if and only if the principal minors of $H(x)$ of order k_have the same sign as $(-1)^{k}$ for all $x \in S$ and all k | | | |
| ISM 280: Stochastic Gradient Descent | -2011 | James.Shanahan_AT_gmail.com | 380 |

[^0]: - In mathematics, the Taylor series is a representation of a function as an infinite sum of terms calculated from the values of its derivatives at a single point.
 $f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}$
 $F(x)=F\left(x^{*}\right)+\left.\frac{d}{d x} F(x)\right|_{x=x^{*}}\left(x-x^{*}\right)+\left.\frac{1}{2} \frac{d^{2}}{d x^{2}} F(x)\right|_{x=x^{*}}\left(x-x^{*}\right)^{2}$
 $+\left.\frac{1}{n!} \frac{d^{n}}{d x^{n}} F(x)\right|_{x=x^{*}}\left(x-x^{*}\right)^{n}+\ldots .$.
 $f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$
 ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahanan $\quad k$ James.Shanahan_AT_gmail.com

[^1]: The response variable contains only 0 's or 1 's, for example, 0 to represent dead
 individuals and 1 to represent live ones. There is a single column of numbers, in individuals and l to represent live ones. There is a single column of numbers, in
 contrast to proportion data (see above). The way SPlus treats this kind of contrast to proportion data (see above). The way SPlus treats this kind of data is'o
 assume that the 0 's and 1 's come from a binomial trial with sample size I. If til probability that an animal is dead is p, then the probability of obtaining y (where y is
 either dead or alive, 0 or 1) is given by an abbreviated form of the binomial trials VS. distribution with $n=1$, known as the Bemoulli distribution:

 $$
 P(y)=p^{y}(1-p)^{(1-y)}
 $$

 The random variable y has a mean of p and a variance of $p(1-p)$, and the object is to determine how the explanatory variables influence the value of p.
 The trick to using binary response variables effectively is to know when it is worth using them and when it is better to lump the successes and failures together and whatever. The question you need to ask yourself is this
 individual case?
 If the answer is 'yes', then analysis with a binary response variable is likely to be frutful. If the answer is 'no', then there is nothing to be gaimed, and you should reduce your data by aggregating the counts to the resolution at which each count does have a unique set of explanatory variables. For example, suppose that all your

