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Lecture 2 Outline

• Taylor Series: quadratic approximations 

• Newton-Raphson quadratic convergence

• Multi-Dimensional Approximations (Planes)

• Directional Differentials, Total Differentials

• Vector plots, contour plots

• Gradient Descent
– Linear regression

• Predicting Click Through Rates 
– Linear Regression 

– Logistic Regression
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Notes

• Gradient Descent
– Bisection, Newton-Raphson, Secant Method avoid the 

calculation of derivative f’(x) (see cheney, kincaid book, page 

126 for description and examples)

• Linear Regression
– Closed form

– Gradient descent

• My slides

– Maximum Likelihood

• http://www.mayin.org/ajayshah/KB/R/index.html (see 

MLE)

• http://www.mayin.org/ajayshah/KB/R/html/p3.html

– Bayesian Model

– Show in R 

–
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Disclaimer

• The Authors retains all rights, 
including copyrights and distribution 
rights. 

• No publication or further distribution 
in full or in part permitted without 
explicit written permission from the 
author

• Living vicariously!
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Lecture Outline

• R

• Lines, Tangents, Taylors Theorem, Roots of an equation 

• Newton-Raphson quadratic convergence

• Taylor Series: quadratic approximations 

• Multi-Dimensional Approximations (Planes)

• Directional Differentials, Total Differentials

• Vector plots, contour plots

• Gradient Descent
– Linear regression

• Predicting Click Through Rates 

– Linear Regression 

– Logistic Regression
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Intuitive

• Theory 

• Geometry

• Code

ISM 280: Stochastic Gradient Descent       ©  2011 James G. Shanahan         James.Shanahan_AT_gmail.com 8

R

• The S statistical programming language and 
computing environment has become the de-facto 
standard among machine learners, statisticians, 
operation research (kitchen sink, gateway). 

• The S language has two implementations: the 
commercial product S-PLUS, and the free, open-
source R. 

• Both are available for Windows and Unix/Linux 
systems; R, in addition, runs on Macintoshes. 

• This lecture series will use R. 
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R: A History (from 1993 –

• In computing, R is a programming language and software 
environment for general purpose statistical and analytics 
computing and graphics. 

• It is an implementation of the S programming language with 
lexical scoping semantics inspired by Scheme. 

– S was developed at Bell Laboratories in 1976; it was inspired by C and Unix 
(also developed at Bell Labs)

• R was created by Ross Ihaka and Robert Gentleman[2] at the 
University of Auckland, New Zealand, and is now developed 
by the R Development Core Team. 

• It is named partly after the first names of the first two R 
authors (Robert Gentleman and Ross Ihaka), and partly as a 
play on the name of S.[3]

• The R language has become a de facto standard among 
statisticians/engineers for the development of statistical 
and engineering software, and is widely used for statistical 
software development and data analysis. [Wikipedia]
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Scripting languages

• R has its own language
– R functionality has been made accessible from several 

scripting languages. E.g.,

• Python (by the RPy[17] interface package) 

• Perl (by the Statistics::R[18] module). 

• Packages:

– Optimization packages are available

– It can also be used as a general matrix calculation toolbox 
with comparable benchmark results to GNU Octave and its 

proprietary counterpart, MATLAB

– An RWeka[9] interface has been added to the popular data 

mining software Weka which allows the capability to 
read/write into the arff data format thus allowing the usage of 

data mining capabilities in Weka and statistical in R.
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Software and Licenses

• Available on Windows/Linux/Mac

• R is part of the GNU project. 
– Its source code is freely available under the GNU General 

Public License, and pre-compiled binary versions are 
provided for various operating systems. 

• R uses a command line interface, though several 
graphical user interfaces are available.
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R

• Intro R website
– http://cran.r-project.org/doc/manuals/R-intro.html#Graphics

• Nice examples
– http://www.mayin.org/ajayshah/KB/R/index.html
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Online Resources

• R Site with examples (French, Naïve Bayes)

– http://zoonek2.free.fr/UNIX/48_R/12.html#2

• Intro R website

– http://cran.r-project.org/doc/manuals/R-intro.html#Graphics

• Nice examples

– http://www.mayin.org/ajayshah/KB/R/index.html

• Steward Book website

– http://www.stewartcalculus.com/media/9_inside_chapters.php?subaction=showfu
ll&id=1090822711&archive=&start_from=&ucat=2&show_cat=2

• Taylor’s page at Stanford

– http://www-stat.stanford.edu/~jtaylo//

• Contour plots

– http://online.redwoods.cc.ca.us/instruct/darnold/MULTCALC/grad/grad.pdf

• Fox’s Book 

– 2009, http://socserv.socsci.mcmaster.ca/jfox/Courses/R-programming/index.html

– 2008  http://socserv.mcmaster.ca/jfox/Courses/R-course/index.html
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Online Resources

• R  http://www.r-project.org/

• R books online 
– http://www.math.ccu.edu.tw/~yshih/Rrefs/Rlecturenotes.pdf

– http://www.cran.r-project.org/doc/contrib/Faraway-PRA.pdf

• STATISTICS: AN INTRODUCTION USING R (Crawley)

– http://www.bio.ic.ac.uk/research/crawley/statistics/exercises.htm

• Resources at Stanford

– http://www-

stat.stanford.edu/~jtaylo/courses/stats191/R/logistic/flu.R

– http://www-

stat.stanford.edu/~jtaylo/courses/stats191/R/logistic/fluout.html
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Installing R and an Editor

• Installing an editor: EditPlus (for Windows)
– Useful Editor on Windows  (30 temporary license)

– http://www.brothersoft.com/download-editplus-16751.html

• Installing R (Windows, also on Linux and Mac)
– Click here to download an installer EXE:

http://cran.r-project.org/bin/windows/base/R-2.10.0-win32.exe

The distribution is distributed as a 30Mb installer R-2.10.0-win32.exe.

Just run this for a Windows-XP style installer. It contains all the R 

components, and you can select what want installed.

For more details, including command-line options for the installer and 

how to uninstall, see the rw-FAQ (http://cran.r-

project.org/bin/windows/base/rw-FAQ.html).
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Required Files And Things to do

• Examples available as Functions in script files
– Download JimisMLCourse_2.R

example.learnLSUsingClosedFormSolution = function() { 

dataEx1= matrix(c(……),

byrow=TRUE, 

ncol = 2)

colnames(dataEx1)=c("time", "temperature")

designMatrix=as.matrix(dataEx1[,1])  #input variable data

X=designMatrix=cbind(1, designMatrix)  #append a 
constant 1 for bias term

…….

y=targetValues=as.matrix(dataEx1[,2]);

When you see example.ABC () check R script file
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Install R Packages

• Install via command line or via the menu 
– install.packages("Rcmdr", dependencies=TRUE)

– install.packages('e1071')

– Install.packages (“MASS“)

– Install.packages(“tree“)

– Install.packages("Rcmdr“)

– Via MENU

• Packages->install; then select a repository and the 

package needed to be installed 

• To use a library just type

– library('Rcmdr')

– library('e1071')

See example.setupPackages() in course R script file
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# Rcmdr

# 
http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/insta
llation-notes.html

# install.packages("Rcmdr", dependencies=TRUE)

library(Rcmdr)

library(car)
mod.duncan <- lm(prestige ~ 
income + education, 
data=Duncan)
summary(mod.duncan)
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R Resources

• http://cran.r-project.org/doc/contrib/Lemon-
kickstart/index.html
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Rcmdr: a tool for demos and teaching

# Rcmdr

# 
http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/insta
llation-notes.html

#  install.packages("Rcmdr", dependencies=TRUE)

library(Rcmdr)

library(car)
mod.duncan <- lm(prestige ~ 
income + education, 
data=Duncan)
summary(mod.duncan)
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rcmdr()

Demonstrations in R
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RCommander
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RCmdr Output

example.BocPlotsAnd3DScatterPlots = function() {

# data()

Duncan <- read.table("http://socserv.mcmaster.ca/jfox/Courses/R-course/Duncan.txt")

Hist(Duncan$education, scale="frequency", breaks="Sturges", col="darkgray")

.Table <- table(Duncan$type)

.Table  # counts for type

100*.Table/sum(.Table)  # percentages for type

remove(.Table)

boxplot(Duncan$education, ylab="education")

#plot income as a function of job type

boxplot(income~type, ylab="income", xlab="type", data=Duncan)

#plot prestige as a function of job type

boxplot(prestige~type, ylab="prestige", xlab="type", data=Duncan)

library(Rcmdr)

# 3Dplot income as function of eduction and prestige 

# with residuals

scatter3d(Duncan$education, Duncan$income, Duncan$prestige, fit="linear", 

residuals=TRUE, bg="white", axis.scales=TRUE, grid=TRUE, ellipsoid=FALSE, 

xlab="education", ylab="income", zlab="prestige")

See example.BocPlotsAnd3DScatterPlots()
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Built in Optimization Tools in R

• ?optim
– General-purpose optimization based on Nelder–Mead, 

quasi-Newton and conjugate-gradient algorithms. It includes 

an option for box-constrained optimization and simulated 
annealing. 

– Usage

optim(par, fn, gr = NULL, ..., method = c("Nelder-Mead", 

"BFGS", "CG", "L-BFGS-B", "SANN"), lower = -Inf, upper = 

Inf, control = list(), hessian = FALSE) 

• ?constrOptim
– Minimise a function subject to linear inequality constraints 

using an adaptive barrier algorithm. 
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Lecture Outline

• R

• Lines, Tangents, Taylors Theorem

• Newton-Raphson quadratic convergence

• Taylor Series: quadratic approximations 

• Multi-Dimensional Approximations (Planes)

• Directional Differentials, Total Differentials

• Vector plots, contour plots

• Gradient Descent
– Linear regression

• Predicting Click Through Rates 

– Linear Regression 

– Logistic Regression
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Slope and Equation of a Line
• Slope = rise/run

• The slope of a line is defined as the rise over the 
run, m = ∆y/∆x.

• Given two points (x1,y1) and (x2,y2) on a line, the 
slope m of the line is 

(x1,y1)

(x2,y2)

rise

run

12

12

xx

yy

run

rise
mslope

−

−
===

y = mx +b
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Equation of Line from slope and intercept 

• Find the equation of the straight line that has slope m = 4  
and passes through the point (–1, –6).

• A: In this case, m = 4,x = –1 and y = –6.
– In the slope-intercept form of a straight line, I have y, m, x, and b. 

– So the only thing I don't have so far is a value for is b (which gives me 

the y-intercept). 

• Plug in m, y, x and solve for b:
y = mx + b

(–6) = (4)(–1) + b

–6 = –4 + b
–2 = b

• Then the line equation must be "y = 4x – 2".

Slope (m), intercept (b)
y = mx +b
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Equation of Line from a point and slope

• The other format for straight-line equations is 
called the "point-slope" form. 

• For this one, they give you a point (x1, y1) and a 
slope m, and have you plug it into this formula:

Point (x1, y1), Slope (m)

y – y1 = m(x – x1)

y = mx +b

versus
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Secants, Chord, Tangents

A secant line of a curve is 
a line that (locally) 
intersects two points on 
the curve. 

A chord is the portion of a 
secant that lies within the 
curve.

Tangent: Best straight-line 
approximation to the curve at 
that point
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Tangent Line: Best Approx of curve

• In geometry, the tangent line (or simply the tangent) 
to a curve at a given point is the straight line that "just 
touches" the curve at that point. 

• Best straight-line approximation to the curve at that 
point

– As it passes through the point of tangency, the tangent line 

is "going in the same direction" as the curve, and in this 
sense it is the best straight-line approximation to the curve at 

that point. The same definition applies to space curves and 

curves in n-dimensional Euclidean space.

• The word "tangent" comes from the Latin tangere, 
meaning "to touch".
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Limit of secant’s slope is that of the tangent 

• It can be used to approximate the tangent to a 
curve, at some point f. 

• If the secant to a curve is defined by two points, P
and Q, with P fixed and Q variable, as Q
approaches P along the curve, the direction of the 
secant approaches that of the tangent at P, 
assuming there is just one. 

• As a consequence, one could say that the limit of 
the secant's slope, or direction, is that of the 
tangent. 

• In calculus, this idea is the basis of the geometric 
definition of the derivative. 
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Slope of a Line

NOTE: The gradient is a generalization 

of the concept of slope for functions of 
more than one variable.

θθθθ
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How steep is a road or railroad? 

• One is by the angle in degrees, and the other is by the 
slope (m) in a percentage. 
– To calculate a percent slope simply you apply the following formula:

– If I cover one meter and I rise 30 cm the percentage of slope is 30%.

– Make attention don't confuse percentage and degrees. A 100% slope is 

a 45°slope... (try with the just explained method!)

– WARNING: Gradeability for vehicles is measured in percentage, and it 

differs from the slope in degrees, for example, a 100% slope is a 45 
degrees slope. The slope in percent and the slope in degrees are 

DIFFERENT.

(30/100)/100 =30%
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Slope

Positive Negative

Zero Undefined
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Slope versus Derivative?
• In mathematics, the slope or gradient of a line 

describes its steepness, incline, or grade. 

– A higher slope value indicates a steeper incline.

• Derivative (calculus) is

– A function of many (independent) variables

– The derivative is a measure of how a function changes as its 
input changes 

– The process of finding a derivative is called differentiation. 

– Corresponds to the slope of the line tangent to the curve 
(function of one variable)

single point
of intersection
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Slope of a secant line 

ax

f(x)

f(a)

f(a) - f(x)
a - x

Given two points (x, f(x)), and (a, f(a))

12

12

xx

yy

run

rise
mslope

−

−
===
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Slope of a (closer) secant line

ax

f(x)

f(a)

f(a) - f(x)
a - x

x

12

12

xx

yy

run

rise
mslope

−

−
===
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closer and closer…

a
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watch the slope...
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watch what x does...

ax
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The slope of the secant line gets closer and 
closer to the slope of the tangent line...
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As the values of x get closer and closer to a!

ax
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The slope of the secant lines 
gets closer

to the slope of the tangent line... 

...as the values of x
get closer to a

Translates to….
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lim
ax

f(x) - f(a)

x - a

Equation for the slope

Which gives us the the exact slope 
of the line tangent to the curve at a!

as x goes to a
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A VERY simple example...

want the slope
where a=2

xy = 2xy =

2
xy =

ISM 280: Stochastic Gradient Descent       ©  2011 James G. Shanahan         James.Shanahan_AT_gmail.com 46

ax

axax

ax

ax

ax

afxf

−

+−
=

−

−
=

−

− ))((
limlim

)()(
lim

22

4)2lim()lim( =+=+ xax

Now as x ���� a=2 we get 

12

12

xx

yy

run

rise
mslope

−

−
===

In the limit as x tends towards a
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Alternatively...

aa+h

f(a+h)

f(a)

f(x+h) - f(x)
(x+h) - x

= f(x+h) - f(x)
h

(For this particular curve, h is a negative value)

h
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Thus as h tends towards zero...

lim f(a+h) - f(a)

h
h      0

Or X���� a then

lim    f(x) - f(a)
x     a x - a

Give us a way to calculate the slope 
of the line tangent at a!
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Which one should I use?

(doesn’t really matter)
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A VERY simple example...

want the slope
where a=2

xy = 2xy =

2
xy =
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h

xhx

h

xfhxf
22

)(
lim

)()(
lim

−+
=

−+

h

hxh

h

xhxhx )2(
lim

2
lim

222 +
=

−++
=

4)2lim( =+ hx

As h     0

For X=2

Give two points on the secant …
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back to our example...

When a=2, 
the slope is 4

xy = 2xy =

2
xy = h

xhx

h

xfhxf

hh

22

00

)(
lim

)()(
lim

−+
=

−+
→→

ISM 280: Stochastic Gradient Descent       ©  2011 James G. Shanahan         James.Shanahan_AT_gmail.com 53

in conclusion...

• The derivative is the slope of the line tangent to 
the curve (evaluated at a point); having contact at 
a single point or along a line without crossing

• It is a limit (2 ways to define it)

• The rules of derivatives WILL help one forget 
these limit definitions..see next

• cool site to go to for additional explanations: 
http://archives.math.utk.edu/visual.calculus/2/
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Calculus 
gives you a formula 

for the gradient of the tangent
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Slope via Differential Calculus

• Through differential calculus, one can calculate the 
slope of the tangent line to a curve f(x) at a point x0.  
– Slope =f’(x0) 

• At each point x0, the derivative is the slope of a line
that is tangent to the curve.

• Differentiation is a method to compute the rate at 
which a dependent output y changes with respect to 
the change in the independent input x. 
– This rate of change is called the derivative of y with respect to x. 

– In more precise language, the dependence of y upon x means that 

y is a function of x. This functional relationship is often denoted y = 
ƒ(x), where ƒ denotes the function. If x and y are real numbers, 

and if the graph of y is plotted against x, the derivative measures 

the slope of this graph at each point.
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Equation of a line given a pt and slope

• Equation of a tangent line:
y - y0 =  f’(x0)(x - x0)  ## y-y0 = m(x-x0)

• Give a point (a, f(a)) and Tangent line to the curve 
at (a, f(a)), we can approximate f(x) in the vicinity 
of a. 
– Approximate f(x) linearly by the tangent 

• (i.e., take n=1 in the Taylor series)
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Using derivatives….

When a=2, f’(2)=4, 
the slope is 4

xy = 2xy =

2xy =

f’(x) = 2x when a =2
f’(x) = 2∗∗∗∗2=4

y – y0 =  f’(x0)(x – x0)
y – 4   = 4(x – 2)
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Given a Pt. and Slope...

x

f(x)

x

f’(x)

First derivative
f’(x) = 3x2 -12

-2 2

[=0 at maximum and minimum]

Using (x1, f(x1)) and m=f’(x1)
And the equation formula

y – y0=m(x – x0)
Plot the tangent line

f(x)= x3 - 12x + 1

f(x)= x3 - 12x + 1

f’(x)= 3x2 - 12

(X1, f(x1))

(X1, f’(x1)

Given a Pt. and Slope... Approximate f(x) with tangents
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Approximate a curve using a Tangent

• Given a point on the curve, (x0, f(x0)) and a slope, f’(x0), 
we can calculate the equation of the tangent at (x0, f(x0)) 
as follows:
– y - y0 =  f’(x0)(x - x0)        ## y-y0 = m(x-x0)

– f(X) – f(x0) = f’(x0)(X-x0) where X is a free variable, f’(x) is the slope

– Then for any X in the neighbourhood of X0 we can approximate it by 

the tangent at (x, f(x0))

– Of course it will not be that accurate but can be reasonably approximate 

if X is not too far from x0.

X0

(X, f(x0))

X0

(x0, f(x0))

x

(x, fTangent(x))

(x, f(x))

Error(x) = f(x)-fTangent(x)
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R Basics

• R via a GUI  R Commander
– Examine data; plot data

• Scripting in R
– Variables, vectors, data.frames, functions, graphics

• Check out example.GettingStarted.Chapter1.Fox()

example.GettingStarted.Chapter1.Fox()
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RCommander
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R Basics

• R via a GUI  R Commander
– Examine data; plot data

• Scripting in R
– Variables, vectors, data.frames, functions, graphics

• Check out example.GettingStarted.Chapter1.Fox()

example.GettingStarted.Chapter1.Fox()
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Simple Plotting Example 

• # Example 1 

• # make a very simple plot 

x <- c(1,3,6,9,12) 

y <- c(1.5,2,7,8,15) 

plot(x,y)
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Plotting in R: plot character

• Plot symbols are set within the plot() function by 
setting the pch parameter (plot character?) equal to 
an integer between 1 and 25.
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Plot a points and then …a line

x <- c(1,3,6,9,12) 

y <- c(1.5,2,7,8,15) 

# Example 2. Draw a plot, set a bunch of parameters.

plot(x,y, xlab="x axis", ylab="y axis", main="my plot", 
ylim=c(0,20), xlim=c(0,20), pch=15, col="blue")
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Plotting examples
par(mfrow=c(2,3)) 

plot(x, type="p", main="plot(x,type=\"p\")") # Note the escaped 
quotes \" 

plot(x, type="l", main="plot(x, type=\"l\")") 

plot(x, type="b“, main="plot(x, type=\"b\")") 

plot(x, type="h“, main="plot(x, type=\"h\")") 

plot(x, type="s", main="plot(x, type=\"s\")") 

plot(x, type="n", main="plot(x, type=\"n\")")
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Different symbols and line types

par(mfrow=c(2,2))

# Different symbols and line types

plot(x, pch="x")

plot(x, type="l", lty=2)

plot(x, pch="x",  cex=2)

plot(x, type="l", lwd=2)
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Plot a line

x <- c(1,3,6,9,12) 

y <- c(1.5,2,7,8,15) 

# Example 2. Draw a plot, set a bunch of parameters.

plot(x,y, xlab="x axis", ylab="y axis", main="my plot", 
ylim=c(0,20), xlim=c(0,20), pch=15, col="blue")

# fit a line to the points

myline.fit <- lm(y ~ x)

# get information about the fit

summary(myline.fit)

# draw the fit line on the plot

abline(myline.fit)

ISM 280: Stochastic Gradient Descent       ©  2011 James G. Shanahan         James.Shanahan_AT_gmail.com 69

Add points to graph

# Example 3 

# add some more points to the graph 

x2 <- c(0.5, 3, 5, 8, 12) 

y2 <- c(0.8, 1, 2, 4, 6) 

points(x2, y2, pch=16, col="green")
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• The text() function allows us to put text on the plot 
where we want it. An obvious use is to label a line or 
group of points.

text(c(2,2),c(37,35),labels=c("Non-case","Case"))
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Simple Plotting Example with text 

# Example 1 

# make a very simple plot 

x <- c(1,3,6,9,12) 

y <- c(1.5,2,7,8,15) 

plot(x,y)

text(c(3,10),c(3,10),labels=c("Case1","Case4"), 
col=“red”)

The text() function allows 
us to put text on the plot 

where we want it. 
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Plotting Example with margin text

# Example 1 

# make a very simple plot 

x <- c(1,3,6,9,12) 

y <- c(1.5,2,7,8,15) 

plot(x,y)

text(c(3,10),c(3,10),labels=c("Case1","Case4"), 
col=“red”)

mtext(c("Low","High"),side=1,line=2,at=c(3,10), 
col="blue")

Text labels can also be placed in the 

margins of a plot using 
the mtext() function. This would place 

the words "Low" and "High" on the 

second line below the X axis centered 
at 3 and 10 units.



13

ISM 280: Stochastic Gradient Descent       ©  2011 James G. Shanahan         James.Shanahan_AT_gmail.com 73

Two y-axis example
#http://rgraphics.limnology.wisc.edu/line.php

rm(list = ls())      # Clear all variables

graphics.off()    # Close graphics windows

# Generate sample time series data

ti = 1:50                                   # Generate 50 sample time steps

# Generate 50 stochastic data points for time series y1

y1 = 8 + rnorm(50)

# Plot the y1 data

par(oma=c(2,2,2,4))     # Set outer margin areas (only necessary in order to plot extra y-axis)

plot(ti, y1,                                   # Data to plot - x, y

type="b",                               # Plot lines and points. Use "p" for points only, "l" for lines only

main="Time series plot",     # Main title for the plot

xlab="Time",                         # Label for the x-axis

ylab="Response (y1 & y2)", # Label for the y-axis

font.lab=2,           # Font to use for the axis labels: 1=plain text, 2=bold, 3=italic, 4=bold italic

ylim=c(0,20),        # Range for the y-axis; "xlim" does same for x-axis

xaxp=c(0,50,5),    # X-axis min, max and number of intervals; "yaxp" does same for y-axis

bty="l")                  # Box around plot to contain only left and lower lines

http://rgraphics.limnology.wisc.edu/
line.php
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Two y-axis example

http://rgraphics.limnology.wisc.edu/line.php
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Functions in R

fx=function(x) {

2*x^3 - 3*x^2 - 12*x + 6 

}

x=seq(-4, 4, by=0.1)

plot(x, fx(x), main="my graph", xlab="x", 
ylab="2*x^3 - 3*x^2 - 12*x + 6", pch=", " type="l")

grid()
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R Graphics Basics: Save plots to  PDF
## R code and examples for "Modern Applied Statistics Using R"

##      Lecture 3: Graphics

## Alexander.Ploner@ki.se   2007-09-17

# The basic high-level plot

x = rnorm(25)

y = 2 + 3*x + rnorm(25)

plot(x)

# Create a pdf file in home directory

setwd("~")

pdf("test.pdf")

plot(x)

dev.off()

# Nice trick - works if a pdf viewer is installed

viewer = options()$pdfviewer

system(paste(viewer, "test.pdf"))

## Note: we can easily create multipage plots

pdf("test2.pdf")

plot(x, main="Page 1")

plot(y, main="Page 2")

dev.off()

[http://www.meb.ki.se/~al
eplo/R2007/Rcourse03.R] 

See example.PDF()
Useful for reporting
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Putting it all together …(PIAT)

x = rnorm(25)

y = 2 + 3*x + rnorm(25)

par(mfrow=c(1,2)

# Common text elements

plot(x, main="Changing titles and labels", sub="Extra subtitles go here",

xlab="Index of observation", ylab="Observation")

# Adding extra points and lines; we switch to scatterplot just for fun

plot(x,y)

points(mean(x), mean(y), pch="X", cex=2, font=2)

lines(range(x), range(y))

# Adding text and arrows

text(max(x), min(y), "Center", col=2, adj=c(1,0))

arrows(max(x)-strwidth("Center"), min(y), mean(x), mean(y), col="red", 
lwd=2)
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More Graphic Examples

####

#See more examples from 
http://www.meb.ki.se/~aleplo/R2007/Rcourse03.R

####
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Given a Pt. and Slope...

x

f(x)

x

f’(x)

First derivative
f’(x) = 3x2 -12

-2 2

[f(x)==0 at maximum and minimum]

Using (x1, f(x1)) and m=f’(x1)
And the equation formula

y-y0=m(x-x0)
Plot the tangent line

f(x)= x3 - 12x + 1

f(x)= x3 - 12x + 1

f’(x)= 3x2 - 12

(X1, f(x1))

(X1, f’(x1)

Given a Pt. and Slope... Approximate f(x) with tangents
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Approximate a curve using a Tangent

• Given a point on the curve, (x0, f(x0)) and a slope, f’(x0), 
we can calculate the equation of the tangent at (x0, f(x0)) 
as follows:
– y - y0 =  f’(x0)(x - x0)        ## y-y0 = m(x-x0)

– f(X) – f(x0) = f’(x0)(X-x0) where X is a free variable, f’(x) is the slope

– Then for any X in the neighbourhood of X0 we can approximate it by 

the tangent at (x, f(x0))

– Of course it will not be that accurate but can be reasonably approximate 

if X is not too far from x0.

X0

(X, f(x0))

X0

(x0, f(x0))

x

(x, fTangent(x))

(x, f(x))

Error(x) = f(x)-fTangent(x)
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Guidelines for Homework

• GENERAL Guidelines for Homework

– Please provide code, graphs and comments in a PDF report. Don’t 
forget to put your name, email and date of submission on each 

report.

– Please provide R code in separate file. Please comment your so that 

I or anybody else can understand it and please cross reference code 
with problem numbers

– If you have questions please raise them in class or via email or 
during office hours

– Homework is due on TBD. 

– Please submit your homework by email to: 
James.Shanahan@gmail.com with the subject “ISM 280 2011 

Homework 1

– Have fun!
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Exercise 1.1

• Given function f(x)= x3 - 12x + 1 approximate the 
curve at (-1, f(-1)) in the x range of [-3, 3] using the 
tangent to (-1, f(-1)) [also know as the first order 
Taylor approximation]

• In R, plot the curves f(x), f’(x) and the tangent 
approximation  and label appropriately

• Add text and arrows to highlight (-1,f(-1)) and its 
tangent line

• Comment on the approximation of f(x) at x = -3 

fTangent (x= -3 )

• HINT: review material on slides before this and 
after this.
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Derivatives in R using deriv(), D()

fx=function(x) {

2*x^3 - 3*x^2 - 12*x + 6 

}

fprime = function (x){

6*x^2 - 6 * x - 12

}

dx2x <- deriv(~ x^2, "x", TRUE) 

> dx2x

function (x) 

{

.value <- x^2

.grad <- array(0, c(length(.value), 1L), list(NULL, c("x")))

.grad[, "x"] <- 2 * x

attr(.value, "gradient") <- .grad

.value

}

F(x) =X^2; f’(x) = 2x;   df(x)/dx)=f’(x)

See example.drawTangent() 

>dx2x(2)
4
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Derivatives in R using deriv(), D()

> dx2x <- deriv(~ x^2, "x", TRUE) ; dx2x

function (x) 

{

.value <- x^2

.grad <- array(0, c(length(.value), 1L), list(NULL, 
c("x")))

.grad[, "x"] <- 2 * x

attr(.value, "gradient") <- .grad

.value

}

F(x) =X^2; f’(x) = 2x;   df(x)/dx)=f’(x)

C:\jimi\Projects\R\GradientDescent\JimisMLCourse.R

See example.drawTangent() 
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Tangent Example: f(x), f’(x)
fx=function(x) {

2*x^3 - 3*x^2 - 12*x + 6 

}

fprime = function (x){   6*x^2 - 6 * x – 12 }

fprime.deriv <- deriv(~ 2*x^3 - 3*x^2 - 12*x + 6, "x", TRUE)

#given a point on the curve and a slope

#chose x at index 10

x=seq(-4, 4, by=0.1)

i=11

x0=x[i]

f_x0 = fx(x0) #or y0

slope = fprime(x0)

tangentLine = function(x, slope, x0, y0) {

y=slope*(x-x0) +y0

}

y=tangentLine(x, slope, x0, f_x0)     

par(mfrow = c(2, 1)) # split display region into to 2 rows and one column (i.e., 
2 regions) 

x=seq(-4, 4, by=0.1)

f(x) = 2*x^3 - 3*x^2 - 12*x + 6 

f’(x) or fprime(x) 

f’(x) or fprime(x) 

approx curve using tangent at (x0, f(x0))

tangent given (x0, f(x0)) and slope

BlaExercise
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Tangent Example: plotting

par(mfrow = c(2, 1)) # split display region into to 2 rows and one column (i.e., 2 regions) 

x=seq(-4, 4, by=0.1)

plot(x, fx(x),  main="2*x^3 - 3*x^2 - 12*x + 6", xlab="x", ylab="f(x)", pch="")

lines(x, fx(x), lty=1, col="red")

lines(x, y,col="blue")

points(x0, f_x0, col="blue", bg="blue", pch=21)

text(x0-0.5, f_x0+10, paste("(", x0, ", ", f_x0, ")", sep=""))

grid()

plot(x, fprime(x), main="f'(x), i.e., slope of tangent to f(x) at x\n f'(x)=6*x^2 - 6 * x - 12",

ylab="fprime(x)", pch="")

lines(x, fprime(x), lty=3, col="red")  #hand calculate slope

lines(x, attr(fprime.deriv(x), "gradient"), lty=2, col="green")  #R-calculated slope

text(x0-0.5, slope+10, paste("(", x0, ", ", slope, ")", sep=""))

points(x0, slope, col="blue", bg="blue", pch=21)

grid()

See example.drawTangent() 

BlaExercise
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Exercise 1.1

the point of contact of the 
tangent and the curve is  
(-3, -39)

Slope is 60 (f’(-3)=60)
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Summary on Tangent Approximations

• Remember 
– Every point on the curve has a tangent

– A tangent is a straight line

– The tangent has its own equation

– The tangent has equation  y = mx + c

– This equation is different for every position of the tangent 

since the slope (f’(x)) is different.

(x1)f' slope and f(x1)) (x1,given  f(x1)) (x1,point at  tangent  ofeqn    )1)(1(')1()(

)1)(1('1)(

)1('  m and f(x)ylet     )1)(1('1)(

m slope a and y1) (x1,point  a give      )1(1

=−+=

−+=

==−=−

−=−

xxxfxfxf

xxxfyxf

xfxxxfyxf

xxmyy

xx1

f(x)= x3 - 12x + 1

(x1, f(x1))
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A more complicated example

Y=mx+c

y-y0=m(x-x0)
Let m = f’(x0)
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Lecture Outline

• R

• Lines, Tangents, Taylors Theorem

• Turning points, Roots, Newton-Raphson

• Taylor Series: quadratic approximations 

• Multi-Dimensional Approximations (Planes)

• Directional Differentials, Total Differentials

• Vector plots, contour plots

• Gradient Descent
– Linear regression

• Predicting Click Through Rates 

– Linear Regression 

– Logistic Regression
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At the turning point  .   .   .
• The tangent will be horizontal

• The gradient of the tangent must be ???

0
• Find the roots of the gradient function

– Find the root or zeros of an equation analytically by hand or 

numerically using iterative approaches such as Newton-
Raphson, gradient descent, etc.

– What value(s) of x will f’(x) =0 (gradient be zero).
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Given a Pt. and Slope...

x

f(x)

x

f’(x)
First derivative
f’(x) = 3x2 -12

-2 2

[=0 at maximum and minimum]

Using (x1, f(x1)) and m=f’(x1)
And the equation formula

y-y0=m(x-x0)
Plot the tangent line

f(x)= x3 - 12x + 1

f(x)= x3 - 12x + 1

f’(x)= 3x2 - 12

(X1, f(x1))

(X1, f’(x1)

Given a Pt. and Slope... Approximate f(x) with tangents
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focus on the gradient of the tangent

Gradient > 0

Gradient = 0 Gradient = 0

Gradient < 0
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Finding turning points of f(x) by hand via f’(x)=0

f(x) = 2x
3 – 3x

2 – 12x + 6          # Function

f’(x) = 6x2 – 6x – 12                   # Gradient formula 

Since the gradient of the tangent at the turning point is 0

6x2 – 6x – 12 = 0

x2 – x – 2 = 0

(x – 2)(x – 1) = 0

x = 2  or x =  – 1  

When  x = 2,  f(2) = 2(2)3 – 3(2)2 – 12(2) + 6 = – 14 

When  x = –1, f(-1) = 2(–1)3 – 3(– 1)2 – 12(– 1) + 6 = 13 

Two turning points

Turning Points (-1, 13) and (2, -14)

STEP 1

STEP 2
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Calculate the coordinates of the 
turning points of the graph

(–1 ; 13)

(2 ; –14)

USING CALCULUS  and 

Gradient Descent
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Root Finding Algorithms

• Newton's Method Module

• Bisection Method Module [wont discuss here]

• Regula Falsi Method Module [wont discuss here]

• Fixed Point Iteration Module [wont discuss here]

• Secant Method Module [wont discuss here]

• Click for Animations of the different approaches
– http://math.fullerton.edu/mathews/a2001/Animations/Animati

ons2.html

•

For the gradient function in our case
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Newton-Raphson Method: A History

• Solving a nonlinear equation of the form f(x)=0

• Isaac Newton developed an initial version of this 
algorithm in 1669 and published it in 1685; 
Raphson tweaked it 1690

• Extending it to a system of two equations 

– In 1740, Thomas Simpson described Newton's method as 
an iterative method for solving general nonlinear equations 

using fluxional calculus, essentially giving the description 

above

– In the same publication, Simpson also gives the 
generalization to systems of two equations and notes that 

Newton's method can be used for solving optimization 

problems by setting the gradient to zero.

http://en.wikipedia.org/wiki/Newton%27s_method
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Finding the roots f(x) iteratively

• An important problem in mathematics and 
statistics is finding values of x to satisfy f(x) = 0. 
– Such values are called the roots of the equation and also 

known as the zeros of f(x).

• Can solve analytically as we did above 

• OR

• Various methods exist to numerically determine 
the roots of an equation or multiple equations
– Newton's method or the Newton-Raphson method is a 

procedure or algorithm for approximating the zeros of a 

function f (or, equivalently, the roots of an equation f(x) = 0). 

– Bisecting Method [wont discuss here]

– Secant Method [wont discuss here]

In our case f(x) is f’(x) since we wish to solve f’(x)=0
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Finding the roots f(x) iteratively

• An important problem in mathematics and 
statistics is finding values of x to satisfy f(x) = 0. 
– Such values are called the roots of the equation and also 

known as the zeros of f(x).

• Can solve analytically as we did above OR

• Various methods exist to numerically determine 
the roots of an equation or multiple equations

– Newton's method or the Newton-Raphson method is a 
procedure or algorithm for approximating the zeros of a 

function f (or, equivalently, the roots of an equation f(x) = 0). 

– Bisecting Method [wont discuss here]

– Secant Method [wont discuss here]

In our case f(x) is f’(x) since we wish to solve f’(x)=0
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Recall: approximate a curve using a Tangent

• Given a point on the curve, (x0, f(x0)) and a slope, f’(x0), we can 
calculate the equation of the tangent at (x0, f(x0)) 

– y - y0 =  f’(x0)(x - x0)        ## y-y0 = m(x-x0)

– f(X) = f(x0) + f’(x0)(X-x0) where X is a free variable

• Then for any X1 in the neighbourhood of X0 we can approximate f(x1) 
it by the tangent at (x, f(x0)), 

• i.e., f(x1) ~ ftangent(x1) =f(x0) + f’(x0)(X1-x0) 

X0

(X, f(x0))

X0

(x0, f(x0))

x1

(x1, fTangent(x1))

(x, f(x))

Error(x1) = f(x1) – fTangent(x1)
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Focus on Convex Univariate problems

Local and global maxima and 
minima for cos(3πx)/x, 0.1≤x≤1.1

For the moment

Convex problem
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Nonlinear Equations – Iterative Methods

• Computers can NOT solve the roots in closed form (easily)

• Iterative Algorithm
– Start from an initial value x0 as a candidate root (and also bracket the 

extrema).

– Generate a sequence of iterate xn-1, xn, xn+1 which hopefully converges to 
the solution x* (the root of f(x))

– Iterates are generated according to an iteration function F: xn+1=F(xn)

Question
• When does it converge to correct solution ?

• What is the convergence rate ?

Find the roots
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Given a Pt. and Slope...

First derivative
f’(x) = 3x2 -12

[=0 at maximum and minimum]

Using (x1, f(x1)) and m=f’(x1)
And the equation formula

y-y0=m(x-x0)

f(x)= x3 - 12x + 1

Find roots of f’(x) to give us candidate turning points

x

f(x)
f(x)= x3 - 12x + 1

f’(x)= 3x2 - 12

(X1, f(x1))

(X1, f’(x1)

x

f’(x)

-2 2
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Newton-Raphson Method – Graphical View

))((')()( 000
xxxfxfxf −+≈

))(,( 00
xfx

1. Initial guess: x0  Letting i=0 xi =x0 

2. Approximate f(x) by tangent at (xi, f(xi)) # (x0, f(x0)) for the first iteration
3. Find where fTangent_x0(x) = 0, i.e., xi+1; better approx. of the root (x*)
4. Repeat until convergence

x

f(x)

f(x)= x3 - 12x + 1

f’(x)= 3x2 - 12

(X1, f(x1))

(X1, f’(x1)

x

f’(x)

-2 2

Using (x0, f(x0)) and m=f’(x0)
And the equation formula

f(x)=f(x0) + f’(x0)(x-x0)
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Deriving Newton-Raphson Method

• Solving a nonlinear equation of the form f(x)=0

• Generate a sequence of iterate xn-1, xn, xn+1 which 
hopefully converges to the solution x* (the root of f(x))

as written sometimes              )()(

                            
)('

)(

)())(('

0))f(x (i.e.,root  a desire         We))((')(0

 gsurroundinx   ))((')()(

 gsurroundinx   ))((')()(
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0000
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xfx
dx

df
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functionIterationx
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xf
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xfxxxf

xxxfxf
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xxxxfxfxf
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(Xi+1,f(Xi+1))
(Xi+1,0)
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Newton-Raphson (NR) Method

Consists of linearizing the system.

Want to solve f(x)=0 → Replace f(x) with its linearized
version and solve.

Note: at each step need to evaluate f and f’

functionIterationxfx
dx

df
xx

xxx
dx

df
xfxf

lor Series order Tayxxx
dx

df
xfxf

kkkk

kkkkk

st

               )()(

))(()()(

1                ))(()()(

1

1

11

***

−

+

++







−=⇒

−+=

−+=
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Newton-Raphson Method – Algorithm

Define iteration

Do  k = 0  to ….

until convergence

)()(

1

1 iiii
xfx

dx

df
xx

−

+







−=

x1, x2, x3…, … ,x*
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Newton-Raphson Method – Graphical View

))((')()( 000
xxxfxfxf −+≈

))(,( 00
xfx

1. Initial guess: x0  Letting i=0 xi =x0 

2. Approximate f(x) by tangent at (xi, f(xi)) # (x0, f(x0)) for the first iteration
3. Find where fTangent_x0(x) = 0, i.e., xi+1; better approx. of the root (x*)
4. Repeat until convergence

)()(

1

1 iiii xfx
dx

df
xx

−

+







−=x

f(x)
f(x)= x3 - 12x 
+ 1

f’(x)= 3x2 -
12

(X1, f(x1))

(X1, f’(x1)

x

f’(x)

-
2

2
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demo2

Newton-Raphson Method – Convergence
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X

f(x)

Convergence Depends on a Good Initial Guess

0x

1x
2x 0x

1x

Newton-Raphson Method – Convergence
Local Convergence
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Convergence Depends on a Good Initial Guess

Newton-Raphson Method – Convergence
Local Convergence
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Homework Problem: Find 2nd approx.

3f(x)=x +2x-4 2f'(x)=3x +2

f ( 1 ) = 1 + 2 - 4 = - 1

f '( 1 ) = 3 + 2 = 5 2

-1 1
x = 1 - = 1 + = 1 .2

5 5

))((')()( 000 xxxfxfxf −+≈

functionIterationxfx
dx

df
xx

xf

xf
x

iiii

i

i
i    )()(

)('

)(
1

1

−

+







−=+−=

3Taking 1 as the first approximation of a root of x +2x-4=0,

use the Newton-Raphson method to calculate the second approximation

of this root.
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Exercise 1.2
example.FindZerosOfDerivativeFunction() 

• In R write a function that:

1. Find the zeros of the function x^3+2*x-4, 1 in the interval c(0.5, 
1.5) starting with an initial guess of 1.4 using the Newton-
Raphson method. 

2. Plot the progress of the algorithm (See figure below for 
inspiration)

3. Comment on the convergence

4. HINT: you can use a publicly available function: 
newton.method(function(x) x^3+2*x-4, 1, c(0.5, 1.5)) but for an 
extra little challenge please code your own Newton.Rapshon
method and plot the progress

5. Save graphic animations to PDF (using pdf())
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Exercise 1.2: Solution

#find sequence of NewtonRaphson zero estimates for a function

# plots the sequence

example.FindZerosOfDerivativeFunction() {

par(mfrow=c(2,2))

x = seq(0.5, 1.5, len=40)

plot(x, x^3+2*x-4, type="l")

grid()

abline(h=0)

abline(v=1, col="blue")

newton.method(function(x) x^3+2*x-4, 1, c(0.5, 1.5))

grid()

}

example.FindZerosOfDerivativeFunction() 
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Exercise 1.3

1

3 2

Taking x =1, and using two iterations,obtain an approximation to

a root of theequation. x +3x -x-2 by the Newton-Raphson method.

f (1 )= 1 + 3 -1 -2 = 1
2f '( x ) = 3 x + 6 x - 1

f '( 1 ) = 3 + 6 - 1 = 8

2

1
u = 1 - = . 8 7 5

8

3 2f(.875)=(.875) +3(.875) -(.875)-2

=.6699+2.2969-.875-2=.0918

2'(.875) 3(.875) 6(.875) 1 2.297 5.25 1 6.547f = + − = + − =

3

. 0 9 1 8
u = .8 7 5 - = .8 7 5 - .0 1 4 0 = .8 6 1 0

6 .5 4 7
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Let’s assume convex problems

• One global maximum or minimum of a univariate
function, e.g., f(x) =x^2
– Will provide more formal definition shortly

• Assume function f(x) =x^2, find the x value that 
minimizes f(x)

The value of x that maximises f(x). For example,

1)(minarg
2

}3,2,1{

=
−∈

xf
x

)(minarg xf
Xx Ω∈
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Root-Finding of f(x) in R using NR Alg.

#find the squareroot of 10;  #x^2 = 4 then f(x) = x^2-4

f=function(x){x^2-4}

fd=function(x){2*x}

newtonRaphsonInOneDim=function(x0, n, xRange, f, fd){

x=x0

for (i in 1:n){

x=x-(f(x)/fd(x))    #browser()

}

list(x) # return x

}

root = newtonRaphsonInOneDim(5.2, 4, xRange, f, fd)

F(x)=X^2 - 4

Newton-Raphson Algorithm
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Find zero of f(x) in R with Graphics
#find the squareroot of 10;  #x^2 = 4 then f(x) = x^2-4

f=function(x){x^2-4}    #f(x)

fd=function(x){2*x}      #f’(x)

newtonRaphsonInOneDim=function(x0, n, xRange, f, fd){

x=x0

plot(xRange, f(xRange), type="l")

grid()

for (i in 1:n){

print(paste("interation", i, "x, -f(x)/fd(x), newX", x, -(f(x)/fd(x)), x-(f(x)/fd(x))))

slope = fd(x)

intercept = -1*slope*x +f(x)

abline(intercept, slope, lty=2, col="red")

points(x, f(x), col="blue", bg="blue", pch=21)

abline(v=x, col="green");   abline(h=0)

text(x-.01, f(x)+3, i)

text(x-.2, f(x)+12, format(x, digits = 2, nsmall = 3))

x=x-(f(x)/fd(x))    #browser()

}

list(x) # return x

}

newtonRaphsonInOneDim(5.2, 4, xRange, f, fd)

F(x)=X^2 - 4
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Find the root of f(x) = x^2 - 4

F(x)=X^2 - 4
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Using built-in method for NR method
par(mfrow=c(3,2))

newton.method(function(x) x^2, -2, c(-4, 4))
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Exercise (not required)

• Calculate the root of the following equation
– x^3

– HINT: use newton.method(function(x) x^3, -4, c(-10, 4))

– How many iterations does of the Newton-Raphson

algorithm?

• Save graphic animations to PDF (using pdf())
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Homework Problem: Find 2nd approx.

3f(x)=x +2x-4 2f'(x)=3x +2

f ( 1 ) = 1 + 2 - 4 = - 1

f '( 1 ) = 3 + 2 = 5 2

-1 1
x = 1 - = 1 + = 1 .2

5 5

))((')()( 000 xxxfxfxf −+≈

functionIterationx
xf

xf
x i

i

i
i    

)('

)(1 +−=+

3Taking 1 as the first approximation of a root of x +2x-4=0,

use the Newton-Raphson method to calculate the second approximation

of this root.
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Homework Solution: Plot 2nd … 

#find sequence of NewtonRaphson zero estimates for a 
function

# plots the sequence

example.FindZerosOfDerivativeFunction() {

par(mfrow=c(2,2))

x = seq(0.5, 1.5, len=40)

plot(x, x^3+2*x-4, type="l")

grid()

abline(h=0)

abline(v=1, col="blue")

newton.method(function(x) x^3+2*x-4, 1, c(0.5, 1.5))

grid()

}
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Finding the roots f(x) iteratively

• An important problem in mathematics and statistics is 
finding values of x to satisfy f(x) = 0. 
– Such values are called the roots of the equation and also known as 

the zeros of f(x).

– Can solve analytically as we did above OR

– Various methods exist to numerically determine the roots of an 

equation or multiple equations

• Newton's method or the Newton-Raphson method 

• Bisecting Method [wont discuss here]

• Secant Method [wont discuss here]

In our case f(x) is f’(x) since we wish to solve f’(x)=0
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Finding the roots f(x) iteratively

• An important problem in mathematics and 
statistics is finding values of x to satisfy f(x) = 0. 
– Such values are called the roots of the equation and also 

known as the zeros of f(x).

• Can solve analytically as we did above OR

• Various methods exist to numerically determine 
the roots of an equation or multiple equations

– Newton's method or the Newton-Raphson method is a 
procedure or algorithm for approximating the zeros of a 

function f (or, equivalently, the roots of an equation f(x) = 0). 

– Bisecting Method [wont discuss here]

– Secant Method [wont discuss here]

In our case f(x) is f’(x) since we wish to solve f’(x)=0
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Find Turning Points via Zeros of Derivative

• Turning points correspond to 
zeros of the derivative 
function 

• Find Roots using an iterative 
method such as the Newton-
Raphson Method

f(x) of roots findingfor         
)(''

)('

(x)f' g      where   
)('

)(

1

1

functionIteration
xf

xf
xx

functionIteration
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Find roots using F(x) = x^2+1
#-------------------------------------------------------------

#simple convex problem

#-------------------------------------------------------------

#tangent example for f(x) = x^2 +1

fx=function(x) {   x^2+ 1 }

fprime = function (x){   2*x }

fprime.deriv <- deriv(~ x^2 + 1, "x", TRUE)

#given a point on the curve and a slope

#chose x at index 10

i=11

x0=0

f_x0 = fx(x0) #or y0

slope = fprime(x0)

tangentLine = function(x, slope, x0, y0) {

y=slope*(x-x0) +y0

}

y=tangentLine(x, slope, x0, f_x0)

par(mfrow = c(2, 1)) # split display region into to 2 rows and one column (i.e., 2 regions) 

x=seq(-2, 2, by=0.1)

plot(x, fx(x),  main="x^2 +1", xlab="x", ylab="f(x)", type="l", col="red")

lines(x, y,col="blue")

points(x0, f_x0, col="blue", bg="blue", pch=21)

text(x0-0.5, f_x0+10, paste("(", x0, ", ", f_x0, ")", sep=""))

grid()

abline(v=0, lty=1)

mtext("Turning Point",            # Add second y-axis label

side=1,                     # Add to right hand side of plot

line=2,                     # Add to line 3 from the margin

font=2,                     # Print label in bold

See example.FindTurningPoints()
Newton-Raphson not necessary here
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Newton’s Method in Optimization

• This iterative scheme can be generalized to 
several dimensions by replacing the derivative 
with the gradient, f’(X), and the reciprocal of the 
second derivative with the inverse of the Hessian 
matrix, . One obtains the Newton- iterative 
scheme

[ ]  vector)a is X(i.e., blemultivariaFor         )(')(''

formmatrix in     )(')(
2

 variableoneFor    
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11
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http://en.wikipedia.org/wiki/Newton's_method_in_optimization
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•R Break
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Solve a System of Equations in R
• Solve the system of linear equations. 

-2x + 3y = 8 
3x - y = -5 

• multiply all terms in the second equation by 3 
-2x + 3y = 8 
9x - 3y = -15 

7x = -7         # add the two equations 

Note: y has been eliminated, hence the name: method of elimination 
solve the above equation for x 
x = -1 
substitute x by -1 in the first equation 
-2(-1) + 3y = 8 
solve the above equation for y 
2 + 3y = 8 
3y = 6 
y = 2   

• write the solution as ordered pair  (-1,2) 

�A <- matrix(c(-2,3, 3,-1 ), 2)
> A

[,1] [,2]
[1,]   -2    3
[2,]    3   -1
> b
[1] 8 5
> b=c(8,-5)
> qr.solve(A, b) # or solve(qr(A), b)
[1] -1  2 ISM 280: Stochastic Gradient Descent       ©  2011 James G. Shanahan         James.Shanahan_AT_gmail.com 136

Matrices

• To calculate inverse of a matrix
– # division for matrices 

– ginv() # from library(MASS)

• Other useful matrix commands 
– matrix()

– det()

– diag()  

– t()  #transpose of a matrix

– eigen()

– solve()  #compute inverse or solve system of equations

Matrix Algebra,The R Book, M. Crawley page 259

See example.Matrices()

See local file MatricesInR.doc
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Data in R

• Dataframes, matrices etc…

• Data input:
– From the keyboard.

– From an ascii (plain text) file.

– From the clipboard.

– Importing data (e.g., from SPSS).

– From a database-management system.

– From an R package.

• The R search path.

• Missing data.

• Numeric variables, character variables, and factors

• http://socserv.mcmaster.ca/jfox/Courses/R-
course/Session-3-script.R

See example.DataFrames()
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Matrices in R

• Linear equations 

• Determinant

• See presentation in local dir Matrices and 
Singular values 

• MatricesLectureSingularValues.pptx

See example.Matrices()
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Matrices, Vectors (in R)
• For more background see

– http://en.wikipedia.org/wiki/Euclidean_vector

– http://en.wikipedia.org/wiki/Matrix_(mathematics)
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Vectors

• In elementary mathematics, physics, 
and engineering, a vector (sometimes called 
a geometric[1] or spatial vector) is a geometric 
object that has both a magnitude (or length) and 
direction. 

• A vector is frequently represented by a line 
segment with a definite direction, or graphically as an 
arrow, connecting an initial point A with a terminal 
point B, and denoted by

http://en.wikipedia.org/wiki/Euclidean_vector
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Length of a Vector

• The length or magnitude or norm of the vector a is 
denoted by ||a|| or, less commonly, |a|, which is not to 
be confused with the absolute value (a scalar 
"norm").

• The length of the vector a can be computed with 
the Euclidean norm

http://en.wikipedia.org/wiki/Euclidean_vector
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Unit Vector, Dot Product

• For more details see 
– http://en.wikipedia.org/wiki/Euclidean_vector
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Vectors in Cartesian Space: Bound Vector

• In the Cartesian coordinate system, a vector can be represented by 

identifying the coordinates of its initial and terminal point. For 
instance, the points A = (1,0,0) and B = (0,1,0) in space determine 

the free vector    pointing from the point x=1 on the x-axis to the 

point y=1 on the y-axis.

• Typically in Cartesian coordinates, one considers primarily bound 
vectors. A bound vector (aka position vector) is determined by 
the coordinates of the terminal point, its initial point always 
having the coordinates of the origin O = (0,0,0). 

• Thus the bound vector represented by (1,0,0) is a vector of unit 
length pointing from the origin up the positive x-axis.

• The coordinate representation of vectors allows the algebraic 

features of vectors to be expressed in a convenient numerical 

fashion. For example, the sum of the vectors (1,2,3) and (−2,0,4) is 
the vector
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R Notes

• Matrix Ops

• Solve(a, b)  
– #solve a system of equations Ax=b by b=A-1b; b is 

combination of the column in A.

– This generic function solves the equation a %*% x = b for x, 
where b can be either a vector or a matrix. 

– a:  a square numeric or complex matrix containing the 

coefficients of the linear system. 

– b: a numeric or complex vector or matrix giving the right-

hand side(s) of the linear system. 

– If missing, b is taken to be an identity matrix and solve will 
return the inverse of a.
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Solve a System of Equations in R
• Example 1: Solve the system of linear equations. 

-2x + 3y = 8 
3x - y = -5 

• multiply all terms in the second equation by 3 
-2x + 3y = 8 
9x - 3y = -15 
add the two equations 
7x = -7 

Note: y has been eliminated, hence the name: method of 
elimination solve the above equation for x 
x = -1 
substitute x by -1 in the first equation 
-2(-1) + 3y = 8 
solve the above equation for y 

2 + 3y = 8 
3y = 6 
y = 2 

�A <- matrix(c(-2,3, 3,-1 ), 2)
> A

[,1] [,2]
[1,]   -2    3
[2,]    3   -1
> b
[1] 8 5
> b=c(8,-5)
> qr.solve(A, b) # or solve(qr(A), b)
[1] -1  2
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Lists
> (z <- list( a=list( b=9, c='hello'), d=1:5))

> z

$a

$a$b

[1] 9

$a$c

[1] "hello„

$d

[1] 1 2 3 4 5

> z[[1]]

$b

[1] 9

$c

[1] "hello„

> z[[1]][[1]]

[1] 9

> z[[1]][2]
$c
[1] "hello"

> z[[1]]["c"]
$c
[1] "hello"
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Debugging in R

• http://www.stats.uwo.ca/faculty/murdoch/softwar
e/debuggingR/debug.shtml
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Debugging in R

• Use browser() #?browser  commands like c/c++ debugger

– n  #next

– c  # continue

– Q quit

• For more details on debugging on R RTFM (see next 
slide for useful example) !!
– http://www.stats.uwo.ca/faculty/murdoch/software/debuggingR/de

bug.shtml

• Locating an error: traceback().
– Setting a breakpoint and examining the local environment of an 

executing function: browser().

– A simple interactive debugger: debug().

– A more sophisticated debugger: the debug package. 

– There is also a “postmortem” debugger: debugger() (which I’ll not 

discuss)
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R debuging via browser()
• This kind of use of browser can be useful if you have a vague idea as to where a bug 

may be in your program.

• Notice that the first two lines in the function were not printed. 

Commands in debug mode

ISM 280: Stochastic Gradient Descent       ©  2011 James G. Shanahan         James.Shanahan_AT_gmail.com 150

http://www.stats.uwo.ca/faculty/murdoc
h/software/debuggingR/debug.shtml
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Recap: Lines, Tangents, Slopes
• Approximate f(X) for X around point a by the tangent at a 

point (a, f(a))

• Taylor Series explores different approximations of f(X); 
– the above tangential form is linear approximation

• General Form of a Taylor Series
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Newton-Raphson Method – Graphical View
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1. Initial guess: x0  Letting i=0 xi =x0 

2. Repeat
1. Approximate f(x) by tangent at (xi, f(xi)) # (x0, f(x0)) for the first itern.
2. Find where fTangent_x0(x) = 0, i.e., xi+1; better approx. of the root (x*)

3. Repeat until convergence
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Lecture Outline

• R

• Lines, Tangents, Taylors Theorem

• Turning points, Roots, Newton-Raphson

• Taylor Series: quadratic approximations 

• Multi-Dimensional Approximations (Planes)

• Directional Differentials, Total Differentials

• Vector plots, contour plots

• Gradient Descent
– Linear regression

• Predicting Click Through Rates 

– Linear Regression 

– Logistic Regression
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Make Tangential Approximation Better?
• Approximate f(X) for X around point a by the tangent at a 

point (a, f(a))

• Taylor Series explores different approximations of f(X); 
– the above tangential form is linear approximation

• General Form of a Taylor Series
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Taylor Series And Tangent Approximations

• Taylor series is a representation of a function as 
an infinite sum of terms calculated from the 
values of its derivatives at a single point.

• If the series is centered at zero, the series is also 
called a Maclaurin series, named after the 
Scottish mathematician Colin Maclaurin. 

• It is common practice to use a finite number of 
terms of the series to approximate a function.
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Taylor Series: Written Different Ways

• In mathematics, the Taylor series is a representation of a 
function as an infinite sum of terms calculated from the 
values of its derivatives at a single point.
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F(x) = cos(x): Taylor series expansion,x*=0

• Given F(X)=cos(x) and a Taylor Series expansion at x* = 0

• The zeroth-order approximation of F(x) is

– (Note that in this case the first-order approximation is the same as the zeroth-order 
approximation, since the first derivative is zero, i.e., sin(0)=0).

• The second-order approximation is

• The fourth-order approximation is
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Taylor Series Approxn. Of Sin(x) at 0

• Approximating f(x) = sin x when it is centred
around 0 (I.e., a=0), Taylor Polynomial of degree 7 
(sin(0)=; cos(0) =1)
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Taylor Series Approximations of f(x) at a

• As the degree of the Taylor 
polynomial rises, it approaches 
the correct function. 

• This image shows sinx (in 
black) and Taylor 
approximations about a=0, 
polynomials of 
degree 1, 3, 5, 7, 9, 11 and 13.

• What does the Taylor 
Approximation of degree 
zero look like at ? 
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f(x) ∼f(a)= sin(0)) = 0; f(x)=0 ∀ x in the neighborhood of 0
ISM 280: Stochastic Gradient Descent       ©  2011 James G. Shanahan         James.Shanahan_AT_gmail.com 160

Sine Function Approximated by Taylor 
Polynomial of degree 7

The sine function (blue) is closely approximated by 
its Taylor polynomial of degree 7 (pink) for a full 

period centered at the origin.
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Problem: Plot Taylor Approxns of sin(x)
#----------------------------------------------------

# Taylor series in one-dim for f(x) = sin(x) at a=0

#----------------------------------------------------

# plot sin(x) and its Taylor series approximation in 

# the range [-10, 10]

## Higher derivatives (boiler plate):

DD <- function(expr,name, order = 1) {

if(order < 1) stop("'order' must be >= 1")

if(order == 1) D(expr,name)

else DD(D(expr, name), name, order - 1)

}

#e.g., DD(expression(sin(x^2)), "x", 3)

f = function(x){sin(x)}

fPrime.order =function(a, order){eval(DD(expression(sin(a)), "a", order))}

taylorTerm_n=function(a, n){fPrime.order(a, n)*x^n/factorial(n)}

See example.TaylorSeries() 
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Plot Taylor Approximations of Sin(x)
#----------------------------------------------------

# Taylor series in one-dim for f(x) = sin(x) at a=0

#----------------------------------------------------

# plot sin(x) and its Taylor series approximation in 

# the range [-10, 10]

## Higher derivatives (boiler plate):

DD <- function(expr,name, order = 1) {

if(order < 1) stop("'order' must be >= 1")

if(order == 1) D(expr,name)

else DD(D(expr, name), name, order - 1)

}

#e.g., DD(expression(sin(x^2)), "x", 3)

f = function(x){sin(x)}

fPrime.order =function(a, order){eval(DD(expression(sin(a)), "a", order))}

taylorTerm_n=function(a, n){fPrime.order(a, n)*x^n/factorial(n)}

x=seq(-10, 10, by=0.1)

plot(x, f(x),  ylim=c(-10, 10), main="f(x)=sin(x)", xlab="x", ylab="f(x)", type="l", col="black", lwd=3)

grid()

lines(x, rep(0, length(x)))  #term_0(x) reduces to f(0)=sin(0)=0

lines(x, rep(0, length(x)) + taylorTerm_n(0,1), col="red", lty=2)

#same order 1 Taylor Approx as taylorTerm_n(0,2) is 0 

lines(x, rep(0, length(x)) + taylorTerm_n(0,1) + taylorTerm_n(0,2), col="red", lty=2) 
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Taylor Approximations of Different Degrees

• Linear Approximation of the function f at a

• Quadratic Approximation

• General Form of a Taylor Series
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Multivariate Taylor Series
A second-order Taylor series expansion of a scalar-valued function of 
more than one variable can be written compactly as

where Df(a) is the gradient (partial derivatives) of f evaluated at x=a
(Df() is sometimes written as ∇∇∇∇f)

and D2f(a) is the Hessian matrix, sometimes represented as H(f) as 
follows:.

Df(a)= 

D2f(a)= 
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Gradient and Hessian

• Find  

• F(x) = F(x1, x2) = (x2 - x1)
4 +8x1x2 - x1 + x2 + 3

∇ =



















=
− − + −

+ − + +









 =








F x

x
F

x
F

x x x

x x x
( )

( )

( )

)

)

∂

∂
∂

∂

1

2

2 1
3

2

2 1
3

1

4( 8 1

4( 8 1

0

0

x

x

∇ =



















=

− − − +

− − + −











2

2

1
2

2

1 2
2

2 1

2

2
2

2 1
2

2 1
2

2 1
2

2 1
2

12 12 8

12 8 12

F
x

F
x x

F

x x
F

x
F

x x x x

x x x x

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

x

x x

x x

∂

∂

∂

∂ ∂

∂

∂ ∂

∂

∂

ISM 280: Stochastic Gradient Descent       ©  2011 James G. Shanahan         James.Shanahan_AT_gmail.com 166

Taylor Approx around x1=[-0.42  0.42]T

• Noting that for the minima at x1=[-0.42  0.42]T, the 
gradient is zero (so drop linear term) and F(x1) = 
2.93 (by direct substitution). Here is the 
expansion:
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Multivariate Taylor Series

The real part of the 
cosine function in 
the complex plane.

Overlaid with an 8th degree 
approximation at (0, 0) of the 
cosine function in the complex 
plane.

f(X)

ISM 280: Stochastic Gradient Descent       ©  2011 James G. Shanahan         James.Shanahan_AT_gmail.com 168

Taylors Series Example: MultiDim

Second-order Taylor 
series approximation 
(in gray) of a function 
f(x,y) = exlog(1 + y) 
around origin.
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Lagrange Remainder

– Here, n! denotes the factorial of n, and Rn(x) is a remainder term, 

denoting the difference between the Taylor polynomial of degree 
n and the original function. 

• The remainder term Rn(x) depends on x and is small 
if x is close enough to a. Several expressions are 
available for it.

• The Lagrange form[1] of the remainder term states 
that there exists a number ξ between a and x such 
that

http://en.wikipedia.org/wiki/Lagrange_remainder
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Lagrange Remainder

X0

(x0, f(x0))

x

(x, fTangent(x))

(x, f(x))

Error(x) = f(x)-fTangent(x)
The quality of the 
approximation is 
controlled by the 
remainder term as we 
move away from 
a=x0

Lagrange Remainder
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Why/where are they used?

• Taylor polynomials (finite versions of Taylor 
series) approximate functions near the center.

• The more terms you take, the better your 
estimate of f(x).

• Used extensively in finding the roots of an 
equation or system of equations (e.g., f’(x))and 
therefore maxima or minima (of f(x)), 
– in operations research, 

– machine learning

• Tells us about convexity and concavity of a function
– If concave or convex then global max or min exists and numerical 

approaches can be used to iteratively find the global min/max

– Otherwise need to resort to heuristic approaches to find min/max 
(generally, these will be local min or max)
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Lecture Outline

• R

• Lines, Tangents, Taylors Theorem

• Turning points, Roots, Newton-Raphson

• Taylor Series: quadratic approximations 

• Newton-Raphson quadratic convergence

• Multi-Dimensional Approximations (Planes)

• Directional Differentials, Total Differentials

• Vector plots, contour plots

• Gradient Descent

– Linear regression

• Predicting Click Through Rates 
– Linear Regression 

– Logistic Regression
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Newton-Rhapson
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Newton-Raphson Example
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Newton-Rhapson
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Newton Rhapson (sometimes known as Newton)

 constants are )('' and )(' ),( 
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Quadratic Convergence 1/2
Quadratic convergence for Newton's iterative method

http://en.wikipedia.org/wiki/Newton%27s_method

Let αααα (target) be the root of f

R1 is the Remainder

Error, εεεεn+1 = αααα - xn+1

For εεεεn+1 < 1then quadratic convergence
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+ 1
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Quadratic Convergence 2/2

http://en.wikipedia.org/wiki/Newton%27s_method

Quadratic convergence for Newton's iterative method

Quadratic convergence holds if 
the conditions met
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Newton-Raphson Method – Algorithm

Define iteration

Do  k = 0  to ….

Until convergence 
(e.g., |xi+1 – xi| < εεεε (i.e., |xi+1 – xi| has become sufficiently small))
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dx
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x1, x2, x3…, … ,x*
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Exercise (not required)

• One algorithmic criterion for the convergence of the 
Newton-Rhapson root finding algorithm is |xi+1 – xi| 
< εεεε (i.e., has become sufficiently small). 
– Can you describe at least one other criterion for convergence 

besides the one described here? 

– Can you describe a third criterion for extra points?



31

ISM 280: Stochastic Gradient Descent       ©  2011 James G. Shanahan         James.Shanahan_AT_gmail.com 181

Lecture Outline

• R

• Lines, Tangents, Taylors Theorem

• Turning points, Roots, Newton-Raphson

• Taylor Series: quadratic approximations 

• Newton-Raphson quadratic convergence

• Multi-Dimensional Approximations (Planes)

• Directional Differentials, Total Differentials

• Vector plots, contour plots

• Gradient Descent

– Linear regression

• Predicting Click Through Rates 
– Linear Regression 

– Logistic Regression
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Orthogonality

• In mathematics, two vectors A and B are orthogonal if they 
are perpendicular, i.e., they form a right angle and  A*B=0.

• The vectors (1, 3, 2), (3, −1, 0), (1/3, 1, −5/3) are orthogonal to 
each other

– since (1)(3) + (3)(−1) + (2)(0) = 0, (3)(1/3) + (−1)(1) + (0)(−5/3) = 0, 

(1)(1/3) + (3)(1) − (2)(5/3) = 0. 

– Observe also that the dot product of the vectors with themselves are 
the norms of those vectors, so to check for orthogonality, we need only 

check the dot product with every other vector.

AB and CD are orthogonal to each other.
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Continuous Function

Small change in (x,y) implies small change in f(x,y)
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Tangent Approximations
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A plane from a point and orthogonal vector

• Although a line in space is determined by a point 
and a direction, a plane in space is more difficult 
to describe. 

• A single vector parallel to a plane is not enough 
to convey the “direction” of the plane, but a 
vector perpendicular to the plane does 
completely specify its direction. 

• Thus, a plane in space is determined by a point in 
the plane and a vector that is orthogonal to the 
plane. This orthogonal vector is called a normal 
vector.
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Derivation of 
vector equation of 
a plane from:
1. a normal 

vector 
(derivative of 
the function) 

2. and point on 
the plane
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Tangent Planes and Linear Approximation

• Just as we can visualize the line tangent to a curve at 
a point in 2-space, in 3-space we can picture 
the plane tangent to a surface at a point.

• Consider the surface given by z=f(x,y). Let (x0, y0, 
z0) be any point on this surface.

– If f(x,y) is differentiable at (x0, y0), then the surface has 

a tangent plane at (x0, y0, z0). The equation of the tangent 
plane at (x0,y0, z0) is given by:

(z−z0)= fx(x0,y0)∗∗∗∗(x−x0)+fy(x0,y0) ∗∗∗∗(y−y0)  

similar form: (y−y0)= fx(x0) ∗∗∗∗(x−x0)

– where fx(x0,y0) is the partial derivative of f() WRT x 
calculated at x0,y0; similarly for fy(x0,y0)

http://www.math.hmc.edu/calculus/tutorials/tangentplanes/

Tangent Plane

Tangent Line
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Notation
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Tangent Plane

Function of variables

Calculate gradient 
vector by evaluating 
partial derivatives at the 
tangential point
Gradient vector at (1, 1) 
is (4, 2); 
f’(1,1) = (4,2)
f(1,1)=3

Tangent plane at (1, 1, 3) 
with gradient (4,2)  

[Adapted from Multivariable Calculus: Concepts and Contexts, James Stewart]

(z−z0)= fx(x0,y0)(x−x0)+fy(x0,y0)(y−y0) 

ISM 280: Stochastic Gradient Descent       ©  2011 James G. Shanahan         James.Shanahan_AT_gmail.com 190

Tangent Plane Example

(1, 1) 

(4,2) Gradient vector 
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Tangent Plane to Ellipoid Example
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Lecture 2 Outline

• Taylor Series: quadratic approximations 

• Newton-Raphson quadratic convergence

• Multi-Dimensional Approximations (Planes)

• Directional Differentials, Total Differentials

• Vector plots, contour plots

• Gradient Descent
– Linear regression

• Predicting Click Through Rates 
– Linear Regression (using gradient descent, MCMC version on 1/26)

– Logistic Regression (using gradient descent, MCMC on 1/26)

• Convexity, extreme values, mathematical programming
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Approximate ∆∆∆∆y with dy via the tangent

dy is the predicted difference in (f(x) given the linear approximation)
Can change ∆∆∆∆x as much as we like but the bigger the ∆∆∆∆x the bigger 
the gap between the tangent approximation and the actual function 
(and dy and ∆∆∆∆y )

Actual approximated by Predicted 
I.e., ∆∆∆∆y~dy

Actual 

Linear Approximation

Difference in f(x); i.e., second 
term in Linear Taylor Expansion

dy∆y

))((')()( axafafxf −+=
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Linear and Quadratic Approximations
• Approximate f(X) for X around point a by the tangent at a 

point (a, f(a))

• Taylor Series explores different approximations of f(X); 
– the above tangential form is linear approximation

• General Form of a Taylor Series
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Total Differential, dz, for z=f(x, y) in 2D

• Estimated change in z using total differential
• Total Differential in 2D (estimated change in z=f(x) using a linear 

approximation)
•

• This corresponds to the second term (the linear term) in Taylors 
expansion
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Total Differential in 2D (estimated change in z)

First-order Taylor Series

(a+∆x, b+∆y, L(a+∆x,
a+∆x))
Where L is the linear 
approximation of f(), 
around the point (a,b)
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Total Differential in 2D (estimated change in z)
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Total Differential in 2D: An Example

change in height of f(x)

change in height of f(x) when I travel in (0.05, -0.04) 

Total Differential

Estimated z difference between f(x, y) and f(a, b) 
z=fTang(a,b) (x,y)-f(a,b))

Actual z difference (i.e., z=f (x,y)-f(a,b))
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Total Differential and Directional Derivative
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Gradient and the Directional Derivative
• When you are hiking on a mountain or a slope you 

have a choice of many directions in which you can 
go. Starting at the same point some directions head 
generally upward; some directions head generally 
downward; and some directions are steeper than 
others. 

• The directional derivative of a function, z = f(x, y), 
that is, the slope of the surface described by this 
function as we go in different directions starting 
from the same point.

• As an example consider the function

z = xy

ISM 280: Stochastic Gradient Descent       ©  2011 James G. Shanahan         James.Shanahan_AT_gmail.com 201

Gradient and the Directional Derivative
• When you are hiking on a mountain or a slope you 

have a choice of many directions in which you can 
go. Starting at the same point some directions head 
generally upward; some directions head generally 
downward; and some directions are steeper than 
others. 

• The directional derivative of a function, z = f(x, y), 
that is, the slope of the surface described by this 
function as we go in different directions starting 
from the same point.

• As an example consider the function

z = xy
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Directional (versus Partial) Derivatives

• If ƒ is a real-valued function on Rn, then the partial 
derivatives of ƒ measure its variation in the direction 
of the coordinate axes. 
– For example, if ƒ is a function of x and y, then its partial 

derivatives measure the variation in ƒ in the x direction and the y

direction. 

• They do not, however, directly measure the variation 
of ƒ in any other direction, such as along the 
diagonal line y = x. 
– These are measured using directional derivatives. Choose a 

vector 

– The directional derivative of ƒ in the direction of v at the point x is 

the limit

Partial 
derivatives 

Directional
derivatives 
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Directional Derivative== Total Deriv. == Change in f(x)

Change in f(x) when we travel in direction v
We can approximate the change in z (i.e.,
f(x) – f(x+v)) using Dvf(x,y)=∇∇∇∇f(x,y)••••v

DAf(x,y)=∇∇∇∇f(x,y)••••(x-A1,y-A2)
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Directional Derivatives

• Suppose that we start at the point (0, 0) and go 
one unit in several different directions. 

– The graph below shows four different directions marked 

by curves starting at the origin and it also shows all the 

points we would reach if we tried all possible directions 
and walked one unit.

• When we say "we walk one unit," we mean one 
unit in the xy-direction. Thus, we walk from (0, 
0) to the point (cos θθθθ, sin θθθθ) where θθθθ is any 
angle.
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Directional Derivative
• We are interested in the rate at which z changes as we 

move away from x in various different directions. Each 
possible direction is indicated by a unit vector,

• u = (u1, u2, ... un)
• The directional derivative in the direction u is given by

• Sometimes we use the notation fu for the directional 
derivative.
– fu = grad f . u
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Total Differential (Directional derivative)

• Most relationships depend on several variables
– y = f (x1, x2, x3, …, xN)

• Recall that the partial derivative, ∂∂∂∂y/∂∂∂∂x1, is the change 
in y when we change x1 , etc.

• Now we’re interested in the total effect on y when all 
the x’s are changed by a small amount.  

• This is the Total Differential of f and is denoted by dy
in direction dx at df/dx| 

N

N

dx
x

f
dx

x

f
dx

x

f
dy

∂

∂
++

∂

∂
+

∂

∂
= ...2

2

1

1
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Directional Derivatives

• The directional derivative of a 
multivariate differentiable 
function along a given vector 
V at a given point P intuitively 
represents the instantaneous 
rate of change of the 
function, moving through P, 
in the direction of V. 

• It therefore generalizes the 
notion of a partial derivative, 
in which the direction is 
always taken parallel to one 
of the coordinate axes.

[J. Stewart, pg 792]
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Questions for Thought

1. Gradient Vector: Find the rate of change in the 
direction of a given vector WRT a given point 
(and tangential approximation)?

2. In what direction does f() have the maximum 
rate of change?

3. What is this maximum rate of change?
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Maximizing the Directional Derivative
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Cosine of the angle

• the cosine of the angle between the vectors 
instead of the angle

θ

θ

cos,

,
cos

11

1

1

dqdq

dq

dq

∗=

∗
=
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Which direction is maximising f(x,y)?

(a,b)

Duf(x,y)=∇∇∇∇f(x,y)••••u
Where u=(x-a, y-b)

∇∇∇∇f(x,y)

u=(x-a, y-b)
θθθθ

Recall: Directional derivative Duf(x,y) (approximated 
difference in f(x,y) if we travel in direction u from (x, y))

fu

ffuf

fuf

f

ufuf

uffD

TT

T

T

T

u

∇=

∇⋅∇=⋅∇

∇=⋅∇

∇=

⋅∇=⋅∇

⋅∇=

θ

θ

cos

cos

• cos(θθθθ) maxes at 1 when
θθθθ=0

• So Duf(x,y) maxes when 
u equals ∇∇∇∇f

• Gradient vector is the 
steepest change  

))(()()(

))((')()(

axafafxf

axafafxf

−∇+=

−+=

Thus, the direction of steepest ascent is ∇∇∇∇f(x,y) 
and the direction of steepest descent is -∇∇∇∇f(x,y)
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Significance of the Gradient Vector
• The gradient vector, ∇f(x,y), gives the direction of fastest increase of 

f(x, y) (assuming a two-variable function here). [Newton-Raphson]

• The gradient vector, ∇f(x,y), is orthogonal to the contour lines

• Imagine climbing an upside-down bowl from below, where I can 
move in any <x, y> direction (NOTE I cant move in z); x, and y are 
independent variables. 

• If I follow the level curve (f(x,y)=k) then I make no progress to the 
summit or bottom but if I move perpendicular to the level curve then 
I make the quickest progress to the summit (of the bowl).

ISM 280: Stochastic Gradient Descent       ©  2011 James G. Shanahan         James.Shanahan_AT_gmail.com 213

Steepest Ascent/Descent

• Since u is a unit vector and 

• fu = grad f . u = ||u|| ||grad f|| cos(θθθθ)

• = ||grad f|| cos(θθθθ)

• where theta is the angle between grad f and u, we 
see that the directional derivative is at its maximum 
when u is pointing in the same direction as grad 
f and is at a minimum when u is pointing in the 
opposite direction. (zero angle (cos(0) =1) 

• Thus, the direction of steepest ascent is grad f and 
the direction of steepest descent is -grad f.

Examples: 
http://www.math.montana.edu/frankw//ccp/multiworld/twothree/gradient/learn.htm
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Gradients and Contour Curves

• Examine the relation between contour curves, or 
by another name, level sets, and gradients
– [moving along a direction bring no change in f(x,y)]

• Theorem on Gradients and Contour Curves
– Consider any point (x0,y0), and the level curve of f through 

this point (i.e., the level curve of f at value f(x0,y0)). 

– Then the gradient of f at f(x0,y0) is perpendicular to the 
tangent direction along the level curve of f though (x0,y0). 

– It is very easy to see why this theorem is true. 

– Suppose that (a,b) is any vector that is tangent to the level 

curve of f through (x0,y0). Then, as you move in the (a,b) 

direction, you are at that instant moving along the level 
curve, and the value of f does not change. 

– So the directional derivative in this direction is zero; i.e.,  

dot(gradf(x0,y0),(a,b)) = 0

– This is the perpendicularity that we wanted to establish. 
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Directional Derivative Examples
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Gradients, Gradient Plots and Tangent Planes

• http://www-
users.math.umd.edu/~jmr/241/gradients.html
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4D function: function of 3 Variables

Level surface with 3D Tangent Plane; with a 3D normal
(as opposed to 2D contour plot with a 2D normal
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4D Function: Tangent Plane

Video: http://academicearth.org/lectures/tangent-planes-and-linear-approximations
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Level Curves/Surfaces
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Plotting Level Curves

In R try: 
x <- seq(-3, 3, length= 30)
contour(outer(x, x, "+"), method = "edge")
contour(outer(x, x, "*"), method = "edge")
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Significance of the Gradient Vector
• The gradient vector, ∇f(x,y), gives the direction of fastest increase of 

f(x, y) (assuming a two-variable function here). 

• The gradient vector, ∇f(x,y), is orthogonal to the contour lines

• Imagine climbing an upside-down bowl from below, where I can 
move in any <x, y> direction (NOTE I cant move in z); x, and y are 
independent variables. 

• If I follow the level curve (f(x,y)=k) then I make no progress to the 
summit or bottom but if I move perpendicular to the level curve then 
I make the quickest progress to the summit (of the bowl).
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Significance of the Gradient Vector

• The gradient vector, ∇f(x,y,z), gives the direction of fastest increase 
of f(x, y, z) (assuming a three-variable function here). 

• The gradient vector, ∇f(x,y,z), is orthogonal to the level surface S of 
f through P (i.e., x0, y0, z0))

• Imagine climbing an upside-down bowl from below; where I can 
move in any <x, y> direction (I cant move in z). If I follow the level 
curve (f(x,y)=k) then I make no progress to the summit or bottom 
but if I move perpendicular to the level curve then I make the 
quickest progress to the summit (of the bowl).
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Gradient Vector: Hiker’s Perspective

• If we consider a topographical map of a hill and let f(x, y) represent 
the height above sea level at a point with coordinates (x, y) , then a 
curve of steepest ascent can be drawn by making it perpendicular 
to all of the contour lines. 

• This phenomenon can also be noticed here where Lonesome Creek 
follows a curve of steepest descent.
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Lecture Outline

• R

• Lines, Tangents, Taylors Theorem

• Turning points, Roots, Newton-Raphson

• Taylor Series: quadratic approximations 

• Newton-Raphson quadratic convergence

• Multi-Dimensional Approximations (Planes)

• Directional Differentials, Total Differentials

• Vector plots, contour plots

• Gradient Descent

– Linear regression

• Predicting Click Through Rates 
– Linear Regression 

– Logistic Regression
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Follow Gradient for Maximization

• Gradient descent is a first-order optimization 
algorithm. 

• To find a local minimum of a function using 
gradient descent, one takes steps proportional to 
the negative of the gradient (or of the 
approximate gradient) of the function at the 
current point. 

• If instead one takes steps proportional to the 
gradient, one approaches a local maximum of 
that function; the procedure is then known as 
gradient ascent.

Follow negative of Gradient for Minimization
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Gradient Vector Plots

• The gradient gives us a vector at each point (x, y) 
that is pointing uphill

• We can visualize these using a gradient vector 
plot
– Plot 3 dimensional surfaces f(x,y)

– Heat maps

– Gradient vector plots

– Gradient vector plots superimposed on heat maps

See example.gradientPlots()
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Plotting 3D Surfaces in R

#put two plots side by side (i.e., 1 row and 2 columns)

par(mfrow=c(1, 2))

x <- seq(-3, 3, length= 30)

y <- x

f <- function(x,y) { x^2 + 2 * y^2 }

z <- outer(x, y, f)

#Plot 3D surface of function

#Modify theta and phi for different perspectives

persp(x, y, z, theta = 135, phi = 30, col = “blue", scale = FALSE,

ltheta = -120, shade = 0.75, ticktype = "detailed", expand = 0.2,

)

See example.gradientPlots()
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3D Plot of f(x,y)=x^+y^2

See example.gradientPlots()
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HeatMap and Contour Plot
x <- seq(-3, 3, length= 30);    y <- x

f <- function(x,y) { x^2 + 2 * y^2 }

z <- outer(x, y, f)

• #new plot of isolines and heatmap

• image(x,y,z)             #heat image of surface

• contour(x,y,z, add=TRUE) #add contours

See example.gradientPlots()

x^2 + 2 * y^2 
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Gradient Vector Plots of f(x,y)=x^+y^2

http://online.redwoods.cc.ca.us/instruct/
darnold/MULTCALC/grad/grad.pdf
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Ugly Unnormalized Gradient Plot

#ugly unnormalized gradient vector plot

# plot vector plot and contour plot

x <- -5:5

y <- x

f <- function(x,y) { x^2 + y^2 }

z <- outer(x, y, f)

u=2*x  #fprime_x(x,y) = df/dx =d(x^2 + y^2)/dx=2x

v=2*y

plot(1, 1, xlim=c(-10, 10), ylim=c(-10, 10), pch="")

grid(length(x))

for(i in x) {

for (j in y) {

arrows(i,j, 2*i, 2*j, col=i+10)  #(f’x(x,y), f’y(x,y), col=colour

}

}

contour(x,y,z, add=TRUE) #add contours

In example.gradientPlots()
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Ugly Unnormalized Gradient Plot
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Gradient Vector Field for f(x,y) = x2 – y2

• Sampled gradient vector 
plot superimposed on a 
function heat map of f(x, 
y) = x2 – y2

• Each gradient vector is 
plotted starting at the 
point 

• As expected, the 
gradient vectors point 
“uphill” and are 
perpendicular to the 
level curves.

xy

z
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Prettified Gradient Plot

#prettified gradient vector plot using quiver() 

#f <- expression( (3*x^2 + y) * exp(-x^2-y^2)) 

f <- expression( (x^2) - (y^2)) 

#f <-expression((x^2+x^2))

x <- y <- seq(-5, 5, by=0.5) 

par(mar=c(3,3,3,3)) 

quiver2(f,x,y, color.palette=terrain.colors, 
main="f(x, y) = X^2 - y^2\nMaxes out when y is 0") 

(looks like a quiver!)
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Gradient Vector at Extrema is <0, 0, ..>

• The gradient is a fancy word for derivative, or the rate of 
change of a function. 

• It’s a vector (a direction to move) that points in the direction 
of greatest increase of a function is zero at a local 
maximum or local minimum (because there is no single 
direction of increase); the magnitude of the vector is zero. 
Gradient at turning points =<0, 0, 0…,0) 

• The term gradient typically refers to the derivative of vector 
functions, or functions of more than one variable. Yes, you 
can say a line has a gradient (its slope), but using the term 
gradient for single-variable functions is unnecessarily 
confusing. Keep it simple.

• http://betterexplained.com/articles/vector-calculus-
understanding-the-gradient/
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Gradient Example

• The gradient of 
the function 
f(x,y) = −(cos2x +
cos2y)2 depicted 
as a vector field 
on the bottom 
plane

http://en.wikipedia.org/wiki/Gradient
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Exercise 1.4 : Vector Field vs. 3DPlot

• Compute the gradient of the following function.  
– z=f(x,y) = x2 + y

• This gives us a vector at each point (x, y) that is 
pointing uphill. 

• In R plot the these vectors. This plot is also 
known as a vector field. Hint: use quiver2(); 
provided in R Code.

• Plot the 3D of this function

• Compare the vector field plot with a three-
dimensional plot of the indicated function. Does 
the vector field appear to be pointing upward? 

quiver2()  available in R code
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quiver2() 1/2
#got this from http://addictedtor.free.fr/graphiques/graphcode.php?graph=128

#plot a normalized gradient plot (which looks like a quiver of arrows)

quiver2 <- function(expr,         x,             y,               nlevels=20,                length=0.05,             ...){

z <- expand.grid(x,y) 

xx  <- x

x   <- z[,1]

yy <- y

y   <- z[,2]

#browser()

fxy <- eval(expr) 

grad_x <- eval(D(expr, "x")) 

grad_y <- eval(D(expr, "y")) 

dim(fxy) <- c(length(xx), length(yy))  #pour vector into table

dim(grad_x) <- dim(fxy) 

dim(grad_y) <- dim(fxy) 

maxlen <- min(diff(xx), diff(yy)) * .9 

grad_x <- grad_x / max(grad_x) * maxlen #normalize gradient components

grad_y <- grad_y / max(grad_y) * maxlen

filled.contour(xx, yy, fxy, nlevels=nlevels, 

plot.axes = { 

contour(xx, yy, fxy, add=T, col="gray", 

nlevels=nlevels, drawlabels=FALSE) 
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quiver2() 2/2
…..

filled.contour(xx, yy, fxy, nlevels=nlevels, 

plot.axes = { 

contour(xx, yy, fxy, add=T, col="gray", 

nlevels=nlevels, drawlabels=FALSE) 

arrows(x0  = x, 

x1  = x + grad_x,

y0  = y,

y1  = y + grad_y,

length = length*min(par.uin())) 

axis(1) 

axis(2) 

},

...)

}
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Use of quiver2()

#prettified gradient vector plot using quiver() 

#f <- expression( (3*x^2 + y) * exp(-x^2-y^2)) 

f <- expression( (x^2) - (y^2)) 

#f <-expression((x^2+y))

x <- y <- seq(-5, 5, by=0.5) 

par(mar=c(3,3,3,3)) 

quiver2(f,x,y, color.palette=terrain.colors, main="f(x, y) = X^2 
- y^2\nMaxes out when y is 0")
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Recap on finding minimum or maximum

• Given f(x1, x2, …) find a candidate 
minimum or maximum (stationary 
points)

• Assume f’(x) and H(x) exists for all x∈∈∈∈S

• Locate candidate extrema using f’(x) = 0 
and boundary points

• Steps
– Find roots of the gradient equation f’(X)

• Use Newton-Raphson

x

f(x)
f(x)= x3 - 12x 
+ 1

f’(x)= 3x2 -
12

(X1, f(x1))

(X1, f’(x1)

x

f’(x)

-
2

2

n

n

Rx

xxfxf

∈

=

        subject to

),...,()(        minmax/ 1
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Multivariate Newton’s Method

[http://www.stat.cmu.edu/~cshalizi/350/2008/lectures/
29/lecture-29.pdf]
[Hand, Manilla, Smith, Data Mining, Section 8.3]

In R, have a look at 
?optim #method=BFGS
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Operational Algorithms

• Quasi-Newton (BFGS) - Popular in practice
– Avoid computing the inverse of Hessian matrix

– But, it still requires computing the B matrix (approximate Hessian) � large 

storage

– Broyden–Fletcher–Goldfarb–Shanno (BFGS) method is a method for 

solving nonlinear optimization problems 

– The BFGS method approximates Newton's method, 

• a class of hill-climbing optimization techniques that seeks a stationary 
point of a (twice continuously differentiable) function: 

• For such problems, a necessary condition for optimality is that the 

gradient be zero. 

– Newton's method and the BFGS methods need not converge unless the 

function has a quadratic Taylor expansion near an optimum. These 
methods use the first and second derivatives.

• Limited-Memory Quasi-Newton (L-BFGS)
– Even avoid explicitly computing B matrix
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Quasi-Newton Method

• Approximate the Hessian matrix H-1 with another 
B matrix: 

• B is updated iteratively (BFGS):

– Utilizing derivatives of previous iterations
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x x
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∂
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Efficiency
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General Approach to Finding Extrema

• Well-behaved version spaces
– Convex or concave function (±definiteness)

– Algorithms seek a local extrema knowing that it will be global

• If f() is a concave function then local maximum is a global maximum

• If f() is a convex function then local minimum is a global minimum

• Otherwise
– We resort to local approximations

• Hill-Climbing

• Simulated annealing

• Commonly used in Neural Networks
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Lecture Outline

• R

• Lines, Tangents, Taylors Theorem

• Turning points, Roots, Newton-Raphson

• Taylor Series: quadratic approximations 

• Newton-Raphson quadratic convergence

• Multi-Dimensional Approximations (Planes)

• Directional Differentials, Total Differentials

• Vector plots, contour plots

• Gradient Descent

– Linear regression

• Predicting Click Through Rates 
– Linear Regression 

– Logistic Regression
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Gradient Descent (a simpler root finder)

• Calculating  f’’(x), the Hessian H, and 
inverting it is complex so simpler 
algorithms have been developed such 
gradient descent

• How large should I step in the positive 
gradient direction (gradient ascent) 
– or in the negative gradient direction (gradient 

descent)

)('1 iiii
xfaxx −=+

functionIteration
xf

xf
xx

i

i
ii           

)(''

)('1 −=+ Newton-Raphson
In 1-Dimension

Gradient Descentf’(x)
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Gradient Descent
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Steepest Descent Method: example
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a) Starting at (-2,-2) take the
direction of steepest descent of f

b) Find the point on the intersec-
tion of these two surfaces that 
minimizes f  

c) Intersection of surfaces (a plane).

d) The gradient at the bottommost
point is orthogonal to the gradient
of the previous step 
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Line search: Find Minimum

minumum is
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Use chain rule df/du*du/dx
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Line search

[Duda and Hart Stork page 226] 

The gradient candidate ∇∇∇∇f (x0)
i

is shown at several locations 
along the search line (solid 
arrows). Each gradient’s 
projection onto the line [in our 
line search] is also shown 
(dotted arrows). The gradient 
vectors represent the direction 
of steepest increase of f (our 
function that is being 
minimized), and the 
projections represent the rate 
of increase as one traverses 
the search line.
On the search line, f is 
minimized where the gradient 
is orthogonal to the search 
line.
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Notes on previous two slides

• There is an intuitive reason why we should expect these 
vectors to be orthogonal at the minimum.

• Figure on previous slide shows the gradient vectors at 
various points along the search line. The slope of the 
parabola (Figure (c) of the second previous slide) at any 
point is equal to the magnitude of the projection of the 
gradient onto the line (Figure on previous slide,dotted
arrows). These projections represent the rate of increase of 
f  as one traverses the search line. 

• f is minimized where the projection is zero—where the 
gradient is orthogonal to the search line.
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Line search
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[Duda and Hart Stork page 226] 
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Iterations of Steepest Descent Method
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Gradient Descent
Example

Linesearch

Gradient at 
x2

x2

x3

X1=(0,0)

∇∇∇∇f2

∇∇∇∇f2

2(0) – 2(0)=0
2(0) + 2 – 2(0)=2
∇∇∇∇f1 = (0,2)
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Example Contd.
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Example Continued
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Method of steepest ascent

• Start at a point x

• Follow the direction of steepest ascent:

• Move to the best point in the direction of steepest 
ascent

• Stop as soon as
– This point is approximately stationary

= ∇ ( )d f x

( )f x ε∇ <
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Exercise (not required) 

• Perform iteration 3 and  4 of the of the above 
example; show the worked out details by hand 
(follow the style of the example present here)

• Plot the isolines plot and the vector plot (quiver2)

• Overlay the path for steps 1, 2, 3, and 4 on the 
isoline-vector plot 

• Plot the surface plot (3D) also
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Unconstrained optimization

• Assume f’(x) and H(x) exists for all x∈∈∈∈S

• Locate candidate extrema using f’(x) = 0 and 
boundary points

• Then candidate x is 
– f(x) is a convex function on S if and only if all principal 

minors of H(x) are nonnegative for all x∈S

– f(x) is a concave function on S if and only if the principal 
minors of H(x) of order k have the same sign as (-1)k for all 

x∈S and all k

n

n

Rx

xxfxf

∈

=

                      

subject to

),...,()(        minmax/ 1

For noncovex/non-concave
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Unconstrained optimization

• A point x where ∇∇∇∇f(x) = 0 is called a stationary 
point of f

• Let x* be a stationary point, i.e., ∇∇∇∇f(x*) = 0
– If all leading principal minors of H(x*) are positive  then x* is 

a local minimum

– If the leading principal minors of H(x*) of order k has the 
same sign as (-1)k (for all k) then x* is a local maximum
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Issues in Gradient Descent

• How large should I step in the positive gradient 
direction (gradient ascent) or in the negative 
gradient direction (gradient descent)
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Non-stationary Iterative Method

• Start from initial guess x0, adjust it until 
close enough to the exact solution

• How to choose direction and step size?

)()()()1( iiii paxx +=+ i=0,1,2,3,……

)(ip

)(ia

Adjustment Direction 

Step Size  
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Closed Form versus Iterative Procs

• Linear least squares problems are convex and 
have a closed-form solution that is unique, except 
in special degenerate situations. 

• In contrast, non-linear least squares problems 
generally must be solved by an iterative 
procedure, and often are non-convex with 
multiple local solutions.
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Lecture Outline

• R

• Lines, Tangents, Taylors Theorem

• Turning points, Roots, Newton-Raphson

• Taylor Series: quadratic approximations 

• Newton-Raphson quadratic convergence

• Multi-Dimensional Approximations (Planes)

• Directional Differentials, Total Differentials

• Vector plots, contour plots

• Gradient Descent

– Linear regression

• Predicting Click Through Rates 
– Linear Regression 

– Logistic Regression
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General Approach to Finding Extrema

• Well-behaved version spaces
– Convex or concave function (±definiteness)

– Algorithms seek a local extrema knowing that it will be global

• If f() is a concave function then local maximum is a global maximum

• If f() is a convex function then local minimum is a global minimum

• Newton-Raphson, Gradient Descent, Conjugate Gradient Descent

• Otherwise

– We resort to local approximations

• Hill-Climbing

• Simulated annealing

• Commonly used in Neural Networks

ISM 280: Stochastic Gradient Descent       ©  2011 James G. Shanahan         James.Shanahan_AT_gmail.com 269

Lecture Outline

• R

• Lines, Tangents, Taylors Theorem

• Turning points, Roots, Newton-Raphson

• Taylor Series: quadratic approximations 

• Newton-Raphson quadratic convergence

• Multi-Dimensional Approximations (Planes)

• Directional Differentials, Total Differentials

• Vector plots, contour plots

• Gradient Descent

– Linear regression

• Predicting Click Through Rates 
– Linear Regression 

– Logistic Regression
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Machine Learning in one slide

• Machine learning, a branch of artificial intelligence, is a scientific 
discipline that is concerned with the design and development of 
algorithms that allow computers to evolve behaviors based on 
empirical data, such as from sensor data or databases. 

• A learner can take advantage of examples (data) to capture 
characteristics of interest of their unknown underlying probability 
distribution. Data can be seen as examples that illustrate relations 
between observed variables. 

• A major focus of machine learning research is to automatically 
learn to recognize complex patterns and make intelligent 
decisions based on data; the difficulty lies in the fact that the set 
of all possible behaviors given all possible inputs is too large to 
be covered by the set of observed examples (training data). 

• Hence the learner must generalize from the given examples, so as 
to be able to produce a useful output in new cases. Machine 
learning, like all subjects in artificial intelligence, require cross-
disciplinary proficiency in several areas, such as probability 
theory, statistics, pattern recognition, cognitive science, data 
mining, adaptive control, computational neuroscience and 
theoretical computer science.
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What is the Learning Problem?

• Improve over Task T

• with respect to performance measure P

• based on experience E

Learning = Improving with experience at some task
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Types of Learning

• Supervised learning - Generates a function that maps inputs 
to desired outputs. For example, in a classification problem, 
the learner approximates a function mapping a vector into 
classes by looking at input-output examples of the function. 

• Unsupervised learning - Models a set of inputs: like clustering 

• Semi-supervised learning - Combines both labeled and 
unlabeled examples to generate an appropriate function or 
classifier. 

• Reinforcement learning - Learns how to act given an 
observation of the world. Every action has some impact in the 
environment, and the environment provides feedback in the 
form of rewards that guides the learning algorithm. 
Transduction - Tries to predict new outputs based on training 
inputs, training outputs, and test inputs.
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Supervised Learning :Regression 

• Regression 
– Linear Regression

• Classification
– Logistic Regression

• Generalized Linear Models (GLMs)
– Broader family of models (that subsume Linear Regression and 

logistic regress and more

– In R checkout  ?glm()

Parametric Approaches vs. Non-parametric
Convex/Concave
Discriminative versus generative
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Terminology: linear regression

Predicted Predictor variables

Response variable Explanatory variables

Outcome variable Covariables

Dependent Independent variables

  ...              1 nn2210 xwxwxww                           y ++++=
Wi are the model coefficients

Xi’sy

Y-intercept/threshold
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Pr(Click): Advertising Problem

• Predict Pr(Click|dwellTimeOnWebpage) 
– at the times 1, 2, 3, 4, and 5 seconds after 

loading the page. 

• Graph each data point with time on the 
x-axis and CTR on the y-axis. Your data 
should follow a straight line. 

• Use locator() to input data

• Find the equation of this line.

# x y%

1 1 2

. 2 3

. 3 7

. 4 8

m 5 9

F
(x

)

x

X are features, aka variables, 
continuous, discrete, ordinal ( X εεεε ℜℜℜℜn ) 
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Generate Your Own Data

# You can generate data by clicking on a plot.

# Create data that illustrates the effect of varying 'f' and 'iter' in 'lowess'.

example.generateYourOwnData = function(){

#change range of X and Y and experiment  

plot( c(0,1), c(0,1), type = 'n')

xy <- locator(type = "p")       # create your own data set by clicking on the

# left mouse button, then with the right mouse button

# to finish. With a Macintosh cntrl-click outside the

# plot to finish.

data1=data.frame(x=xy$x, y=xy$y)   #PLOT LINE

abline(coef(lm(y~x, data=data1)), col="red")

lines(lowess(xy, f = 2/3, iter = 3))  # here I've used the defaults

# for f and iter,

# experiment with other values
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Least Square Fit ApproximationsLeast Square Fit Approximations

Suppose we want to fit 
the data set.

We would like to find 
the best straight line to 
fit the data?

# x y

1 1 2

. 2 3

. 3 7

. 4 8

m 5 9
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Fit a line based on…

• If we assume that the first two points are correct 
and choose the line that goes through them, we 
get the line y = 1 + x. 

• If we substitute our points (x-values) into this 
equation, we get the following chart. 

• How good is this line? 
– The sum of the squares of the errors is 27. 

SSE = 27

Do you think that 
we can do better 
than this?
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Linear Model More Generally

• E.g., y=mx+b can be more generally seen a function of 
the form 

• Here the W’s are the parameters (also called weights) 
parametering the space of linear function mapping 
from X ���� Y=F(x)  

# X0 x1 y

1 1 1 2

. 1 2 3

. 1 3 7

. 1 4 8

m 1 5 9
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Linear Model: Ordinary Least Squares

• How do we pick, or learn, the parameters W (aka θ)?

• One reasonable method seems to be to make f(x) 
close to y, at least for the training examples. 

• To formalize, let’s define a function that measures, 
for each possible model/hypothesis, W, how close 
fθ(x

i)’s are to the corresponding yi ’s:

• Sum of squared error

• AKA Residual Sum of Squares (Residual squared)

Measuring Quality
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This error minimization is 
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Residual
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Which Line is it anyway?

• Select another two points and build a line

• If we choose the line that goes through the points 
when x = 3 and 4, we get the line y = 4 + x. Will we 
get a better fit? Let's look at it. 

SSE = 18. Getting better but 
can we do better?
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Can we do better than guesswork?
• Let's try the line that is half way between these 

two lines. The equation would be y = 2.5 + x.

• Is there a more scientific or efficient  way than 
guessing at which line would give the best fit. 
– Surely there is a methodical way to determine the best fit 

line. Let's think about what we want.

SSE = 11.25. Getting better 
but can we do better?
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Hypothesis Space of Linear Models

• Here the W’s are the parameters (also called 
weights) parameterizing the space of linear 
function mapping from X ���� Y = f(X)

• Augment Training Data with dummy intercept 
variable (simplifies notation and modeling)

# X0 x1 y

1 1 1 2
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Space of Hypotheses: Weights

example.OLS_Heatmap()

• Each model is in our case a coefficient for the y-intercept (bias) 

and a coefficient for the feature-variable (time)

• Plot weight-space in 2D where the third dimesion is the error

• Select combination that minimizes the sum of square error

HeatMap with isolines overlayed 3D error surface z=log(w0+w1∗∗∗∗x)
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Find a line that fits all datapoints?

• Recall, a line in slope-intercept form looks like y= 
w0 + w1x where w0 is the y -intercept and w1 is the 
slope. 

• We want to find w0 and w1 such that w0 + w1xi = yi is 
true for all our data points:

• We know that there may not exist w0 and w1 that fit 
all these equations, so we try to find the best fit. 

w0 + 1w1 = 2

w0 + 2w1 = 3

w0 + 3w1 = 7

w0 + 4w1 = 8

w0 + 5w1 = 9
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Find the best line: Several Approaches

• Determine w0, w1…wn

• Several Approaches to finding the best-fit line
– Select a couple of data points and solve analytically (high variance)

– Brute-force Search

– Iterative approaches (via the gradient)

– Closed Form

– Probabilistic interpretation/justification via maximum likelihood

– Bayesian modeling [will be covered in Lecture 4]
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Hypothesis Space of Linear Models

• Here the W’s are the parameters (also called 
weights) parameterizing the space of linear 
function mapping from X ���� YF(x) 

• Augment Training Data with dummy intercept 
variable (simplifies notation and modeling)

# X0 x1 y

1 1 1 2

. 1 2 3

. 1 3 7

. 1 4 8

m 1 5 9
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Brute Force Search of Weights
• Enumerate all possible coefficient combinations (in our case 

coefficient for the y-intercept (bias) and for the c-variable (time)

• Select the weight combination that minimizes the sum of square 
error

HeatMap with isolines overlayed 3D error surface z=log(w0+w1∗∗∗∗x)

example.OLS_Heatmap()
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Brute Force Search of Weights
• Very inefficient; at best we can only approximate 

the surface

• Not scaleable

• Avoid this approach…..
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Iterative approach to Learning the Line

• Can we navigate the error surface in an efficient 
manner in the hope of getting to minimum? 

• Can we leverage other properties of the function? 
(Hint convexity)

• Yes we can!

– We can navigate this surface using the gradient (slope)

– OLS is convex so what [well-behaved function! More about 
this later this lecture and next lecture]

ISM 280: Stochastic Gradient Descent       ©  2011 James G. Shanahan         James.Shanahan_AT_gmail.com 292

Exploiting the Gradient of Error Surface

• Gradient Descent (a simpler alternative to 
Newton-Raphson)
– A work horse

• Newton-Raphson
– Quasi-versions

– Commonly used

• Conjugate-Gradient Descent
– Not covered here but effective and commonly used

• Practically speaking we will use off-the-shelf 
software

– R built-in solvers such as optim()

– Or built-in linear regression algorithms, glm(), lm()) etc.
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Gradient Descent: surf downhill

• Goal: Choose W so as to minimize J(W)

• Algorithm
– Start with some random guess for W

– Repeat

• Use gradient to travel downhill 

– Update each weight wi

– Until convergence (to global minimum)

error)or W in  changes big no (i.e., econvergenc until

)(      

Repeat

,....)0,0(  W

,,1, tititi WJWW

Let
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Contour Map of J(W) 
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Gradient Descent (a simpler root finder)

• Calculating  f’’(x), the Hessian H, and 
inverting it is complex so simpler 
algorithms have been developed such 
gradient descent

• How large should I step in the positive 
gradient direction (gradient ascent) 
– or in the negative gradient direction (gradient 

descent)

)('1 iiii
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functionIteration
xf

xf
xx

i

i
ii           

)(''

)('1 −=+ Newton-Raphson
In 1-Dimension

Gradient Descentf’(x)
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Build Error Surface

• R code

R code example: JimisMLCourse.R

HeatMap with isolines overlayed 3D error surface z=log(w0+w1∗∗∗∗x)

Difficult surface to navigate!

ISM 280: Stochastic Gradient Descent       ©  2011 James G. Shanahan         James.Shanahan_AT_gmail.com 296

OLS Via Gradient Descent: The Gradient

• In order to implement this algorithm, we have to work out 
what is the partial derivative term at time t on the right hand 
side ∇∇∇∇fwj(W)=dF(W)/dwi. 

• Assume we have only one training example (x, y), so that 
we can drop the sum in the definition of J. 
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OLS Via Gradient Descent

• Assume we have only one training example (x, y), so that 
we can drop the sum in the definition of J.

• This rule has intuitive properties
– The magnitude of the update is proportional to the error term (yi − f(xi)); 

– If we are encountering a training example on which our prediction 

nearly matches the actual value of yi, then we find that there is little 

need to change the parameters; 

– In contrast, a larger change to the parameters will be made if our 
prediction fW(xi) has a large error (i.e., if it is very far from yi).
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AKA Widrow-Hoff Learning Rule

Widrow-Hoff Learning Rule
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LMS Rule for Multiple Examples

• General Update Rule for m training examples
– W(k+1)=W(k) - αααα∇∇∇∇J (W(k))
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Intuitively, drag weight vector closer to the misclassified examples

BATCH Update Rule
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OLS using Gradient Descent (LMS Rule)

• Batch update

error)or W in  changes big no (i.e., econvergenc until
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$coefficients
[1] 0.09644596 1.90098441
$iterations
[1] 658
$SSE
[1] 2.700011 ISM 280: Stochastic Gradient Descent       ©  2011 James G. Shanahan         James.Shanahan_AT_gmail.com 302

OLS Via Gradient Descent in R
OLSUsingGradientDescent = function (..){

…..  

w=rep(-2, numVariables);  #initialize weight vector

wOld = w;

it = 1 # iteration index

while (it <= max.iter){

p = designMatrix %*% w #prediction for each training example

w = w + alpha* drop(t(designMatrix) %*% (targetValues - p)) 
#drop yields a scalar from errV*X_j

if (t(w - wOld) %*% (w - wOld) < tol) 

break

it = it + 1  # increment index

wOld=w

if (it > max.iter) warning('maximum iterations exceeded')

}

}
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Ordinary Least Squares Algorithm

• Given Training data S where each example i is of the 
form (xi,1,…, xi,n,yi), and a learning rate ηηηη

• Set Wo to zeros; k=0;

• Repeat

– For i = 1 to |Train| do
Wk+1= Wk+ η (<Wk, Xi > -yi )Xi 

– End-For

• Until convergence

• Return W

Single-sample Primal Form

Iterative, gradient descent based algorithm (as opposed to other 
versions, such as closed form version, quadratic programming 
version, maximum likelihood. What could they look like?)
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R: Linear Regression via lm()

Variable significance

Residuals = (WXi – yi)

> deviance(lm.temp)
[1] 2.7

Pay attention to 
1. Residual standard error 
2. Or Deviance (SSE), 
3. And variable significance

( ) 7.2*3/1 
1

1 m

1i

2
=−
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ii yWX
nm

σ

Residual standard error

Residual standard error =σσσσ=Sqrt(deviance/m-n-1)

residualStandardError=sqrt((t(lm.temp$residuals) %*% lm.temp$residuals)/3)

example.lm ()
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Gradient Descent for Ordinary Least Squares

weight1

weight2

Version space (weights)

OLS with this objective has no local minima (convex as the Hessian, n by n 
matrix of second derivatives, of the objective function is positive definite); 
in this case n=2 variables.
Iterative versus closed form solution

Error surface; each point 
corresponds to a different 
linear model (hypothesis). The 
vertical axis indicates the 
squared error for the training 
dataset WRT that weight 
vector. 
Q: Will this surface change for 
different datasets?
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OLS using Gradient Descent (LMS Rule)

• Stochastic update

error)or W in  changes big no (i.e., econvergenc until

)(                 
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Repeat
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Stochastic Gradient Descent
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OLS using Gradient Descent

• General Update Rule

– W(k+1)=W(k) - η∇η∇η∇η∇J (W(k))

Intuitively, drag weight vector closer to the misclassified example

Stochastic Gradient Descent
Online/Single Update Rule

iii XyWXkkWkW ))(()()1( −+=+ η

OLS Objective Function

OLS Single Update Rule
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True gradient is approximated the 
gradient of the cost function only 
evaluated at  one example; adjust 
parameters  proportional to this approx. 
gradient. This can be much better for 
large datasets.
E.g., Stochastic Gradient Decision 
Trees; perceptron
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Stochastic Gradient Decent vs. Batch

• Stochastic gradient descent can start making progress 
right away, and continues to make progress with each 
example it looks at. 

• Often, stochastic gradient descent gets W “close” to the 
minimum much faster than batch gradient descent. 
– Note however that it may never “converge” to the minimum, and the 

parameters W will keep oscillating around the minimum of J(W); but 
in practice most of the values near the minimum will be reasonably 

good approximations to the true minimum. 

• For these reasons, particularly when the training set is 
large, stochastic gradient descent is often preferred 
over batch gradient descent.
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Learning Rate: αααα

• Fixed learning rate 
– While it is more common to run stochastic gradient descent 

as we have described it and with a fixed learning rate

• Dynamic, decreasing learning rate

– by slowly letting the learning rate  decrease to zero as the 
algorithm runs, it is also possible to ensure that the 

parameters will converge to the global minimum rather then 

merely oscillate around the minimum

• Or it can be calculated
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Exercise 1.5 : Code up OLS using LMS
• The learning objective function for weighted ordinary least squares 

(WOLS) is defined as follows:

• Derive the gradient for this weighted OLS by hand; showing each step 
and also explaining the step

• Train a weighted OLS model using gradient descent

– Train OLS model using using LMS (Least Mean Squares) Rule algorithm to 

predict y (the CTR) given x (the dwelltime on a page) 

– Train a model using lm(.) (in R) using the same weights.

– Train a model using lm() without the weights

• Analysis

– Use the following dataset (sometimes known as the design matrix)[See next slide]

– Plot the error surface

– Plot the heatmap and contour plot

– Plot the path to convergence

– Comment on convergence and on the mean squared error using your algorithm and the 
lm(..); 

– Comment on the weighted linear and unweighted linear model.

• NOTE: See slides for inspiration
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Exercise 1.5 : Continued

# Weight x y

1 0.5 1 2

2 1 2 3

3 5 3 7

4 1 4 8

5 7 5 9
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• Dataset
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Overfiting versus Underfitting

[Ng, 2008 Stanford]
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MultiVariate Linear Regression

# time age y

1 1 25 2

. 2 22 3

. 3 7 7

. 4 22 8

m 5 10 9
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Normal Equations ���� Closed From Soln. to OLS

• Gradient descent gives one way of minimizing J(W). 

• An alternative is to performing the minimization 
explicitly and without resorting to an iterative 
algorithm
– In this method, we will minimize J by explicitly taking its 

derivatives with respect to the Wj’s, and setting them to zero. 

– Do this via calculus with matrices.
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Closed form solution to OLS

• To minimize J, we set its derivatives to zero, and 
obtain the normal equations:
– XTXW = XTy
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For another derivation see:
http://www.stanford.edu/class/cs229/notes/cs229-
notes1.pdf
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Closed form solution to OLS
• To minimize J, we set its derivatives to zero, and obtain the normal 

equations:

– XTXW = Xty

– Thus the value of W that minimizes J(W) is give in closed form

• For a full derivation see: http://www.stanford.edu/class/cs229/notes/cs229-

notes1.pdf
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Closed form solution to OLS

[Friedman et al. 2001]

W is computed directly in 
closed form

ββββ is W in our notation
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Lecture Outline

• R

• Lines, Tangents, Taylors Theorem

• Turning points, Roots, Newton-Raphson

• Taylor Series: quadratic approximations 

• Newton-Raphson quadratic convergence

• Multi-Dimensional Approximations (Planes)

• Directional Differentials, Total Differentials

• Vector plots, contour plots

• Gradient Descent

– Linear regression

• Predicting Click Through Rates 
– Linear Regression 

– Logistic Regression
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•End of lecture
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Derivation of Parameter EquationsDerivation of Parameter Equations

• An Alternative Derivation treating the y-intercept and 
the variable coefficients separately; here we 
represent W as ββββ.

•• GoalGoal: Minimize squared : Minimize squared error (WRT to the yerror (WRT to the y--intercept)intercept)
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Derivation of Parameter EquationsDerivation of Parameter Equations
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Derive variable coefficients; here we represent W as ββββ
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Exercise 1.6 :OLS: Closed Form Solution 
in R

• Using matrices and the closed from solution 
estimate the OLS weight (maximum likelihood) 
using the dataset in exercise 1.5

• To calculate inverse of a matrix
– ginv() # from library(MASS)

• Other useful matrix commands 

– matrix()

– det()  # division matrix style of a square matrix

– diag()  

– t()  #transpose of a matrix

– eigen()

– solve()
Matrix Algebra,The R Book, M. Crawley page 259
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Exercise:OLS: Closed Form Solution in R

• Using matrices and the closed from solution 
estimate the OLS weight (maximum likelihood)

……preamble

#dataEx is a training set dataframe

designMatrix=as.matrix(dataEx1[,1])  #input variable data

X=designMatrix=cbind(1, designMatrix)  #append a constant 
1 for bias term

y=targetValues=as.matrix(dataEx1[,2]);

numVariables=ncol(designMatrix);

w=rep(-2, numVariables);  #initialize weight vector

library(MASS) #make ginv() the inverse of a matrix available

w = ginv(t(X) %*% X) %*% t(X) %*% y;

print(paste("OLS: Closed From Weight is ", w));

See example.learnLSUsingClosedFormSolution()



55

ISM 280: Stochastic Gradient Descent       ©  2011 James G. Shanahan         James.Shanahan_AT_gmail.com 325

Model classification as a regression?

))(()(

,)(

XfsignXClass

bXWXf
rr

rrr

=

+>=<

+ + +++ +

-- - -

Very volatile; out of range f(x) 

x

F
(X

)

E.g. x1 x2 y

1 3 0 0

2 +1

… … … …

L 0 4 0

Training 
Data 

A linear regression
function is  linear in 
the components of X

E.g., y=ax1 + bx2 + c
1

0
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Limit range of f(x) using a logit function

)exp(1

1
 )(logit )logistic( 1-

XW
XWXW

T

TT

−+
==

Intuitively it does not make sence to have f(x) >>1 or f(x)<<0
So limit using a sigmoid squashing function….
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Logistic Regression: From WXi to pi
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As shown earlier
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LR: Maximum Likelihood Estimates

• The expression to the right of the argmax is the 
conditional data likelihood. 

Select W s:t likelihood of W 
generating the data is 
maximized

Y can take only values 0 or 
1, so only one of the two 
terms in the expression 
will be non-zero for any 
given Yl; recall m^0 =1 .

Working with logs is simpler and more effective computationally; 
amenable to off-the-shelf optimization approaches; concave function in 
W  so gradient ascent will converge to global maximum (though many 
may  exist). L(W) continuous, differentiable
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Conditional Data Likelihood
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Estimating Parameters using Gradient Descent

• Unfortunately, there is no closed form solution to 
maximizing l(W) with respect to W. Therefore, one 
common approach is to use gradient ascent, in 
which we work with the gradient, which is the 
vector of partial derivatives. The ith component of 
the vector gradient has the form

Beginning with initial weights of zero, 
we repeatedly update the weights in 
the direction of the gradient, changing 
the ith weight according to this 
formula, where ηηηη is a small constant 
(e.g., 0:01) which determines the step 
size. Effectively we are pulling weight 
vector closer to the examples where 
we make mistakes
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Logistic Regression via Gradient Descent

• Stochastic update

error)or W in  changes big no (i.e., econvergenc until

)(                 

exampleeach #   1..min  iFor           

bleeach varia#0..n   in  jFor       

Repeat

,....)0,0(  W

,1, jtjtj XpyWW

Let

−∗+=

=

+ α

Stochastic Gradient Descent

∇∇∇∇wj l(Wt)
Partial derivate WRT to variable wj

of error function l(W) at point Wt

the term inside the parentheses is simply the prediction 
error; pulling the W weight vector closer to the example
Batch LR: do a batch update of Wj after a sweep of the data
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Logistic Regression in R

• Explore Logistic Regression in R
– Using Newton-Raphson

– Using general optimization

– Using GLM built-in function

– Using Gradient Descent (homework)

• Book: John Fox (2002), Sage, An R and S-PLUS 
Companion to Applied Regression

– http://socserv.mcmaster.ca/jfox/Courses/R-course/

• Accessing man pages in R

– ?glm

– ?solve

– help.search("solve system") in R
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Lecture 2 Outline

• Taylor Series: quadratic approximations 

• Newton-Raphson quadratic convergence

• Multi-Dimensional Approximations (Planes)

• Directional Differentials, Total Differentials

• Vector plots, contour plots

• Gradient Descent
– Linear regression

• Predicting Click Through Rates 
– Linear Regression (using gradient descent, MCMC version on 1/26)

– Logistic Regression (using gradient descent, MCMC on 1/26)

• Convexity, extreme values, mathematical programming
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Systems Modeling is inherently

interactive and iterative

1

2

3

4

5

Understand the domain 

and Define problems

Collect requirements, 

and Data

Modeling:

Extract Patterns/Models

Interpret and Evaluate 

discovered knowledge

Deploy System in the 

wild (and AB test)

Stochastic Optimization in Practice
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Estimating CTR (and later AR)

2.6%1.6% 3.6% CTR (after 1,000 impressions)

95% 
Confident

2.3% 2.9% (after 10,000 impressions)

For a network of 
~109 target pages,
~106 ads
~107 users
……
- Cannot afford this   
evaluation/auditioning

- Borrow strength,    
marginalize

- CoD (curse of dimality)
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Accurate CTR Estimates are Crucial

• Very important to have accurate estimates of CTRAd

for a keyword or publisher page
– for ranking and for revenue purposes

– CTR drop exponentially with position [enquiro.com] ; NDCG Metric

• E.g., A true CTR for an Ad is 2.6% must be shown 
1,000 times before we are 95% confident that this 
estimate is within 1% of the true CTR, i.e.,  [1.6, 3.6] 

– Very noisy!!

1000*AdAdAd BidCTRECPM ∗=
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Ads

Ranking Ads using IR

Features

User

Target
Page

Targeting
Engine

...

...

Ad 
Creatives

Landing 
Pages

...

...

View TP 
as query

View Ad as document 
with different sections

Keywords
Title + Description +URL
Landing Page

IR
Engine
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Estimating CTRs using ML

• Estimate CTR using PrAd(Click|Keyword)

• Frame as machine learning problem
– E.g., Matthew Richardson, Ewa Dominowska, Robert 

Ragno: Predicting clicks: estimating the click-through rate for 
new ads. WWW 2007 pages 521-530

• Model using Logistic Regression and MART (Boosted 

decision trees using stochastic gradient descent 

[Friedman 2000])

– Esteban Feuerstein, Pablo Heiber, Javier Martinez-
Viademonte and Ricardo Baeza-Yates., New Stochastic 

Algorithms for Placing Ads in Sponsored Search. LA-Web, 

Santiago, Chile 2007
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ML Features 1/2

• Historical data 
– CTR of KW based on other ads with this KW

– Related terms CTRs

• Appearance
– #words in title/body; capitalization; punctuation; word length

• Attention Capture
– Title/body contain action words, e.g., buy/join/etc

• Reputation
– .com/.net/etc, length of URL, #segments in URL, numbers in URL

• Landing page quality

– Contains flash? Fraction of page in images? W3C compliant

• Text Relevance
– keyword match with ad title/body; fraction of match

[Richardson et al., 2007]

Features(KW,AD, LP)->CTR
Xi ->CTRi
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ML Features 2/2

• Historical data

• Related terms CTRs

• Appearance

• Attention Capture

• Reputation

• Landing page quality

• Text Relevance
– keyword match with ad title/body; fraction of match

• 10K unigrams (appearing in Ad title and Ad body); 
bi/trigrams did not bring significant improvement; 
– Binary feature; 1 if term occurs in ad 0 otherwise

• Freq of term on web; in query logs

• Many others could be used!!! [Richardson et al.]
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Learning Setup

• Logistic Regression
– Used a cross entropy loss function 

– Standardized all features using training data 

• (mean and variance, of 0 and 1)

– Thresholded data beyond 5 std deviations 

– Added derived features 

• (i.e., foreach feature f, log(f +1) and f2)

• Baseline

– Predict the average CTR of the training dataset

• MART (Boosted decision trees using stochastic 
gradient descent [Friedman 2000])
– Experiments did not show significant improvement over LR

– LR is a more transparent model
For LR see: 
1. http://en.wikipedia.org/wiki/Logistic_regression
2. http://statgen.iop.kcl.ac.uk/bgim/mle/sslike_4.html

ISM 280: Stochastic Gradient Descent       ©  2011 James G. Shanahan         James.Shanahan_AT_gmail.com 342

Learning Setup

• Error measures

– Mean Squared error between predicted CTR and 
true CTR

– KL Divergence between the predicted CTR and 
true CTR (in both cases lower is better; 0 is best)

• Issues?
– Weighted?

– ??



58

ISM 280: Stochastic Gradient Descent       ©  2011 James G. Shanahan         James.Shanahan_AT_gmail.com 343

Dataset

• 10,000 Advertisers

• 1 Million examples of <Keyword, Ad> -> CTR 

– (view <Keyword, Ad> as <TP, Ad>) 

• Keywords are both exact and broad match 

• 100,000 unique ad texts

• Required that each example had more than 
100 views

• 70-10-20 data split (train, validation, test)

[Richardson et al.]
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Proportion Data versus Binary Event

• An important class of problems involves data on 
proportions: 
– Proportion of click responses to impressions

– data on percentage mortality 

– infection rates of diseases 

– proportion responding to clinical treatment 

– proportion admitting to particular voting intentions 

– data on proportional response to an experimental treatment 

• Model as proportion data or as Bernoulli/binary 
event
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LR Modeling of Clicks and Impression

• In R, using glm()

y <- clicks/impressions 

model.CTRPredict = glm(y ~ log(dose), binomial,     
weights=impressions) 

summary(model.CTRPredict) 

• and internally glm converts models with a two-
column response to this form, for it is in this form 
the binomial fits into the GLM framework. 
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For Proportion Data

• In R, using glm() or you can pass in 

• number.of.failures = binomial.denominator –
number.of.successes

• y <- cbind( number.of.successes, number.of.failures)
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Bernoulli 
trials vs. 

Proportion 
Data
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Logistic Regression: L-BFGS

Used regularized LR
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Results
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Transparency of Results
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CTR Evolution

Model predicted CTR 
using a Beta distribution
where p0 is the predicted 
(and baseline) CTR
αααα: strength of prior as 
measured in terms of 
impressions
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Estimating CTRs using ML

• Richardson et al. report a very interesting 
approach and case study
– Despite realistic problem setting results are preliminary 

• Transparency of model

• Using many features helps insulate from 
adversarial attacks (can be useful in adversarial 
detection)

• Applied to new ads but could be extended to deal 
with existing ads, display/graphical ads

– Homework!!

• But many issues remain!!

Intermediate Conclusions
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Modeling CTR Challenges

• Extremely rare events (Typical CTRs < 1% for contextual)

• Biased dataset (the rich get richer; suboptimal locking)

• Very sparse (only a small percentage of <TP, Ad> get 
impressions; can impede generalization)
– Missed opportunities

• Accuracy of estimates 

– ML approaches are hugely biased; bias correction [see Provost and 
Domingos; Platt]

• Scale and Speed

• Non-Stationary, new ads, changes in network

• Marginalization versus segmentation (resolution vs. 
sufficient data)

• ….
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Exercise

• Mobile advertising is defined as showing ads on 
mobile phone contexts such within a browser or 
app (application).

• What types of features could be leverage within a 
mobile context to better target consumers?

• Are these features real-valued, nominal, 
categorical?
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Thanks
EMAIL: 

James_DOT_Shanahan_AT_gmail_DOT_com
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•R Break
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Solve a System of Equations in R
• Solve the system of linear equations. 

-2x + 3y = 8 
3x - y = -5 

• multiply all terms in the second equation by 3 
-2x + 3y = 8 
9x - 3y = -15 

7x = -7         # add the two equations 

Note: y has been eliminated, hence the name: method of elimination 
solve the above equation for x 
x = -1 
substitute x by -1 in the first equation 
-2(-1) + 3y = 8 
solve the above equation for y 
2 + 3y = 8 
3y = 6 
y = 2   

• write the solution as ordered pair  (-1,2) 

�A <- matrix(c(-2,3, 3,-1 ), 2)
> A

[,1] [,2]
[1,]   -2    3
[2,]    3   -1
> b
[1] 8 5
> b=c(8,-5)
> qr.solve(A, b) # or solve(qr(A), b)
[1] -1  2 ISM 280: Stochastic Gradient Descent       ©  2011 James G. Shanahan         James.Shanahan_AT_gmail.com 358

Matrices

• To calculate inverse of a matrix
– # division for matrices 

– ginv() # from library(MASS)

• Other useful matrix commands 
– matrix()

– det()

– diag()  

– t()  #transpose of a matrix

– eigen()

– solve()  #compute inverse or solve system of equations

Matrix Algebra,The R Book, M. Crawley page 259

See example.Matrices()

See local file MatricesInR.doc
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Data in R

• Dataframes, matrices etc…

• Data input:
– From the keyboard.

– From an ascii (plain text) file.

– From the clipboard.

– Importing data (e.g., from SPSS).

– From a database-management system.

– From an R package.

• The R search path.

• Missing data.

• Numeric variables, character variables, and factors

• http://socserv.mcmaster.ca/jfox/Courses/R-
course/Session-3-script.R

See example.DataFrames()
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Matrices in R

• Linear equations 

• Determinant

• See presentation in local dir Matrices and 
Singular values 

• MatricesLectureSingularValues.pptx

See example.Matrices()
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Matrices, Vectors (in R)
• For more background see

– http://en.wikipedia.org/wiki/Euclidean_vector

– http://en.wikipedia.org/wiki/Matrix_(mathematics)
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R Notes

• Matrix Ops

• Solve(a, b)  
– #solve a system of equations Ax=b by b=A-1b; b is 

combination of the column in A.

– This generic function solves the equation a %*% x = b for x, 
where b can be either a vector or a matrix. 

– a:  a square numeric or complex matrix containing the 

coefficients of the linear system. 

– b: a numeric or complex vector or matrix giving the right-

hand side(s) of the linear system. 

– If missing, b is taken to be an identity matrix and solve will 
return the inverse of a.
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Solve a System of Equations in R
• Example 1: Solve the system of linear equations. 

-2x + 3y = 8 
3x - y = -5 

• multiply all terms in the second equation by 3 
-2x + 3y = 8 
9x - 3y = -15 
add the two equations 
7x = -7 

Note: y has been eliminated, hence the name: method of 
elimination solve the above equation for x 
x = -1 
substitute x by -1 in the first equation 
-2(-1) + 3y = 8 
solve the above equation for y 

2 + 3y = 8 
3y = 6 
y = 2 

�A <- matrix(c(-2,3, 3,-1 ), 2)
> A

[,1] [,2]
[1,]   -2    3
[2,]    3   -1
> b
[1] 8 5
> b=c(8,-5)
> qr.solve(A, b) # or solve(qr(A), b)
[1] -1  2
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Debugging in R

• http://www.stats.uwo.ca/faculty/murdoch/softwar
e/debuggingR/debug.shtml
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Debugging in R

• Use browser() #?browser  commands like c/c++ debugger

– n  #next

– c  # continue

– Q quit

• For more details on debugging on R RTFM (see next 
slide for useful example) !!
– http://www.stats.uwo.ca/faculty/murdoch/software/debuggingR/de

bug.shtml

• Locating an error: traceback().
– Setting a breakpoint and examining the local environment of an 

executing function: browser().

– A simple interactive debugger: debug().

– A more sophisticated debugger: the debug package. 

– There is also a “postmortem” debugger: debugger() (which I’ll not 

discuss)
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R debuging via browser()
• This kind of use of browser can be useful if you have a vague idea as to where a bug 

may be in your program.

• Notice that the first two lines in the function were not printed. 

Commands in debug mode



62

ISM 280: Stochastic Gradient Descent       ©  2011 James G. Shanahan         James.Shanahan_AT_gmail.com 367

http://www.stats.uwo.ca/faculty/murdoc
h/software/debuggingR/debug.shtml
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Multi-Variable Unconstrained Optimization

• Because the objective function f(x) is assumed to be 
differentiable, it possesses a gradient, denoted by f 
(x), at each point x. In particular, the gradient at a 
specific point x = x’ is the vector whose elements are 
the respective partial derivatives evaluated at x = x’, 
so that
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MultiVariate Taylor
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Appendix: Cheat Sheets

• Notation

• Calculus

• Algebra

• Matrices
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Notation
X or X Uppercase/Bold  letters denotes a vector

XT Transpose of vector X

x Lowercase letters denotes a variable

xi A lowercase subscripted letter denotes a variable component of a vector

y Output or dependent variable

X or X Input vector

n The dimension or number of input features/variables

L or m The number of training examples

W The weight vector component of a hyperplane

b Bias or threshold component of a hyperplane

(W, b) A hyperplane with weight vector W and bias component b

S Training sample 

γ Margin 

ξ Slack variable

η Learning rate 

Φ(.) Input feature transformation/remapping function   

α Dual variable or Lagrange multiplier   

d VC dimension   

h A hypothesis or model (e.g., a hyperplane (W, b))   

The sum x1 + x2 + … + xn∑
==

n

i

ix
1
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Notation

∑
=

>=<
n

i

ii zxZX
1

,  
 
The inner product (or dot product) between two vector X and Z 

>ΦΦ=< )(),(),( ZXZXK  A kernel function whose effect is the dot product of two vectors 
that have been transformed into a new feature space induced by  

Φ. 

∏
=

n

i

ix
1

 
 

The product  x1 × x2 ×  … × xn  

)(maxarg xf
Xx Ω∈

 The value of x that maximizes f(x). For example,  

3)(maxarg 2

}3,2,1{

−=
−∈

xf
x

 

)(minarg xf
Xx Ω∈

 The value of x that minimizes f(x). For example,  

1)(minarg 2

}3,2,1{

=
−∈

xf
x
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W  or W  

( ) WwW i

n

i

 ofcomponent  a is  and vector a is       wherew2

1
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i∑
=

Often 

referred to as the Euclidean Norm 

1
W  ( )

 valueabsolute  thedenotes abs(.) and                       

  ofcomponent  a is  and vector a is       wherew
1

i WwWabs i

n

i

∑
=  

∅ Null set or empty set 
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Notation

{x | P(x)} Set determined by the property P. “|” is read as “such 
that”. 

<x1, x2, …, xn> n-tuple  

∀ Universal quantifier denoting for all  

∃ Existential quantifier denoting there exists  

|A| Cardinality of a set A 
{a, …, b}  {a, …, b} denotes a discrete interval, such that a ≤  x ≤  b 

∀ x ∈ {a, …, b}. For example, {1, …, 6} denotes {1, 2, 3, 
4, 5, 6} 

(a, b) A continuous interval denoting any value x that satisfies 
the following condition: a < x < b 

[a, b] A continuous interval denoting any value x that satisfies 

the following condition: a ≤  x ≤ b 

ℜ Set of all real numbers 

 

Α α Alpha Β β Beta

Γ γ Gamma ∆ δ Delta

Ε ε Epsilon Ϝ ϝ Digamma

Ζ ζ Zeta Η η Eta

Θ θ Theta Ι ι Iota

Κ κ Kappa Λ λ Lambda

Μ µ Mu Ν ν Nu

Ξ ξ Xi (zai) Ο ο Omicron

Π π Pi Ϻ Ϻ San

Ϙ ϙ Qoppa Ρ ρ Rho

Σ σ Sigma Τ τ Tau

Υ υ Upsilon Φ φ Phi

Χ χ Chi Ψ ψ Psi

Ω ω Omega Ϡ ϡ Sampi

Greek alphabet 
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Cheat Sheets & Tables 
http://tutorial.math.lamar.edu/

• Algebra Cheat Sheet - This is as many common algebra facts, properties, formulas, and 
functions that I could think of. There is also a page of common algebra errors included. 
Currently the cheat sheet is four pages long.
Algebra Cheat Sheet (Reduced) - This is the same cheat sheet as above except it has 
been reduced so that it will fit onto the front and back of a single piece of paper. It 
contains all the information that the normal sized cheat sheet does.
Trig Cheat Sheet - Here is a set of common trig facts, properties and formulas. A unit 
circle (completely filled out) is also included. Currently this cheat sheet is four pages 
long.
Trig Cheat Sheet (Reduced) - My standard trig cheat sheet reduced to fit onto the front 
and back of a single piece of paper. It contains all the information that the normal sized 
cheat sheet does.
Calculus Cheat Sheets - These are a series of Calculus Cheat Sheets that covers most of 
a standard Calculus I course and a few topics from a Calculus II course.
Common Derivatives and Integrals - Here is a set of common derivatives and integrals 
that are used somewhat regularly in a Calculus I or Calculus II class. Also included are 
reminders on several integration techniques. Currently this cheat sheet is four pages 
long.
Common Derivatives and Integrals (Reduced) - My common derivatives and integrals 
table reduced to fit onto the front and back of a single piece of paper. It contains all the 
information that the normal sized table does.
Table of Laplace Transforms - Here is a list of Laplace transforms for a differential 
equations class. This table gives many of the commonly used Laplace transforms and 
formulas.
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http://www.freehomeworkmathhelp.com/Calculus_I/Calcu
lus_I_Rules/calculus_I_rules_for_derivatives_integrals.ht
ml
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Differentiation Rules
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Derivative

• The derivative is a measure of how a function 
changes as its input changes. 
– Loosely speaking, a derivative can be thought of as how 

much one quantity is changing in response to changes in 

some other quantity;

• The derivative of a function at a chosen input 
value describes the best linear approximation of 
the function near that input value. 
– For a real-valued function of a single real variable, the 

derivative at a point equals the slope of the tangent line to 

the graph of the function at that point. 

– In higher dimensions, the derivative of a function at a point is 
a linear transformation called the linearization.

how much a function changes as its input changes

http://en.wikipedia.org/wiki/Derivative
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Derivative Notation

• Leibniz's Notation

• Lagrange’s Notation

– f’(a)

• Newton’s Notation
– Assume y = ƒ(t) the first derivative and second derivative are 

denoted as:

• Laplacian

– ∇2φ
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Unconstrained optimization

• Assume f’(x) and H(x) exists for all x∈∈∈∈S

• Locate candidate extrema using f’(x) = 0 and 
boundary points

• Then candidate x is 
– f(x) is a convex function on S if and only if all principal 

minors of H(x) are nonnegative for all x∈S

– f(x) is a concave function on S if and only if the principal 
minors of H(x) of order k have the same sign as (-1)k for all 

x∈S and all k

n

n

Rx

xxfxf

∈

=

        subject to

),...,()(        minmax/ 1

For noncovex/non-concave


