

80: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

Scripting languages

nstrations in R

RCmdr Outp	ut	
See example.BocPlotsAnd3DScatterPlots()	-	
example.BocPlotsAnd3DScatterPlots = function() {		
# data()		
Duncan <- read.table("http://socserv.mcmaster.ca/jfox/Courses/R-course/Duncan.txt")		
Hist(Duncan\$education, scale="frequency", breaks="Sturges", col="darkgray")		
.Table <- table(Duncan\$type)		
.Table # counts for type		
100*.Table/sum(.Table) # percentages for type		
remove(.Table)		
boxplot(Duncan\$education, ylab="education")		
#plot income as a function of job type		
boxplot(income~type, ylab="income", xlab="type", data=Duncan)		
#plot prestige as a function of job type		
boxplot(prestige~type, ylab="prestige", xlab="type", data=Duncan)		
library(Rcmdr)		
# 3Dplot income as function of eduction and prestige		
# with residuals		
scatter3d(Duncan\$education, Duncan\$income, Duncan\$prestige, fit="linear",		
residuals=TRUE, bg="white", axis.scales=TRUE, grid=TRUE, ellipsoid=FALSE,		
xlab="education", vlab="income", zlab="prestige") 280: Stochastic Gradient Lestent © 2011 James G. Shanahan	23	ISM 280: S

James.Shanahan_AT_gmail.com

t Descent © 2011 James G. Shanahan

n_AT_gn

the <u>slope</u> of this graph at each point.

	Two y-axis example
#http://rgraphics.limnology.wisc.edu/li	ine.php
rm(list = ls()) # Clear all variables	http://rgraphics.limnology.wisc.edu/
graphics.off() # Close graphics wind	ows <u>line.php</u>
# Generate sample time series data	
ti = 1:50 # Generat	te 50 sample time steps
# Generate 50 stochastic data points f	or time series y1
y1 = 8 + rnorm(50)	
# Plot the y1 data	
par(oma=c(2,2,2,4)) # Set outer marg	gin areas (only necessary in order to plot extra y-axis)
plot(ti, y1, # Data t	to plot - x, y
type="b", # Plot li	ines and points. Use "p" for points only, "I" for lines only
main="Time series plot", # Main	title for the plot
xlab="Time", # Label	for the x-axis
ylab="Response (y1 & y2)", # Label	for the y-axis
font.lab=2, # Font to use for t	he axis labels: 1=plain text, 2=bold, 3=italic, 4=bold italic
ylim=c(0,20), # Range for the y-	axis; "xlim" does same for x-axis
xaxp=c(0,50,5), # X-axis min, max	and number of intervals; "yaxp" does same for y-axis
whether "d") have an another the Box around pla	the contain only left and laws lines

• When does it converge to correct solution ?

ent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

• What is the convergence rate ?

Total Differential (Directional derivative)

- Most relationships depend on several variables
 y = f (x₁, x₂, x₃, ..., x_N)
- Recall that the partial derivative, $\partial y/\partial x_1$, is the change in y when we change x_1 , etc.
- Now we're interested in the total effect on *y* when all the *x*s are changed by a small amount.
- This is the Total Differential of f and is denoted by dy in direction dx at df/dx|

$$dy = \frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2 + \dots + \frac{\partial f}{\partial x_N} dx_N$$

an_AT_gi

© 2011 James G. Sha

James.Shanahan_AT_gmail.com

ient Descent © 2011 James G. Shanahan

Gradient Vector at Extrema is <0, 0, ..>

- The gradient is a fancy word for derivative, or the rate of change of a function.
- It's a vector (a direction to move) that points in the direction
 of greatest increase of a function is zero at a local
 maximum or local minimum (because there is no single
 direction of increase); the magnitude of the vector is zero.
 Gradient at turning points =<0, 0, 0,...,0)
- The term gradient typically refers to the derivative of vector functions, or functions of more than one variable. Yes, you can say a line has a gradient (its slope), but using the term gradient for single-variable functions is unnecessarily confusing. Keep it simple.

http://betterexplained.com/articles/vector-calculusunderstanding-the-gradient/

James.Shanahan_AT_gm

nt Descent © 2011 James G. Shanahan

	quiver2() 2/2
filled.contour(xx, yy, fxy, nlevels=nlevels, plot.axes = { contour(xx, yy, fxy, add=T, col="gray", nlevels=nlevels, drawlabels=FALSE)	
arrows(x0 = x, x1 = x + grad_x, y0 = y, y1 = y + grad_y, length = length*min(par.uin()))	
axis(1) axis(2) },)	
}	
M 280: Stochastic Gradient Descent 🛛 © 2011 James G. S	hanahan James.Shanahan_AT_gmail.com 239

Operational Algorithms Guasi-Newton (BFGS) - Popular in practice - Avoid computing the inverse of Hessian matrix - But, it still requires computing the B matrix (approximate Hessian) → large storage - Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is a method for solving nonlinear optimization problems - The BFGS method approximates Newton's method, • a class of hill-climbing optimization techniques that seeks a stationary point of a (twice continuously differentiable) function: • For such problems, a necessary condition for optimality is that the gradient be zero. • Newton's method and the BFGS methods need not converge unless the function has a quadratic Taylor expansion near an optimum. These methods use the first and second derivatives. Limited-Memory Quasi-Newton (L-BFGS)

– Even avoid explicitly computing **B** matrix ^{280: Stochastic Gradient Descent 2011 Jarhes G. Shanahan} James.Shanahan_AT_gmail.com

- Algorithms seek a local extrema knowing that it w
 - · If f() is a concave function then local maximum is a global maximum
 - · If f() is a convex function then local minimum is a global minimum
 - · Newton-Raphson, Gradient Descent, Conjugate Gradient Descent

Otherwise

- We resort to local approximations
- Hill-Climbing
- · Simulated annealing
- · Commonly used in Neural Networks

tic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.

an_AT_gr

- Learning = Improving with experience at some task
- Improve over Task T
- · with respect to performance measure P

© 2011 James G. Sha

· based on experience E

ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com

			Mult i	Variate Linear Regression
			R Console	
 call: Information call: Information contact <			<pre>> source(> example Call: lm(formul Residuals 1 0.27851 Coefficie (Intercep time age </pre>	<pre>C:\\iui\bhbicstions\Conferences\ESSIR-ROSSIR-2009\Lacestry\\lacestry\L</pre>
			Multiple F-statist	Scandard erfor: 0.730% on 2 degrees of freedom Arguared: 0.9725, Adjusted R-squared: 0.945 ic: 35.37 on 2 and 2 DF, p-value: 0.0275
#	time	age	у	
1	1	25	2	
	2	22	3	
	3	7	7	
	4	22	8	
m 15M 280	5 stocnasti	10 c Gradient	9 Descent a	2011 James G. Shanahan James.Shanahan_AT_gmail.com 313

© 2011 James G. Shanahan James.Sha

rtiondata.pdf

http://www.bio.ic.ac.uk/research/crawley/statistics/exercises/R10Pre

 Table 5: Non-unigram featur	es with highest (lowest) weight
Top ten features log(#Chars in term) Vi1 Vi2 Obg(order category entropy) log(order category entropy) log(word category entropy) sqt(#segments in displayuf) sqt(#segments in displayuf) sqt(#segments in displayuf) pt=- log(vice)	Bottom ton features log(# terms in order) log(*terms in order) sqf(pos) sqf(pos) sqf(pos) log(#chars in landing page) log(#chars in body) sqf(#chars in term)
Table 6: Unigrams with	highest (and lowest) weight.
Table 6: Unigrams with <u>Top ten unigrams</u> official body	highest (and lowest) weight. Bottom ten unigrams quotes title
Table 6: Unigrams with Top ten unigrams official body download title	highest (and lowest) weight. Bottom ten unigrams quotes title hotels title
Table 6: Unigrams with Top ten unigrams official body download title photos body	highest (and lowest) weight. Bottom ten untgrams quotes title hotels title trial body
Table 6: Unigrams with Top ten unigrams official body download title photos body maps body	highest (and lowest) weight. <u>Bottom ten unigrams</u> quotes title hotels title trial body deals body
Table 6: Unigrams with Top ten inigrams official body download title photos body maps body official title	highest (and lowest) weight. Bottom ten unterzams quotes title hotels title title body deals body gift body
Table 6: Unigrams with Top ten unigrams official body download tile photos body maps body official title durect body	highest (and lowest) weight. <u>Bottom ten unigrams</u> quotes tuile trial body deals body gift body have text
Table 6: Unigrams with <u>Top ten unigrams</u> official body download title photos body maps body official title direct body costumes title	highest (and lowest) weight. Bottom ten unigrams quotes title hotels title mial body deals body gift body have text software title
Table 6: Unigrams with <u>Top ten unigrams</u> official body download title photos body maps body official title direct body costumes title latest body	highest (and lowest) weight. <u>Bottom ten unigrams</u> quotes title trial body deals body gift body have text software title engine body

ble 7: Comparison of ted on ads with over 1	results for a mo	del trained a r 1000 views
	%I	mprv
Features	>100 views	>1000 views
Baseline (CTR)	-	-
+Term CTR	13.28	25.22
+Related CTR	19.67	32.92
+Ad Quality	23.45	33.90
+Order Specificity	28.97	40.51
+Search Data	29.47	41.88

	Solve a System of Equations in R					
•	Example 1: Solve the system of linear equation	ons.				
	-2x + 3y = 8 3x - y = -5 multiply all terms in the second equation by	<pre>>A <- matrix(c(-2,3, 3,-1), 2) > A [,1] [,2]</pre>				
	-2x + 3y = 8 9x - 3y = -15 add the two equations	[1,] -2 3 [2,] 3 -1 > b				
	7x = -7	[1] 8 5 > b=c(8,-5) > qr.solve(A, b) # or solve(qr : [1] -1 -2				
	elimination solve the handled, hence the handle, $[1] = 1/2$ x = -1					
	-2(-1) + 3y = 8 solve the above equation for y					
ISI	2 + 3y = 8 영양 알라운 astlic Gradient Descent © 2011 James G. Shanahan James.Sh	anahan_AT_gmail.com 363				

	Debugging in R
•	Use browser() #?browser commands like c/c++ debugger – n #next – c # continue
•	For more details on debugging on R RTFM (see next slide for useful example) !!
	 Intp://www.stats.cwo.ca/racuity/murdoch/software/deoudgingrvde/ bug.shtml
•	Locating an error: traceback().
	 Setting a breakpoint and examining the local environment of an executing function: browser().
	 A simple interactive debugger: debug().
	 A more sophisticated debugger: the debug package.
ISM 280: Sto	cmasul aerianise also a "postmortam" adebugges in debugger () of which I'll notes

	NOTATI			
X or X	Uppercase/Bold letters denotes a vector			
X ^T	Transpose of vector X			
x	Lowercase letters denotes a variable			
x,	A lowercase subscripted letter denotes a variable component of a vector			
у	Output or dependent variable			
X or X	Input vector			
n	The dimension or number of input features/variables			
Lor m	The number of training examples			
w	The weight vector component of a hyperplane			
b	Bias or threshold component of a hyperplane			
(W, b)	A hyperplane with weight vector W and bias component b			
S	Training sample			
7	Margin			
ξ	Slack variable			
η	Learning rate			
Ф(.)	Input feature transformation/remapping function			
α	Dual variable or Lagrange multiplier			
d	VC dimension			
h	A hypothesis or model (e.g., a hyperplane (W, b))			
$\sum_{i=1}^{n} x_i$	The sum $x_1 + x_2 + \ldots + x_n$			

	Notation		
$\langle X, Z \rangle = \sum_{i=1}^{n} x_i z_i$	The inner product (or dot product) between two vector X and Z		
$K(X,Z) = \Phi(X), \Phi(Z)$	A kernel function whose effect is the dot product of two vectors that have been transformed into a new feature space induced by Φ.		
$\prod_{i=1}^{n} X_{i}$	The product $x_1 \times x_2 \times \ldots \times x_n$		
$\underset{x \in \Omega_{x}}{\arg \max} f(x)$	The value of x that maximizes $f(x)$. For example, arg max $f(x^2) = -3$ $x_{1(2,-3)}$		
$\underset{x\in\Omega_{x}}{\arg\min} f(x)$	The value of x that minimizes $f(x)$. For example, $\underset{x \in [1,2,-3]}{\operatorname{arg min}} f(x^2) = 1$		
W ₂ or W	$\sqrt[3]{\sum_{i=1}^{n} (w_i)^2}$ where <i>W</i> is a vector and <i>w_i</i> is a component of <i>W</i> Often referred to as the Euclidean Norm		
 W ₁	$\sum_{i=1}^{n} abs(\mathbf{w}_{i}) \text{ where } W \text{ is a vector and } w_{i} \text{ is a component of } W$ and abs() denotes the absolute value		
Ø	Null set or empty set		
ISM 280: Stochastic Gradient Descent	1280: Stochastic Gradient Descent © 2011 James G. Shanahan James. Shanahan_AT_gmail.com 373		

			Notation
<u>A α Alpha</u>	<u>B β Beta</u>	{x P(x)}	Set determined by the property P. " " is read as "such
<u>Γγ Gamma</u>	<u>Δδ Delta</u>	<x. td="" x.="" x.<=""><td>that".</td></x.>	that".
E & Epsilon	E e Digamma	∀	Universal quantifier denoting for all
		Э	Existential quantifier denoting there exists
<u>ΖζZeta</u>	<u>Η η Eta</u>	A	Cardinality of a set A
🗛 A Theta	Li Iota	{a,, b}	{a,, b} denotes a discrete interval, such that a ≤ x ≤ t ∀ x ∈ /a b}. For example /1 6\ denotes /1 2 3
<u>o o meta</u>	<u>1 (10/a</u>		4, 5, 6}
<u>К к Карра</u>	<u>Λλ Lambda</u>	(a, b)	A continuous interval denoting any value x that satisfies
M 11 Mit	N y Nu	[a, b]	the following condition: a < x < b
<u>wi µ iviu</u>	<u>14 V 140</u>	[a, b]	the following condition: $a \le x \le b$
<u>ΞξXi</u> (zai)	O o Omicron	R	Set of all real numbers
<u>Π π Pi</u>	<u>□ □ San</u>		
<u>Q q Qoppa</u>	<u>ΡρRho</u>		
Σ σ Sigma	<u>Τ τ Tau</u>		
Y υ Upsilon	<u>ΦφPhi</u>		
X <u>χ Chi</u>	<u>ΨψPsi</u>		
Ω w Omega	<u> র Sampi</u>		
Greel	alphabet		
ISM 280: Stochast	ic Gradient Descent	2011 James G. Shar	ahan James Shanahan AT amail com

Product Rule	$\frac{d}{dt} = u'v + uv'$ $\frac{du}{dx}$	12. Simple Exponential Derivative Rule	$d = [e^x] = e^x$ dx
1. Quotient Rule	$\frac{d}{dx} \begin{bmatrix} u \\ - \\ v \end{bmatrix} = \frac{u'v - uv'}{v^2}$	13. General Exponential Derivative Rule	$\frac{d}{dx}[e^{iy}] = e^{iy}u'$
1. Very Simple Power Rule	$\frac{d}{dx}[x] = 1$	14. Simple Different Exponential Base Derivative Rule	$\frac{d}{dx}$ [a^x] = (ln a) a^x
l. Simple Power Rule	$\frac{d}{dx}[x^n] = nx^{n-1}$	15. General Different Exponential Base Derivative Rule	$\frac{d}{dx}$ [a^{U}] = (ln a) $a^{U}u'$
. General Power Rule	$\frac{d}{dx}[u^n] = nu^{n-1}u^*$	16. Simple Logarithm Derivative Rule	$\frac{d}{dx} \begin{bmatrix} \ln x \end{bmatrix} = \frac{1}{x}$
. Chain Rule	$\begin{array}{l} d\\ & - \left[f'(u) \right] = f'(u) u' \\ & dx \end{array}$	17. General Logarithm Derivative Rule	$\frac{d}{dt} = \begin{bmatrix} u' \\ - \\ dx \end{bmatrix} = \frac{u'}{u}$
0. Simple Absolute Value Derivative Rule	$\begin{array}{c} \frac{d}{dx} & \begin{bmatrix} x & x \\ x \\ \end{bmatrix} \\ = & \begin{bmatrix} x \\ x \end{bmatrix}$	18. Simple Different Base Logarithm Derivative Rule	$\frac{d}{dx} [ln_0 x] = \frac{1}{(ln a)x}$
1. General Absolute Value Derivative Rule	$\frac{d}{dx} \begin{bmatrix} u & \underline{u} \\ \underline{u}' \end{bmatrix} = \begin{bmatrix} u \\ u \end{bmatrix}$	19. General Different Base Logarithm Derivative Rule	$\frac{d}{dx} [ln_a u] = \frac{u'}{(ln a)u}$
2. Simple Exponential Derivative Rule	$d = [e^x] = e^x$	http://www.freehomeworkmathhelp.com/Ci lus I Rules/calculus I rules for derivative	alculus I/Calcu est integrals.ht

