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Lecture 2 Outline

< Taylor Series: quadratic approximations
+ Newton-Raphson quadratic convergence
+ Multi-Dimensional Approximations (Planes)
- Directional Differentials, Total Differentials
» Vector plots, contour plots
+ Gradient Descent
— Linear regression
+ Predicting Click Through Rates

— Linear Regression
— Logistic Regression
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Notes

+ Gradient Descent
— Bisection, Newton-Raphson, Secant Method avoid the
calculation of derivative f(x) (see cheney, kincaid book, page
126 for description and examples)
« Linear Regression
— Closed form
— Gradient descent
* My slides
— Maximum Likelihood

. (see
MLE)

— Bayesian Model

w in R

— Sho
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Springer
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Lecture Outline
*R

+ Lines, Tangents, Taylors Theorem, Roots of an equation
+ Newton-Raphson quadratic convergence
+ Taylor Series: quadratic approximations
« Multi-Dimensional Approximations (Planes)
- Directional Differentials, Total Differentials
+ Vector plots, contour plots
+ Gradient Descent
— Linear regression
+ Predicting Click Through Rates
— Linear Regression

— Logistic Regression
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Intuitive

+ Theory
+ Geometry
+ Code
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» The S statistical programming language and
computing environment has become the de-facto
standard among machine learners, statisticians,
operation research (kitchen sink, gateway).

« The S language has two implementations: the
commercial product S-PLUS, and the free, open-
source R.

» Both are available for Windows and Unix/Linux
systems; R, in addition, runs on Macintoshes.

» This lecture series will use R.
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R: A History (from 1993 —

« In computing, R is a programming language and software
environment for general purpose statistical and analytics
computing and graphics.

< ltis an implementation of the with

semantics inspired by
— Swas developed at Bell Laboratories in 1976; it was inspired by C and Unix
(also developed at Bell Labs)
+ R was created by and at the
, and is now developed

by the R Development Core Team.

< Itis named partly after the first names of the first two R
authors (Robert Gentleman and Ross lhaka), and partly as a
play on the name of

« The R language has become a de facto standard among
statisticians/engineers for the development of statistical
and engineering software, and is widely used for statistical
software development and data analysis.  [Wikipedia]
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Scripting languages

* R has its own language
— R functionality has been made accessible from several
scripting languages. E.g.,
. (by the RPy ' interface package)
. (by the Statistics::R~ module).
» Packages:
— Optimization packages are available
— ltcan also be used as a toolbox

with comparable benchmark results to and its
proprietary counterpart,

— An RWeka ' interface has been added to the popular data
mining software which allows the capability to
read/write into the arff data format thus allowing the usage of
data mining capabilities in Weka and statistical in R.
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Software and Licenses

» Available on Windows/Linux/Mac

* Ris part of the

- lIts is freely available under the
, and pre-compiled binary versions are

provided for various .
* Rusesa , though several

are available.

ISM 280: Stochastic Gradient Descent @ 2011 James G. Shanahan  James.Shanahan_AT_gmail.com

* Intro R website

» Nice examples
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Online Resources

» R Site with examples (French, Naive Bayes)

+ Intro R website

+ Nice examples

+ Steward Book website

« Taylor’s page at Stanford

« Contour plots
+ Fox’s Book
— 2009,
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Installing R and an Editor

+ Installing an editor: EditPlus (for Windows)
— Useful Editor on Windows (30 temporary license)

« Installing R (Windows, also on Linux and Mac)
— Click here to download an installer EXE:

The distribution is distributed as a 30Mb installer R-2.10.0-win32.exe.

Just run this for a Windows-XP style installer. It contains all the R
components, and you can select what want installed.

For more details, including command-line options for the installer and

how to uninstall, see the rw-FAQ (

).
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Online Resources

R
* Rbooks online

+ STATISTICS: AN INTRODUCTION USING R (Crawley)

« Resources at Stanford
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Required Files And Things to do

When you see example.ABC () check R script file
« Examples available as Functions in script files
— Download JimisMLCourse_2.R

example.learnLSUsingClosedFormSolution = function() {
dataEx1= matrix(c(......),
byrow=TRUE,
ncol =2)
colnames(dataEx1)=c("time", "temperature")

designMatrix=as.matrix(dataEx1[,1]) #input variable data
=designMatrix=cbind(1, designMatrix) #append a
constant 1 for bias term

y=targetValues=as.matrix(dataEx1[,2]);
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Install R Packages

See example.setupPackages() in course R script file
+ Install via command line or via the menu
— install.packages("Rcmdr", dependencies=TRUE)
— install.packages('e1071")
— Install.packages (“MASS*)
— Install.packages(“tree”)
— Install.packages("Rcmdr*)
— Via MENU

« Packages->install; then select a repository and the
package needed to be installed

* To use a library just type
— library('Remdr')
— library('e1071")
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74 R Commander

File Edit Data Statistics Graphs Models Distributio

# Rcmdr R, Dst set <o active ctaset> | (Eait ot et Vi ot
# Sy

http://socserv.mcmaster.ca/jfox/Miscy| == ===
llation-notes.html

# install.packages("Rcmdr", dependenc |
library(Rcmdr)

library(car) A2 e - st - s + st
mod.duncan <- Im(prestige ~| ..
income + education, S el B el o
data=Duncan)
summary(mod.duncan) ’

mod.duncan <- lm(prestige ~ income + edu

ISM 280: Stochastic Gradient Descent @ 2011 James G. Shanahan  James.Shanahan_AT_gmail.com 18




R Resources
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Demonstrations in R
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Rcmdr: a tool for demos and teaching

# Remdr
#

http://socserv.mcmaster.ca/jfox/Misc/Recmdr/insta
llation-notes.html

# install.packages("Rcmdr”, dependencies=TRUE)
library(Rcmdr)

library(car)

mod.duncan <- Im(prestige ~
income + education,
data=Duncan)
summary(mod.duncan)
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RCmdr Output

" See example.BocPlotsAnd3DScatterPlots()

example.BocPlotsAnd3DScatterPlots = function() {

#data()
Duncan <- read.table( caljfox/Ce Duncan.txt")
Hist(Di ion, scale=" ", breaks="Sturges", col="darkgray")

.Table <- table(Duncan$type)

.Table # counts for type

100*.Table/sum(.Table) # percentages for type

remove(.Table)

boxplot(Di ion, ylab="" ion")

#plot income as a function of job type

boxplot(income-~type, ylab="income", xlab="type", data=Duncan)
#plot prestige as a function of job type

boxplot(prestige~type, ylab="prestige", xlab="type", data=Duncan)

library(Rcmdr)
# 3Dplot income as function of eduction and prestige
# with residuals

D i D ige, fit="linear",
residuals=TRUE, bg="white", axis.scales=TRUE, grid=TRUE, ellipsoid=FALSE,
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Built in Optimization Tools in R

+ ?optim
— General-purpose optimization based on Nelder—-Mead,
quasi-Newton and conjugate-gradient algorithms. It includes
an option for box-constrained optimization and simulated
annealing.
— Usage
optim(par, fn, gr = NULL, ..., method = c("Nelder-Mead",
"BFGS", "CG", "L-BFGS-B", "SANN"), lower = -Inf, upper =
Inf, control = list(), hessian = FALSE)
» ?2constrOptim

— Minimise a function subject to linear inequality constraints
using an adaptive barrier algorithm.
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Lecture Outline

- R
 Lines, Tangents, Taylors Theorem
« Newton-Raphson quadratic convergence
« Taylor Series: quadratic approximations
+ Multi-Dimensional Approximations (Planes)
< Directional Differentials, Total Differentials
+ Vector plots, contour plots
« Gradient Descent
— Linear regression
« Predicting Click Through Rates
— Linear Regression

— Logistic Regression
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Slope and Equation of a Line

 Slope = rise/run

« The slope of a line is defined as the rise over the
run, m= Ay/Ax.

+ Given two points (xy,y;) and (x,,),) on a line, the
slope m of the line is

rise y,—y
slope=m=—==2-1
run - X, —X
X2,Y2) 2 !
Ay
rise
(X15¥4)
X
run y =mx +b
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Equation of Line from slope and intercept
Slope (m), intercept (b)

y =mx +b
» Find the equation of the straight line that has slope m=4
and passes through the point (-1, —6).
* A:In this case, m=4,x=-1and y = -6.
— In the slope-intercept form of a straight line, | have y, m, x, and b.
— So the only thing | don't have so far is a value for is b (which gives me
the y-intercept).
* Plugin m, y, x and solve for b:
y=mx+b
(-6) = (4)(-1) +b
—6=—4+b
-2=b

» Then the line equation must be "y = 4x - 2.
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Equation of Line from a point and slope
Point (x1, y1), Slope (m)

* The other format for straight-line equations is
called the "point-slope™ form.

» For this one, they give you a point (x;, y;) and a
slope m, and have you plug it into this formula:

Y-y =m(x—x)
versus
y =mx +b
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Secants, Chord, Tangents

A secant line of a curve is
a line that (locally)
intersects two points on
the curve.

A is the portion of a
secant that lies within the
curve.

Tangent: Best straight-line
approximation to the curve at
that point
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Tangent Line: Best Approx of curve

» In geometry, the tangent line (or simply the tangent)
to a curve at a given point is the straight line that "just
touches" the curve at that point.

» Best straight-line approximation to the curve at that
point

— As it passes through the point of tangency, the tangent line
is "going in the same direction" as the curve, and in this
sense it is the best straight-line approximation to the curve at
that point. The same definition applies to and
curves in n-dimensional .

» The word "tangent" comes from the Latin X
meaning "to touch".
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Limit of secant’s slope is that of the tangent

+ It can be used to approximate the toa
, at some point f.

« If the secant to a curve is defined by two ,P
and Q, with P fixed and Q variable, as Q
approaches P along the curve, the direction of the
secant approaches that of the tangent at P,
assuming there is just one.

+ As a consequence, one could say that the of
the secant's , or direction, is that of the
tangent.

» In calculus, this idea is the basis of the geometric
definition of the
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How steep is a road or railroad?

+ Oneis by the angle in degrees, and the other is by the
slope (m) in a percentage.

— To calculate a percent slope simply you apply the following formula:

— If I cover one meter and | rise 30 cm the percentage of slope is 30%.

— Make attention don't confuse percentage and degrees. A 100% slope is
a 45° slope... (try with the just explained method!)

— WARNING: Gradeability for vehicles is measured in percentage, and it
differs from the slope in degrees, for example, a 100% slope is a 45
degrees slope. The slope in percent and the slope in degrees are

DIFFERENT.
= 1 meter
m = tan#.
30 centimeters e f = arctan m
slope
(30/100)/100 =30% angle = arctan .
) 100
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Slope versus Derivative?

» In mathematics, the slope or gradient of a line
describes its steepness, incline, or grade.
— A higher slope value indicates a steeper incline.

» Derivative (calculus) is
— A function of many (independent) variables
— The derivative is a measure of how a function changes as it§
input changes
— The process of finding a derivative is called differentiation.

— Corresponds to the slope of the line tangent to the curve
(function of one variable)
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Slope of a Line

The slope m of a non-vertical line is the number of units the line rises or falls
for each unit of horizontal change from left to right.

rise Ay 5
slope =m=——= ==
run Ax 2 3,6)

m = tan#.

~ rise=6-1
i =5 units

f = arctan m
RIBYA

NOTE: The gradient is a generalization run=3-1

of the concept of slope for functions of / =2 units

more than one variable.
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Slope

If the line rises to the right,
then the slope is positive.

Positive

If the line falls to the right,
then the slope is negative.

Negative

S
B

If the line is horizontal, If the line is vertical,
then the slope is zero. then the slope is
Zero undelighdefined
1SM 280: Stoc —— 34

Slope of a secant line
Given two points (x, f(x)), and (a, f(a))

slope=m=ﬂz=7y2_y'
run - x,—x
f(a) - f(x)
a-X

f(a)
X a‘\‘.
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Slope of a (closer) secant line

rise _ y,—
run - x,—X

f(a) - f(x)

a-X

slope=m=

f(a) &
X X a'\"-
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closer and closer...

—_— s - —— — ap
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watch the slope...

watch what x does...

X
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. a

The slope of the secant line gets closer and
closer to the slope of the tangent line...

As the values of x get closer and closer to a!

X
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The slope of the secant lines
gets closer
to the slope of the tangent line...

...as the values of x
get closer to a

Translates to....
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lim fx)-1(a)
X~ a X=-a

P

as xgoes to a
9 Equation for the slope

Which gives us the the exact slope
of the line tangent to the curve at a!
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A VERY simple example...

—
2' want the slope
ATTEETT 7273 1 where a=2
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In the limit as x tends towards a

rise -
slope=m=—— =NTh
run - x,—X,

il @@ _ . x-d . (G—a)(+a)

X—a X—a X—a

Now as x - a=2 we get

lim(x +a) = lim(x+2) =4
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Alternatively...

R

= f(x+h) - f(x)
h

ftal

afl:
(For this particular curve, h is a negative valye)
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Thus as h tends towards zero...

lim f(a+h) - f(a)
h

h— 0
Or X-> a then

lim f(x) - f(a)

X—a X-a
Give us a way to calculate the slope
of the line tangent at a!
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Which one should | use?

(doesn’t really matter)
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A VERY simple example...

Give two points on the secant ...

i LS00

22
lim (x+h)" —x

x> +2xh+h* = x* _
h

h(2x+h)

=1lim lim

For X=2
lim(2x+h)=4

As h —0
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2
y=x
¥ =¥2
164
144
124
nd "
¥
o]
o
2 want the slope
PR 73 3 i where a=2
®
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back to our example...
2 2
. x+h)—-f(x) .. (x+h)—x
) lim f f&) _ lim
y=x h—0 h h—0 h
¥ = w2
165
144
124
yox
104
y87
o]
I
A When a=2,
ATTETTETTA 723 i the slopeis 4
%
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in conclusion...

» The derivative is the slope of the line tangent to
the curve (evaluated at a point); having contact at
a single point or along a line without crossing

« Itis alimit (2 ways to define it)

» The rules of derivatives WILL help one forget
these limit definitions..see next

+ cool site to go to for additional explanations:
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Calculus
gives you a formula
for the gradient of the tangent
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Slope via Differential Calculus

+ Through differential calculus, one can calculate the

slope of the tangent line to a curve f(x) at a point x0.
— Slope =f'(x0)

+ At each point x0, the derivative is the slope of a line
that is tangent to the curve.

+ Differentiation is a method to compute the rate at
which a dependent output y changes with respect to
the change in the independent input x.

— This rate of change is called the derivative of y with respect to x.

— In more precise language, the dependence of y upon x means that
yisa of x. This functional relationship is often denoted y =
f(x), where fdenotes the function. If xand y are ,

and if the of yis plotted against x, the derivative measure
the of this graph at each point.
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Equation of a line given a pt and slope

« Equation of a tangent line:
y- y0 = £(x0)(x - x0) ## y-y0 = m(x-x0)

» Give a point (a, f(a)) and Tangent line to the curve
at (a, f(a)), we can approximate f(x) in the vicinity
of a.

— Approximate f(x) linearly by the tangent

 (i.e., take n=1 in the Taylor series)
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Using derivatives....

) f’(x) = 2x when a =2
) ye (x) = 2+2=4

When a=2, f’(2)7
o the slope is 4

-4 -3 -2 -1 $1\ 2 3 4
y—- y0 = f(x0)(x— x0)
y- 4 =4(x-2) ~

i £UUL SUsESUL S sesuen o <vis James G. Shanahan  James.Shanahan_AT_gmail.com 57

Given a Pt. and Slope... [y g H09=x0- 12x +
| 1(x) 1
f(x)= x3-12x + 1 / '

1
1
. - 70 | *
First derivative [ o -
f’(X) = 3X2 -12 : : f’(x): f'(x)=3x2-12
. . (Xv (%) 1
[=0 at maximum and minimum] + | |
I 1
| )
1l 12 X
1 1 1

Given a Pt. and Slope... Approximate f(x) with tange
Using (x,, f(x,)) and m=f’(x,)
And the equation formula
y — y0=m(x — x0)
Plot the tangent line
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Approximate a curve using a Tangent

« Given a point on the curve, (x0, f(x0)) and a slope, f'(x0),
we can calculate the equation of the tangent at (x0, f(x0))
as follows:

— y- y0 = f(x0)(x - x0) ## y-y0 = m(x-x0)

— f(X) — f(x0) = f'(x0)(X-x0) where X is a free variable, f'(x) is the slope

— Then for any X in the neighbourhood of X0 we can approximate it by
the tangent at (x, f(x0))

— Of course it will not be that accurate but can be reasonably approximate
(X, Frangom(x)
Error(x) = f(X)-frangent(X)

x0, f():?& (X, X))
0

i X

R Basics

example.GettingStarted.Chapter1.Fox()

» Rviaa GUI R Commander
— Examine data; plot data
« Scriptingin R

— Variables, vectors, data.frames, functions, graphics

» Check out example.GettingStarted.Chapter1.Fox()
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RCommander
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R Basics

example.GettingStarted.Chapter1.Fox()
* Rviaa GUI R Commander

— Examine data; plot data
» Scriptingin R

— Variables, vectors, data.frames, functions, graphics

» Check out example.GettingStarted.Chapter1.Fox()
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Simple Plotting Example

» # Example 1

* # make a very simple plot
x <- ¢(1,3,6,9,12)
y <-¢(1.5,2,7,8,15)
plot(x,y)
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Plotting in R: plot character

» Plot symbols are set within the plot() function by
setting the pch parameter (plot character?) equal to
an integer between 1 and 25.

oA+ HNOTDES I BB YIS Ae+ s 0D GAY
oA+ XxOoUTBHe+ UBEEEe L4 00087
oA E XSO TDKS S UBEONe koo oe0DlAY
@ 7 ‘ ‘ ‘ I ‘

5 10 15 20 25
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Plot a points and then ...a line

x <-¢(1,3,6,9,12)

y <-¢(1.5,2,7,8,15)

# Example 2. Draw a plot, set a bunch of parameters.

plot(x,y, xlab="x axis", ylab="y axis", main="my plot",
ylim=c(0,20), xlim=c(0,20), pch=15, col="blue")

my plot
o
<
=g "
2 o
5 e
2
o
.
o
0 5 10 15 20
@ xaxis
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Plotting examples

par(mfrow=c(2,3))
plot(x, type="p", main="plot(x,type=\"
quotes \"

plot(x, type="1", main="plot(x, type=\"I\")")
plot(x, type="b", main="plot(x, type=\"b\")")
plot(x, type="h", main="plot(x, type=\"h\")") s
plot(x, type="s", main="plot(x, type=\"s\")") -
plot(x, type="n", main="plot(x, type=\"n\")")

)") # Note the escaped

Rt

- it et

>
m\\\H“H 7
1,
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Different symbols and line types

par(mfrow=c(2,2))

Plot a line

x <-¢(1,3,6,9,12)

y <-¢(1.5,2,7,8,15)

# Example 2. Draw a plot, set a bunch of parameters.

plot(x,y, xlab="x axis", ylab="y axis", main="my plot",
ylim=c(0,20), xlim=c(0,20), pch=15, col="blue")

# fit a line to the points

myline.fit <- Im(y ~ x) my plot
# get information about the fit .
summary(myline.fit) e |
# draw the fit line on the plot o2
abline(myline.fit) 0 5 0 15 20
xads
15m'2d0: Stochastic Gradient Descent ~ © 2011 James G. Shanahan James.Shanahan_AT_gmail.com 68

# Different symbols and line types ] "]

plot(x, pch="x") o] o]

plot(x, type="1", lty=2) :jxxx j

plot(x, pch="x", cex=2) 73 —

plot(x, type="1", lwd=2) - .
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Add points to graph

# Example 3

# add some more points to the graph
x2 <-¢(0.5, 3,5, 8, 12)

y2 <-¢(0.8,1, 2,4, 6)

points(x2, y2, pch=16, col="green")

my plot
S o
|
© D
t e
>
w4
0 5 10 15 20
xads
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» The text() function allows us to put text on the plot
where we want it. An obvious use is to label a line or
group of points.

text(c(2,2),c(37,35),labels=c("Non-case","Case"))
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Simple Plotting Example with text

# Example 1 The text() function allows

# make a very simple plot US to put text on the plot
x <-¢(1,3,6,9,12) where we want it.

y <-¢(1.5,2,7,8,15)

plot(xy)
text(c(3,10),c(3,10),labels=c("Case1","Case4"),
col="red”)
e Case4

6

2

| Caset
T
246810

ISM 280: Stochastic Gradient Descent ~ © 2011 James G. Shanahan ~ James.Shanahan_A __

Plotting Example with margin text

# Example 1 Text labels can also be placed in the

mak very simple pl margins of a plot using
#make a very simple plot the mtext() function. This would place
x <-¢(1,3,6,9,12)

the words "Low" and "High" on the
y <-¢(1.5,2,7,8,15) second line below the X axis centered
plot(x,y)

at 3 and 10 units.
text(c(3,10),c(3,10),labels=c("Case1","Case4"),
col="red”)
mtext(c("Low","High"),side=1,line=2,at=c(3,10), N
col="blue")

10 14

Cased

6

Cagel
| Cage
LI B B B
246 810
Low High
X
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Two y-axis example

f¢http:/rgraphics.Ti y.wisc.edu/line.php

m(list =Is())  # Clear all variables
graphics.off() # Close graphics windows

jt Generate sample time series data

i=1:50 # Generate 50 sample time steps
it Generate 50 stochastic data points for time series y1

y1 =8 + rnorm(50)

j Plot the y1 data
par(oma=c(2,2,2,4)) # Set outer margin areas (only necessary in order to plot extra y-axis)
plot(ti, y1, # Data to plot - x, y

# Plot lines and points. Use "p" for points only, "I" for lines onl
e series plot”, # Main title for the plot
ime", # Label for the x-axis
ylab="Response (y1 & y2)", # Label for the y-axis
font.lab=2, # Font to use for the axis labels: 1=plain text, 2=bold, 3=italic, 4=bold italig
ylim=c(0,20), # Range for the y-axis; "xlim" does same for x-axis
xaxp=c(0,50,5), # X-axis min, max and number of intervals; "yaxp" does same for y-axis
sty Y hastic Gradien#hB pdsplobia. eantain onlyAefsanshiowenH .

Two y-axis example

Time series plot

& —|Time series B
—
-y

0| ——y3

T
100 105 110

N

Response (y1 & y2)
95
Response (y3)

2 e % o 2
/og’\ Neopgops I\d) Y
s ifs 0TV @ o e 8
E s
© o ..‘.0.
; L
*e
-
o F 8
T T T T T T
0 10 20 30 40 50
Time
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Functions in R

my graph

fx=function(x) { sal/
2*xA3 - 3*x2 - 12X + 6

} 4 2 0 2 a4

x=seq(-4, 4, by=0.1)
plot(x, fx(x), main="my graph", xlab="x",
ylab="2*xA3 - 3*x"2 - 12*x + 6", pch=", " type="1")

grid()
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R Graphics Basics: Save plots to PDF

## R code and examples for "Modern Applied Statistics Using R"
##  Lecture 3: Graphics
## Alexander.Ploner@ki.se 2007-09-17

. See example.PDF()
# The basic high-level plot .
X = morm(25) Useful for reporting

¥ =2 + 3°X + rorm(25)
plot(x)

# Create a pdf file in home directory
setwd("~")

pdf("test.pdf")

plot(x)

dev.off()

# Nice trick - works if a pdf viewer is installed
viewer = options()$pdfviewer
system(paste(viewer, "test.pdf"))

## Note: we can easily create multipage plots} I htt ://WWW- meb . ki .Se/~a|
e eplo/R2007/Rcourse03.R

plot(x, main="Page 1")
15m 2804NeMAINGBRGER ) ent  © 2011 James G. Shanahan  James.Shanahan_AT_gmail.com 76
devoff)

Putting it all together ...(PIAT)

X = rnorm(25)
¥ =2+ 3" + morm(25)

par(mfrow=c(1,2) . e

# Common text elements 1

plot(x, main="Changing titles and labels", s
xlab="Index of observation", ylab="Obsen

arvaton
o

# Adding extra points and lines; we switch 18 A ~
plot(x,y) I D
points(mean(x), mean(y), pch="X", cex=2, fc S
lines(range(x), range(y)) o

# Adding text and arrows M IR
text(max(x), min(y), "Center", col=2, adj=c(1 Index ofcbsention x
s sibtes gofers
arrows(max(x)-strwidth(""Center"), min(y), mean(x), meaﬁ(y), col="red",
Iwd=2)

ISM 280: Stochastic Gradient Descent @ 2011 James G. Shanahan  James.Shanahan_AT_gmail.com 7

Changing ttles and labels

’.
o o S
o 5
o° S
o i
€ o o
£ K rs
£ o B - o
'
- 3 - 5
B g #
P
/
o o o b
7
P
9 @44 ener
o 5 0 15 2 % W I L T
Index of sosenvation X
a subies go e
1SM 280: Stochastic Gradient Descent ~ © 2011 James G. Shanahan  James.Shanahan_AT._gmail.com 78
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More Graphic Examples

it

#See more examples from
http://www.meb.ki.se/~aleplo/R2007/Rcourse03.R

it
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: f(x
Given a Pt. and Slope:!: y(xm = x5~ 125 +
1 1 1
f(x)=x3-12x + 1 L N
. L 70 I X
First derivative - R
. ’(x)= 3x2-
£(x) = 3x2-12 e :
+ (Xg F(xy) 1
[f(x)==0 at maximum and minimum] " : :
| )
1 ol 12 X
1 ] 1

Given a Pt. and Slope... Approximate f(x) with tange

Using (x4, f(x,)) and m=Ff(x,)

And the equation formula
y-y0=m(x-x0)

Plot the tangent line

ISM 280: Stochastic Gradiei uescen 2ui1 vanies . Snananian  vaiies.snananan_AT_gmail.com 80

Approximate a curve using a Tangent

» Given a point on the curve, (x0, f(x0)) and a slope, '(x0),
we can calculate the equation of the tangent at (x0, f(x0))
as follows:

—y- y0= f(x0)(x - x0) #1# y-y0 = m(x-x0)

f(X) — f(x0) = f(x0)(X-x0) where X is a free variable, f'(x) is the slope

— Then for any X in the neighbourhood of X0 we can approximate it by
the tangent at (x, f(x0))

— Of course it will not be that accurate but can be reasonably approximate
if 1 not too far from x0. (x, fTanggr;l(x))

Error(x) = f(X)-Frangen(X)

(x0, f(i?g/ (x, "))
ko

X

Guidelines for Homework

GENERAL Guidelines for Homework
— Please provide code, graphs and comments in a PDF report. Don't
forget to put your name, email and date of submission on each
report.

— Please provide R code in separate file. Please comment your so that
| or anybody else can understand it and please cross reference code
with problem numbers
If you have questions please raise them in class or via email or
during office hours
— Homework is due on TBD.

Please submit your homework by email to:
with the subject “ISM 280 2011

Homework 1

— Have fun!
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Exercise 1.1

« Given function f(x)= x3- 12x + 1 approximate the
curve at (-1, f(-1)) in the x range of [-3, 3] using the
tangent to (-1, f(-1)) [also know as the first order
Taylor approximation]

* In R, plot the curves f(x), f'(x) and the tangent
approximation and label appropriately

« Add text and arrows to highlight (-1,f(-1)) and its
tangent line

« Comment on the approximation of f(x) at x = -3

fTangem (x=-3)

» HINT: review material on slides before this and
after this.

ISM 280: Stochastic Gradient Descent @ 2011 James G. Shanahan  James.Shanahan_AT_gmail.com 8

Derivatives in R using deriv(), D()

fx=function(x) {
2*xA3 - X2 - 12*X + €
}
fprime = function (x){  F(x) =X2; (x) = 2x; df(x)/dx)=F"(x)
6*x72-6*x-12

See example.drawTangent()

}
dx2x <- deriv(~ xA2, "x", TRUE)
> dx2x >dx2x(2)
function (x) 4
{
.value <- x"2

.grad <- array(0, c(length(.value), 1L), list(NULL, c("x")))
.gradf, "x"]<-2 *x

attr(.value, "gradient") <- .grad

.value

1SM 280: s?:chasuc Gradient Descent @ 2011 James G. Shanahan ~ James.Shanahan_AT_gmail.com 84
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Derivatives in R using deriv(), D()
F(x) =X72; £(x) = 2x; df(x)/dx)=F(x)

> dx2x <- deriv(~ x72, "x", TRUE) ; dx2x
function (x)

{ See example.drawTangent()
value <- x"2
.grad <- array(0, c(length(.value), 1L), list(NULL,
c("x"))

grad[, "x"] <- 2 * x
attr(.value, "gradient") <- .grad
.value

}
C:\jimi\Projects\R\GradientDescent\JimisMLCourse.R

ISM 280: Stochastic Gradient Descent ~ © 2011 James G. Shanahan  James.Shanahan_AT_gmail.com 8

Tangent Example: plotting

See example.drawTangent()

lion into to 2 rows and one column (i.e., 2 regions)

X + 6", xlab="x", ylab="f(x)", pch="")

pch=21)

1 X0,")", sep=""))

of tangent to f(x) at x\n f'(x)=6"xA2- 6 * x - 12",
land calculate slope

), lty=2, col="green") #R-calculated slope

", slope, ")", sep=""))

", pch=21)

Tangent Example: f(x), f'(x)

) = 2*xA3 - 3*x"2 - 12*x + 6
12}

f’(x) or fprime(x)

pe

f’(x) or fprime(x

approx curve using tangent at (x0, f(x0))
0){

ngent given (x0, f(x0)) and slope

's and one column (i.e.,
1SM 280: Sltg in James.Shanahan_AT_gmail.com 86
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ercise 1.1

2*x"3 - 3*X*2-12*x + 6

o L \q/ the point of contact of .the
(:3,-39) tangent and the curve is

] / (-3, -39)

f0x)

-100
L

f'(x), i.e., slope of tangent to f(x) at x
F(X)=6*XA2 - 6 * X - 12

Summary on Tangent Approximations

y—yl=m(x—x1) givea point (xI, yl) and a slope m
fx)=yl=f"(xD(x—x1) lety=1f(x)and m= f'(x1)
S =yl+ f'(xD)(x - x1)
f)=fED+f(D(x—x1)

leqn of tangent at point (x1, f(x1)) given (x1, f(x1)) and slope =  (xI)

f(x)=x3- 12x + 1
+ Remember (x1, Jx1
— Every point on the curve has a tangent // i
— Atangent is a straight line
— The tangent has its own equation
— The tangent has equation y =mx+c
— This equation is different for every position of the tangent
since the slope (f'(x)) is different.

X

ISM 280: Stochastic Gradient Descent @ 2011 James G. Shanahan  James.Shanahan_AT_gmail.com 8

= °] (3,60, | Slope is 60 (f'(-3)=60)
E g4 g ;
L T T T T T
4 2 0 2 4
x
Is gmail.com 88
A more complicated example
sl
fla)=z ssin(z’ ) +1
f'(z)=sin(z® ) +22” scos(z”)
al (2.8137, 3.8081) Y=mx+cC
(1.3552, 2.3076)
of y-y0=m(x-x0)
©2) Let m = £(x0)
-2 -1 1 3 4
y-axis (2.1945,-1.1828)
ol
ISM 280: Stochastic Gradient Descent ~ © 2011 James G. Shanahan James.Shanahan_AT_gmail.com 90
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Lecture Outline

R
+ Lines, Tangents, Taylors Theorem
« Turning points, Roots, Newton-Raphson
+ Taylor Series: quadratic approximations
+ Multi-Dimensional Approximations (Planes)
- Directional Differentials, Total Differentials
+ Vector plots, contour plots
+ Gradient Descent
— Linear regression
+ Predicting Click Through Rates
— Linear Regression

— Logistic Regression
ISM 280: Stochastic Gradient Descent ~ © 2011 James G. Shanahan James.Shanahan_AT_gmail.com 91

At the turning point . . .

* The tangent will be horizontal
» The gradient of the tangent must be ???

e
1x i) | fExi-azen

< x)

[ ! '

T 0 F(x)! Plo=3x-12
Logee

T

1 1

' i

H

» Find the roots of the gradient function
— Find the root or zeros of an equation analytically by hand or
numerically using iterative approaches such as Newton-
Raphson, gradient descent, etc.
— What value(s) of x will f(x) =0 (gradient be zero).

ISM 280: Stochastic Gradient Descent @ 2011 James G. Shanahan  James.Shanahan_AT_gmail.com %2

Given a Pt. and Slope... [y g 109 x0- 12x +
/ f(x);
f(x)=x3-12x + 1 » :

First derivative
f(x) = 3x2-12

[=0 at maximum and minimum]

—x

1
f’(X): £(x)= 3x2- 12
1

o= = SR

(X F'(x1)

—_————— =

3
N

2

Given a Pt. and Slope... Approximate f(x) with tange
Using (x,, f(x,)) and m=f’(x,)
And the equation formula
y-y0=m(x-x0)
Plot the tangent line

ISM 280: Stochastic Gradient UESCeIl  © 2011 vames G. Snananan  James. i an_AT_gmail.com £

focus on the gradient of the tangent

At -/

Gradient > 0 Gradient < 0

/

/

Gradient=0 Gradient =0
ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com 94

Finding turning points of f(x) by hand via f'(x)=(

f(x) =2x3 - 3x2-12x + 6 # Function

STEP 1 [F(x) = 6x* - 6x - 12 # Gradient formula |

STEP 2 Since the gradient of the tangent at the turning point is 0
6x2-6x—-12=0
X-x-2=0
(x-2)(x-1)=0
x=2 orx= -1 Two turning points
When x=2, f(2) =2(2)3-3(2)2-12(2) + 6 =— 14
When x=-1,1(-1)=2(-1)8-3(-1)2-12(-1) + 6 = 13

Turning Points (-1, 13) and (2, -14)

ISM 280: Stochastic Gradient Descent @ 2011 James G. Shanahan ~ James.Shanahan_AT_gmail.com %

Calculate the coordinates of the
turning points of the graph

USING CALCULUS and

Gradient Descent

oy

(2;-14)

[ Eeumon s 205 T ‘

ISM 280: Stochastic Gradient Descent ~ © 2011 James G. Shanahan  James.Shanahan_AT_gmail.com %
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Root Finding Algorithms

For the gradient function in our case

. [wont discuss here]

. [wont discuss here]
. [wont discuss here]
. [wont discuss here]

» Click for Animations of the different approaches

ISM 280: Stochastic Gradient Descent ~ © 2011 James G. Shanahan  James.Shanahan_AT_gmail.com 97

Newton-Raphson Method: A History

« Solving a nonlinear equation of the form f(x)=0

» Isaac Newton developed an initial version of this
algorithm in 1669 and published it in 1685;
Raphson tweaked it 1690

« Extending it to a system of two equations

— In 1740, described Newton's method as
an iterative method for solving general nonlinear equations
using fluxional calculus, essentially giving the description
above

— In the same publication, Simpson also gives the
generalization to systems of two equations and notes that
Newton's method can be used for solving optimization
problems by setting the gradlent to zero.

ISM 280: Stochastic Gradient Descent @ 2011 James G. Shanahan  James.Shanahan_AT_gmail.com %

Finding the roots f(x) iteratively

In our case f(x) is f’(x) since we wish to solve f’(x)=0

« An important problem in mathematics and

statistics is finding values of x to satisfy f(x) = 0.
— Such values are called the roots of the equation and also
known as the zeros of f(x).

« Can solve analytically as we did above

+ OR

« Various methods exist to numerically determine
the roots of an equation or multiple equations

— Newton's method or the Newton-Raphson method is a
procedure or algorithm for approximating the zeros of a
function f (or, equivalently, the roots of an equation f(x) = 0).

— Bisecting Method [wont discuss here]
— Secant Method [wont discuss here]

ISM 280: Stochastic Gradient Descent ~ © 2011 James G. Shanahan  James.Shanahan_AT_gmail.com %

Finding the roots f(x\ o atively

In our case f(x) is f'(x) since wz *“0("&\0“\5 (x)=0
+ An important problem e,ed Q‘\q’\ o® "“\\
statistics is findip~_ :A\ e’\ A “ o‘«\/ =0.
— Such values = ‘(\\‘\95‘\6\ 00'5‘ "\ ‘(\'S,~ and also
known as @' \\'& “\)‘"
o eo\"e sxl‘ 6\6'6 a4 above OR
\"\\o\"” & “.umerically determine
350 “\\0"” on or multiple equations
‘x@‘lﬂ ée\e or the Newton-Raphson method is a
\- o \’\0 algorithm for approximating the zeros of a
QO'A 6\6 Q‘\ (or, equivalently, the roots of an equation f(x) = 0).
\G"‘ 6\)‘5,cct|ng Method [wont discuss here]
P Secant Method [wont discuss here]

ISM 280: Stochastic Gradient Descent ~ © 2011 James G. Shanahan  James.Shanahan_AT_gmail.com 100

Recall: approximate a curve using a Tangent

« Given a point on the curve, (x0, f(x0)) and a slope, f'(x0), we can
calculate the equation of the tangent at (x0, f(x0))
— y- y0= f(x0)(x - x0) ## y-y0 = m(x-x0)
— f(X) = f(x0) + f'(x0)(X-x0) where X is a free variable
+ Then for any X1 in the neighbourhood of X0 we can approximate f(x1)
it by the tangent at (x, f(x0)),
« iie., f(X1) ~ figngem(X1) =F(x0) + F(x0)(X1-x0)

Error(x1) = f(x1) — fTangem(x1) (x1, fTalp sent(X1))

(%0, f(x0) (X, X))
f
i Yo X1

Focus on Convex Univariate problems

For the moment

alobal rmaximiur

f(x) *
local masirnum

guess

loc al mminivaur

[

f(m) , alobal rriniroim

123 4 8Ms 7 5 9 10
o 0z o4 os  oe 1 12

Local and global maxima and

Convex problem minima for cos(31x)/x, 0.15xs1.1

ISM 280: Stochastic Gradient Descent @ 2011 James G. Shanahan  James.Shanahan_AT_gmail.com 102
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Nonlinear Equations — Iterative Methods
Find the roots

« Computers can NOT solve the roots in closed form (easily)

« lterative Algorithm
— Start from an initial value x° as a candidate root (and also bracket the
extrema).
— Generate a sequence of iterate x™7, x", x™' which hopefully converges to
the solution x* (the root of f(x))
— lterates are generated according to an iteration function F: x™'=F(x")

Question
» When does it converge to correct solution ?
» Whatis the convergence rate ?

ISM 280: Stochastic Gradient Descent ~ © 2011 James G. Shanahan  James.Shanahan_AT_gmail.com 103

Given a Pt. and Slope.. ]

106 Ax) (0= x0- 12x +
f(x)=x3-12x + 1 / £(x)

£
First derivative 7

= = SR
-
—
x
=

y-y0=m(x-x0)

1
1
) 1
f'(x) = 3x2-12 1 £(x)= 3x2- 12
[=0 at maximum and minimum] I+ (X (x4)
Using (x;, f(x,)) and m=F'(x,) L
And the equation formula : -2: 2 X
[

Find roots of f’(x) to give us candidate turning points

ISM 280: Stochastic Gradient Descent @ 2011 James G. Shanahan  James.Shanahan_AT_gmail.com 104

Newton-Raphson Method — Graphical View

Using (x°, f(x%) and m=f'(x?)
I I'(l):!’-‘z!‘-‘
/I#Jl'(x‘» 101
1 L

A And the equation formula
(0)=F(x0) + (x0) (x-X°)
7 1
1 f(x)l..r.(;).- 3x2-12

odrea| 1 F) =)+ O6Nx=x") f

&, f(x")

2 '2; x
U == f(=)

]
1
fl i
i

1. Initial guess: x° Letting i=0 x' =x°

2. Approximate f(x) by tangent at (xi, f(x!)) # (x, f(x°)) for the first iteration
3. Find where fr,,5on xo(X) = 0; i-e., X**; better approx. of the root (x')

4. Repeat until convergence
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Deriving Newton-Raphson Method

« Solving a nonlinear equation of the form f(x)=0
- Generate a sequence of iterate x™7, x", x" which
hopefully converges to the solution x* (the root of f(x))
f@) = f(x°)+ £ (x°)(x-x°) Vx surrounding x°
fE™y= f(x)+ f1(x')(x™* —x") Vx surrounding x'
‘0 = (X)) + (D =x1) Wedesire a root (i.e., f(x"*') = 0) ‘

f'(x')(x”‘—x')=—f(x‘) ,
. /

X . . 1 ("o — &

X == f'( ,.) +x' Iteration function RN
JAED) 7,
o N

d . . 2t
¥ =x —[—f(x’) fxh sometimes written as ey

dx 10
ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com 108

Newton-Raphson (NR) Method

Consists of linearizing the system.

Want to solve f(x)=0 — Replace f(x) with its linearized
version and solve.

af

fO=r&" )+ (x Yx—x") 1 order Taylor Series

af

()C )(xk+l xk)

fEY=FG )+

Iteration function

ka+l=xk_|:df (x )} FOh

-Note:.at each step need to evalyate fand f

Newton-Raphson Method - Algorithm

X1, X2, X3..., ... )X
Define iteration
Do k=0 to...
=y _|: df (' ):| f(xi)

until convergence

ISM 280: Stochastic Gradient Descent @ 2011 James G. Shanahan  James.Shanahan_AT_gmail.com 108
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Newton-Raphson Method — Graphical View

1 L= x2- 12x
AT S A Y PN
P11 I——vx x1+1=x1_|:7(x1):| f(xx)
(] P9 ro=3x- dx
P oprep
(| 2 X &, £ ()
o -
F@) = fEO)+fGN-2") 4
/
f (z)\,\
L 1 >z
/z" z? z! 0
1. Initial guess: x° Letting i=0 x' =x°
2. Approximate f(x) by tangent at (x|, f(x!)) # (x?, f(x°)) for the first iteration
3. Find where fr,n5em xo(X) = 0, i.e., X*1; better approx. of the root (x’)
4. Repeat until convergence
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Newton-Raphson Method — Convergence

We require that z° be “close” to the solution z*
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Newton-Raphson Method — Convergence
Local Convergence

Convergence Depends on a Good Initial Guess

f(x)
-
”
- 2
’f’ ”
- e

1 - 1 -
X = X,

7 0 [y0 X

g
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Homework Problem: Find 2"d approx.

i -1
v X) a4 i . ;
x' I:—&+x =x —[i(x ):i f(x") Iteration function
ACY) dx
Taking 1 as the firstapproximation of aroot of x’+2x-4=0,
use the Newton-Raphson method to calculate the second approximation
of this root.

f)=X’+2x4  f(x)=3x2+2 S = FEO+ 1=
f(l)=1+2-4=-1

1
f'(1)=3+2=5 x2=1——=1+5—=1.2

5
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Newton-Raphson Method — Convergence
Local Convergence

Convergence Depends on a Good Initial Guess

Example:
oscillation
; converges to «
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Exercise 1.2
example.FindZerosOfDerivativeFunction()

In R write a function that:

1. Find the zeros of the function x*3+2*x-4, 1 in the interval c(0.5,

1.5) starting with an initial guess of 1.4 using the Newton-

Raphson method.
2. Plot the progress of the algorithm (See figure below for

inspiration)
3. Comment on the convergence
4. HINT: you can use a publicly available function:

newton.method(function(x) x3+2*x-4, 1, ¢(0.5, 1.5)) but for an

extra little challenge please code your own Newton.Rapshon

method and plot the progress R
5. Save graphic animations to PDF (using pdf())
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Exercise 1.2: Solution
example.FindZerosOfDerivativeFunction() [

nRaph: i for a function

Rt by st 14
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Rootfinding by Newton-Raphson Method: »° + 2x—4 = 0

K24

03427 -4
1
L
Currentroot 12

L]

)

Currentroot 1.17950905701288

Currentroot 1.1
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Exercise 1.3

Taking x,=1, and using two iterations,obtain an approximation to

a root of theequation. x*+3x*-x-2 by the Newton-Raphson method.

f

1SM 280: Stochastic Gradient Descent  © 2011 James G. Shanahan  James.Shanahan_AT._gmail.com

Root-Finding of f(x) in R using NR Alg.

#find the squareroot of 10; #x2 = 4 then f(x) = x*2-4
f=function(x){x"2-4}
fd=function(x){2*x} F(x)=X"2- 4
Newton-Raphson Algorithm
newtonRaphsonlnOneDim=function(x0, n, xRange, f, fd){
x=x0
for (i in 1:n){
x=x-~(f(x)/fd(x)) #browser()
}
list(x) # return x
}

root = newtonRaphsoninOneDim(5.2, 4, xRange, f, fd)
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Let’s assume convex problems

+ One global maximum or minimum of a univariate
function, e.g., f(x) =x"2
— Will provide more formal definition shortly

» Assume function f(x) =x/2, find the x value that
minimizes f(x)

argmin f(x)

xeQy
The value of x that maximises f(x). For example,

argmin f(x*) =1

xe{1,2,-3}
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Find zero of f(x) in R with Graphics

#find the squareroot of 10; #x2 = 4 then f(x) = xA2-4
f=functiol
fd=functi

F(X)=XA2 - 4

newtonRa|

x=x0
plot(xRan,
grid()

for (iin 1:
print(pa (f(x)/d(x)), x-(f(x)/td(x))))

points(x,
abline(v: 3
text(x-.0 Ee

x=x~(f(x) &
}
list(x) # ref
}

newtonRaphsoninOneDim(5.2, 4, xRange, f, fd) e
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Find the root of f(x) = x"2 - 4

100

|
Fx)=Xr2-4

60
L

fixRange)

20
L

20682

¥Range
Ism28 121

Using built-in method for NR method

par(mfrow=c(3,2))
newton.method(function(x) xA2, -2, c(-4, 4))

Rootfinding by Newton-Raphson Hethoct ' 4=0

w4

ISM 280: Stochastic Gradient DESCer.  « wu. + wamsrws s wrmsrsrruns

Rootfnding by Newton-Raphson Method: x'~4 =0 Rootfnding by Newton-Raphson Method: x'~4 =0

o W0 @ @
TrenTToaT

Currentraet

R

CurreTTraer Z0UBUSIUA0T /79

0om o0 o om

Currentroat

1SM 280:

Rootfding by Newton-Raphson Methad =0

I / ya
\W\v\ i ///‘/

Rootfding by Newton-Raphson Methad =0

CUTERLTOor 0

Rostfrding by Newton-Raphson Methad: =0

/

N\
- /
\ 3
e //

UFreRTTo0r 0T

RITOOT 0B
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Exercise (not required)

+ Calculate the root of the following equation
- x"3
— HINT: use newton.method(function(x) x*3, -4, c(-10, 4))
— How many iterations does of the Newton-Raphson
algorithm?
» Save graphic animations to PDF (using pdf())
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Homework Problem: Find 2"d approx.

. x . .
Xt == LE) +x' [Iteration function

JAEY)

Taking 1 as the firstapproximation of aroot of x’+2x-4=0,
use the Newton-Raphson method to calculate the second approximation
of this root.

f)=X’42x4  f(x)=3x2+2 S = FQEO+ 1=
f(l)=1+2-4=-1

1
f(1)=3+2=5 xp=l-o=lro=12

5
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Homework Solution: Plot 2n9 ...

#find sequence of NewtonRaphson zero estimates for a
function

# plots the sequence
example.FindZerosOfDerivativeFunction() {

par(mfrow=c(2,2)) - )

x = seq(0.5, 1.5, len=40)  i- P i 7
plot(x, xA3+2*x-4, type="1") . e
grid()

abline(h=0) i 5

abline(v=1, col="blue") il L - e
newton.method(function(x) “ - _—" T

grid() - g
}
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Root-finding by Newton-Raphson Method: X4 2x-4=0

e L e

K24

03427 -4
Currentroot 12

L]

Currentroot 1.17950905701288

ks
e
5
08 08 10 12 14 O 08 08 10 12 1.4
x x
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Finding the roots f(x) iteratively

In our case f(x) is f’(x) since we wish to solve f’(x)=0

« An important problem in mathematics and statistics is
finding values of x to satisfy f(x) = 0.
— Such values are called the roots of the equation and also known as
the zeros of f(x).
— Can solve analytically as we did above OR

— Various methods exist to numerically determine the roots of an
equation or multiple equations

« Newton's method or the Newton-Raphson method
« Bisecting Method [wont discuss here]
« Secant Method [wont discuss here]
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Finding the roots f(x) o\\’\ 1t|vely

8
In our case f(x) is f’(x) since w~ @°\ »x\"; (\'\5\ ’(x)=0
- An important problem e,e‘\ “\° 9O \< 'A\
statistics is findip~_ :A\ e’\\“ 'A“ o““,_o
— Such values = ‘(\\‘\gg\'o\ 00'5\ ee’\‘v‘(@* and also
known ao ° \\'& 0°“ “\)‘-’ -\e"
+ Can- \09 *&\‘A ‘\esxl‘ 6\&" above OR
‘e® o““ r\\"\\o\"” & %% .iumerically determine
PN 0&50 ) “\\‘@ on or multiple equations

G
<oy 6‘\“‘3?(\6‘0\3\0 ) ée\e or the Newton-Raphson method is a
[\ N X0 “aigorithm for approximating the zeros of a

\Q
(',0'6 6\60 Q‘\\ (or, equivalently, the roots of an equation f(x) = 0).
\0"‘ doe’,cctlng Method [wont discuss here]
P Secant Method [wont discuss here]
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Find Turning Points via Zeros of Derivative

X241

« Turning points correspond to

zeros of the derivative RN e
function s - N ’

« Find Roots using an iterative -4 e : ]
method such as the Newton- : T e :

Raphson Method

i
Py g(x) where g = f (x)
g'(x")
'(x)
XM=y — fix Iteration function for finding roots of f(x)
£
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Find roots using F(x) = xA2+1

#simple convex problem X241

#tangent example for f(x) = xA2 +1
fx=function(x){ x~2+1} S -
fprime = function (x){ 2°X } =77 g
fprime.deriv <- deriv(~ xA2 + 1, "x", TRUE)

#givena pointon the curve and a slope 2 1 nam o 1 p
#chose x at index 10 ¥

i=11
X0=0 7(x). i, slope of tangent to f{x) at x
1.X0 = x(x0) #or yO Pix=2x

slope = fprime(x0)

tangentLine = function(x, slope, x0, y0) {
y=slope*(x-x0) +y0 :

} T i i

y=tangentLine(x, slope, x0, f_x0) 2 1 . .

par(mfrow = c(2, 1)) # split display region into o 2 rows and ane calur.

x=seq(-2,2, by=0.1)

oo ), mamwez e, OEE EXAMPIE. FlndTurnlngPomts()
o, 20,5 » Newton-Raphson not necessary here

points(x0, _x0, col="blue",
text(x0-0.5, f_x0+10, paste("

grid()
abline(v=0, Ity=1)
mitext(" Tumlng Point”, #Add second y-axis label
dlor right hand sids of plot .
lsﬁ g Stochastic g esﬁ 2017 James G. Shanahan  James.Shanahan_AT_gmail.com 132
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Newton’s Method in Optimization

» This iterative scheme can be generalized to
several dimensions by replacing the derivative
with the gradient, f’(X), and the reciprocal of the

second derivative with the of the
, . One obtains the Newton- iterative
scheme
SR - INEY) +x" For one variable
(D

-1
x’—[%(x')} f'(xi) in matrix form

(= x =[] oo

For multivariable (i.e., X is a vector)

http://en.wikipedia.org/wiki/Newton's method in _optimization
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‘R Break
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Solve a System of Equations in R

+ Solve the system of linear equations.
2x+3y=8
3x-y=-5

+ multiply all terms in the second equation by 3
-2x+3y =8
9x -3y =-15

7x=-7 # add the two equations

Note: y has been eliminated, hence the name: method of elimination
solve the above equation for x > A <- matrix(c(-2,3, 3,-1), 2)
>A

x=-1
substitute x by -1 in the first equation [11[,2]
2(-1)+3y=8 [ -2 3
solve the above equation fory [2] 3 -
2+3y=8 2L
185
3y=6 > b=c(8,-5)
y=2 > gr.solve(A, b) # or solve(qr(A), b)

SVigtitesthe Solutiori-as ortered pair=@1,2 [1]1-1 2

 See example.Matrices()

Matrices

See local file

To calculate inverse of a matrix

— #division for matrices

— ginv() # from library(MASS)

Other useful matrix commands

— matrix()

— det()

— diag()

— t() #transpose of a matrix

— eigen()

— solve() #compute inverse or solve system of equations

Matrix Algebra,The R Book, M. Crawley page 259

ISM 280: Stochastic Gradient Descent ~ © 2011 James G. Shanahan  James.Shanahan_AT_gmail.com 136

Datain R

See example.DataFrames()
- Dataframes, matrices etc...
« Data input:
— From the keyboard.
— From an ascii (plain text) file.
— From the clipboard.
— Importing data (e.g., from SPSS).
— From a database-management system.
— From an R package.
* The R search path.
* Missing data.
« Numeric variables, character variables, and factors
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Matrices in R

See example.Matrices()

Linear equations
Determinant

See presentation in local dir Matrices and
Singular values

ISM 280: Stochastic Gradient Descent @ 2011 James G. Shanahan  James.Shanahan_AT_gmail.com 138

23



Matrices, Vectors (in R)
* For more background see

m-by-n matrix
In mathematics, a matrix (plural matrices, of less commonly matrixes) . |
of numbers, such as a;j ncolumns
m
123 rows
6 5 4|

An itern in 3 matrix is called an entry or an element. In the example, s.¢
Entries are often denoted by a variable with two subscripts, as shown on
the same size can be added and subiracted enirywise and matrices of ot
ruttiplie. These operations have many of the properties of ordinary arithi d31 @3z ags
matrix multiplication is not commutative, that is, AB and BA are not equs

consisting of only one column or row are called vectors, while higher-dime

dimensional, arrays of numbers are called tensors. Matrices with entriss

are also studied

Matrices are a key tool in linear algebra. One use of matrices is to represent linear

, which are high analogs of linear functions of the form () = cx, w
to of linear Matrices can also keep track of the coefii
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Vectors

» In elementary mathematics, physics,
and engineering, a vector (sometimes called
a geometric ' or spatial vector) is a geometric
object that has both a magnitude (or length) and
direction.

« Avector is frequently represented by a line
segment with a definite direction, or graphically as an
arrow, connecting an initial point A with a terminal
point B, and denoted by 2.
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Length of a Vector

* The or or of the vector a is
denoted by ||a|| or, less commonly, |a], which is not to
be confused with the (a scalar
"norm").

+ The length of the vector a can be computed with
the Euclidean norm

|lal]| = va-a.
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Unit Vector, Dot Product

* For more details see

[N
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Vectors in Cartesian Space: Bound Vector

+ Inthe , a vector can be represented by
identifying the coordinates of its initial and terminal point. For
instance, the points A = (1,0,0) and B = (0,1,0) in space determine
the free vector pointing from the point x=1 on the x-axis to the
point y=1 on the y-axis.

« Typically in Cartesian coordinates, one considers primarily bound
vectors. A bound vector (aka position vector) is determined by
the coordinates of the terminal point, its initial point always
having the coordinates of the origin O = (0,0,0).

« Thus the bound vector represented by (1,0,0) is a vector of unit
length pointing from the origin up the positive x-axis.

« The coordinate representation of vectors allows the algebraic
features of vectors to be expressed in a convenient numerical
fashion. For example, the sum of the vectors (1,2,3) and (-2,0,4) is

the vector
AB 78 (1,2, 3) 4 (-2,0,4) = (1-2,2+40,3+4) = (-1,2,7).
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R Notes

» Matrix Ops
+ Solve(a, b)
— #solve a system of equations Ax=b by b=A"'b; b is
combination of the column in A.

— This generic function solves the equation a %*% x = b for x,
where b can be either a vector or a matrix.

— a: asquare numeric or complex matrix containing the
coefficients of the linear system.

— b:a numeric or complex vector or matrix giving the right-
hand side(s) of the linear system.

— If missing, b is taken to be an identity matrix and solve will
return the inverse of a.
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Solve a System of Equations in R
+ Example 1: Solve the system of linear equations.

2x+3y=8 >A <- matrix(c(-2,3, 3,-1), 2)
3x-y=-5 >A
+ multiply all terms in the second equation by 3 [:11[:2]
2x+3y=8 [ -2 3
9x - 3y =-15 [fg 3 -1
add the two equations [185
Tx=-7 > b=c(8,-5)

> gr.solve(A, b) # or solve(qr]
Note: y has been eliminated, hence the name: [1]-1 2

elimination solve the above equation for x

Lists

> (z <- list( a=list( b=9, c="hello’), d=1:5))
>z
$a
$asb
[119 > z[[1]1[2]
$c
$a$c [1] "hello”
[1] "hello,,
> Z[[1]]["c"]
$d $c
[1112345 [1] "hello"

>2z[[1]]
$b
19

$c
[1] "hello,,
> Z[[1I[1]]
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x=-1
substitute x by -1 in the first equation
2(-1)+3y =8
solve the above equation for y
2+3y=8
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Debugging in R
.
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R debuging via browser()

« This kind of use of browser can be useful if you have a vague idea as to where a bug
may be in your program.
Notice that the first two lines in the function were not printed.
3.2.1 Explicit Calls to browser

Tt is possible to do a kind of “manual debugging” if you don't fecl like stepping through a
fanction line by line. The func! owser can be used to suspend execution of a fnction
50 that the user can browse the local cnvironment. Suppose we edited the S8 function from
abave to look like:

89 <~ function(mu, x) {
4 x-m
a2 az
browser ()
s < sum(d2)
==

¥

Now, whe function resches the third statement in the program, exeeution will suspend

and yon will get a Browas [1]> prompt, much like in the debugger

> 882, x) E o prompt

Called from: $8(2, x)

Browse[1]> 1a() T ‘being debugged was invoked.
[1] "a" "d2* "ma" "z~ orcont

Browse[1]> priat (m) Contine exccuion withou sale epping

[SSE "

Browse[1]> mean(x)

[1] 0.02176075 where

Brouse[1]> o o the calstack

« Q
e T L —
1SM260:Sto- " 0a.a1s To view the value of a vasiable whose name matches one of these commands, use the pranc. () fnction, &£ peanc (2)

Debugging in R

« Use browser() #?browser commands like c/c++ debugger
— n #next
— ¢ # continue
— Qquit
» For more details on debugging on R RTFM (see next
slide for useful example) !!

+ Locating an error: traceback().

— Setting a breakpoint and examining the local environment of an
executing function: browser().

— Asimple interactive debugger: debug().
— A more sophisticated debugger: the debug package.
1sm 280: stocrastd BENEMIS RSO @ PRstRQriammAebuggesidehuggeiloswhich I'll nots

<RET>
c imvoked
Continue executon wiout singe stepping. —
Exccute the
where
Show the cal stack.
o
Hak exccvtion and famp tothe top-level immediately
use the pranc () fincion, g pranc ()
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Recap: Lines, Tangents, Slopes

« Approximate f(X) for X around point a by the tangent at a
point (a, f(a))
y—yl=m(x—xl)
f=yl=mx=x)  f(x)= f(a)+ f'(a)(x—a)
f(x)=yl+m(x—xI)
f)=fla)+f(a)x—a) AT (a,f(a)) slope=f(a)
« Taylor Series explores different approximations of f(X);
— the above tangential form is linear approximation

« General Form of a Taylor Series
F) =@+ f@)(x~ a)#““)(x @) +..+L09 (x— a)"
More compactly f(x)= Zf @ - gy
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Newton-Raphson Method — Graphical View

1 L= x3-
/rk;f(x‘ '()lf(x).xs 2 A

<=
F 1 x

[ (w o axe-
|

]
r()in'(X) 1
1
I 12y0

-

Initial guess: x° Letting i=0 x' =x°
2. Repeat

1. Approximate f(x) by tangent at (xi, f(xi)) # (x, f(x?)) for the first itern.|

2. Find where frpgent xo(X) = 0, i.e., x*1; better approx. of the root (x)

3. Repeat until convergence

Lecture Outline

*R
+ Lines, Tangents, Taylors Theorem
* Turning points, Roots, Newton-Raphson
» Taylor Series: quadratic approximations
+ Multi-Dimensional Approximations (Planes)
» Directional Differentials, Total Differentials
+ Vector plots, contour plots
+ Gradient Descent
— Linear regression
+ Predicting Click Through Rates
— Linear Regression
— Logistic Regression
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Make Tangential Approximation Better?

» Approximate f(X) for X around point a by the tangent at a
point (a, f(a))
y=yl=m(x—xl)
f(x)=yl=m(x—x1) f(x)=f(a)+ f'(a)(x—a)
f(x)=yl+m(x—x1)
fx)=f(a)+ f'(@)(x—a) AT (a,f(a)) slope=f'(a)
» Taylor Series explores different approximations of f(X);
— the above tangential form is linear approximation

» General Form of a Taylor Series
FO=f @+ f (@ -a) b 22 (x—a)? 4.+ L@ (g
(k)
More compactly f(x)= Zf ()(x a)
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Taylor Series And Tangent Approximations

» Taylor series is a representation of a function as
an infinite sum of terms calculated from the
values of its derivatives at a single point.

« If the series is centered at zero, the series is also
called a Maclaurin series, named after the
Scottish mathematician

+ Itis common practice to use a finite number of
terms of the series to approximate a function.
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Taylor Series: Written Different Ways
In mathematics, the Taylor series is a representation of a

function as an infinite sum of terms calculated from the
values of its derivatives at a single point.

F() = f@+ f@x-a)+ L2 (x—a) +..+L2@ (x—a)"

d 1 d?
F(x)= F(x*)+—F(x)\x e F()] e (x = x%)?
n
p— R\
e F(0)| e (=) 4.0,
f( x)= Zf k(a) a)A
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F(x) = cos(x): Taylor series expansion,x’=0

+ Given F(X)=cos(x) and a Taylor Series expansion at x* = 0
F(x)=cos(x)
= cos(())—sin(())(x—())—%cos(())(x -0y +ésin(0)(x—0)‘ +..
-l L
2 24
« The zeroth-order approximation of F(x) is
F(x)= F(x)=1=F(x)
— (Note that in this case the first-order approximation is the same as the zeroth-order
approximation, since the first derivative is zero, i.e., sin(0)=0).

+ The second-order approximation is
F(x)= Fﬁ):l—%xl =F,(x)
« The fourth-order approximation is
F(x)= Fy(x)=1 Loy Ly
x) = x)=1-—x X
¢ 27 24
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Taylor Series Approxn. Of Sin(x) at 0

« Approximating f(x) = sin x when it is centred
around 0 (l.e., a=0), Taylor Polynomial of degree 7
(sin(0)=; cos(0) =1)

f) = f@+f@a-a)+Ll x—a) + .+ L (x—a)
sm(O)

cos(0
sin, () = sin(0) + cos(0)(x ~0) 2 (00 —%(x—of T
-2 x3
sinx=M,(x)=0+x+0- A i
21 31 d(s:x) — oot
4 5 6 7 X
0.0 X 0. X o)
41 51 6! 7! &
dtanx) _
——— =8eC X
dx
ISM 280: Stochastic Gradient Descent © 2011 James G. Shanahan James.Shanahan_AT_gmail.com 158

Taylor Series Approximations of f(x) at a

+ As the degree of the Taylor NS
polynomial rises, it approaches I‘
the correct function. ) |

» This image shows sinx (in
black) and Taylor
approximations about a=0,
polynomials of
degree 1,3,5,7,9,11 and 13.

» What does the Taylor
Approximation of degree
zero look like at ?

P 4nilm
0 % 6 4 2 0 2 4 6
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f)=fl@)+f@)x—a)+ L2 (x—a)® +..+ L@ (x—a)"

f(x) ~f(a)= sin(0)) = 0; f(x)=0 ¥ x in the neighborhood of 0

Problem: Plot Taylor Approxns of sin(x)

#.

# Taylor series in one-dim for f(x) = sin(x) at a=0
#.

# plot sin(x) and its Taylor series approximation in
# the range [-10, 10]

## Higher derivatives (boiler plate):

DD <- function(expr,name, order = 1) {
if(order < 1) stop("'order' must be >=1")
if(order == 1) D(expr,name)
else DD(D(expr, name), name, order - 1)

}

#e.g., DD(expression(sin(x"2)), "x", 3)

f = function(x){sin(x)}
fPrime.order i order){eval(DD(exp i il "a", order))}

taylorTerm_n=function(a, n)(fPrlme order(a, n)*x"n/factorlal(n)}
ISM 280: Stochastic Gradient Descent James G. Shanahan James.Shanahan_AT_gmail.com

See example.TaylorSeries()

Sine Function Approximated by Taylor
——Polynomial of degree 7

The sine function (blue) is closely approximated by
its Taylor polynomial of degree 7 (pink) for
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e ——— f(x)=sin(x)
# Taylor series in one-dim for f(x) = sin(x) at a=0
P, o ] —
# plot sin(x) and its Taylor series approximation in - Tayidk Ofde
#the range [-10, 10] Ordery
Approximates siryx) very well
with 3
## Higher derivatives (boiler plate): within one pgriod
DD <- function(expr,name, order = 1) { w o )
if(order < 1) stop("'order’ must be >= 1") v
if(order == 1) D(expr,name) L -
else DD(D(expr, name), name, order - 1) A
) £ o TN
#e.g., DD(expression(sin(x"2)), "x", 3) ,
;
l
I
= function(x){sin()} 0 4
fPrime.order rder ion(sil a1 ! i
“ Tayjor
taylorTerm_r ion(a, n){fPrime.order(a, n) i Ordess
: i
x=seq(-10, 10, by=0.1) 9 7 )
plot(x, f(x), ylim=c(-10, 10), main="f(x)=sin(x)", xlab="x", ylab="f(: T r T
grid() 10 5 0
lines(x, rep(0, length(x)) #term_0(x) reduces to f(0)=sin(0)=0
tines(x, rep(0, length(x)) + taylorTerm n(0,1), col="red", lty=2) X
G AP 03 . Shanahan 1_A1_gmaii.com ™
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Taylor Approximations of Different Degrees

« Linear Approximation of the function f at a
f)=fla)+ f(a)x—a)
* Quadratic Approximation
F)=fl@+f(@)(x-a)+5

« General Form of a Taylor Series

S (a)

2 (x-a)

F@)=f@+ f@)x-a)+ L2 (x=a) +..+ L0 (x~a)'

oo (k)
More compactly f(x)= Z%(x—a)k
k=0 .
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Gradient and Hessian

» Find
F(x) = F(X;, Xp) = (X - X;)* +8X1 X, - X + X, + 3

J
;, Fx) _ {— 4(x, —xl)3 +8x, — 1} _ {0]

VF(x)= &%F(x) T H40y - x) +8x, 1] 0
a F(x) s F(X)
V2F(x) = ‘3‘; &y =
o, F(x) &Cz F(x)

1206, -x)°  —12(x,—x)* +8
—12(x, —x)* 48 12(x,—x))°

165

Multivariate Taylor Series
A second-order Taylor series expansion of a scalar-valued function of
more than one variable can be written compactly as
T(x) = fla) + (x —a)"Df(a) + 5 (x -a)'{D*fla)} (x—a) +--,
where Df(a) is the gradient (parhal derlvatlves) of f evaluated at x=a
(Df{() is sometimes written as Vf)

Df(a)= Vf = (‘ii ,ng)

and D?f(a) is the HeSSI?n matrlx. somehmes; represented as H(f) as

follows:. Bz{ 611 B:z T Brioma
T 22 Dom

D¥(a)= H(f) =
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Taylor Approx around x'=[-0.42 0.42]T

» Noting that for the minima at x'=[-0.42 0.42]", the
gradient is zero (so drop linear term) and F(x") =
2.93 (by direct substitution). Here is the
expansion:

F'(x):F(x')+%(x—x')TV2F(x)L:x.(x—x')
2034 [ +042 0] 842  —042Tx +042
TERAy 08 0 om 542 | -042

=449 (-37128x, +371283) + [, x,] Saz 042
=449 (-3 x) + 3. xz)+2x| X, _042 842

ISM 280: Stochastic Gradient Descent ~ © 2011 James G. Shanahan
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Multivariate Taylor Series

- - B . —ag)md [ grtebnag
o % CEDLER (Ml_,gﬂ,)(a.l,...,ad).

=0 ng=0

T ~ £@) + (x—a) a0+ (1= D) Fa.)
0 [0 = @) Ferah) 42w — @)y~ B) D)+ (y ~ B F )]

The real part of the
cosine function in

the . cosine function in the

Overlaid with an 8th degree
approximation at (0, 0) of the
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Taylors Series Example: MultiDim

atuncton

P orcer Taylor
flx,y) =" log(1+y).

Firsy, we compute all partialderivatives we need

fula,b) = e*log(1+)

Second-order Taylor
series approximation

B (=00 (in gray) of a function
HeD = T lemmo0 =1 fix,y) = eXlog(1 + y)
fula) fc'logum\( w0y, =" @round origin.
Jnlab) = 7(1+J) w00 -
fxy{ﬂ‘ b) f,,x(ﬂ b) l‘f.l L{ul_m.ul

The Taylor series s

T(x,y) = f(a,b) + (z — a) fola,b) + (y - b) fy(a,b)
+ o [ = 0 a9+ 2 = )y =) Ful0) + (0= B (] 4,

T(z,y) = 0+ 0(z — 0) + 1(y— 0) + %[{)(1—0)24-2(1 ~0)(y—0) + (-1 07] +

2
Y
=y+ay— S
v+ay-
Since log(1 + )i anaytc i < 1, e have:

- ¥
¢ lug(l+?l':y+l!l*7+"'

forly] < 1.
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Lagrange Remainder
b ™) (a n
1@ = f@+ L0 0 L0 gy L8 o),
— Here, n! denotes the factorlal of n, and R,(x) is a remainder term,
denoting the difference between the Taylor polynomial of degree
nand the original function.
« The remainder term R,(x) depends on x and is small
if x is close enough to a. Several expressions are
available for it.

* The form' of the remainder term states
that there exists a number § between a and x such
that

r!n+11 I
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Lagrange Remainder

I'@) O@ 0
F@) = fla)+ P —a) + g o — a4

(x—a)"+ Ry(z).

(X, fTangeYet(x))

Errol = f(x)-F.
The quality of the rx) = Hx)-Frangeni(X)
approximation is

(x0,f(x0))” | (% KX))
controlled by the /
remainder term as we 0

Why/where are they used?

» Taylor polynomials (finite versions of Taylor
series) approximate functions near the center.

+ The more terms you take, the better your
estimate of f(x).

» Used extensively in finding the roots of an
equation or system of equations (e.g., f'(x))and
therefore maxima or minima (of f(x)),

— in operations research,
— machine learning

« Tells us about convexity and concavity of a function

— If concave or convex then global max or min exists and numerical
approaches can be used to iteratively find the global min/max

— Otherwise need to resort to heuristic approaches to find min/max
(generally, these will be local min or max)

ISM 280: Stochastic Gradient Descent ~ © 2011 James G. Shanahan  James.Shanahan_AT_gmail.com 174

move away from X
a=x0 10
1 Lagrange Remainder
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Lecture Outline
- R

« Lines, Tangents, Taylors Theorem
« Turning points, Roots, Newton-Raphson
< Taylor Series: quadratic approximations
+ Newton-Raphson quadratic convergence
« Multi-Dimensional Approximations (Planes)
« Directional Differentials, Total Differentials
« Vector plots, contour plots
« Gradient Descent
— Linear regression
« Predicting Click Through Rates

- Linear Regression

ogistic Flegr esglon
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+ Newton-Iteration Newton-Rhapson

Funktion
Tangente

F=f@+ fl@x-a)+L52 (x—a) +..+ L2 (x—g)*
f@=f@+f'(@x-a)+52 (x—a)’
F)=FE)+ f (), —x,-) +L2 (x,, - x)?

where f(x;), f'(x;) and f''(x;) are constants
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Newton-Raphson Example

. We now will apply Newton's method to 1ie serme example ised.
od, As depicted in Fig. 12.13. the function i be macimized is

R =12 - -2

5 = 1 s the initial wial

from splying Newion™s method 1 1is cxample. s
d has converged 1o x = 053762 as the optimal
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+ Newton-Iteration Newton-Rhapson

Funktion
Tangente

e e e e =

F = f@+f@x-a)+ L2 (x—a) +..+L2@ (x—a)"
f=f@+f(@x-a)+52 (x—a)’
FOo)=F)+ 1 (x)(x, =) - (X) (X — xi)2

where f(x;), f'(x;) and f''(x;) are constants
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Newton Rhapson (sometimes known as Newton

)= f@)+ f (@ (x-a)+ L2 (x—a) +..+ 250 (x—a)"
F) = f@)+ fl(@)(x—a)+L2 (x—a)

Quadratic Convergence 1/2

Quadratic convergence for Newton's iterative method

Accorang to em. any functon
Is (. Then the expansion of 1) about s Is:

1 1
a) = f(x, /(2)(a — 1, 1(x)=
WL Lot arge be the oot Pl
1 ; 1
Ry = 5 f" (€)@ —z,)° . .
e R, is the Remainder 1 ,s(,{ o

here € s n between 1, and

1
DR } oo

T

1

0= (@) = Jla) + L) ) + 3 €)@~ 2a)? E ! #
Okt eaution @by f(z,) and rearanging gives ITOr, €n,1 = 0= Xpyy 2 0

o) (= T (o y

St (ama) = D (0 @

Remembering ta xp. 15 defined by,

For g,,, < 1then quadratic convergence

Tnp1 = Tn

1 I« )= x3-12x + 1
/'r%w D | g1 ) = SO 00 =)+ (5 = %)
e : _:__. x  where f(x,), f'(x,)and f"(x,)are constants
1 00l £ 3x2-
' (x:, - f (X): Wi Approximating f(x) using this quadratic approximation, one ca;
4 l | maximize it by taking the first derivative and setting it to zero:
LT i x 9 .
] I PGy = L8 04 £ e)1-0)+ 252 (5, - x(1-0)
- i
0=y (X.-)+f"(X.-)(X.-ﬂ—X,)
Xt T X~ f.,(x‘)
f1(x)
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Quadratic Convergence 2/2
el Quadratic convergence for Newton's iterative method

Taking absalute vaue of bth sides gves

Quadratic convergence holds if

= the conditions met
lensil = 217

1 [(2) # 0:Va € I, where I is the interval [a—r, a+r] for some r > |(a - zo)|;
2 [(x) is finite ,Vr €
2 g sumoentycose e rot

e tem suinty cose i s contet means he flowing

rate enough such that e can gnore figher order terms,
(a)
f'la)

. for some C' < oo,
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()’ I/ \"“” ¢,  Assumee, =1 €’ ande <1
one finas tat . E,ﬂ.l‘ 2 |f’($ )l n+l n i
@ Tn = ;f,(f:))@ — ). n E.g.,assumee,=0.9
thene,,=0.81 ande,,,=0.64 etc
o - 7s method i
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Newton-Raphson Method - Algorithm
X, X2, X3..., ... X
Define iteration
Do k=0 to....
-1
i+l i f i
XU =x - (x )| (D
Until convergence
(e.g., [x*!' —xi| < & (i.e., |x*' —xi| has become sufficiently small))
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Exercise (not required)

« One algorithmic criterion for the convergence of the
Newton-Rhapson root finding algorithm is |x;,; — x;|
< g (i.e., has become sufficiently small).

— Can you describe at least one other criterion for convergence
besides the one described here?

— Can you describe a third criterion for extra points?

ISM 280: Stochastic Gradient Descent @ 2011 James G. Shanahan  James.Shanahan_AT_gmail.com

30



Lecture Outline

*R
+ Lines, Tangents, Taylors Theorem
* Turning points, Roots, Newton-Raphson
+ Taylor Series: quadratic approximations
+ Newton-Raphson quadratic convergence
« Multi-Dimensional Approximations (Planes)
- Directional Differentials, Total Differentials
+ Vector plots, contour plots
+ Gradient Descent
— Linear regression
+ Predicting Click Through Rates
— Linear Regression

— Logistic Regression
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Continuous Function

[3] Definition A function f of two variables is called continuous at (a, b) if

lim )f(‘\g}) =fla.b)

in
(x.3)—a. b

We say f is continuous on D if f is continuous at every point (a, b) in D.

The intuitive meaning of continuity is that if the point (x, y) changes by a small
amount, then the value of f(x, y) changes by a small amount. This means that a sur-
face that is the graph of a continuous function has no hole or break.

Small change in (x,y) implies small change in f(x,y)

FIGURE 7
The function A(x, y) = arctan(y/x)

is discontinuous where x= 0.
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A plane from a point and orthogonal vector

« Although a line in space is determined by a point
and a direction, a plane in space is more difficult
to describe.

+ A single vector parallel to a plane is not enough
to convey the “direction” of the plane, but a
vector perpendicular to the plane does
completely specify its direction.

* Thus, a plane in space is determined by a point in
the plane and a vector that is orthogonal to the
plane. This orthogonal vector is called a normal

vector.
=
where d = —(ax, + by, + cz). Equation 7 is called a linear equation in x, y, and z
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Orthogonality

« In mathematics, two vectors A and B are orthogonal if they

are perpendicular, i.e., they form a right angle and A*B=0.

» The vectors (1, 3, 2), (3, -1, 0), (1/3, 1, =5/3) are orthogonal to

each other
— since (1)(3) + (3)(-1) + (2)(0) = 0, (3)(1/3) + (-1)(1) + (0)(-5/3) = 0,
(1)(1/3) + (3)(1) = (2)(5/3) = 0.
— Observe also that the dot product of the vectors with themselves are
the norms of those vectors, so to check for orthogonality, we need only
check the dot product with every other vector.

A
C B n
AB and CD are orthogonal to each other.
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Tangent Approximations
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SKCTION 1.5 EGUATIONS OF LNES AND PUINES + 679
But i we solve the first two cquations, we get £ = & and s = £, and thes values

£ and s that satisfy
ind L are skew

don't satisfy the third cquation. Thercfore, there are no v
the three equations. Thus. L, and Lz do no intersect. Hen
lines.

“ Derivation of
P Planes vector equation of
Although a line in space is determined by a point and a direction. a plane in space is - @ Plane from:

mere diffcult o descibe. A sigle vector paralll 0. plan i ot cnough o comey |
the “dircction” of the plane, but a vector perpendicular (o the plane does completely 1+ @ NOFMA
specify is direction. Thus, a plane in space is determined by a point (xo Yo vector

the planc and a veetor n that is orthogonal to the planc. This orthogonal vect

called a normal vector. Let P(x,y. =) be and (derivative of

¥ be the position vectors of Po and P. Then the vector ¥ — ro is represented by PoP. a

(Sec Figure 6.) The normal vector n is arthogonal to every vector in the given plane. the function)

In particular,  is rthogonal to ¥ — 1, and so we have 2. and point on
FIGURE & m ner—ro) =0 the plane

which can be rewritien as

i3] ner=nen
Either Equation 4 or Equation 5 is called a vector equation of the plane.
“To obtain a scalar equation for the plane, we write n = (a, b, ¢).r = (x.y.z), and

£0= (%0 o, ). Then the vector cquation (4) becomes
(@.b.) + (= oy =30z = 2) =0

3] alx = x0) + bly = yo) + clz = 20) = 0

Equation 6 is the scalar equation of the plane through P.(xs, o, %) with normal
vectorn = (a.b,¢) .
veto b - ail.com 186
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Tangent Planes and Linear Approximation

» Just as we can visualize the line tangent to a curve at
a point in 2-space, in 3-space we can picture
the plane tangent to a surface at a point.
» Consider the surface given by z=f(x,y). Let (x0, y0,
20) be any point on this surface.
— If fix,y) is differentiable at (x0, y0), then the surface has

a tangent plane at (x0, y0, 20). The equation of the tangent -
plane at (x0,y0, 20) is given by: o

TangentPlane | (2-20)= £,(X0,y0)#(x-x0)+(x0,y0) *(y-)0) .,
TangentLine similar form: (y-y0)= f(x0) *(x-x0) 5

— where £(x0,)0) is the partial derivative of f() WRT x S
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Notation

f(x)=f(a)+ f'(a)(x—a) 1D Linear Approximation
F(x)=F(x%)+VFX)"|_.(x—x*)+.....

where i i
Multi Variable

VF(x)|,_,. is the gradient of F(x) evaluated at x * Linear Approx.

I.E.

VF(x) = [% F(x),(;% F(x),.‘.&i F(x)}
1 2 n

VFx)=[F, 0, F, 0. F,x).]
VFx) =[F,'®.F,'x).F, ')}
F(x)=F(x*)+ VF(X*)T (X —x*)
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(2-20)= £,(x0,y0)(X-X0)+1,(x0,y0)(y-Y0) Tangent Plane

Function of variables EXANPLE 1 Find the tangent plane o the elliptic paraboloid z = 2x* + y*at the
) point {1, 1,3).

Calculate gradient
vector by evaluating ool Let f(x,y) = 2x" + " Then

partial derivatives at the

tangential point

Gradient vector at (1, 1) ey =4 fley =2
is (4,2);

f1,1)=(4.2) ML =4 ML =2
1(1,1)=3

20
—a

Then (2) gives the equation of the tangent plane at (1, 1, 3) as
[Tangent plane at (1, 1, 3)
ith gradient (4,2) 7-3=4- ) +2y-1)

or =4+ -1 [ ]

Figure 2(a) shows the elliptic paraboloid and it tangent planc at (1, 1, 3) that we
found in Example 1. In parts (b) and (c) we zoom in toward the point (1, 1, 3} by
restricting the comain of the function f(x, v) = 2¢* + y%. Notice that the more we
zoom in, the flatter the graph appears and the more it resembles its tangent plane.

[Adapted from Multivariable Calculus: Concepts and Contexts,
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Tangent Plane Example

SKCTON 114 TANGENT PLANES AND UNEAR APROXIATONS  + 781

FIGURE 2 2004y a3

toward the point (1, 1)
2 Notice that the morc we zoom

e
teristic of  plan.
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Tangent Plane to Ellipoid Example

EXAMPLE 8 Find the equations of the tangent plane and normal line at the point
(=2, 1. —3) to the ellipsoid

SOLUTION The ellipsoid is the level surface (with k = 3) of the function

x? 2
Fxy,) ==+ +
(wpd =ty tg

d, tongent Therefore, we have

. x . N . 2
E@ya) =5 Fy(x.y.2) = 2y Fny.) =5

F(=2,1,-3)=~1 F(-21,-3)=2 F(-2,1,-3)= -}
Then Equation 19 gives the equation of the tangent plane at (=2, 1, —3) as

“lx+2)+2Ay - 1) -3 +3) =0

which simplifies to 3x — 6y + 2z + 18 = 0.
By Equation 20, symmetric equations of the normal line are

x+2
1SM 2FIGURE 10 -1

Lecture 2 Outline

+ Taylor Series: quadratic approximations

+ Newton-Raphson quadratic convergence

+ Multi-Dimensional Approximations (Planes)

< Directional Differentials, Total Differentials

» Vector plots, contour plots

+ Gradient Descent
— Linear regression

+ Predicting Click Through Rates
— Linear Regression (using gradient descent, MCMC version on 1/26)
— Logistic Regression (using gradient descent, MCMC on 1/26)

« Convexity, extreme values, mathematical programming
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Approximate Ay with dy via the tangent

For a function of one variable, y = f(x), we define the differential dx to be an inde-

pendent variable: that is, dx can be given the value of any real number. The differen-

tial of y is then defined as Difference in f(x); i.e., second

term in Linear Taylor Expansion
X a)+ a)x—a

(See Section 3.8.) Figure 6 shows the relationship between wic nu.lcful(cul) ay 'C( ) f ( )( )

the differential dy: Ay represents the change in height of the curve y = f(x) and dy

represents the change in height of the tangent line when x changes by an amount

dx = Ax.

1l dy = f'(x) dx

Actual
y=1(x)

y

______________ inear Approximation
Actual approximated by Predicted
l.e., Ay~dy

a+ax

tangent line
y=fla) + f(a)x—a)
dy is the predicted difference in (f(x) given the linear approximation)
Can change Ax as much as we like but the bigger the Ax the bigger
o the gap between the tangent approximation and the actual function

Linear and Quadratic Approximations

« Approximate f(X) for X around point a by the tangent at a
point (a, f(a))
y—yl=m(x—xl)
J@=yl=mx=xh  f(x)= f(a)+ f'(a)(x—a)
f(x)=yl+m(x—xI)
f)=f(a)+ f'(a)x—a) AT (af(a)) slope=Tf(a)
« Taylor Series explores different approximations of f(X);
— the above tangential form is linear approximation

+ General Form of a Taylor Series
)= f@+ f(@x-a) b L9 (x—a) +..+ 129 (x— gy
More compactly f(x)= ka(a)(x a)
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{and dv and Av)

Total Differential, dz, for z=f(x, y) in 2D

For a differentiable function of two variables, z = f(x, y), we define the differen-
tials dx and dy to be independent variables; that is, they can be given any values. Then
the differential dz, also called the total differential, is defined by
o)

i a noe !
[T dz = filx,y) dx + fi(x. v) dy = %dﬂc + {'T:d"‘ 10i3\ che
ay
F@ = f@)+dz ‘
f(X)= f(a)+Vf(a)-(X-a)
(Compare with Equation 9.) Sometimes the notation df is used in place of dz.
If we take dx = Ax = x — g and dy = Ay = y — b in Equation 10. then the dif-
ferential of z is

dz = fla, b)(x — a) + fila, b)(y — b)

+ Estimated change in z using total differential
+ Total Differential in 2D (estimated change in z=f(x) using a linear

approximation)
« This corresponds to the second term (the linear term) in Taylors
expansion f)=fla)+dz
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Total Differential in 2D (estimated change in z)

So, in the notation of differentials, the linear approximation (4) can be written as
f(x.y) = f(a.b) + dz First-order Taylor Series

re 7 is the three-dimensional counterpart of Figure 6 and shows the geometric
ind the increment Az: dz represents the change in
z represents the change in height of the surface

e
interpretation of the differential
height of the tangent plane, whes
z = f(x,y) when (x, ) changes from (a, b) to (a + Ax, b + Ay).

(a+Ax.b+Ay. fla+Ax.b+Ay)

ya
a+AX))

A7 Where L is the linear
approximation of (),
around the point (a,b)

surface z = f(x.y)

(@b,0)

tangent plane
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Total Differential in 2D (estimated change in z)

So, in the notation of differentials, the linear approximation (4) can be written as
fx.y) = fla.b) + dz

Figure 7 is the three-dimensional counterpart of Figure 6 and shows the geometric
interpretation of the differential dz and the increment Az: dz represents the change in
height of the tangent plane, whereas Az represents the change in height of the surface
z = f(x.,y) when (x, y) changes from (a. b) to (@ + Ax. b + Ay).

4 (a+Ax.b+Ay. fla+Ax,b+Ay)

surface z = f(x,y) s d
1 s\'\ma‘e
eS N
(a.b. fla.b)) y
2
N
\ ae “"a‘nge““a\ ;
e ‘°‘: we 2 o 2P
p2s? "
N\\j tangent plane
\ 107

FIGURE7 (A 2= f(a,b)=fxla.b)x—a) + fyla, b)(y— b)

2= fla,b) = fala. b)x — a) + fy(a, B)(y = b)

FIGURE 7

Total Differential in 2D: An Example

(a) Ifz = f(x.y) = x* + 3xy — »* find the differential . Change in height of f(x|
(b) 1f x changes from 2 0 2.0 and y changes from 3 to 2.96, compare the values of

Az and dz. . . .

smu:::m change in height of f(x) when I travel in (0.05, -0.04)
(a) Definition 10 gives - Total Differential

iz oz
d = —=dx + ody = (26 + 3y) dx + (x = ) dy
E ay

A In Example 4, ds is close to Az

(b) Putting x = 2, dx = Ax = 0.05,y = 3, and dy = Ay = —0.04, we get

dz = [2(2) + 3(3)]0.05 + [3(2) — 23))(—0.04)
= 0.65 Estimated z difference between f(x, y) and f(a, bj

2=frang(a) (%:Y)-f(a,b))

The increment of z is
= f(2.05,2.96) — f(2.3)
.05) + 3(2.05)(2.96) — (2.96)] — [2* + 3(2)3) — 37]
- 06449 Actual z difference (i.e., z=f (x,y)-f(a,b))

FIGURE 8 Notice that Az = dz but dz is easier to compute. -
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Total Differential and Direction2! "™ ‘rivative

W o™
So. in the notation of differentials. the linor 30 \0“‘0*.““& yout mas
2 e 2°° ),VYO"V

02
oo U R8T Y
Figure 7 is*" \S us v \a“gef v, e

jal . gcometri
0 i ptidl ¢ geometric
e d\fecﬂo d\ﬁere,,.ﬂenl& the chan;

inte e in
ety on et (e changs
e ‘lat_ based o *tot? uange in height of the surface
@ & s §@P) W+ ax b + Ay).
0 ted \ M et
st " (a+Ax.b+Ay.fla+Axb+Ay)
\N“ 31N u surface z = f(x,y) /
(e
Wre
poy o B2
d:
""" b fla.b)
Ty
(a+Ax.b+4y.0)
tangent plane
FIGURE 7 2= fla.b)=fila.b)x—a) + fy(a. B)(y— b) 199

Gradient and the Directional Derivative

* When you are hiking on a mountain or a slope you
have a choice of many directions in which you can
go. Starting at the same point some directions head
generally upward; some directions head generally
downward; and some directions are steeper than
others.

» The directional derivative of a function, z = f(x, y),
that is, the slope of the surface described by this
function as we go in different directions starting
from the same point.

zZ=Xxy
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Gradient and the Directional Derivative

- W
ha

ful

fre
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z
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2
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Directional (versus Partial) Derivatives

i n
measure the differences

rtial derivatives nate axes

Pal the coordi

the direcﬁor} o . .
+ If fis areal-valued function on R", then the partial

partial  derivatives of f measure its variation in the direction
derivativesof the coordinate axes.

— For example, if fis a function of x and y, then its partial
derivatives measure the variation in f#in the x direction and the y

direction.
+ They do not, however, directly measure the variation
Lk Pt e AR At mEoe —ihe —m M-
(See other notations below.) If the function fis differentiable at ;7. then the directional derivative exists along any unit vector 77, and on|
has
Vaf (%) =V f(2) - @
where the V on the right denotes the gradient and - is the Euclidean inner product. T

U i
One sometimes permits non-unit vectors, allowing the directional derivative to be taken in the direction of 47", where 47" is any nonzero
irect “= 2nca_nne must modify the definitions to account for the fact that ' may not be normalized, so one has
ction derivati
Ives meas 8
ure the differences in

inahan_AT_gmail.com 202

Py other direction

Directional Derivative== Total Deriv. == Change in f(x

I { is  realvalued function on R™, then the partial derivatives of f measure its variation in the direction of the coordinate axes. For
example, if f is a function of x and y, then its partial derivatives measure the variation in £ in the  direction and the y direction_ They do
not, however, directly measure the variation of £ in any other direction. such as along the diagonal line y = x. These are measured using
directional derivatives. Choose a vector

V= (Ug,...,0).
The directional derivative of f in the direction of v at the point x is the limit
x+hv)— f(
va(z):’lm})f( f h) f(@)

Let A be a scalar. The substitution of /A for h changes the Av direction's difference quotient into A times the v direction’s difference
quotient. Consequently. the directional derivative in the Av direction is A times the directional derivative in the v direction. Because of this,
directional derivatives are often considered only for unit vectors v.

It all the partial derivatives of f exist and are continuous at X, then they determine the directional derivative of f in the direction v by the
o o Change in f(x) when we travel in direction v
Dof(x) = Y vz We can approximate the change in z (i.e.,

- Oz .
=1 f(x) — f(x+v)) using D, f(x,y)=V(x,y)ev

This is a consequence of the definition of the total dervative. It follows that the directional derivative s linear in v.

The same definition also works when f i a function with values in R™. We just use the above definition in each component of the vectors.
In this cass, the directional derivative is a vector in R™

DAf(x,y)=VH(x,y)e(x-A1,y-A2)
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Directional Derivatives

» Suppose that we start at the point (0, 0) and go
one unit in several different directions.

— The graph below shows four different directions marked
by curves starting at the origin and it also shows all the
points we would reach if we tried all possible directions
and walked one unit.

+ When we say "we walk one unit,” we meanone " Ve
unit in the xy-direction. Thus, we walk from (0, /N,
0) to the point (cos 6, sin 8) where 6 is any /

34



Directional Derivative Total Differential (Directional derivative)

*  Weare interested in the rate at which z changes as we + Most relationships depend on several variables
move away from x in various different directions. Each Y= (X X Xy s )
. po_ss'ble direction is indicated by a unit vector,  Recall that the partial derivative, dy/dx;, is the change
u= (u_1, Us; - Uy) s N L in y when we change x, , etc.
« The directional derivative in the direction u is given by L .
+ Now we’re interested in the total effect on y when all
the x's are changed by a small amount.

S(zs + hug, oo + By, 0 4 Bt ) = f(01,52,. .. 5a)

D;z=lim
B = R L . R .
s ht ’ th tation . for the directional « This is the Total Differential of fand is denoted by dy
ometimes we use the notation f, for the directiona in direction dx at d/dx|
derivative.
- f,=gradf-u af af af
dy=——dx, +——dx, +..+——dx,
ox, ox, ox,
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Directional Derivatives Questions for Thought

A The directional derivative D, f(1. 2)

* The directional derivative of a

multivariate differentiable
function along a given vector

in Example 2 represents the rafe of
change of z in the direction of u. This
is the slope of the tangent line to the
curve of infersection of the surface

Vata given point P intuitively z=x’— 3xy + 4y? and the verfical
represents the instantaneous ~ Po" frovah (1. 2.0) inthe direcion

of u shown in Figure 5.

rate of change of the
function, moving through P, :
in the direction of V.

It therefore generalizes the
notion of a partial derivative,

in which the direction is

always taken parallel to one 0
of the coordinate axes.
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1. Gradient Vector: Find the rate of change in the
direction of a given vector WRT a given point
(and tangential approximation)?

2. In what direction does f() have the maximum
rate of change?

3. What is this maximum rate of change?
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Maximizing the Directional Derivative

Suppose we have a function f of two or three variables and we consider all possible
directional derivatives of f at a given point. These give the rates of change of f in all
possible directions. We can then ask the questions: In which of these directions does
[ change fastest and what is the maximum rate of change? The answers are provided
by the following theorem.

[15] Theorem Suppose f is a differentiable function of two or three variables,
The maximum value of the directional derivative D, f(x) is | Vf(x) | and it
occurs when u has the same direction as the gradient vector Vf(x).

Proof From Equation 9 or 14 we have
Def=f u=|Vf||u] cos 0 = | Vf| cos 0

where 6 is the angle between Vf and u. The maximum value of cos € is 1 and this
ocecurs when § = 0. Therefore, the maximum value of D, f is | V| and it occurs
when @ = 0, that is, when u has the same direction as V. -

ISM 280: Stochastic Gradient Descent @ 2011 James G. Shanahan  James.Shanahan_AT_gmail.com

Cosine of the angle

+ the cosine of the angle between the vectors
instead of the angle

_______ 4 "
(g.4)) i
cosf=——~"- !
<] |
i
(@.d)=[d*|dlcoso | fo7 ;
s U 1 e ‘ "
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Which direction is maximising f(x,y)? Significance of the Gradient Vector

J®=f@+/@t-a) Recall: Directional derivative D,f(x,y) (approximated * The gradient vector, Vf(x,y), gives the direction of fastest increase of
I@=l@+Vf@x=a) difference in f(x,y) if we travel in direction u from (x, y)) f(x, y) (assuming a two-variable function here). [Newton-Raphson]
+ The gradient vector, Vf(x,y), is orthogonal to the contour lines
Duf = VfT ‘u Duf(x,y)=Vf(x,y)ou + Imagine climbing an upside-down bowl! from below, where | can
T Where u=(x-a, v-b move in any <x, y> direction (NOTE | cant move in z); x, and y are
Vitu = HVfH ~HuHCO$0 (x-a, y-b) independent variables.
— HVfH cosé « If I follow the level curve (f(x,y)=k) then | make no progress to the
summit or bottom but if | move perpendicular to the level curve then
T _ I make the quickest progress to the summit (of the bowl).
ViTu = |Vf] a prog (of the bowl)
Vil = V'V
f f f a, y-b, b V(X o)
u = Vf NG 4/
+ cos(8) maxes at 1 when — e
6=0 Vf(X,) ) Pleao) \
o level curve ™
ﬁ‘; DJ;(I);A@fmaxes WL T i @ifaeitan @i steepest ascent is Vi(x,y) e
. G qd. t tor is th and the direction of steepest descent is -Vf(x,y) 0 H '
radient vector is © James G. Shanahan James.Shanahan_AT_gmail.com 21 ISM 280: Stochastic Gradient Descent ~ © 2011 James G. Shanahan
|_steepest chanae
Steepest Ascent/Descent Gradients and Contour Curves

« Examine the relation between contour curves, or
by another name, level sets, and gradients
— [moving along a direction bring no change in f(x,y)]

+ Theorem on Gradients and Contour Curves

» Since uis a unit vector and
» f,=grad f-u=||u|| ||grad f|| cos(8)

: = llgrad f|| cos(6) — Consider any point (X,,y,), and the level curve of f through
« where theta is the angle between grad f and u, we this point (i.e., the level curve of f at value f(xo,Yo)).
see that the directional derivative is at its maximum — Then the gradient of f at f(x,,y,) is perpendicular to the
when u is pointing in the same direction as grad tangent direction along the level curve of f though (xo,Yo)-
f and is at a minimum when u is pointing in the — ltis very easy to see why this theorem is true.

opposite direction. (zero angle (cos(0) =1) Suppose that (a,b) is any vector that is tangent to the level
curve of f through (xo,Y,)- Then, as you move in the (a,b)

: Thus., the.dlrec“on of steepest as‘::em is grad f and direction, you are at that instant moving along the level
the direction of steepest descent is -grad f. curve, and the value of f does not change.

E les: — So the directional derivative in this direction is zero; i.e.,
xamples: dot(gradf(xo,yo),(a,b)) = 0

http://www.math.montana.edu/frankw//ccp/multiworld/twothree/gradient/learn.htm

— This is the perpendicularity that we wanted to establish.
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Directional Derivative Examples Gradients, Gradient Plots and Tangent Planes

EXAMPLE 6

(a) If f(x,y) = xe", find the rate of change of f at the point P(2, 0) in the direction
from P to Q(%, 2).

(b) In what direction does f have the maximum rate of change? What is this maxi- .
mum rate of change?

SOLUTION

(a) We first compute the gradient vector

Vi(xy) = (fo ;) = (&, xe”)
V2,0 = (1,2)

The unit vector in the direction of PO = (—1.5,2) isu = . 50 the rate of

change of f in the direction from P to Q is
Duf(2,0) = Vf(2,0)-u=(1,2) - (-%%)
=1(=3)+20()=1

(b) According to Theorem 15, f increases fastest in the direction of the gradient
vector Vf(2,0) = (1, 2). The maximum rate of change is

|V/@.0)] = [{1.2)| = V5 =

EXAMPLE 7 Suppose that the temperature at a point (x, y, z) in space is given by

2 T(x,y,2) = 80/(1 +x* + 2 + where T is measured in degrees Celsius and
x, y. z in meters. In which direction does the temperature increase fastest at the point
(1,1, =2)? What is the maximum rate of increase?

FIGURE 8
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4D function: function of 3 Variables

EXAMPLE 8 Find the equations of the tangent plane and normal line at the point

(=2, 1, =3) 1o the ellipsoid

A Figure 10 shows the ellipsoid, tangent
plane, and nomal line in Example 8

SOLUTION The ellipsoid is the level surface (with k = 3) of the function

Therefore, we have

x . 2%
I.Y\.\.:‘7? Fy(x,y,2) =2y I“":)7?
F(=2,1,-3)=~1 F(=2,1,-3)=2 F(-2,1,-3) = -
Then Equation 19 gives the equation of the tangent plane at (~2, 1, —3) as
S+ 426 - D -3 +3)=0

which simplifies to 3x — 6y + 2z + 18 = 0.
By Equation 20, symmetric equations of the normal line are

+3

Level surface with 3D Tangent Plane; with a 3D nor|
(as opposed to 2D contour plot with a 2D normal

ISM 280: Stochastic Gradient Descent @ 2011 James G. Shanahan ~ James.Shanahan_AT_gmail.com

Level Curves/Surfaces
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Significance of the Gradient Vector

« The gradient vector, Vi(x,y), gives the direction of fastest increase of
f(x, y) (assuming a two-variable function here).

« The gradient vector, Vf(x,y), is orthogonal to the contour lines

+ Imagine climbing an upside-down bowl! from below, where | can
move in any <x, y> direction (NOTE | cant move in z); x, and y are
independent variables.

« If I follow the level curve (f(x,y)=k) then | make no progress to the
summit or bottom but if | move perpendicular to the level curve then
I make the quickest progress to the summit (of the bowl).

IS

b4 V(X0 ¥0)
AN§ /
Plre.ys) 4\

-

level curve
flx,y =k

0 x
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4D Function: Tangent Plane
VF (X, Vs Za)

tangent plane

[ ~
I PR~ ¥
| ™,
A
| \
~0 —‘—---_.\__‘_____ .
b -
o 5 c ¥
x / In particular, when 1 = £, we have r(fo) = (xo, Yo, 70), 50
1 VE(xe, yo. 20) - ¥'(to) = 0

Equation 18 says that the gradient vector at P, VF(xo, yo, z), is perpendicular o the
tangent vector ¥'(ty) to any curve C on S that passes through P. (See Figure 9.) If
VF(x0. ¥o0. ) # 0. it s therefore natural to define the tangent plane to the level sur-
face F{ 2) as the plane that passes through P and has normal
vector VF(x standard equation of a plane (Equation 9.5.6), we can
write the cq gent planc as

Ful(xo, Yo, 20)(x = Xo) + F(xo, Yo, 20)(y = ¥o) + Fil(xo, Yo, 20)(z

academicear

Plotting Level Curves

EXAMPLE 7 Sketch the level curves of the function f(x, y) = 6 — 3x — 2y for the
values k = —6, 0, 6, 12.

SOLUTION The level curves are

FIGURE 7

6-3x—2y=k or 3x+2+(k=-6=0

Th|\ is a family of lines with slope —3. The four particular level curves with

~6.0,6,and 12 are 3x + 2y — 12 = 0,3x + 2y —
3\ + 2y + 6 = 0. They are sketched in Figure 8. The level cu
spaced parallel lines because the graph of f is a plane (see Figure 4 in Scction 9.6).

gl y) = VO =2 for k=0.1.2.3

SOLUTION The level curves are
VW=x—y—k o x+y-9-k

This is a family of concentric circles with center (0, 0) and radius v/9 — k2. The
cases k = 0, 1.2, 3 are shown in Figure 9. Try to visualize these level curves lifte
up to form a surface and compare with the graph of g (a hemisphere) in Figure 2.

FIGURE 2
Graph of glx. ) =9 — x*— y?*

Significance of the Gradient Vector

« The gradient vector, Vi(x,y,z), gives the direction of fastest increase
of f(x, y, z) (assuming a three-variable function here).

« The gradient vector, Vf(x,y,z), is orthogonal to the level surface S of
f through P (i.e., X, Yo, Zo))

« Imagine climbing an upside-down bowl from below; where | can
move in any <x, y> direction (I cant move in z). If | follow the level
curve (f(x,y)=k) then | make no progress to the summit or bottom
but if | move perpendicular to the level curve then | make the
quickest progress to the summit (of the bowl).

by V(e 30) ] O

S~/

VF(xg.¥9:20)

tangent plane

I ~
4 I PRI ()N
Plraya) \ | S
I Y
Ay
tevel curve ™ i
fx,y) =k 5 0‘*‘—‘_.\_‘k
o g 2 s c »
ISM 280: Stochastic Gradient Descent ~ © 2011 James G. Shanahan x / )

37



Gradient Vector: Hiker’s Perspective

+ If we consider a topographical map of a hill and let f(x, y) represent
the height above sea level at a point with coordinates (x, y) , then a
curve of steepest ascent can be drawn by making it perpendicular
to all of the contour lines.

« This phenomenon can also be noticed here where Lonesome Creek
follows a curve of steepest descent. W =P NNSN

curve of
steepest
ascent
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Follow Gradient for Maximization
Follow negative of Gradient for Minimization

« Gradient descent is a first-order optimization
algorithm.

+ To find a local minimum of a function using
gradient descent, one takes steps proportional to
the negative of the gradient (or of the
approximate gradient) of the function at the
current point.

« If instead one takes steps proportional to the
gradient, one approaches a local maximum of
that function; the procedure is then known as
gradient ascent.
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Plotting 3D Surfaces in R

#put two plots side by side (i.e., 1 row and 2 columns)

par(mfrow=c(1, 2))

X <- seq(-3, 3, length= 30)

y<-X

f <- function(x,y) { xA2 + 2*yAr2}

z <- outer(x, y, f)

#Plot 3D surface of function s

#Modify theta and phi for different perspective Y <

persp(x, v, z, theta = 135, phi = 30, col = “blue", scale = FALSE,
Itheta = -120, shade = 0.75, ticktype = "detailed", expand = 0.2,

: outer e
i\.eguter pr(o)duct of_ the arlra{; )X ;:\d(\‘(() )‘swt:ere
See example.gradientPlots() array A with dimension c(dim(X),
o X, arrayindex.y)] =
x], Y[arrayindex,y]. -

L. yman.com 227

A[c(arrayinde_x
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Lecture Outline

*R
+ Lines, Tangents, Taylors Theorem
* Turning points, Roots, Newton-Raphson
+ Taylor Series: quadratic approximations
+ Newton-Raphson quadratic convergence
+ Multi-Dimensional Approximations (Planes)
- Directional Differentials, Total Differentials
« Vector plots, contour plots
+ Gradient Descent
— Linear regression
+ Predicting Click Through Rates
— Linear Regression

— Logistic Regression
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Gradient Vector Plots

+ The gradient gives us a vector at each point (x, y)
that is pointing uphill

+ We can visualize these using a gradient vector
plot See example.gradientPlots()
— Plot 3 dimensional surfaces f(x,y)
— Heat maps
— Gradient vector plots
— Gradient vector plots superimposed on heat maps
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3D Plot of f(x,y)=xr+yAr2

See example.gradientPlots()

=(AX))

Tk + Tu:
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HeatMap and Contour Plot

X <- seq(-3, 3, length= 30); y<-x

f <- function(x,y) { xA2 + 2*yAr2}

z <- outer(x, y, f)

+ #new plot of isolines and heatmap
+ image(x,y,z) #heat image of surface
« contour(x,y,z, add=TRUE) #add contours

See example.gradientPlots()

X2 + 2 * yr2
H—Wﬂ
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50

7:0
N ™~ A
: PN \\\’}\f
6543210123456

3. Superimpose the level curves of f(x.y) =22 + ¢/
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Ugly Unnormalized Gradient Plot

#ugly unnormalized gradient vector plot
# plot vector plot and contour plot
X <--5:5 In example.gradientPlots()
y <X
f <- function(x,y) { xA2 + yA2 }

z <- outer(x, y, f)

u=2*x #fprime_x(x,y) = df/dx =d(x*2 + yA2)/dx=2x

v=2*y .

plot(1, 1, xlim=c(-10, 10), ylim=c(-10, 10), pch="")

grid(length(x))

for(i in x) {
for (jin y) {

arrows(i,j, 2*i, 2*j, col=i+10) #(f'x(x,y), f'y(x,y), col=colour

}

}
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Ugly Unnormalized Gradient Plot
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Gradient Vector Field for f(x,y) = x2 — y?2

» Sampled gradient vector 10x,y) = X*2 -y"2
" Maxes out when y is 0
plot superimposed on a
function heat map of f(x,
y)=x2-y?

+ Each gradient vector is
plotted starting at the
point

« As expected, the
gradient vectors point
“uphill” and are
perpendicular to the
level curves.
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Prettified Gradient Plot

(looks like a quiver!)
#prettified gradient vector plot using quiver()

#f <- expression( (3*x"2 + y) * exp(-x"2-y/2))

f <- expression( (x*2) - (yA2))

#f <-expression((x*2+x/2))

X <- Yy <- seq(-5, 5, by=0.5)

par(mar=c(3,3,3,3))

quiver2(f,x,y, color.palette=terrain.colors,
main="f(x, y) = XA2 - y*2\nMaxes out when y is 0")
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Gradient Vector at Extrema is <0, 0, ..>

« The gradient is a fancy word for derivative, or the rate of
change of a function.

« It’s a vector (a direction to move) that points in the direction
of greatest increase of a function is zero at a local
maximum or local minimum (because there is no single
direction of increase); the magnitude of the vector is zero.
Gradient at turning points =<0, 0, 0...,0)

« The term gradient typically refers to the derivative of vector
functions, or functions of more than one variable. Yes, you
can say a line has a gradient (its slope), but using the term
gradient for single-variable functions is unnecessarily
confusing. Keep it simple.
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Gradient Example

* The gradient of
the function
f(x,y) = —(cos2x +

c0s2y)? depicted
as a vector field
on the bottom
plane
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Exercise 1.4 : Vector Field vs. 3DPlot

« Compute the gradient of the following function.
- z=f(x,y) =x2 +y

» This gives us a vector at each point (x, y) that is

pointing uphill.

In R plot the these vectors. This plot is also

known as a vector field. Hint: use quiver2();

provided in R Code.

» Plot the 3D of this function

Compare the vector field plot with a three-

dimensional plot of the indicated function. Does

the vector field appear to be pointing upward?
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quiver2() 1/2

#got this from i free. i 128
#plot a normalized gradient plot (which looks like a quiver of arrows)
quiver2 <- function(expr, X, v nlevels=20, length=0.05, W
2 <- expand.grid(x.y)
XX <X

x <z[1]
W<y
y <22

#browser()
fxy <- eval(expr)

grad_x <- eval(D(expr, "x"))
grad_y <- eval(D(expr, "y"))

dim(fxy) <- c(length(xx), length(yy)) #pour vector into table
dim(grad_x) <- dim(fxy)
dim(grad_y) <- dim(fxy)

maxlen <- min(diff(xx), diff(yy)) * .9
grad_x <- grad_x / max(grad_x) * maxlen #normalize gradient components
grad_y <- grad_y / max(grad_y) * maxlen

filled.contour(xx, yy, fxy, nlevels=nlevels,
plot.axes = {
contour(xx, yy, fxy, add=T, col="gray",
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quiver2() 2/2

filled.contour(x, yy, fxy, nlevels=nlevels,
plot.axes = {
contour(xx, yy, fxy, add=T, col="gray",
nlevels=nlevels, drawlabels=FALSE)

arrows(x0 = x,
x1 =x + grad_x,
yo s

y1 =y+grad_y,

length = length*min(par.uin())

axis(1)
axis(2)
b
)
}
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Use of quiver2()

#prettified gradient vector plot using quiver()
#f <- expression( (3*xA2 + y) * exp(-x"2-yA2))
f <- expression( (xA2) - (y*2))
#f <-expression((xA2+y))
X <- y <- seq(-5, 5, by=0.5)
par(mar=c(3,3,3,3))
quiver2(f,x,y, color.palette=terrain.colors, main="f(x, y) = XA2
- yA2\nMaxes out when y is 0")
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Recap on finding minimum or maximum

max/ min fX)=f(x,..,x,)

subject to xX€R"
1 1) x3- 12x
ﬁ'(x‘) _f("l"(‘k_(‘z
1 1 7 *
1 (9 r0d=3x2-
N )
TR

4

» Given f(x1, x2, ...) find a candidate
minimum or maximum (stationary
points)

+ Assume f’(x) and H(x) exists for all xS

» Locate candidate extrema using f’(x) =0
and boundary points

« Steps
— Find roots of the gradient equation f'(X)
« Use Newton-Raphson
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Multivariate Newton’s Method

Suppose that the objective f is a function of multiple arguments, f(w;,ws, .. wy)
Let's bundle the parameters into a single veetor, @w. Then the Newton update
is
Wyy = Wy — H ™ {wy )V f (10, (16)
. f equations
Find the roots of an equation or system of &d

essnan not very time-

where V f is the gradient o ﬁ'ﬁyl%&ru‘lgug%adlent and H erspy@f H |Sbf [ty
and H is the Hessian of GORGUANRE emn{ parna drrlvatues Hy =
O f o, .

Caleulating H and Vf isn't usually very time-consuming, but taking the
inverse of H is, unless it happens to be a diagonal matrix. This leads to various
quasi-Newton methods, which either approximate H by a diagonal matrix,
or take a proper inverse of H only rarely {maybe just once), and then try to
update an estimate of H~'(w,) as w,, changes. (See section 8.3 in the texthook
for more.)

n R, have a look at
?optim  #method=BFGS

1
[Hand, Manilla, Smith, Data Mining, Section 8. 3]
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Operational Algorithms

* Quasi-Newton (BFGS) - Popular in practice
— Avoid computing the inverse of Hessian matrix
— But, it still requires computing the B matrix (approximate Hessian) - largg
storage
Broyden—Fletcher—Goldfarb—Shanno (BFGS) method is a method for
solving nonlinear optimization problems
— The BFGS method approximates Newton's method,
« aclass of hill-climbing optimization techniques that seeks a stationary
point of a (twice continuously differentiable) function:
« For such problems, a necessary condition for optimality is that the
gradient be zero.
— Newton's method and the BFGS methods need not converge unless the
function has a quadratic Taylor expansion near an optimum. These
methods use the first and second derivatives.

+ Limited-Memory Quasi-Newton (L-BFGS)

oo sE4E0. 29id explicitly Somputing B MatrX. ., ovamasan 4z maiicom 2

Quasi-Newton Method

« Approximate the Hessian matrix H' with another
B matrix:

snew  zold 733107(_’7)
ox
« B is updated iteratively (BFGS):
_(BAﬁA)(BkﬁA)T o 5t
BBy By I B
Pr =Xt = X i = 8 —

By =By

— Utilizing derivatives of previous iterations
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Efficiency

Small Standard Newton- V-Fast

Raphson method: O(n?)
Medium Quasi Newton method Fast

(BFGS): O(n?)

Large Limited-memory Quasi R-Fast
Newton method (L-BFGS):
O(n)
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General Approach to Finding Extrema

+ Well-behaved version spaces
— Convex or concave function (+definiteness)
— Algorithms seek a local extrema knowing that it will be global
« Iff() is a concave function then local maximum is a global maximum
« If f() is a convex function then local minimum is a global minimum

« Otherwise
— Weresort to local approximations s
+ Hill-Climbing )
+ Simulated annealing
« Commonly used in Neural Networks
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Lecture Outline

*R
+ Lines, Tangents, Taylors Theorem
* Turning points, Roots, Newton-Raphson
+ Taylor Series: quadratic approximations
+ Newton-Raphson quadratic convergence
« Multi-Dimensional Approximations (Planes)
- Directional Differentials, Total Differentials
+ Vector plots, contour plots
+ Gradient Descent

— Linear regression
+ Predicting Click Through Rates

— Linear Regression

istic Regression

— Lot
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Gradient Descent (a simpler root finder)

— Iteration function Newton-Raphson|
ACY In 1-Dimension

Calculating f”(x), the Hessian H, and
inverting it is complex so simpler
algorithms have been developed such
gradient descent

P(x) o = i aif.(xi) Gradient Descent

F@) (Mo — )

“low large should | step in the positive
gradient direction (gradient ascent)
— orin the negative gradient direction (gradient
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Gradient Descent

Initialization: Select € and any initial trial solution x". Go first to the stopping rule.
lteration:

. Express f(x" + t Vf(x")) as a function of ¢ by setting
LA L
.x)—,\j—f(.rxj]x:x.. forj=12.....n,
and then substituting these expressions into f(x).

2. Use the one-dimensional search procedure (or calculus) to find ¢ = r* that maximizes
fix" + 1 VAX) over t = 0.
3. Reset x" = x' + r* Vf(x"). Then go to the stopping rule.

Stopping rule: Evaluate Vf(x') at x = x". Check if
af

ax;

=e forallj=1,2,... . n

If so, stop with the current x' as the desired approximation of an optimal
solution x*. Otherwise, perform another iteration.
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Steepest Descent Method: example

M

a) Starting at (-2,-2) take the
direction of steepest descent of f

b) Find the point on the intersec-
tion of these two surfaces that
minimizes f

c) Intersection of surfaces (a plane).
d) The gradient at the bottommost

point is orthogonal to the gradient
of the previous step
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A line searchis a procedure that chooses « to minimize f along a line. Figure 6(b) illustrates this task:
we are restricted to choosing a point on the intersection of the vertical plane and the paraboloid. Figure 6(c)
is the parabola defined by the intersection of these surfaces. What is the value of « at the base of the
parabola?

From basic calculus, a minimizes / when the directional derivative 4 [ (1)) is equal to zero. By the
chain rule, -/ (z(1)) = f'(a1))" A=y = f'(21) 70y Setting this expression to zero, we find that o
should be chosen so that 7(gy and /(1)) are orthogonal (see Figure 6(d))
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Line search: Find Minimum

p(a) = F(x+ah) . xandh fixed, a >0 Find & so that
- @
T p@)=F(x + o V(%))

15,lS Minumum

5’30 fla) Use chain rule df/du*du/dx
o

750 = op(a) - OF(x, +a-Vf (X))

1 80{ ch

. =Vf(x,)"F'(x, +a- V(3

Fla + argy) (c)

140
120

@
02 04 06
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_0p(@) _ OF(X, +aVf (x,)
o Jda

oF ou The gradient candidate Vf (xo)
=——=V, Tg vV e gradient candidate Vf (x,)

Ju do f()fm) Fx+a f(xo))is shown at several locations
- T — > along the search line (solid

\\\\ arrows). Each gradient’s
—

0

Line search

>~ projection onto the line [in our
> line search] is also shown
(dotted arrows). The gradient
vgctors represent the direction
\\ of steepest increase of f (our
_ function that is being
i minimized), and the
projections represent the rate
of increase as one traverses
the search line.
On the search line, f is
minimized where the gradient
is orthogonal to the search
[Duda and Hart Stork page 226] line.
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F(x+ah) = F(x) + ahTF/(x) + O(a?)
~ F(x) +ahTF/(x) for a sufficiently small.|

Line search

JF 0 ’
au\a\zfvf("*])TF (X, +a-Vf (X))
R

Leth=Vf(x,)

— 1 h"F'(x,+ah)=0

P \[since F'(x, +ah) =F (x,) +aF (x,)"h|

= h'F'(x, +ah)

= h"(F (x,)+aF (x,)"h)
=-h"h+ch™Hh =0

h'h _ Vf(x)"Vf(x,)
[Duda and Hart Stork page [226] hTHh Vf(xo )T HVf(XOT)
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Notes on previous two slides

+ There is an intuitive reason why we should expect these
vectors to be orthogonal at the minimum.

« Figure on previous slide shows the gradient vectors at
various points along the search line. The slope of the
parabola (Figure (c) of the second previous slide) at any
point is equal to the magnitude of the projection of the
gradient onto the line (Figure on previous slide,dotted
arrows). These projections represent the rate of increase of
f as one traverses the search line.

+ fis minimized where the projection is zero—where the
gradient is orthogonal to the search line.
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Example. Consider the following two-variable problem:

Gradient Descent
Maximize (0 = 2, + 25 — 4 - 23 Example
Thus,
o 2(0) - 2(0)=0 Reset  x'=(0,0) + %m. 2=
Gy =2a- 2 2(0) + 2 2(0)=2
Vi'=(0,2)

) X2

For this new trial solution, the gradient is

%(0.4)-0.0 vi2 Gradient 3
2 X2

Thus, for the second iteration, set

a)
%:ZM*‘Z*“XL

We also can verify (see Appendix 2) that f(x) is concave. To begin the gradient sea
[procedure, suppose that x = (0. 0) is selected as the initial trial solution. Because the fe-
spective partial derivatives are 0 and 2 at this point, the gradient is
vf(0,0) = 0,2. V2 X‘:(0,0)
Therefore, to begin the first iteration, set
X =0+10)=0,
x=0+12)=2

x (o.%)wu.mz(:.%),

so

nd then substitute these expressions into f(x) to obtain

fi + 1 Vi) = fo0, 20 Linesearch

=20020) +221) — 02 — 2217 Because
=4t —8r
Because Az
(0, 26%) = max f(0, 20) = max {41 — 87} and
=0 =0 il .1
and almreg)=t-a=o
d L _ then
=8 =4 - 161=0, ,
=z
it follows that 2
, s0
[ T —
4 T Reset X

Iterations of Steepest Descent Method

W\ 2

~

SN

7

-6
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ISM:

A nice way of organizing this work is to write out a table such as Table 13.2 which sum-
marizes the preceding two iterations. At each iteration, the second column shows the current
trial solution, and the rightmost column shows the eventual new trial solution, which then is Exa m p Ie CO ntd .
carried down into the second column for the next iteration. The fourth column gives the ex-
pressions for the x;in terms of £ that need to be substituted into /(x) to give the fifth c _—

B tinuing in thi . the subsequent trial solutions would be (3,
GG . as shown in Fig. 13.14. Because these points are converging to x* =
(1, 1), this solution is the optimal solution, as verified by the fact that

VAL, 1) =(0,0).
TABLE 13.2 Application of the gradient search procedure to the example

Iteration x Vi(x) X+ Vi) X' + ¢ Vi(x")) t X'+ 1 VA(x)
1 ©o | ©2 ©20 4t-s¢ i (0.3)
(0,1 1 1| (11
2 (0z) | @0 | (3) - | 2 (z2)

However, because this converging sequence of trial solutions never reaches its limit, the
procedure actually will stop somewhere (depending on €) slightly below (1. 1) as its fi-
nal approximation of x*

As Fig. 13.14 suggests, the gradient search procedure zigzags to the optimal solution
rather than moving in a straight line. Some modifications of the procedure have been de-
veloped that accelerate movement toward the optimal solution by taking this zigzag be-
havior into account
1f f(x) were not a concave function, the gradient search procedure still would con-

(0 a local maximum. The only change in the description of the procedure for this
e is that 1* now would correspond to the first local maximum of f(x' + t Vf(x")) as t
is increased from 0.

If the objective were to minimize f(x) instead, one
to move in the opposite direction of the gradient
for obtaining the next point would be

ange in the procedure would be
ation. In other words, the rule

Reset X' =x —* Vfix).

The only other change is that 1* now would be the nonnegative value of ¢ that minimizes
S — £ V(")) that is,

S = 1 9f(x")) = min fx’ — 1 Tfx'), nahan_AT_gmail.com 258
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Example Continued

FICURE 13.14 n
lllustration of the gradient

search procedure when

fGu 1) = 2:020 + 260 —

X -2

0.3) (z3)

0,0
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Method of steepest ascent

+ Start at a point x
« Follow the direction of steepest ascent:

d=VFf(x)
* Move to the best point in the direction of steepest
ascent

+ Stop as soon as
— This point is approximately stationary

IVF(x)||< e
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Exercise (not required)

« Perform iteration 3 and 4 of the of the above
example; show the worked out details by hand
(follow the style of the example present here)

» Plot the isolines plot and the vector plot (quiver2)

« Overlay the path for steps 1, 2, 3, and 4 on the
isoline-vector plot

» Plot the surface plot (3D) also
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Unconstrained optimization

For noncovex/non-concave
max/ min fX)=f(x,....,x,)

subject to

xe R"

« Assume f'(x) and H(x) exists for all xeS
* Locate candidate extrema using f'(x) = 0 and
boundary points
+ Then candidate x is
— f(x)is a convex function on Sif and only if all principal
minors of H(x) are nonnegative for all xe S

— f(x)is a concave function on Sif and only if the principal
minors of H(x) of order k have the same sign as (-1)* for all
xeSand all k
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Unconstrained optimization

+ A point x where Vf(x) = 0 is called a stationary
pointof f
+ Let x*be a stationary point, i.e., Vf(x*) =0
— If all leading principal minors of H(x*) are positive then x*is
a local minimum

— If the leading principal minors of H(x*) of order k has the
same sign as (-1) (for all k) then x*is a local maximum
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Issues in Gradient Descent

¥l=x = f&xD
VACY!

o [ T . .
=>x"=x'- E(x) f(xH) Iteration function
X, . 1 =X,.—4a,. p . p(i) Adjustment Direction
(i+1) (1) ) @) a(i) Step Size
» How large should | step in the positive gradient
direction (gradient ascent) or in the negative
gradient direction (gradient descent
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Non-stationary Iterative Method

« Start from initial guess x0, adjust it until
close enough to the exact solution

Xy = X T APy i20,1,2,3,......

p(i) Adjustment Direction

a(i) Step Size

* How to choose direction and step size?
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Closed Form versus lterative Procs

» Linear least squares problems are and
have a that is unique, except
in special degenerate situations.

* In contrast,
generally must be solved by an

, and often are non-convex with
multiple local solutions.

problems
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Lecture Outline

1SM260: Stochati Dk Do

R

Lines, Tangents, Taylors Theorem
Turning points, Roots, Newton-Raphson
Taylor Series: quadratic approximations
Newton-Raphson quadratic convergence
Multi-Dimensional Approximations (Planes)
Directional Differentials, Total Differentials
Vector plots, contour plots

Gradient Descent

— Linear regression

Predicting Click Through Rates

— Linear Regression

Logistic Regression
it ‘© 2011 James G. Shanahan James.Shanahan_AT_gmail.com 267

General Approach to Finding Extrema

+ Well-behaved version spaces
— Convex or concave function (+definiteness)
— Algorithms seek a local extrema knowing that it w !
« Iff() is a concave function then local maximum is a giobal maximum
« If f() is a convex function then local minimum is a global minimum
« Newton-Raphson, Gradient Descent, Conjugate Gradient Descent

+ Otherwise
— We resort to local approximations
+ Hill-Climbing
+ Simulated annealing
« Commonly used in Neural Networks
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Lecture Outline

— Lot
ISM 280: Stochastic gradlenl Desc

R
Lines, Tangents, Taylors Theorem
Turning points, Roots, Newton-Raphson
Taylor Series: quadratic approximations
Newton-Raphson quadratic convergence
Multi-Dimensional Approximations (Planes)
Directional Differentials, Total Differentials
Vector plots, contour plots

Gradient Descent

— Linear regression

Predicting Click Through Rates

— Linear Regression

istic Regression
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Machine Learning in one slide

+ Machine learning, a branch of , is a scientific

discipline that is concerned with the design and development of
that allow to evolve behaviors based on

empirical , such as from data or .

A learner can take advantage of examples (data) to capture

characteristics of interest of their unknown underlying probability

distribution. Data can be seen as examples that illustrate relations

between observed variables.

« A major focus of machine learning research is to automatically
learn to recognize complex patterns and make intelligent
decisions based on data; the difficulty lies in the fact that the set

~ of all possible behaviors given all possible inputs is too large to

§° be covered by the set of observed examples (training data).
\m Hence the learner must generalize from the given examples, so as
é* to be able to produce a useful output in new cases. Machine
< learning, like all subjects in , require cross-
disciplinary proficiency in several areas, such as
s s and
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What is the Learning Problem?

Learning = Improving with experience at some task

» Improve over Task T
« with respect to performance measure P
» based on experience E
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Types of Learning

. - Generates a function that maps inputs
to desired outputs. For example, in a problem,
the learner approximates a function mapping a vector into
classes by looking at input-output examples of the function.

. - Models a set of inputs: like clustering

. - Combines both labeled and
unlabeled examples to generate an appropriate function or
classifier.

. - Learns how to act given an

observation of the world. Every action has some impact in the
environment, and the environment provides feedback in the
form of rewards that guides the learning algorithm.

- Tries to predict new outputs based on training
inputs, training outputs, and test inputs.
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Supervised Learning :Regression

* Regression

— Linear Regression
+ Classification

— Logistic Regression
« Generalized Linear Models (GLMs)

— Broader family of models (that subsume Linear Regression and
logistic regress and more
— In R checkout ?gim()

Parametric Approaches vs. Non-parametrig
Convex/Concave
Discriminative versus generative
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Terminology: linear regression

W; are the model coefficients

Y - X’s.
Predicted Predictor Variables
Response variable Explanatory variables
Outcome variable Covariables
Dependent Independent variables

Y-intercept/threshold
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Pr(Click): Advertising Problem
» Predict Pr(Click|dwellTimeOnWebpage) f.ﬂ

— atthe times 1, 2, 3, 4, and 5 seconds after 1
loading the page. 2 3
« Graph each data point with time on the S
x-axis and CTR on the y-axis. Your data ; :
m

should follow a straight line. romperm

» Use locator() to input data
» Find the equation of this line.

I F(x)

1 2 3 i 5
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Generate Your Own Data

# You can generate data by clicking on a plot.
# Create data that illustrates the effect of varying 'f' and 'iter’ in 'lowess’.
example.generateYourOwnData = function(){

#change range of X and Y and experiment
plot( ¢(0,1), c(0,1), type = 'n’)
xy <- locator(type = "p") # create your own data set by clicking on the
# left mouse button, then with the right mouse button
# to finish. With a Macintosh cntrl-click outside the
# plot to finish.
datal=data.frame(x=xy$x, y=xy$y) #PLOT LINE
abline(coef(lm(y~x, data=data1)), col="red")

lines(lowess(xy, f = 2/3, iter = 3)) # here I've used the defaults
# for f and iter,
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experiment with ﬂI’B.EI values
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Least Square Fit Approximations

Suppose we want to fit
the data set.

[#_x ]y
1

o R W N =
© ® N W N

We would like to find
the best straight line to
fit the data?
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Fit a line based on...

* If we assume that the first two points are correct| , — ;.. 1 5
and choose the line that goes through them, we |~ ¥~
gettheliney=1+ x. T2 — 1y

If we substitute our points (x-values) into this
equation, we get the following chart.

How good is this line?

— The sum of the squares of the errors is 27.

¥

4

2

z y predictedy error (error)
S Do you think that
S we can do better
e e than this?
. SSE = 27
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Linear Model More Generally

+ E.g., y=mx+b can be more generally seen a function of
the form

* Here the W’s are the parameters (also called weights)
parametering the space of linear function mapping
from X > Y=F(x)

Linear Model: Ordinary Least Squares
Measuring Quality

+ How do we pick, or learn, the parameters W (aka 8)?

» One reasonable method seems to be to make f(x)
close to y, at least for the training examples.

« To formalize, let’s define a function that measures,
for each possible model/hypothesis, W, how close
fo(x)’s are to the corresponding yi’s:

= ' _ ' This error minimization is
J(W) ;‘WX Y going to have problems?

JW)= % Z(VVX’ — yi )2 Residual sum of squares

* Sum of squareéf error
» AKA Residual Sum of Squares (Residual squared)
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y=f(x,X)=wyx, +wx IERERE
n 1 2 3
F) zzwixiszX 1 3 7
‘ 1 4 8
i=1
. . 1 5 9
ope=m  Sometimes use @ insteadof W
n
T
y=f(x,x)= zgixi =0'X
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Residual

Residual = (WXi - yi)

Residual’
*
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Which Line is it anyway?

» Select another two points and build a line

« If we choose the line that goes through the points
when x = 3 and 4, we get the line y = 4 + x. Will we
get a better fit? Let's look at it.

predicted y error (error)?
5 -3 9

[EIT

y
2
3
7
8
9

SSE = 18. Getting better but
can we do better?
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Can we do better than guesswork?

« Let's try the line that is half way between these
two lines. The equation would be y = 2.5 + x.

« Is there a more scientific or efficient way than
guessing at which line would give the best fit.

— Surely there is a methodical way to determine the best fit
line. Let's think about what we want.

y predicted y error (error)*
2 3.5 =15 2.25

3 15 =15 225

7 5.5 L5 225

3 6.5 L5 225

9

G w e - s

5 15 225

SSE = 11.25. Getting better
but can we do better?
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b
s

+
123 4

Hypothesis Space of Linear Models

* Here the W’s are the parameters (also called
weights) parameterizing the space of linear
function mapping from X 2 Y = f(X)

+ Augment Training Data with dummy intercept
variable (simplifies notation and modeling)

y=f(x, %) =wx, +wx,

[#] X0 [x1]y]
n
1 1 1 2
= z wx =W'X
1 2 3 L
i=1
1 3 7 . A
1 4 8 Sometimesuse @insteadof W
m 1 5 9 n
— — 7
y=rf(x,x)= zeixi =0'X
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Space of Hypotheses: Weights

+ Each model is in our case a coefficient for the y-intercept (bias)
and a coefficient for the feature-variable (time)
+ Plot weight-space in 2D yhere the thigd dimesion is the error
JWy=1> (Wixi -y
- Select combination that rinimizes the sum of square error

example.OLS_Heatmap()

HeatMa;) with i€8tines ové"ay;d 3D error surface Z=log(w0+w1x#x)
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Find a line that fits all datapoints?

* Recall, a line in slope-intercept form looks like y=
w, + Wy X where w, is the y -intercept and w; is the
slope.

+ We want to find w, and w; such that w, + w;x; = y;is
true for all our data points:

w, + iw, = 2
w, + 2w, = 3
Wy + 3w, = 7
w, + 4w, = 8
w, + 5wy = 9

« We know that there may not exist w, and w; that fit
all these equations, so we try to find the best fit.
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Find the best line: Several Approaches

+ Determine wy, w;...w,
¥ =1 (X x) = woxy +wixy

n
=Y wx, =W'X
i=l
» Several Approaches to finding the best-fit line
— Select a couple of data points and solve analytically (high variance)
— Brute-force Search
lterative approaches (via the gradient)
— Closed Form
— Probabilistic interpretation/justification via maximum likelihood
— Bayesian modeling [will be covered in Lecture 4]
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Hypothesis Space of Linear Models

* Here the W’s are the parameters (also called
weights) parameterizing the space of linear
function mapping from X 2 YF(x)

+ Augment Training Data with dummy intercept
variable (simplifies notation and modeling)

¥ =1 (%, X) =wexy +wix,

[#] X0 [x1 ]yl
n
1 1 1 2
= Z wx =W'X
1 2 3 L
i=1
1 3 7 3 .
14 8 Sometimes use @ instead of W
m 1 5 9 n
_ _ T
y_f(x(px])_zeixi _6 X
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Brute Force Search of Weights

« Enumerate all possible coefficient combinations (in our case
coefficient for the y-intercept (bias) and for the c-variable (time)

* Select the weight combination that minimizes the sum of square
BITOr  rorsurtace example.OLS_Heatmap()

it

o
w0 weiaht

HeatMap with isolines overlayed
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;
3D error Surface z=IGg(W0+w1+x)

Brute Force Search of Weights

« Very inefficient; at best we can only approximate
the surface

» Not scaleable

« Avoid this approach...

Error Surface

\ \
\\ N o

it

lterative approach to Learning the Line

« Can we navigate the error surface in an efficient
manner in the hope of getting to minimum?

» Can we leverage other properties of the function?
(Hint convexity)

* Yes we can!
— We can navigate this surface using the gradient (slope)

— OLS is convex so what [well-behaved function! More about
this later this lecture and next lecture]
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Exploiting the Gradient of Error Surface

Gradient Descent (a simpler alternative to
Newton-Raphson)
— A work horse
+ Newton-Raphson
— Quasi-versions
— Commonly used
« Conjugate-Gradient Descent
— Not covered here but effective and commonly used
» Practically speaking we will use off-the-shelf
software
— R built-in solvers such as optim()
— Or built-in linear regression algorithms, gim(), Im()) etc.
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Gradient Descent: surf downhill

+ Goal: Choose W so as to minimize J(W) J(W):,;i(wlxl -
+ Algorithm =

— Start with some random guess for W Contour Map of J(W)
— Repeat 7
« Use gradient to travel downhill

— Update each weight w;
— Until convergence (to global minimum)

s 8 v 8 8w & &

Gradient Descent (a simpler root finder)

— Iteration function Newton-Raphson|
AED) In 1-Dimension

Let W=(0,0,....) =

Repeat
W/i,r+l = u/i,r —o* V‘I(‘Vu)

until convergence (i.e., no big changesin W or error)
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inverting it is complex so simpler
algorithms have been developed such
gradient descent

Xt = _aifv(xi) Gradient Descent

“low large should | step in the positive
gradient direction (gradient ascent)
— orin the negative gradient direction (gradient
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Build Error Surface

R code example:

* Rcode
Difficult surface to navigate!

Error Surface

wik in 0} 1

it

2 1 o 1 2 3
w0 weiaht

]
w0
HeatMap with isolines overlayed 3D error surface z=IGg(w0+w1+x)
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OLS Via Gradient Descent: The Gradient
W, =W, —axVJ, W,)

* In order to implement this algorlthm we have to work out
what is the partial derivative term at time t on the right hand
side Vf,(W)=dF(W)/dw;.

+ Assume we have only one training example (x, y), so that
we can drop the sum in the definition of J.

VJW, (W) = a;v;v, J(W) ﬁ %(fw (X) - y)2 Use chain rule df/du*du/dx
2% (fw (x)— y) W, (fw (x)— y) Assume a

single training

(fw(x) y W, ((waj J :):r:zliigle w;
= (fw(x)—)’) X

Recall ﬁ’[[;w,x,]fy] = ﬁ’(wﬂxn+w,x, AW wx,)

= 040+.x,+..0
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OLS Via Gradient Descent
Vf, W) =50-T(W)= (fy ()= y)xj Widrow-Hoff Learning Rule

« Assume we have only one training example (x, y), so that
we can drop the sum in the definition of J.

Wj,t+1 = VVj,t —a* Vfwj (VV/,)
Wj,t+l :VVj,t _a*(y_fwl (x))xj

w

Jur+l
* This rule has intuitive properties
— The magnitude of the update is proportional to the error term (y' — f(xi));
— If we are encountering a training example on which our prediction
nearly matches the actual value of y!, then we find that there is little
need to change the parameters;
— In contrast, a larger change to the parameters will be made if our
prediction f,,(x) has a large error (i.e., if it is very far from yi).
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Least Mean Squares Rule
= % —
Wi, +a(fy, ()= )X, Aka Widrow-Hoft Learning Ruld

LMS Rule for Multiple Examples

BATCH Update Rule
« General Update Rule for m training examples

— W(k+1)=W(K) - aVJ (W(K))

OLS Objective Function
_ upd gradien‘ remeters
update the parameters of

the model, corresponding
to the sum of the gradients
caused by each training
example (one sweep)
Gradient of OLS Objective Fun

OLS BATCH Update Rule

Intuitively, drag weight vector closer to the misclassified examples
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OLS using Gradient Descent (LMS Rule)

- Batch update Vdy,; (W)
Partial derivate WRT to variable w;
Let W =(0,0,....) of error function J(W) at point W,

Repeat
For jin0..n #each varisle
Wj,H—l = Wj,t —a* VJWJ (VV;)
(yi —_ WXI )T XI
Ui callar
W, 0 =W, +a*> (y -WX)HX|
W

until convergenee (i.e., no big changesin W or error)
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HeatMap and Contour Plot of
Error Surface
J(W)= Sum(WeX_i - y_i}2
3

Error Surface in 3D
J(W)= sum(W*X_i-y_ij*2
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Error Surface in 30
W= sum{WX_i -y )2

Temperature Dataset

s , i
i o
- // <
- 1 $coefficients ” -
cema s " [1]0.09644596 1.90098441
Siterations
[1] 658
$SSE
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OLS Via Gradient Descent in R
~OLSUsingGradientDescent = function (-){

w=rep(-2, numVariables); #initialize weight vector
wOld = w;
it = 1 # iteration index
while (it <= max.iter){

p = designMatrix %*% w #prediction for each training example

w = w + alpha* drop(t(designMatrix) %*% (targetValues - p))

#drop yields a scalar from errV*X_j

if ({(w - WOId)-24*oL L Ol _ ol

break
it=it+1 #ir
wOld=w
if (it > max.ite

ISM 2130- Stochastic Gradient De

Ordinary Least Squares Algorithm

Single-sample Primal Fori

+ Given Training data S where each example iis of the

form (x,,,..., x,,,y), and a learning rate g
+ Set W, to zeros; k=0;
* Repeat

— Fori=1to [Train/do

Wisi= Wit n (<W Xi> -y;)X;

— End-For
« Until convergence
* Return W

Iterative, gradient descent based algorithm (as opposed to other
versions, such as closed form version, quadratic programming
version, maximum likelihood. What could they look like?)
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R: Linear Regression via Im()

example.Im () Pay attention to

Output Window 1. Residual standard error
s i o, e |9 Or Deviance (SSE),

[ e T 2973, And variable significance

lcat1:
im(formula = vemperature ~ time, data = as.data.frame (dataExl))

Residusls:

Residuals = (WX -y

2 2: s I s
-1.490e-16 -9.000e-01 1.200+00 3.000e-01 -6.000e-01

[ Veriable signfficance

s 001w 005 00 -1 Residual stgndard error

Signif. codes

A ——
MalcipTe F-squared:
F-statistic: 40.11 o

on 3 degrees of freedom

F. p-value: 0.00796 E

> deviance(Im.temp) Residual standard error =o=Sqrt(deviance/m-n-1

gl 1 o — 1
o= ( 1]Z(wx'—y)’: 1/3%27
m=—n—1%3
residualStandardError=sqrt((t(Im.! i %*% Im. $resi 3)
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Gradient Descent for Ordinary Least Squares

- Error surface; each point
corresponds to a different
linear model (hypothesis). The
vertical axis indicates the
squared error for the training
dataset WRT that weight
vector.

Q: Will this surface change for
different datasets?

weight1

OLS with this objective has no local minima (convex as the Hessian, n by 1
matrix of second derivatives, of the objective function is positive definite);

in this case n=2 variables.

L £ Liti

OLS using Gradient Descent (LMS Rule)

. Stochastic Gradient Descent
+ Stochastic update

— V‘Jw' (Wt)
Let W=(00.....) Partial derivate WRT to variable
Repeat of error function J(W) at point W|

Forjin0..n #each varidle
Foriinl.m #eachexample
W, 0 =W, +a*(y -WX)X|

untilconvergene (i.e.,no big changesin W or error)
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OLS using Gradient Descent
Stochastic Gradient Descent
Online/Single Update Rule

» General Update Rule
— W(k+1)=W(K) - nVJ (W(K))

OLS Objective Function

True gradient is approximated the
gradient of the cost function only
evaluated at one example; adjust

gradient. This can be much better for
large datasets.

E.g., Stochastic Gradient Decision
Trees; perceptron

Intuitively, drag weight vector closer to the misclassified example
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OLS Single Update Rule

parameters proportional to this approx.

Stochastic Gradient Decent vs. Batch

» Stochastic gradient descent can start making progress
right away, and continues to make progress with each
example it looks at.

« Often, stochastic gradient descent gets W “close” to the
minimum much faster than batch gradient descent.

— Note however that it may never “converge” to the minimum, and the
parameters W will keep oscillating around the minimum of J(W); but
in practice most of the values near the minimum will be reasonably
good approximations to the true minimum.

» For these reasons, particularly when the training set is
large, stochastic gradient descent is often preferred
over batch gradient descent.
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Learning Rate: o

» Fixed learning rate

— While it is more common to run stochastic gradient descent
as we have described it and with a fixed learning rate

« Dynamic, decreasing learning rate

— by slowly letting the learning rate decrease to zero as the
algorithm runs, it is also possible to ensure that the
parameters will converge to the global minimum rather then
merely oscillate around the minimum

< Or it can be calculated
_ h"h _ VF(x)"Vf(x,")
h"Hh Vf(x,)"HVf(x,")
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Im(..);
— Commenton the weighted linear and unweighted linear model.
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- NOTF: See slides for inspirati

Exercise 1.5 : Code up OLS using LMS

The learning objective function for weighted ordinary least squares

(WOLS) is defined as follows: .,
IWGTW) =1 wer'(W'x' ')

Derive the gradient for this weighted"OLS by hand; showing each step
and also explaining the step
Train a weighted OLS model using gradient descent

— Train OLS model using using LMS (Least Mean Squares) Rule algorithm to

predict y (the CTR) given x (the dwelltime on a page)

— Train a model using Im(.) (in R) using the same weights.

— Train a model using Im() without the weights
Analysis

— Use the following dataset (sometimes known as the design matrix)[See next slide]

— Plot the error surface

— Plot the heatmap and contour plot

— Plot the path to convergence

— Commenton convergence and on the mean squared error using your algorithm and the

Exercise 1.5 : Continued

JWGTW :gi wet' WX -y f

i=l
» Dataset
1 05 1 2
2 1 2 3
3 5 3 7
4 1 4 8
5 7 5 9
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Is.

Overfiting versus Underfitting

Instead, if we had added an extra feature 22, and fit y = 6y + 612 + 622,
then we obtain a slightly better fit to the data. (See middle figure) Naively, it
might seem that the more features we add, the better. However, there is also
a danger in adding too many features: The rightmost figure is the result of
fitting a 5-th order polynomial y = 2‘;:0 a7, We see that even though the
fitted curve passes through the data perfectly, we would not expect this to
be a very good predictor of, say, housing prices (y) for different living areas
(z). Without formally defining what these terms mean, we’ll say the figure
on the left shows an instance of underfitting—in which the data clearly
shows structure not captured by the model-—and the figure on the right is

[Ng, 2008 Stanford]

52



MultiVariate Linear Regression

R R Console

in(formala = cemperature - time + age, data = as.daca.frame (datafxl))
Residuals:

1 2 3 s s
0.27851 -0.63415 0.06065 0.66712 -0.37213

Coessicients:

2 (>1t1)
0.2382

cepe) | 360867
1.40621

0.36466  3.856| 0.0611
2ge Fo.126s8 | 0.07235 -1.750 | 0.2223

Signif. codes: O teex' 0.001 f%at 0.01 'a' 0.05 '.' 0.1 ¢ ‘1
Residual standard erro:
a:

quare:

0.7304 on 2 degress of fresdom
s, : 0.935
ic: 35.37 on 2 and 2 DF, p-value: 0.0275

m 5 10
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Closed form solution to OLS

+ To minimize J, we set its derivatives to zero, and
obtain the normal equations:
— XTXW = XTy
RSS =Varianceof €
T8 _al-xwy 258 _xly-fy-hus)
ow oW h h
=—2X(y—ﬁu—ﬁ.xi) =255 (yi = Bo— Bixi)
:_2zxi(yi _y"'ﬁl}_ﬁlx,) =_2zxi(Yi - y+ﬁlx_ﬁ1xi)

http://www.stanford.edu/class/cs229/notes/cs229-
notes1.pdf
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Closed form solution to OLS

How do we minimize (3.2)7 Denote by X the N x (p + 1) matrix with
each row an input vector (with a | in the first position), and similarly let
¥ be the N-vector of outputs in the training set. Then we can write the
residual sum-of-squares as B is W in our notation
RSS(4) = (y = X3 (y - X3). (3.3)
This is a quadratic function in the p + 1 parameters. Differentiating with
respect. to 3 we obtain

IRSS

o - —oXT(y - XA

s (3.4)
i (G R—
83037 XX,

Assuming (for the moment) that X has full column rank, and hence XX
is positive definite, we set the first derivative to zero

T . . . .
X'y-Xd) =0 'Wis computed directly in
to obtain the unique solution closed form

G (XTX)y Xy, (3.6)
[Friedmgn et al. 2003]]
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Normal Equations - Closed From Soln. to OLS

» Gradient descent gives one way of minimizing J(W).

+ An alternative is to performing the minimization
explicitly and without resorting to an iterative
algorithm

— In this method, we will minimize J by explicitly taking its
derivatives with respect to the W/'s, and setting them to zero.
— Do this via calculus with matrices.
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Closed form solution to OLS

+ To minimize J, we set its derivatives to zero, and obtain the normal
equations:
— XTXW = Xy
— Thus the value of W that minimizes J(W) is give in closed form
Vi, W)= I W) = L -5))
= 254 (f, @~ Y)ar (e @-)

= (fw(X)—y)a%v,[[gW,]—y]

(fw(x)—y)xj foreachjinl:n

(XW-Y)" X overalland in terms of data
= X'XW-X"r=0
X"XW=X"Y NormalEquations
-1
w=(x"x)"x"y
+ For a full derivation see: http:/www.stanfor 2 229
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Lecture Outline

*R
+ Lines, Tangents, Taylors Theorem
* Turning points, Roots, Newton-Raphson
+ Taylor Series: quadratic approximations
+ Newton-Raphson quadratic convergence
+ Multi-Dimensional Approximations (Planes)
- Directional Differentials, Total Differentials
+ Vector plots, contour plots
+ Gradient Descent
— Linear regression
+ Predicting Click Through Rates
— Linear Regression

— Logistic Regression
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*End of lecture
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Derivation of Parameter Equations

+ An Alternative Derivation treating the y-intercept and
the variable coefficients separately; here we
represent W as .

» Goal: Minimize squared error (WRT to tr? y-intercept)

Ozazé?? =aZ(yi — Bo- Bixi)
apo bo

=320y - fo- Bix:)

=~2(ny —nfy—npix)

Bo=y-bx
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Derivation of Parameter Equations
Derive variable coefficients; here we represent W as
2

0= 0z _9x(vi-Bo-Bixi)

opy op
=-23 x; (yz’ -Bo- 51%‘)
=-2>x; (yi —-y+px- /31Xi)
BT xi(x—x)=Xx(y; - y)
BT —x) o —x)=3(x;—x)y; - ¥)

3 SS xy
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Exercise 1.6 :OLS: Closed Form Solution
inR

» Using matrices and the closed from solution
estimate the OLS weight (maximum likelihood)
using the dataset in exercise 1.5

+ To calculate inverse of a matrix
— ginv() # from library(MASS)
+ Other useful matrix commands
— matrix()
— det() # division matrix style of a square matrix
— diag()
t() #transpose of a matrix
— eigen()
olv,

Matrix_AFgeSpa,The R Book, M. Crawley page 259
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Exercise:OLS: Closed Form Solution in R

» Using matrices and the closed from solution
estimate the OLS weight (maximum likelihood)
See example.learnLSUsingClosedFormSolution()
...... preamble
#dataEx is a training set dataframe
designMatrix=as.matrix(dataEx1[,1]) #input variable data

X=designMatrix=cbind(1, designMatrix) #append a constant
1 for bias term

y=targetValues=as.matrix(dataEx1[,2]);
numVariables=ncol(designMatrix);

w=rep(-2, numVariables); #initialize weight vector
library(MASS) #make ginv() the inverse of a matrix available
w = ginv(¥(X) %*% X) %*% t(X) %*% y;

print(paste("OLS: Closed From Weight is ", w));
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Model classification as a regression?
Very volatile; out of range f(x)

RS

/ K
o
o

A linear regression
function is linear in
the components of X

[y

E.g., y=ax, + bx, + ¢ <
<
T8

Training /-
g
Data /-
g
Eg. x1 X2 y / ““.
1 [3]0]o0 e
o
2 +1 o
Lo
'L T 'L T R Q2
L |o]4alo 0 -
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Limit range of f(x) using a logit function
[ I

Intuitively it does not make sence to have f(x) >>1 or f(x)<<0
So limit using a sigmoid squashing function....
Y

v=1 Z

1

ogistic(W/X)=logit" (W' X) =
¢ / ¢ 1+dp=wx)
Lagistic Regression Model

Y=0
/eer Probabilty Model

Logistic Regression: From WX to p'

Comparing the LP and Logit Models Pr(y' = 1 I X ! ;W) = logit'l ( WTX i)
] 3 1
T l+exp(-W'X")
1
/ Pr(y' FOIX'W) = 1-———————
o ) I+exp(-W'X")
~ : __expWIXY
s expCW X0
1 ( )4 W _ T
og| - = WX
=77
)4 _ T
— = exp(W' X)
I-p
p = (I-p)expW’X)
_ expW'X) 1 As shown earlier
P T l+exp(W'X) l+exp(-W'X")
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LR: Maximum Likelihood Estimates

» The expression to the right of the argmax is the
conditional data likelihood.
Select W s:t likelihood of W

. . - enerating the data is
W— al‘g[l}aE}XHP(}’I‘XYI:W) ?naximizeg
1

Y can take only values 0 or
n 1, so only one of the two
(o oay f ot Ny S terms in the expression
L(w.b) = ]_[p{-‘r‘-}!’I (I—-p(@) will be non-zero for any
i=1 given Y'; recall m"0 =1 .

1) =YY mP(Y = 11X, W)+ (1 -Y)nP(Y = 0lx",7)

1
Working with logs is simpler and more effective computationally;
amenable to off-the-shelf optimization approaches; concave function in
W so gradient ascent will converge to global maximum (though many

may exist). L(W) continuous, differentiable
I1SM 280: Stochastic Gfadient Dedcent  © 2011 Jame$ G. Shanahan  James.Shanahan_AT_gmail.com 328

Conditional Data Likelihood

1
PY =0\ ) — — ——
( ) 1 4exp(wo + X1 wikp)
) n » XG
P11 - S0 H L )

L+ exp(wo + T wikj)

1wy = Y¥mpr =1x" W)+ (1 -7 mP@ = olx. )
1

T 11X
ZY’]anrhlP(Y]:O\XﬁW)
=" T PIT =01 )

n n
= z YJ(wo + ZW[X,]) —In(1+exp(wo + Z WX )
7 ; ;
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Estimating Parameters using Gradient Descent

+ Unfortunately, there is no closed form solution to
maximizing (W) with respect to W. Therefore, one
common approach is to use gradient ascent, in
which we work with the gradient, which is the
vector of partial derivatives. The ith component of
the vector gradient has the form

n n
1wy = 2 ¥ (wo+ ZWL-X,]) —In(1 4 exp(wo + Z wiX))
' ' Beginning with initial weights of zero
2l(1m) Aoyl oyl - we repeatedly update the weights in
=) X (Y -PY =1X,W A . N .
B ; i ( ‘ ) the direction of the gradient, changing
the ith weight according to this
e Aoyl pryl ~yformula, where n is a small constant
i W’Jrn;)“ (' —A(r =X ))(e.g., 0:01) which determines the step
size. Effectively we are pulling weight
vector closer to the examples where
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Logistic Regression via Gradient Descent

Stochastic Gradient Descent

+ Stochastic update

Let W=(0,0,....) Vi (W)

Partial derivate WRT to variable w;
of error function I(W) at point W,
Forjin0..n #each varidle

Repeat

Foriinl..m #eachexample
w

Jat+l

=W, +ax(y-p)X,
untilconvergene (i.e.,no big changesin W or error)

the term inside the parentheses is simply the prediction
error; pulling the W weight vector closer to the example
Batch LR: do a batch update of W, after a sweep of the data
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Logistic Regression in R

» Explore Logistic Regression in R
— Using Newton-Raphson
— Using general optimization
— Using GLM built-in function
— Using Gradient Descent (homework)

Book: John Fox (2002), Sage,

» Accessing man pages in R
— 7gim
— ?solve
— help.search("solve system") in R
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Lecture 2 Outline

+ Taylor Series: quadratic approximations
+ Newton-Raphson quadratic convergence
+ Multi-Dimensional Approximations (Planes)
» Directional Differentials, Total Differentials
+ Vector plots, contour plots
+ Gradient Descent
— Linear regression
« Predicting Click Through Rates

— Linear Regression (using gradient descent, MCMC version on 1/26)
— Logistic Regression (using gradient descent, MCMC on 1/26)

« Convexity, extreme values, mathematical programming
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Stochastic Optimization in Practice
@

Deploy System in the
wild (and AB test)

Interpret and Evaluate /

discovered knowledge

Modeling: V

Extract Patterns/Models
Collect requirements, M
and Data
Understand the domaiV Systems Modeling is inherently
and Define problems interactive and iterative
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Estimating CTR (and later AR)

For a network of

~109 target pages,

~106 ads

~107 users

- Cannot afford this
evaluation/auditioning

95% - Borrow strength,

Confident marginalize ‘
- CoD (curse of dimality)

1.6% |2.6% 3.6% CTR (after 1,000 impressions)

23% 2.9% (after 10,000 impressions)
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Accurate CTR Estimates are Crucial

ECPM ,, = CTR,, * Bid,,, *1000

+ Very important to have accurate estimates of CTR,4
for a keyword or publisher page
— for ranking and for revenue purposes
— CTR drop exponentially with position [enquiro.com] ; NDCG Metric
+ E.g., Atrue CTR for an Ad is 2.6% must be shown
1,000 times before we are 95% confident that this
estimate is within 1% of the true CTR, i.e., [1.6, 3.6]
— Very noisy!!
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Ranking Ads using IR

Landing
Pages

Ad

Creatives

. Targeting
Engine

View Ad as document

Features View TP IR witthifferer&t sections
as query +—| f le—> Keywords
Engme Title + Description +URL
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Estimating CTRs using ML

+ Estimate CTR using Pr,y(Click|Keyword)

» Frame as machine learning problem
— E.g., Matthew Richardson, Ewa Dominowska, Robert
Ragno: Predicting clicks: estimating the click-through rate for
new ads. WWW 2007 pages 521-530
» Model using Logistic Regression and MART (P 6“
decision trees using stochastic gradient de 60
[Friedman 2000]) Y
— Esteban Feuerstein, Pablo Heiber, Ja' é‘o.. anez-
Viademonte and Ricardo Baeza-Y- gV".ew Stochastic
Algorithms for Placing Ads in & 060 <d Search. LA-Web,

Santiago, Chile 2007 \\)‘
al
2>
o
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ML Features 1/2
Features(KW,AD, LP)->CTR

 Historical data X; ->CTR;
— CTR of KW based on other ads with this KW
— Related terms CTRs 1
+ Appearance pi= 14 e—(ﬁo+_.fi1;::1_;+---+_(ik;::k_,—)'

— #words in title/body; capitalization; punctuation; word length
+ Attention Capture
— Title/body contain action words, e.g., buy/join/etc
* Reputation
— .com/.net/etc, length of URL, #segments in URL, numbers in URL
+ Landing page quality
— Contains flash? Fraction of page in images? W3C compliant
* Text Relevance [Richardson et al., 2007]
— keyword match with ad title/body; fraction of match
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ML Features 2/2

» Text Relevance
— keyword match with ad title/body; fraction of match

» 10K unigrams (appearing in Ad title and Ad body);
bi/trigrams did not bring significant improvement;
— Binary feature; 1 if term occurs in ad 0 otherwise

» Freq of term on web; in query logs

» Many others could be used!!! [Richardson et al.]
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Learning Setup

» Logistic Regression Pi = 1+ e Go Bt Bemes)”
— Used a cross entropy loss function
— Standardized all features using training data
« (mean and variance, of 0 and 1)
— Thresholded data beyond 5 std deviations
— Added derived features
- (i.e., foreach feature f, log(f +1) and 2)
+ Baseline
— Predict the average CTR of the training dataset
« MART (Boosted decision trees using stochastic
gradient descent [Friedman 2000])
— Experiments did not show significant improvement over LR
For kR3S @ more transparent model
1.

ISM 280: Stochastic Gradient Descent @ 2011 James G. Shanahan  James.Shanahan_AT_gmail.com 341

Learning Setup

« Error measures

— Mean Squared error between predicted CTR and
true CTR

— KL Divergence between the predicted CTR and
true CTR (in both cases lower is better; 0 is best)
* Issues?

— Weighted?
- ??
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Dataset

* 10,000 Advertisers

* 1 Million examples of <Keyword, Ad> -> CTR
— (view <Keyword, Ad> as <TP, Ad>)

» Keywords are both exact and broad match

» 100,000 unique ad texts

Required that each example had more than

100 views

» 70-10-20 data split (train, validation, test)

[Richardson et al.]
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LR Modeling of Clicks and Impression

* In R, using gim()

y <- clicks/impressions

model.CTRPredict = glm(y ~ log(dose), binomial,
weights=impressions)

summary(model.CTRPredict)

+ and internally gim converts models with a two-
column response to this form, for it is in this form
the binomial fits into the GLM framework.

ISM 280: Stochastic Gradient Descent ~ © 2011 James G. Shanahan  James.Shanahan_AT_gmail.com 345

The response variable contains only 0's or 1's: for example. 0 to represent dead

individuals and 1 to represent live ones. There is a single column of numbers. in

contrast to proportion data (see above). The way SPlus treats this kind of data jsto

assume that the 0's and 1's come from a binomial trial with sample size 1 IfllBeI i “ ;u I I I
probability that an animal is dead is p. then the probability of obtaining v (where y is

cither dead or alive, 0 or 1) is given by an abbreviated form of the binomial trl a I S VS.

distribution with = 1. known as the Bernoulli distribution:
Proportion

P(y)=p(1-p)*?

The random variable 1 has a mean of p and a variance of p(-p). and the object is to Data
determine how the explanatory variables influence the value of p.

The trick to using binary response variables effectively is to know when it is worth
using them and when it is better to lump the successes and failures together and
analyse the roral counts of dead individuals. occupied patches. insolvent firms or
whatever. The question you need to ask yourself is this:

do I have unique values of one or more explanatory variables for each and every
individual case?

If the answer is ‘yes’. then analysis with a binary response variable is likely to be
fruitful. If the answer is ‘no’. then there is nothing to be gained. and you should
reduce your data by aggregating the counts to the resolution at which each count does
have a unique set of explanatory variables. For example. suppose that all your
explanatory variables were categorical (say nale or female). employment

Proportion Data versus Binary Event

+ An important class of problems involves data on
proportions:
— Proportion of click responses to impressions
— data on percentage mortality
— infection rates of diseases
— proportion responding to clinical treatment
— proportion admitting to particular voting intentions
data on proportional response to an experimental treatment
* Model as proportion data or as Bernoulli/binary
event

Ly : (=)
22_1 leg{f} +(n— _\)log{(il — »{_J
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For Proportion Data

* In R, using glm() or you can pass in

* number.of.failures = binomial.denominator —
number.of.successes

* y <- cbind( number.of.successes, number.of.failures)

ISM 280: Stochastic Gradient Descent ~ © 2011 James G. Shanahan  James.Shanahan_AT_gmail.com 346

Logistic Regression: L-BFGS

The logistic regression was frained using the limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method [16]. We
used a cross-entropy loss function. with zero-mean Gaussian
weight priors with a standard-deviation of o. The best o was cho-
sen on the validation set from the values [0.01, 0.03, 0.1, 0.3, 1. 3.
10, 30. 100]. In all experiments. 6=0.1 was the best. As is com-
monly done. we also added a bias feature that is always set to 1.

Used regularized LR
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Results

Table 7: Comparison of results for a model trained and
tested on ads with over 100 views vs. over 1000 views.

Transparency of Results

Table 5: Non-unigram features with highest (Lowest) weight

Top ten features Bottom iten features

Tog(#chars in tecm) log(# terms in order)
log(vs.)

e sq(poo)

log(order category entropy) sqr(order category entropy)

log(#most common word) log(chars in landing page)

sqr(#segments in displayurl) log(ag)

sqr(#action words in body) an

P qz(po.)

Pe log(#chars in body)

loa(vy) SqrCchars in term)

Table 6: Unigrams with highest (and lowest) weight.

Top ren unigrams Bottom ten wunigrams
official  body quotes title
download title hotels  title
photos  body trial body
maps  body deals body
official title gift body
direet  body have text
costumes  title software title
latest  body engine  body
version  body compare  title
complete _body secure body
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Yalmpry
Features =100 views  =1000 views
Baseline (CTR) - -
+Term CTR 13.28 25122
+Related CTR 19.67 32.92
+Ad Quality 2345 33.00
+Order Specificity 28.97 40.51
+5earch Data 20,47 41.88
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CTR Evolution
005
—5—Baseime
— —o— A
i = o
=1 i ) 7
Y ﬁ\g\@-&,‘ 5= @y Flicks
z 08 “\\ T a+views
:‘ 002 \‘ .
F ] Model predicted CTR
d using a Beta distribution
ot where p, is the predicted
(and baseline) CTR
) a: strength of prior as
1 w 1w measured in terms of
Number of Ad Views impressions

Figure 6: Expected mean absolute error in CTR as a function
of the number of times an ad is viewed.
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Estimating CTRs using ML

Intermediate Conclusions

« Richardson et al. report a very interesting
approach and case study
— Despite realistic problem setting results are preliminary
» Transparency of model
« Using many features helps insulate from
adversarial attacks (can be useful in adversarial
detection)
» Applied to new ads but could be extended to deal
with existing ads, display/graphical ads
— Homework!!
+ But many issues remain!!
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Modeling CTR Challenges

« Extremely rare events (Typical CTRs < 1% for contextual)
+ Biased dataset (the rich get richer; suboptimal locking)
« Very sparse (only a small percentage of <TP, Ad> get
impressions; can impede generalization)
— Missed opportunities
« Accuracy of estimates

— ML approaches are hugely biased; bias correction [see Provost and
Domingos; Platt]

» Scale and Speed
« Non-Stationary, new ads, changes in network

« Marginalization versus segmentation (resolution vs.
sufficient data)
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Exercise

* Mobile advertising is defined as showing ads on
mobile phone contexts such within a browser or
app (application).

+ What types of features could be leverage within a
mobile context to better target consumers?

+ Are these features real-valued, nominal,
categorical?
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Thanks

EMAIL:
James_DOT_Shanahan_AT_gmail_DOT_com
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‘R Break
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Solve a System of Equations in R

+ Solve the system of linear equations.
2x+3y=8
3x-y=-5

+ multiply all terms in the second equation by 3
-2x+3y =8
9x -3y =-15

7x=-7 # add the two equations

Note: y has been eliminated, hence the name: method of elimination

solve the above equation for x > A <- matrix(c(-2,3, 3,-1), 2)
x=-1 >A
substitute x by -1 in the first equation [11[,2]
-2(-1)+3y =8 [1] 2 3
solve the above equation fory [2] 3 -
2+3y=8 2L
3y =6 [185
y = > b=c(8,-5)
y=2 > gr.solve(A, b) # or solve(qr(A), b)

SVigtitesthe Solutiori-as ortered pair=@1,2 [1]1-1 2

 See example.Matrices()

See local file
To calculate inverse of a matrix

# division for matrices
ginv() # from library(MASS)

Matrices

Other useful matrix commands

matrix()

det()

diag()

t() #transpose of a matrix
eigen()

solve() #compute inverse or solve system of equations

Matrix Algebra,The R Book, M. Crawley page 259
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Datain R

See example.DataFrames()
- Dataframes, matrices etc...
« Data input:
— From the keyboard.
— From an ascii (plain text) file.
— From the clipboard.
— Importing data (e.g., from SPSS).
— From a database-management system.
— From an R package.
* The R search path.
* Missing data.
« Numeric variables, character variables, and factors
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Matrices in R

Li

See example.Matrices()

near equations

Determinant

See presentation in local dir Matrices and

Si

ngular values
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Matrices, Vectors (in R)
* For more background see

m-by-n matrix
In mathematics, a matrix (plural matrices, of less commonly matrixes) . |
of numbers, such as a;j ncolumns
m
123 rows
6 5 4|

An itern in 3 matrix is called an entry or an element. In the example, s.¢
Entries are often denoted by a variable with two subscripts, as shown on
the same size can be added and subiracted enirywise and matrices of ot
ruttiplie. These operations have many of the properties of ordinary arithi d31 @3z ags
matrix multiplication is not commutative, that is, AB and BA are not equs

consisting of only one column or row are called vectors, while higher-dime

dimensional, arrays of numbers are called tensors. Matrices with entriss

are also studied

Matrices are a key tool in linear algebra. One use of matrices is to represent linear
, which are high analogs of linear functions of the form () = cx, w
to of linear

Matrices can also keep track of the cosffic
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R Notes

» Matrix Ops
+ Solve(a, b)
— #solve a system of equations Ax=b by b=A"'b; b is
combination of the column in A.

— This generic function solves the equation a %*% x = b for x,
where b can be either a vector or a matrix.

— a: asquare numeric or complex matrix containing the
coefficients of the linear system.

— b:a numeric or complex vector or matrix giving the right-
hand side(s) of the linear system.

— If missing, b is taken to be an identity matrix and solve will
return the inverse of a.
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Solve a System of Equations in R
+ Example 1: Solve the system of linear equations.

2x+3y=8 >A <- matrix(c(-2,3, 3,-1), 2)
3x-y=-5 >A
+ multiply all terms in the second equation by 3 [11[:2]
2x+3y=8 [;,] -
9x -3y =-15 [2] 3 -1
. >b
add the two equations [185
7x=-7 > b=c(8,-5)

> gr.solve(A, b) # or solve(qr]
Note: y has been eliminated, hence the name: [1]-1 2

elimination solve the above equation for x

x=-1
substitute x by -1 in the first equation
-2(-1)+3y =8
solve the above equation fory
2+3y=8
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Debugging in R
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Debugging in R

+ Use browser() #?browser commands like c/c++ debugger
— n #next
— ¢ # continue
- Qaquit

+ For more details on debugging on R RTFM (see next
slide for useful example) !!

» Locating an error: traceback().

— Setting a breakpoint and examining the local environment of an
executing function: browser().

— A simple interactive debugger: debug().
— A more sophisticated debugger: the debug package.
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R debuging via browser()

« This kind of use of browser can be useful if you have a vague idea as to where a bug
may be in your program.
« Notice that the first two lines in the function were not printed.
3.2.1 Explicit Calls to browser

Tt is possible to do a kind of “manual debugging” if you don’t feel like stepping through a
fancti [
50 that 1

. The function brovasr can be nsed to suspend execution of & fun

b can browse the lacal environment. Suppose we edited the S8 function from
abave to look like:

89 <~ function(mu, x) {
4 x-m
a2 az
browser ()
s < sum(d2)

the third staten
prompt., much T

function re
£ a Brovae[1

 program, excention will suspend
del

> 882, x) E o prompt
Called from: $8(2, x)

Browse[1]> 1a() T ‘being debugged was invoked.
[1] "a" "d2* "ma" "z~ corcont

Brouzs[1]> prime (m) Contine exccvion withou sale epping

[SSE "

Browse[1]> mean(x)

[1] 0.02176075 where

Srouseli]> ‘Show the cal sace.
adbag: =8 < sw(d)

. Browse[1]> c
1SM1280:Sto. 1" 03 a1a To vewthe vlueofa varisle whose name matchesone of these commands,use the s ) icton €. prens ()

Halt execution and jamp o th top-levelimmediaely
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<RET>
c imvoked

Continue executon wiiout singe stepping. —

Excaute the
Show the cal stack.
o

Halk exccvtion and famp tthe top-level immediately

use the pranc () fincion, g pranc ()

wneze
ean. detauc (1:10)
1i0)

"
it (ram) x <= x[tis.a00)
0>

aebuz: ceim <o ceimil]
Brouse(il> trin

Brovse (11>

Gebug: o <- lengen(c(s, recursive = TRUE))
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Multi-Variable Unconstrained Optimization

» Because the objective function f(x) is assumed to be
differentiable, it possesses a gradient, denoted by f
(X), at each point x. In particular, the gradient at a
specific point x = X’ is the vector whose elements are

the respective partial derivatives evaluated at x = x’,
so that af af
V= (— —) .

Dy’ Dy
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F=Fa0+VEx'|_x=x+. MultiVariate Taylor
where
VE(x)

LE.

«x 18 the gradient of F(x) evaluated at x *

T

1% J J
v =|— -— i
F(x) [&1 F(x), x, F(x), x, F(x)

VFx)=[F, %0.F, 0.F,x).]
VF®)=[F,').F, ' (x).F, ' x).]
=y g(x")
g'(x")
RO AC))
1@
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Iteration function where g=1(x)

Iteration function for finding roots of f'(x)

Appendix: Cheat Sheets
* Notation
» Calculus
* Algebra
» Matrices

F(x)= b’(x*)+V1-'(x)’\ﬂ.(x—x*)%(x—x*)’vlf(x)\\:‘.(x—x*)Mu|tiVariate Tay'or

where

VF(X)|,, is the gradient of F(x) evaluatedat x *

and
VF(X)| . is the Hessian of F(x) evaluatedat x
i
Here X =x— 80 Iteration function where g
: { 9 DD } ('
VF(X)=| == F(X)=— F(X)...0— F(x)
Kok *, T ACD) S -
and X =xt - Iteration function  for find|
7760
VF(x)= dj&n F(x) Z«f F(X) .- (Z £ F(x)
ﬁ F ﬁ Foo :;T F
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Notation
Xor X Uppercase/Bold letters denotes a vector —
X Transpose of vestor X
x Lowercase letters denotes a variable
X, Alowercase subscripted letter denotes a variable component of a vector
y Output or dependent variable
Xor X Input vector
n The dimension or number of input features/variables
Lorm The number of training examples
w The weight vector component of a hyperplane
b Bias or threshold component of a hyperplane
(W,b) A hyperplane with weight vector W and bias component b
s Training sample
7 Margin
£ Slack variable
7 Learning rate
() Input feature transformation/remapping function
a Dual variable or Lagrange multplier
VC dimension
h Ahypothesis or model (e.g., a hyperplane (W, b))
I The SUM X, + %, + ... +%, 72
A
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Notation

<X,Z>= Z Xz The inner product (or dot product) between two vector X and Z

i1
K(X,Z)=<®(X),®(Z) > | Akernel function whose effect is the dot product of two vectors
that have been transformed into a new feature space induced by
.

X,

The product x; X XX ... X X,

arg max_ f(x) The value of x that maximizes f(x). For example,
ety

arg max f(x?)=-3
xe(1.2.-3)

arg min f (x) The value of x that minimizes f(x). For example,

arg min f(x?) =1
xe(1,2,-3)

W, o W] . »
: where W is a vector and w, is a component of W Often
referred to as the Euclidean Norm
W S . . .
Iwl, > abs(w,)  where W is a vector and w, is a component of W
=
and abs(.) denotes the absolute value
%) Null set or empty set
1SM 280: Stochastic Gradient Descent @ 2011 James G. Shanahan  James.Shanahan_AT._gmail.com ar3

Notation

XTPRIY Set determined by the property P °|"is read as “such
that.
<Xp, Xpy oooy Xg> n-tuple
v Universal quantifier denoting for all
3 Existential quantitier denoting there exists
Hn Eta 1Al Cardinality of a set A
{a .t} {a. ..., b} denotes a discrete interval, such that a< x < b
© 0 Theta Lilota VX {a, ..., b). For example, {1, ..., 6} denotes {1, 2, 3,
4,5.6)
K k Kappsz A L Lambda (a b) A continuous interval denoting any value x that satisfies
the following condition: a < x <
M p Mu [a,b] ‘A continuous interval denoting any value x that satisfies
) X the following condition: a < x<b
(zai) xR Set of all real numbers

Oz Pi

9. Qoppa

2 o Sigma Tt Tau
Y v Upsilon
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Cheat Sheets & Tables

- This is as many common algebra facts, properties, formulas, and
functions that | could think of. There is also a page of common algebra errors included.
Currently the cheat sheet is four pages long.

- This is the same cheat sheet as above except it has
been reduced so that it will fit onto the front and back of a single piece of paper. It
contains all the information that the normal sized cheat sheet does.

- Here is a set of common trig facts, properties and formulas. A unit
circle (completely filled out) is also included. Currently this cheat sheet is four pages
long.

- My standard trig cheat sheet reduced to fit onto the front
and back of a single piece of paper. It contains all the information that the normal sized
cheat sheet does.

- These are a series of Calculus Cheat Sheets that covers most of
a standard Calculus | course and a few topics from a Calculus Il course.

- Here is a set of common derivatives and integrals
that are used somewhat regularly in a Calculus | or Calculus Il class. Also included are
reminders on several integration techniques. Currently this cheat sheet is four pages
long.

- My common derivatives and integrals
table reduced to fit onto the front and back of a single piece of paper. It contains all the
information that the normal sized table does.

- Here is a list of Laplace transforms for a differential

equations class. This table gives many of the commonly used Laplace transforms and
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T
d
Product Rule - [m]=uv+u 12. Simple Exponential Derivative Rule —[e]=¢
&
4 —u wvew 4
Quotient Rule - [, ] = 13. General Exponential Derivative Rule — =
v r dx

4 d
14. Simple Different Exponential Base Derivative Rule  — [a] = (in a)a®
ax

Very Simple Power Rule —k=1
dx
d d
Simple Power Rule — = 15. General Different Exponential Base Derivative Rule  — [a%) = (in a)a'\|
dx dx
General Power Rule i P = ™y d 1
veneral Povier Rule i i 16. Simple Logarithm Derivative Rule — fax)= -
dx x
d
Chain Rk — @)= fn 4 v
dx 17. General Logarithm Derivative Rule — [lnu]= -
dx u
w
0. Simple Absolute Value Derivative Rule =2 d 1
dx L 18. Simple Different Base Logarithm Derivative Rule — [lnax] =
& (na)x.
1. General Absolute Value Derivative Rule 4 u

19. General Different Base Logarithm Derivative Rule  — [lnau] =
& (aan

2. Simple Exponential Derivative Rule

o oman@han oo e on

Differentiation Rules

d
3 SXP(x) = exp(x)

Find the derivative of f(x) = exp(x?).

We use the chain rule.
d 2 d
anP(X )= anP(Y)
(where y = x?)
_d dy
= FyeXP(Y) ax

d
=exp(y). g X

— 2x exp(x?)

ISM 280: Stochastic Gradient Descent @ 2011 James G. Shanahan  James.Shanahan_AT_gmail.com 377

Derivative

how much a function changes as its input changes

» The derivative is a measure of how a function
changes as its input changes.

— Loosely speaking, a derivative can be thought of as how
much one quantity is changing in response to changes in
some other quantity;

» The derivative of a function at a chosen input
value describes the best linear approximation of
the function near that input value.

— For areal-valued function of a single real variable, the
derivative at a point equals the slope of the tangent line to
the graph of the function at that point.

— In higher dimensions, the derivative of a function at a point is
a linear transformation called the linearization.

ISM 280: Stochastic Gradient Descent
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Derivative Notation

» Leibniz's Notation

dx ‘z=a T dz

aj.

» Lagrange’s Notation

- f(a)

* Newton’s Notation

— Assume y =
denoted as:

+ Laplacian
—_ VE(p

ISM 280: Stochastic Gradient Descent

/(1) the first derivative and second derivative are
v oy
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Unconstrained optimization
For noncovex/non-concave

max/ min fX)=f(x,...x,)

subject to x€R"

+ Assume f’(x) and H(x) exists for all xS
+ Locate candidate extrema using f’(x) = 0 and
boundary points
+ Then candidate x is
— f(x) is a convex function on S'if and only if all principal
minors of H(x) are nonnegative for all xeS
— f(x)is a concave function on Sif and only if the principal
minors of H(x) of order khave the same sign as (-1) for all
xeS and all k
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