Networks

- Nodes
- Edges
- Information
Networks

<table>
<thead>
<tr>
<th>Network</th>
<th>Nodes</th>
<th>Edges</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social</td>
<td>People</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internet</td>
<td>Servers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citation network</td>
<td>Articles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Web</td>
<td>Web pages</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Information cascades

• Information effects (herding behavior)
• Direct-benefit effects
• Epidemics
Herding behavior

• Lines outside restaurants/clubs

• Crowd of people looking up (Milgram et al. 1969)

• Inference that observed choices are more powerful than own private information
Urn Game

- private information vs. public action
Direct benefit effects

- Direct payoffs for making the same decisions others make
- Social networking sites
- Cell phone providers
- Mac/PC
Direct benefit effects

- a and b adopt A, they get a payout of x
- a and b adopt B, they get a payout of y
- otherwise they get a payout of 0

Easley and Kleinberg 2010
\[a = 3 \]
\[b = 2 \]
• The topology of the network has consequences for diffusion
• Tightly connected communities can hinder the spread of innovation

• Viral marketing: how do you choose the nodes where you can maximize adoption in the network?
Information vs. adoption

Ryan & Gross (1943), “The Diffusion of Hybrid Seed Corn in Two Iowa Communities,” Rural Sociology
Diffusion of innovations

• Spread of a new technology/idea through a social network

• Common principles (Rogers 1995):

 • **complexity.** How easy can people understand it?

 • **observability.** How transparent is it when others are using it?

 • **trialability.** Can it be adopted incrementally?

 • **compatibility.** How comparable is it with existing practices?
Tie strength

• Hearing about vs. adopting innovation

• Bridges are powerful for conveying awareness, but not uptake
Collective action

“I’ll show up for the protest if at least x other people do too”

Know the structure of the total social network + the threshold for your friends
Collective action

Know the structure of the total social network + the threshold for your friends
Collective action

Know the structure of the total social network + the threshold for your friends
Diffusion as Epidemic

How does the network change as a function of the disease?
Diffusion as Epidemic
Diffusion as Epidemic
Diffusion as Epidemic
Diffusion as Epidemic
Basic Reproductive Number (R_0)

- Expected number of new infections caused by a randomly selected person in the population

<table>
<thead>
<tr>
<th>Disease</th>
<th>R_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1918 Flu</td>
<td>2-3</td>
</tr>
<tr>
<td>SARS</td>
<td>2-5</td>
</tr>
<tr>
<td>HIV</td>
<td>2-5</td>
</tr>
<tr>
<td>Polio</td>
<td>5-7</td>
</tr>
<tr>
<td>Smallpox</td>
<td>5-7</td>
</tr>
<tr>
<td>Measles</td>
<td>12-18</td>
</tr>
</tbody>
</table>
Diffusion as Epidemic

$R_0 < 1$

$R_0 > 1$
Basic Reproductive Number (R_0)

- In tree models, $R_0 = p \times k$
- $p =$ probability of infecting 1 person
- $k =$ number of people in contact with

Decrease p by preventing spread of disease
Decrease k by quarantine
Adar et al., Blogspace
Meme tracking

J. Leskovec et al. (2009), "Meme-tracking and the Dynamics of the News Cycle"
Meme tracking

J. Leskovec et al. (2009), "Meme-tracking and the Dynamics of the News Cycle"
Meme tracking

<table>
<thead>
<tr>
<th>Rank</th>
<th>Lag [h]</th>
<th>Reported</th>
<th>Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-26.5</td>
<td>42</td>
<td>hotair.com</td>
</tr>
<tr>
<td>2</td>
<td>-23</td>
<td>33</td>
<td>talkingpointsmemo.com</td>
</tr>
<tr>
<td>4</td>
<td>-19.5</td>
<td>56</td>
<td>politicalticker.blogs.cnn.com</td>
</tr>
<tr>
<td>5</td>
<td>-18</td>
<td>73</td>
<td>huffingtonpost.com</td>
</tr>
<tr>
<td>6</td>
<td>-17</td>
<td>49</td>
<td>digg.com</td>
</tr>
<tr>
<td>7</td>
<td>-16</td>
<td>89</td>
<td>breitbart.com</td>
</tr>
<tr>
<td>8</td>
<td>-15</td>
<td>31</td>
<td>thepoliticalcarnival.blogspot.com</td>
</tr>
<tr>
<td>9</td>
<td>-15</td>
<td>32</td>
<td>talkleft.com</td>
</tr>
<tr>
<td>10</td>
<td>-14.5</td>
<td>34</td>
<td>dailykos.com</td>
</tr>
<tr>
<td>16</td>
<td>-14</td>
<td>54</td>
<td>blogs.abcnews.com</td>
</tr>
<tr>
<td>30</td>
<td>-11</td>
<td>32</td>
<td>uk.reuters.com</td>
</tr>
<tr>
<td>34</td>
<td>-11</td>
<td>72</td>
<td>cnn.com</td>
</tr>
<tr>
<td>40</td>
<td>-10.5</td>
<td>78</td>
<td>washingtonpost.com</td>
</tr>
<tr>
<td>48</td>
<td>-10</td>
<td>53</td>
<td>online.wsj.com</td>
</tr>
<tr>
<td>49</td>
<td>-10</td>
<td>54</td>
<td>ap.org</td>
</tr>
</tbody>
</table>

Table 1: How quickly different media sites report a phrase.
In practice

- Influencers on Twitter (RTs)
- Influencers on Twitter (action)
- Viral marketing
- Inferring social network structure

- Nodes
- Edges
- Information
Facebook contagion study

Fig. 1. Mean number of positive (Upper) and negative (Lower) emotion words (percent) generated people, by condition. Bars represent standard errors.