ICT4Health in Multi-Institutional Disease Research, Control and Prevention
:: Lessons Learned from Nicaragua

UC Berkeley iSchool
14 October 2008

William Avilés Monterrey, BSE
Director of Informatics
wravmon@yahoo.com

Heather Zornetzer, MS
Program Coordinator, ICT for Health
(MPH Student, UC Berkeley)
hzornetzer@gmail.com

http://www.ssilink.org
About SSI

Since 1988 (in various forms) SSI and partners work to build scientific capacity in developing countries to research, diagnose, and work to control priority infectious diseases.

- increase access to training, funding, information, equipment, and supplies
 - target low-cost methodologies and locally appropriate technologies
 - facilitate knowledge exchange networks

Nicaragua (15+ years)
- dengue, leishmaniasis and influenza research
- biomedical scientist training
- laboratory support
- bioinformatics training
- ICT support

Ecuador (8+ years)
- dengue surveillance
- Immunology research
- virology and scientific writing capacity building
- biomedical scientist training

Egypt (8+ years)
- Hepatitis C virus research
- biomedical scientist training
- laboratory support

Guatemala
El Salvador
Panama
Colombia
Venezuela
Brazil
Peru
Bolivia
Namibia (15+ years)
- biomedical scientist training

Paraguay (8+ years)
- TB and dengue control
- epidemiological research
- biomedical scientist training
- laboratory support
A multi-institutional pediatric cohort study of dengue transmission (~3,700 children ages 2-12) was established in 2004 in Managua, Nicaragua to:

- Characterize the natural history of dengue transmission and the clinical manifestations of the various forms of the disease (non-symptomatic, DF, DHF, DSS)
- Collect biological samples (serum, virus) to aid in research directed towards vaccine safety
- Prepare a Phase II/III vaccine trial site for a pediatric dengue vaccine - including capacity building and training efforts in
 1) Good Clinical Practice
 2) Good Laboratory Practice
 3) Standard Operating Procedures
 4) Quality Control measures
 5) Integration of information and communication technologies (ICT)

Partners and Collaborators

International
- Pediatric Dengue Vaccine Initiative project (PDVI - Gates Foundation / IVI)
- Division of Infectious Diseases, University of California, Berkeley

National
- Epidemiology and Surveillance Branch, National Ministry of Health (MoH)
- National Diagnostic and Reference Center, MoH

Provincial
- Managua Public Health Department, SILAIS - MoH

Local/District
- Children’s Hospital Manuel de Jesús Rivera, MoH
- District II Health Center Sócrates Flores Vivas, MoH, (and 2 satellite clinics)
District II, PDVI Cohort

Managua
Barcodes and Fingerprint ID Systems

Barcodes and Fingerprint Scanning for:
• Patient identification
• Medical chart localization and processing
• Confirming informed consent
• Specimens from suspected dengue cases
• Aliquoting specimens (cases, annual sampling)

Time required to locate medical chart using barcode versus traditional paper method

- 5.5 seconds
- 2.9 minutes (173 sec)
Laboratory Information Mgmt System: v1

Laboratory Information Databases
- Sample reception, separation, storage and tracking
- PCR
- Viral Isolation
- ELISA
- Reagent Control
- Inventory Control
- Quality Control

Protocol generated by scanning barcodes labels on the vials

After reading is done, click here to compute the results
PDA Applications

Health Center
- New patient’s medical history is entered in PDA format

Laboratory
- Registration of freezer/fridge/incubator temperatures
- Quality of samples

Home visits
- Interview forms on PDA for immediate data entry at time of interview
- Field-team access to data collected during that field visit
- Documentation of sample temperature during collection/transport
- Consent Forms
GPS/GIS Applications

Use of GIS for high efficiency and low-cost field visit strategies:

- Maps with geographic localization of the vast majority (>97%) of cohort participants
- Directed field visit strategies; analysis of progress during annual sampling
- Geographic localization of children suspected of / confirmed with dengue
- Spatio-temporal analysis -- tracking an outbreak
Proyecto de Dengue
Distribución Geográfica de las Muestras Tomadas
Según Lugar de Toma de Muestra
Beyond Disease-specific Research Studies…

Enhanced Immunization Program “SIPAI”
• facilitates data entry, analysis and report generation
• used by decision makers about how and where to target limited resources for increasing population-level immunization coverage

Vaccine Inventory Control System “Kardex”
• inventory control system
• imbedded in the SIPAI database
• tracks vaccines and medications for maintenance and QC
• piloted within the CSSFV
• scaled to SILAIS-Managua clinic system in next few years
Individualized Vaccine Registry “RII”
- individualized vaccine registry system
- designed in 2006 to track Rotavirus vaccination coverage of children
- now includes **complete vaccine history** (according to recommended WHO schedule)
- dosage timing
- eventually will be integrated with GIS and hand-held PDA data collection devices to facilitate real-time information flow to/from field vaccination teams during annual house-to-house vaccine campaigns
Healthy Pregnancy Information System “SIMS”
• individualized prenatal health monitoring system

• developed in coordination with the SILAIS-Managua

• piloted in the CSSFV since November of 2007

• incorporates the major health indicator data used by the WHO/PAHO

• includes appointment scheduling information, facilitating data access for health service providers to increase the capacity and efficiency of following individual high-risk pregnancies
Beyond Disease-specific Research Studies...

Reporting functions generation of data in a variety of formats allows decision makers to plan for deployment and use of limited resources to meet vaccine coverage goals.
New Directions

Solution Lab

- find
- expand
- develop
- test
- review
- implement
- evaluate
- adapt and scale*
- exchange

LIMS EMR MOBILE

Lab Information Management System (LIMS)
- National Reference and Diagnostics Lab (+ regional offices) onto a web-based LIMS
- link with other Nicaraguan ministries for geospatial data sharing for Epi/Surveillance system (track disease incidence, outbreaks)
- Sharing with the PDVI 12+ sites (2008) and SSI Cairo (early 2009)

Electronic Medical Record Systems (EMR)
- modifying/implementing/evaluating a web-based registration and electronic medical record system (openMRS) in the Centro de Salud Socrates Flores Vivas and the children’s hospital
- determining the feasibility and scalability of this system for use in other clinics at the regional and national levels
- developing a reporting structure to match - but possibly replace - existing report reqs.

Mobile Applications
- phones? PDAs? Tablet PCs?
- EMR interoperability on a mobile platform
- logistical coordination and facilitation tools to increase field-team efficiency (and efficacy)

...other eHEALTH pipeline areas...

Disease Surveillance Systems
Pharmacy Information Systems
Telemedicine
Outreach/Patient Education Software & Tools
Interoperability Solutions
New Directions

Solution Lab
- find
- expand
- develop
- test
- implement
- evaluate
- adapt and/or scale*
- exchange

Capacity Building + Training
- workshops
- Publish + Present (multiple forums, multiple languages)
- strategic guidance*

Network Building
- PPP
 - MoH - to - MoH
 - WHO/HMN, PAHO, other regions
- OurExchange website*
Challenges and Opportunities

• Start small but be mindful of scalability and adaptability -- careful of the pilot-syndrome!

• Make the leap onto more user-friendly and scalable systems options (open source and web-based in our case) when appropriate.

• Engage stakeholders and tools/system user groups for feedback and input at multiple implementation steps -- it’s an iterative process. Build capacity for locally-based support (ICT, analysis, evaluation) from the beginning.

• Avoid imagined needs … focus on targeted information outputs for health impact. - Publication AND Public Action are both necessary!

• Don’t underestimate politics - “public” health actors must be engaged early and often.

• Keep in mind infrastructure, hardware, human resource, and language (!) limitations and plan appropriately to address all.

• Avoid the “silo” affect - actively seek out South-South networks and keep in mind the continuum of “developing” vs. “developed” in different regions.

• Document, publish, present, engage, share so that duplication of effort and use of limited resources are minimized.
SSI Nicaragua’s ICT Team
- doctors, researchers, health center/hospital/lab staff, computer engineers, data entry staff, data managers, graphic designers, network managers, and people coordinators!
Acknowledgments

Sustainable Sciences Institute
Dr. Josefina Coloma
Dr. Oscar Ortega
Elsa Videa
Nicole Fitzpatrick
Mirtha Monterrey

Ministry of Health, Nicaragua
Dr. Guillermo Gonzalez
Dr. Edmundo Sanchez
Dr. Alcides Gonzales

Managua Regional Health Dept.
Dr. Julio Caldera

Socrates Flores Vivas Health Center
Dr. Guillermina Kuan
Miguel Reyes
Leyla Saenz
Magaly Amador
Zoila Orozco
Brenda del Socorro Lopez
Eveling Gallo
Carolina Flores

Children’s Hospital “La Mascota”
Dr. Crisanta Rocha
Dr. Sheyla Silva
Dr. Javier Silva
Dr. Federico Narvaez
Bismark Martinez
Cinthia Saborio
Gerardo Mejia

National Diagnostic & Reference Laboratory
Virology Dept.
Dr. Angel Balmaseda
Dr. Andrea Nuñez
Douglas Elizondo
Sonia Arguello
Yolanda Tellez
Tangni Gomez
Yara Saboria
Leonel Pérez
Juan Carlos Mercado
Juan Carlos Matute
Celia Machado
Maria José Vargas

UC Berkeley
Dr. Eva Harris
Aubree Gordon, PhD C.

Funding
Pediatric Dengue Vaccine Initiative
Technical Training Foundation
Conservation Food and Health Foundation