
22. Iteration [2]

12 November 2008

Bob Glushko

Plan for ISSD Lecture #22

More Big Ideas and Issues about Iteration

Iteration in UI Design

Iteration in Software Development

Iteration as "Information Exchange" and the "Design Structure Matrix"



Designing Iteration

What is the project scope to which iterative methods will be applied?

What are the processes in each iteration?

What is the "cycle time" of the iteration?

The "metamodel" for feedback

The Iteration Cycle Time

What determines how long the cycle takes?

What is being built on each cycle? 

How is it being built? Is it being built "by hand," or is it generated from a 

model?

How is the feedback obtained? Explicitly or implicitly? 

How is the feedback evaluated?

How is the feedback incorporated into the next cycle?



Iteration and Rework

We can imagine that an ITERATIVE process implies an INCREMENTAL one, 

where each cycle adds to what was there before

But a more likely result of feedback during an iteration is the need to change 

or REWORK some aspects of what was there before

Fairley & Willshire analyze the extent and nature of this work and create a 

taxonomy for understanding it

Iteration and "Scope Creep"

When the iteration cycle is short, it only allows for small changes to be made 

on each cycle

When stakeholders propose small changes, they often think that designers 

are being inflexible or unreasonable if they refuse these change requests 

But the cumulative effect of many small unplanned additions can be 

significant "scope creep" that distracts from planned iterations, consumes the 

project's resource, and causes it to miss schedules

How can scope creep be prevented?



Iteration and "Local Optimization"

The design changes from one iteration to the next are often motivated by 

specific features or functions that caused used difficulties or otherwise failed 

to meet expectations

This specificity focuses the design/redesign activity on alternatives in the

"neighborhood" of the current design

It makes it unlikely that radical design ideas will be considered, even though 

they might be significantly better

So the best solution that can be developed is the "locally optimal" one, which 

makes the starting point critical in retrospect, even though it might have been 

arbitrary or accidental

Local Optimization

"Local optimization" results whenever the search for a better solution is limited 

to "nearby" alternatives in the design space



Another Depiction of Local Optimization

Local optimization gets to the top of the hill you're on... but you can't get to a 

higher hill because you'd have to first go down to get there

Finding a Global Optimum

You can increase the likelihood of finding the overall best solution if (a) you try 

many different starting points and (b) make longer and more random 

movements in "design space"



Parallel Iterative Design

Iteration in UI Design

Most user interface design and development involves steady refinement 

based on user testing and other evaluation methods

Most often, a design (or prototype or some other surrogate) is shown to or 

experienced by users, and the designer notes any problems that it has

These problems are then fixed in subsequent iterations

The design changes from one iteration to the next are normally local to those 

specific interface elements that caused user difficulties.

This iteration continues until time/resources run out or quality reaches an 

acceptable level



The "Benefits" of Iteration (Hypothetical Graph)

Interpreting "Iteration x Usability"

Ideally, each iteration improves on the previous version

The first few iterations should result in major improvements because they are 

finding and fixing "usability catastrophes"d

Later iterations yield diminishing returns because most usability problems 

have been eliminated

(And some changes to an interface may turn out not to be improvements after

all)

Interface reconceptualizations -- moving to a new part of the design space -- 

can sometimes produce big gains in usability



The "Benefits" of Iteration?

Key Questions

How do you know where you are on a Usability vs. Iteration function?

What are you measuring to assess the quality of each design? Is it objective?

Should you measure the same thing in every design context?

Is the function the same for all types of users?



Parallel Iterative Design in S-as-a-S 
Applications

Lindholm contrasts the UI design techniques typical of "shrink-wrapped" or 

deployed applications with those emerging in the "Software-as-a-service" 

context

Traditional "long cycle time" UI techniques don't fit well with "short cycle time" 

web development methods

Sometimes users are advised by labeling an application as "alpha," "beta," 

"labs," or "limited release" that it is has been made available for the purpose 

of getting early feedback

But the most often used technique is to introduce small changes to UIs 

without notice, and then measure if desirable behaviors increase (time spent 

on each page, transactions completed, ads selected, etc.)

For applications or services with large numbers of users, multiple design 

alternatives can be tested in parallel and iterative improvements made on a 

continuous basis

Iteration in Software Engineering -- Idealized

Because of the abstract medium in which applications or services are 

implemented, software can rarely be designed and developed without some 

amount of iteration

The idealized view of iteration in software engineering is that each cycle adds 

well-defined functionality or features

SW methodologies differ in how much breadth or scope of the software 

process is included in each cycle

At the end of each cycle the software (or other design artifact) is of production 

quality, fully tested, and deployable

Put another way... the iterations can stop at any point because each iteration 

produces a stable design artifact



Agile Iteration

Each iteration in Agile methods includes requirements and development 

activities

Incremental Build Methodology



Incremental Build Iteration

Iteration and Use Cases

Use cases provide a straightforward way to manage iterative software design 

and implementation

Each iteration can complete the functionality needed for a simple use case, or

a part of a complex one

The sequence of iterations can follow the priority of the use cases



Iteration in Software Engineering -- Reality

A more realistic view of iteration in software engineering is that adding new 

capability is only one of its purposes

This view acknowledges that adding new capability can introduce defects into 

existing capabilities

The challenge is to devise an iteration model that results in an acceptable 

amount of rework

A Taxonomy of Iterative Rework

Evolutionary

Work that enhances or adds value to an existing artifact

Required because of changes in requirements, constraints, or target contexts that 

could not have been foreseen

Avoidable Retrospective 

Problems or work identified previously that could have been dealt with then

Avoidable Corrective

Work to fix defects detected in new capabilities or in older capability that the new 

capability exposes 



Evolutionary Rework

Is "Good" if it adds value while meeting resource and schedule constraints

Is "Bad" if if violates resource and schedule constraints

Is "Ugly" if it shouldn't have been done because it wasn't meeting real 

requirements, was "gold plating," or "scope creep"

Avoidable Rework

Is never really "Good," but better to do a little bit now than a lot later and the 

total amount is controlled

Is "Bad" if it is routine, because that means that staffing or schedules are 

unrealistic, and developers are intentionally or unintentionally pushing work 

into 

Is "Ugly" if it is so common and excessive that it means that developers aren't

productive enough, are following poor process, or are being poorly managed



The "Design Structure Matrix" - Analyzing 
Information Dependencies

Experimentation and innovation in product development is facilitated by 

information exchange between designers of different subsystems or 

components

But if this "concurrent engineering" or "iterative design" isn't carefully 

managed, it can be inefficient and cause excessive rework and delays

The "Design Structure Matrix" is a notation for analyzing and optimizing these 

iterative information flows

DSM needs to be in our "method toolkit" to help in modeling and designing 

processes

DSM Notation

Processes/activities/tasks are the rows and columns of a square matrix

The dependency or information flow relationships between any two processes

i and j is indicated by the presence or absence of a mark in cells (i,j) and (j,i)



DSM Example

DSM Example - Planned and Unplanned 
Iterations



DSM Techniques for Improving Process Models
[1]

The overall goal is to reorder the rows or redefine the tasks to eliminate the 

Xs that were in the upper half matrix or at least to move them closer to the 

diagonal (this minimizes the number of tasks that are coupled in a cluster)

Start by identifying the first and last tasks (these have no inputs and no 

outputs, respectively)

Identify tasks that use information from the first task and determine if they are 

parallel, sequential, or coupled to each other

Reorder the rows to create the smallest set of coupled tasks (the box in which

planned iteration takes place)

DSM Techniques for Improving Process Models
[2]

Likewise, identify tasks that contribute information to the last task and 

determine if they are parallel, sequential, or coupled to each other

IN ADDITION OR INSTEAD OF REARRANGING THE TASK ORDER, YOU 

CAN REARRANGE THE PEOPLE WHO DO THEM

OR YOU CAN USE MODELING TOOLS THAT CAN PREDICT/SIMULATE 

DESIGN IMPACTS



DSM Example - Optimized

Using DSM in the Document Engineering 
Methodology



Readings for 17 November

Youn-Kyung Lim, Erik Stolterman, & Josh Tenenberg, “The anatomy of

prototypes: Prototypes as filters, prototypes as manifestations of design

ideas”

Lars Holmquist, “Prototyping: Generating ideas or cargo cult designs"

Michael Schrage, “Never go to a client meeting without a prototype”


