15. Process Modeling for
Information System Design

20 October 2008

Bob Glushko

Plan for ISSD Lecture #15

Levels of Abstraction in Process Modeling
ebXML Process Metamodel: Processes, Collaborations, and Transactions

Constructs in process models and BPMN

What Are You Doing Now?

If someone asks you "what are you doing now?" what might you say?
« "I'm living in Berkeley and taking courses at the University"
« "I'm studying Information Systems and Service Design"

« "I'm listening to a lecture on business processes and was just asked what | was
doing now"

You can answer the question at many different levels of abstraction

What determines how you answer it?

Making a Pizza

1.
2.

N

o ~N O O

Select recipe

Turn on as many lights as necessary to ensure adequate lighting in
preparation and cooking area

. Assemble required ingredients after washing and drying hands.

. Sift 1/2 kg of flour into a large mixing bowl (preferably plastic), and then add a

pinch of salt and pepper

. Follow the rest of the preparation instructions in the recipe to make the pizza.
. Pre-heat the oven to 350 degrees Fahrenheit.
. Open the oven door, place the pizza in the oven, and close the door.

. When the pizza is done remove it from the oven

Levels of Abstraction in Pizza Process Models

Make §
.v_ii% i
Make E fake § Add sauce and toppings | Bakeuntl |
Ldough M.Wmi._..,.: o todough § golden |
Mix | Letrise; Knead [ietrise; Rollinto | Fry [Addtomatoes, herbsand ! Simmer untildght § .. | ..
ingredients | | _dough | * Mat circle | enions spices 1 tenture gt %
| I I I | I i
Sift 1f2Kg flaur® | Add pinch of | Add 2 Mix dry & Make awell in§ Add enough cold | Add 2 i Iuiix dough §
into large mixing ; salt, pepper | leaspoons of @ ingredients | thecenbie of | water tomake | teaspoons of [thoroughiyby § o
b G and i ed yeast and} the dry 3 ...,.—‘!‘.’.‘.‘J‘.J:"_!.‘E‘."f‘ﬂﬁ_.é Looveol i hand n,.g
teaspoon | 1 teaspoan of § ingrecients |
diied oreqano; sugar ; *compenents

The Abstraction Hierarchy in Process Models

[1]

Unlike when we model documents, which by their very nature embody a
relatively concrete perspective in an organizational model, we can model
processes at many different levels of abstraction

We can model processes at an organizational level as the pattern of "value
exchanges" between an enterprise and its suppliers, customers, and other
entities in its "value chain”

These "value exchanges" connect activities to achieve some goal or solve

some problem

« These models usually ignore exception cases and steps that don't have much
business significance (they are "happy path" or "success" models)

« They are also called "Level 1" or "qualitative" process models

The Abstraction Hierarchy in Process Models

[2]

When all of the steps and cases are included at a detail needed to explain an
"as is" situation or simulate most aspects of a "to be" one, they are
sometimes called a "Level 2" model

This level of description is what most people call a process model,
transactions are visible, and documents and the processes that produce and
consume them are at the same abstraction level

This level of description is technology-independent

The Abstraction Hierarchy in Process Models

[3]

A "Level 3" model contains all the details needed to implement the process

Process models have little abstraction when we want to specify every detalil
of control and decision logic needed in an implementation

A model at this level of abstraction would specify both the success and failure
cases and define any information components that are process inputs or
outputs

The Abstraction Gap in Process Models

An abstract / coarse / strategic / goal-oriented view of processes (Level 1) is
the top-down perspective of executive management

The granular / transactional / implementation view is bottom-up, less likely to
be technology-independent, and naturally emerges from operational
personnel as they describe the processes and documents they work with

When processes are implemented, they must be specified at a level that is
compatible with the identities and capabilities of the actors that carry them out

But when processes have "executable specification” it may be difficult to
relate them to the strategies and goals at the abstract level

Bridging the Abstraction Gap in Process
Models

We need to bridge this gap to get a complete, balanced, and actionable view
of the processes

So there seems to be consensus that we need an intermediate level of
process description that is more abstract than "transaction” and less abstract
than "value chain"

Unfortunately, there isn't much consensus about what to call the different
levels of abstraction

« in ebXML, these three levels are: process/collaboration/transaction; in BPMN, they
are process/subprocess/task

Some but not all process metamodels and notations explicitly distinguish
between human and computational actors

The ebXML Process Metamodel

7~

Business Process) i @ Business Process R

IllrC:JIIL:.ibora-ntimn

T
Transaction

fColIaboration

Transaction

Transaction

i Transaction

Transaction

Transaction

rCoIIaboration

Collzboration
Transaction Transaction
Transaction Transaction

Transaction

Transaction

Business Process j

Enterprise=Boundary _

Hiding Subprocesses in a "Collapsed” Model

Expanded subprocess

Collapsed subprocess) C

(-
[+ \ !

A process is "atomic" when is has no interesting subpart structure (i.e., when
it is a task or a transaction)

But it is often very useful to hide the subpart structure of a process and treat it
as if it were atomic... because that's what a higher level of abstraction does

Business "Transaction"

The most important perspective in process modeling for information system
design is to describe processes at the level of the TRANSACTION

A business transaction is an atomic unit of work in a trading or commercial
relationship between two parties or services

A business transaction is conducted between two parties or services playing
REQUESTING and RESPONDING roles

There is always a requesting DOCUMENT (or MESSAGE) and optionally a
responding one, depending on whether the transaction semantics are
one-way or two-way

Sequence Diagram for "Submit Event”
Transactions

X

event local calendar central calendar
submitter administrator administrator

event details

.

Ll
leeiendan event created) event acceptance |
event details

(inappropriate material] reject event

|(appropriate material] accept event

event details

P [inappropriate material] reject event
[appropriate material] accept event

Activity Diagram for "Submit Event"

v

| Event Details:]

Y
(review event submission>

[inappropriate material] [appropriate material]

Q‘lotify event organizeo update calendar

(notif; event organizer)
v v
Event Rejection: | | Event Acceptance: |

Business "Transaction" (2)

At the "business" level, a transaction either succeeds or fails.

« If it succeeds it may imply a legally binding contract or obligation between the
parties participating in the transaction or otherwise govern their collaborating
activities

« If the business transaction fails each partner must relinquish any mutual claim that
would have been established by a successful transaction

Business transactions cannot be "rolled back" but the obligations established
by a successful transaction can sometimes be undone by a
COMPENSATING TRANSACTION

The time scale for a business transaction can range from seconds to days,
weeks, or longer

(One Parenthetical Slide : Database
"Transaction")

A DATABASE TRANSACTION is a group of statements or instructions to a
database whose changes can be made permanent or undone only as a unit

Transactions provide a simple model of success or failure — a transaction
either COMMITS (all its actions happen) or it ABORTS (all its pending actions
are undone). This all-or-nothing quality makes for a simple programming
model

A transaction can be ROLLED BACK in the same unit with which it was
committed to undo all of its effects and return the database to a prior state

The time scale for a database transaction is measured in fractions of a
second

Modeling Transactions with Worksheets

A model of a transaction can be recorded as an artifact as a diagram, an XML
instance, or as a "worksheet" that simply lists the information components in
the metamodel of the transaction

You can tailor the modeling approach by customizing the worksheet to fit your
or your client's methodology

Using worksheets to capture information lets the analyst capture "fragments”
of the metamodel whenever they arise or are discovered

This is a less prescriptive and more user-friendly approach than the other
notations, which require more information to be "well-formed"

Transaction Modeling Worksheet for "Submit
Event”

BUSINESS TRANSACTION VIEW WORKSHEET

Worksheet ID UCBCalendar-BTV-SubmitLocalEvent ToMain-1.0

Business Transaction Name | Submit Local Event to Main Calendar

Description Submission of event from local calendar to main
calendar for publication and further distribution

Transaction Pattern Offer-Acceptance

Initiating Partner Type Local calendar administrator

Responding Partner Type Central calendar administrator

Preconditions Event accepted for local calendar

Begins When Local calendar administrator fills out “submit event™
form

Ends When Central calendar administrator sends “accept event”
or “reject event” message

Exceptions Events can be rejected as inappropriate for central
calendar

Constraints Submitted event should be acknowledged on receipt

Acceptance or rejection should be determined within
24 hours of submission

Postconditions Local event republished on central calendar

Business Process Concept of "Collaboration”

Two or more business transactions can be sequenced to carry out a business
collaboration

A business collaboration is a series of activities carried out by two or more
partners for the purpose of achieving a business goal; these activities are
business transactions

These transactions have more context in common with each other than with
transactions that perform other parts of the business process

Meaningful and Necessary Semantic Overlap

The set of transactions in a collaboration have meaningful and necessary
semantic overlap with each other

« They have parties/actors in common

« The overlap must be necessary -- two parties must need to know about each of
their transactions with a third party for the set of transactions to be collaborative

Example: Collaborations in Drop Shipment

GMBooks.com: I
Source a book \J] Distributor:

Check Availability

Provide Book Details } Request Service

Book Shipment
Delivery Service: \

Contract Motify of Goods Dispatch D
Formation -2 SRR
g - ~Astnoviedge Spment_ _ . - 4 Distribution
and
Fulfilment

Example: Registering for Classes

School Intstructors | | University | Student
Request Course Catalog | Query and Response PIP 2A2 |
[__ Provids Course Catalog_:_ H |

H
! Negotiate Courses to Teach | | Request and Response
—_—
H Request and Hesponse 1 \
| Negotiate Classroom Availability] \
T Register tor Courses 1[
; Send Final Class Schedule jon |
L ,,,,,,,, ANChTOAeTige: EREC A T yar e e —— |
: : Query and Response
Finalize Course Schedule ; FPIP 2A2
H il - HRegues! Final Schedule -
Provice Final Schedule .

Request and F = — -
PIP 3A2 | Negotiate aboul prerequisites !
T

\PIP 3A4 Try 10 Enroll in Courses
Offer and Acceptance Notify of Course Availability

Request and Response

— H
FIP 3A2 Try to get admitted into Courses that are full

. Try to Enroll in Alternative Courses,
_Notify g[gggrgo Asailability

Orar and Accepiance

Check Coursa Enrolimant | Query and Response
Notity of Course Enroliment

b
Cancel Course L Natification
Acknowledge Course Cancellation

Business Process Modeling Notations

Process models, especially Level 1 and Level 2 ones, are conceptual: their
meaning isn't tied to how they are represented or described or depicted

Notations for representing process models can be informal -- box and arrow
diagrams on napkins as an end case -- or formal

More formal notations have the advantage that their explicit and consistent
semantics can be supported by tools

And formal notations, once learned, can facilitate the shared understanding
that is usually the point of process modeling

BPMN seems to be an emerging standard notation... but not the only one you
probably need to have some familiarity with

BPMN Notation - 3 "First-class" Elements

Activity -- work performed in the process (rounded rectangle)
Gateway -flow control logic (diamond, with icons)

Event - a "signal" that something has happened; can be internal or external to
a process (circle)

Activity Semantics

Activities are actions, not functions, states, or handoffs
Sequential flow is implicit in the (arrow) notation

Likewise, you don't need "waiting for" activities; an activity starts when its
incoming flow reaches it

You can reinforce these ideas by labeling activities VERB-NOUN

Activity Semantics - Examples

| Budget review | l|‘aﬁ:hlmd?et| Bu:lge‘tduml I| Fbﬁ'.\d‘&vrl':‘:tga: I) | Bu%l;:w I) Sendri:‘mf;:\ager’

Instead, the correct sequence should be this:

Review budget
- document -

or if the budget document is received from outside the process instead of from a prior step,
maybe this:

Control and Logic Patterns

Sequence
Choice

Merge

The Sequence Pattern

Sequence Pattern __1_ 1

¢ Account Manager Finance Clerk Warehouse Clerk é
i

i

—1a 0 — 3

{ Review Crder Check Credit Check Inventary f

Sequence -- activities following each other -- is the default pattern for
describing processes. Processes often look sequential when you take a
coarse or distant view of them

But is it Really a Sequence?

A sequence model like this assumes that processes are dependent and the
transitions between them are unconditional

A sequence model assumes that all inputs are treated the same way, and
there are usually instance-level (content-based) rules that be applied to "thin"
the queue or re-route items from it

A GATEWAY can be used to split a sequence into multiple flows

Gateway Semantics

Unlike activities, gateways do NOT perform work or make decisions
They control the flow of a process AFTER a decision has been made

So don't use gateways to represent decision logic

Gateway Semantics - Examples

Incorrect Use of

Gateway to Make 5 A l
I Invalid
Decision

p
OK- B |
Receive order

Validate order -
Correct Use of
Gateway to Route " A
After Decision

@ Validate order ye B
Receive order

Inefficiency in Sequence Pattern

Account Manager Finance Clerk Warehouse Clerk

1
1’
g I ey I oy I

Review Order Check Credit Check Inventaory

() 9 Hours (As-Is) >

h,.,..-’.‘wﬁ"h L\‘.J-.-.,... e r—‘\a-.".
S

-"I\..,-I-M.-.n‘ﬂ,-.,___,.-.

- O
=R .\,--.-—".' T ek e = ol PR

= -

Removing Inefficiency with Parallelism

-~
Parallel Split and Synchronization Patterns g

Account Manager Finance Clerk Warehouse Clerk

£
g
¥
)
{
; A
3
»’ i / Check Inventor®
b /
-

Lo J >

3 Check Credit / Synchronize
[

2

; (& |

Review Order

; o
—>(® 4 Hours (Should-Be) >
"P‘- NP PP P FPGMPE Y

a8 e o, P Y

S/
¥
S, s Amemn N, Aais Aomsaschas. i mmon. . Smda

\,

(Parallel Split | AND | Unconditional) Gateway

e J L F—1

All of the outgoing paths are unconditionally enabled, which makes the
gateway symbol redundant

But we'll have to merge the parallel paths at some point...

Conditional Activities

g
Exclusive Choice Pattern

Finance Clerk Warehouse Clerk

A,
e

3
{4 : - i
"I Check Credit Check Inventory i

i @ Failed credit check

——-'-—'_‘_'_'-F-

A

i Matify Customer

(Exclusive | First) Event-based Gateway

>
Imeout '
— |
I

‘-l-‘-‘-d C YL Y YL Iy TR REONR L)

i
!
| >
i

Emerging "Event" Buzzwords in Process
Modeling

CEP (Complex Event Processing)

EDA (Event-Driven Architecture)

Event-Driven BPM (Business Process Management)
Event-Driven SOA (Service Oriented Architecture)
ESP (Event Stream Processing)

BAM (Business Activity Monitoring)

The "Event-Driven" Enterprise

(Inclusive | OR) Conditional Parallelism

Condition 1]

{ ECTdition

Default Condition

B

il

Allowing for an Unconditional Activity

Supervyisor

= -
k1 J
3

: \
5

j m

}k Handle Exceptio

2 5

¢ 5 - =20

4?: = Handle Auto Claim
{ @

\

J 080

i

i @ Handle Renter Claim

;

3

(
)y 20O £
E Handle Horme Claim f
L -
|
F)

1 =0
£ Handle Life Insurance Claim

Merging Conditional Process Branches

? : :
*-
ern

Supervisor

Simple Merge Patt

Handle Exceptior.
D

\@/f
=

i

T Ty T

Synchronized Merge (for Conditional

Parallelism)

Account Manager

P PN Lo M iy

)

—

///;/m;it Order

T spit

AR NS N

4
Y
< Review Order
¢
3

-

M, adn e L n o a kb, -

> L

Check Credit

Calculate Shipping Charge

/

oot ., gpebicbiolin, Ao o gwios

o s, o

Sttt o ol B e

Bt s Mt . o

Poor Process Design Allows "Upstream”
Cycles

Arbitrary Cycles Pattern g O g B o B
3 Loan Processor »
i 1
i @ Correct Applicant Information ’
P
g 4
{ d
1,
————— ———— ——————
i 8 5 5
k Complete Applicant Information Check Credit Determine Loan Type }
{---—-‘-"u,. B T T PO Y S P PPYI anahbil, o pemale.

Readings for 22 October

Robert J. Glushko & Tim McGrath, Document Engineering, Chapter 10
(through 10.6), "Designing business processes with patterns”, 2006

Uday M. Apte & Richard O. Mason, “Global Disaggregation of
Information-Intensive Services.” Management Science, July 1995.

