
15. Process Modeling for
Information System Design

20 October 2008

Bob Glushko

Plan for ISSD Lecture #15

Levels of Abstraction in Process Modeling

ebXML Process Metamodel: Processes, Collaborations, and Transactions

Constructs in process models and BPMN

What Are You Doing Now?

If someone asks you "what are you doing now?" what might you say?

"I'm living in Berkeley and taking courses at the University"

"I'm studying Information Systems and Service Design"

"I'm listening to a lecture on business processes and was just asked what I was

doing now"

You can answer the question at many different levels of abstraction

What determines how you answer it?

Making a Pizza

Select recipe1.

Turn on as many lights as necessary to ensure adequate lighting in

preparation and cooking area

2.

Assemble required ingredients after washing and drying hands.3.

Sift 1/2 kg of flour into a large mixing bowl (preferably plastic), and then add a

pinch of salt and pepper

4.

Follow the rest of the preparation instructions in the recipe to make the pizza.5.

Pre-heat the oven to 350 degrees Fahrenheit.6.

Open the oven door, place the pizza in the oven, and close the door.7.

When the pizza is done remove it from the oven8.

Levels of Abstraction in Pizza Process Models

The Abstraction Hierarchy in Process Models
[1]

Unlike when we model documents, which by their very nature embody a

relatively concrete perspective in an organizational model, we can model

processes at many different levels of abstraction

We can model processes at an organizational level as the pattern of "value

exchanges" between an enterprise and its suppliers, customers, and other

entities in its "value chain"

These "value exchanges" connect activities to achieve some goal or solve

some problem

These models usually ignore exception cases and steps that don't have much

business significance (they are "happy path" or "success" models)

They are also called "Level 1" or "qualitative" process models

The Abstraction Hierarchy in Process Models
[2]

When all of the steps and cases are included at a detail needed to explain an

"as is" situation or simulate most aspects of a "to be" one, they are

sometimes called a "Level 2" model

This level of description is what most people call a process model;

transactions are visible, and documents and the processes that produce and

consume them are at the same abstraction level

This level of description is technology-independent

The Abstraction Hierarchy in Process Models
[3]

A "Level 3" model contains all the details needed to implement the process

Process models have little abstraction when we want to specify every detail

of control and decision logic needed in an implementation

A model at this level of abstraction would specify both the success and failure

cases and define any information components that are process inputs or

outputs

The Abstraction Gap in Process Models

An abstract / coarse / strategic / goal-oriented view of processes (Level 1) is

the top-down perspective of executive management

The granular / transactional / implementation view is bottom-up, less likely to

be technology-independent, and naturally emerges from operational

personnel as they describe the processes and documents they work with

When processes are implemented, they must be specified at a level that is

compatible with the identities and capabilities of the actors that carry them out

But when processes have "executable specification" it may be difficult to

relate them to the strategies and goals at the abstract level

Bridging the Abstraction Gap in Process
Models

We need to bridge this gap to get a complete, balanced, and actionable view

of the processes

So there seems to be consensus that we need an intermediate level of

process description that is more abstract than "transaction" and less abstract

than "value chain"

Unfortunately, there isn't much consensus about what to call the different

levels of abstraction

in ebXML, these three levels are: process/collaboration/transaction; in BPMN, they

are process/subprocess/task

Some but not all process metamodels and notations explicitly distinguish

between human and computational actors

The ebXML Process Metamodel

Hiding Subprocesses in a "Collapsed" Model

A process is "atomic" when is has no interesting subpart structure (i.e., when

it is a task or a transaction)

But it is often very useful to hide the subpart structure of a process and treat it

as if it were atomic... because that's what a higher level of abstraction does

Business "Transaction"

The most important perspective in process modeling for information system

design is to describe processes at the level of the TRANSACTION

A business transaction is an atomic unit of work in a trading or commercial

relationship between two parties or services

A business transaction is conducted between two parties or services playing

REQUESTING and RESPONDING roles

There is always a requesting DOCUMENT (or MESSAGE) and optionally a

responding one, depending on whether the transaction semantics are

one-way or two-way

Sequence Diagram for "Submit Event"
Transactions

Activity Diagram for "Submit Event"

Business "Transaction" (2)

At the "business" level, a transaction either succeeds or fails.

If it succeeds it may imply a legally binding contract or obligation between the

parties participating in the transaction or otherwise govern their collaborating

activities

If the business transaction fails each partner must relinquish any mutual claim that

would have been established by a successful transaction

Business transactions cannot be "rolled back" but the obligations established

by a successful transaction can sometimes be undone by a

COMPENSATING TRANSACTION

The time scale for a business transaction can range from seconds to days,

weeks, or longer

(One Parenthetical Slide : Database
"Transaction")

A DATABASE TRANSACTION is a group of statements or instructions to a

database whose changes can be made permanent or undone only as a unit

Transactions provide a simple model of success or failure – a transaction

either COMMITS (all its actions happen) or it ABORTS (all its pending actions

are undone). This all-or-nothing quality makes for a simple programming

model

A transaction can be ROLLED BACK in the same unit with which it was

committed to undo all of its effects and return the database to a prior state

The time scale for a database transaction is measured in fractions of a

second

Modeling Transactions with Worksheets

A model of a transaction can be recorded as an artifact as a diagram, an XML

instance, or as a "worksheet" that simply lists the information components in

the metamodel of the transaction

You can tailor the modeling approach by customizing the worksheet to fit your

or your client's methodology

Using worksheets to capture information lets the analyst capture "fragments"

of the metamodel whenever they arise or are discovered

This is a less prescriptive and more user-friendly approach than the other

notations, which require more information to be "well-formed"

Transaction Modeling Worksheet for "Submit
Event"

Business Process Concept of "Collaboration"

Two or more business transactions can be sequenced to carry out a business

collaboration

A business collaboration is a series of activities carried out by two or more

partners for the purpose of achieving a business goal; these activities are

business transactions

These transactions have more context in common with each other than with

transactions that perform other parts of the business process

Meaningful and Necessary Semantic Overlap

The set of transactions in a collaboration have meaningful and necessary

semantic overlap with each other

They have parties/actors in common

The overlap must be necessary -- two parties must need to know about each of

their transactions with a third party for the set of transactions to be collaborative

Example: Collaborations in Drop Shipment

Example: Registering for Classes

Business Process Modeling Notations

Process models, especially Level 1 and Level 2 ones, are conceptual: their

meaning isn't tied to how they are represented or described or depicted

Notations for representing process models can be informal -- box and arrow

diagrams on napkins as an end case -- or formal

More formal notations have the advantage that their explicit and consistent

semantics can be supported by tools

And formal notations, once learned, can facilitate the shared understanding

that is usually the point of process modeling

BPMN seems to be an emerging standard notation... but not the only one you

probably need to have some familiarity with

BPMN Notation - 3 "First-class" Elements

Activity -- work performed in the process (rounded rectangle)

Gateway -flow control logic (diamond, with icons)

Event - a "signal" that something has happened; can be internal or external to

a process (circle)

Activity Semantics

Activities are actions, not functions, states, or handoffs

Sequential flow is implicit in the (arrow) notation

Likewise, you don't need "waiting for" activities; an activity starts when its

incoming flow reaches it

You can reinforce these ideas by labeling activities VERB-NOUN

Activity Semantics - Examples

Control and Logic Patterns

Sequence

Choice

Merge

The Sequence Pattern

Sequence -- activities following each other -- is the default pattern for

describing processes. Processes often look sequential when you take a

coarse or distant view of them

But is it Really a Sequence?

A sequence model like this assumes that processes are dependent and the

transitions between them are unconditional

A sequence model assumes that all inputs are treated the same way, and

there are usually instance-level (content-based) rules that be applied to "thin"

the queue or re-route items from it

A GATEWAY can be used to split a sequence into multiple flows

Gateway Semantics

Unlike activities, gateways do NOT perform work or make decisions

They control the flow of a process AFTER a decision has been made

So don't use gateways to represent decision logic

Gateway Semantics - Examples

Inefficiency in Sequence Pattern

Removing Inefficiency with Parallelism

(Parallel Split | AND | Unconditional) Gateway

All of the outgoing paths are unconditionally enabled, which makes the

gateway symbol redundant

But we'll have to merge the parallel paths at some point...

Conditional Activities

(Exclusive | First) Event-based Gateway

Emerging "Event" Buzzwords in Process
Modeling

CEP (Complex Event Processing)

EDA (Event-Driven Architecture)

Event-Driven BPM (Business Process Management)

Event-Driven SOA (Service Oriented Architecture)

ESP (Event Stream Processing)

BAM (Business Activity Monitoring)

The "Event-Driven" Enterprise

(Inclusive | OR) Conditional Parallelism

Allowing for an Unconditional Activity

Merging Conditional Process Branches

Synchronized Merge (for Conditional
Parallelism)

Poor Process Design Allows "Upstream"
Cycles

Readings for 22 October

Robert J. Glushko & Tim McGrath, Document Engineering, Chapter 10

(through 10.6), "Designing business processes with patterns", 2006

Uday M. Apte & Richard O. Mason, “Global Disaggregation of

Information-Intensive Services.” Management Science, July 1995.

