
8. Use Cases

24 September 2008

Bob Glushko

Plan for ISSD Lecture #8

Motivating Use Cases

Parts of Use Cases

"Essential" Use Cases

Setting Priorities



This is NOT a Use Case

It is a USE CASE DIAGRAM; it serves as an index to a use case

This IS a Use Case



What IS a Use Case?

An outside-in or "black box" depiction of a system's functionality from 

the perspective of an "actor"

Use cases define possible sequences of interactions or procedures 

between actors and the system that achieve some goals or otherwise 

result in successful outcomes for users (and often, other stakeholders)

The full set of use cases for a system defines its scope and boundaries 

wrt other actors

Use cases can be grouped to facilitate communication with different 

stakeholders, to indicate priority of functional requirements, or to enable 

incremental or parallel implementation and testing

Why We Need Use Cases

We need to specify the actions and interactions between actors and 

systems in a way that:

... is from the user's or business point of view, not the system's

... can be readily understood by all stakeholders so they can be used to elicit 

and verify requirements

... doesn't assume or imply anything about how functions are implemented

... is complete and unambiguous



Why Not Just a Text Specification?

Text is a suitable format for specifying a use case

... but any text specification in "natural language" can easily be incomplete, 

inconsistent, or ambiguous

... which is why "best practices" for writing text specifications include 

"simplified writing" and "business rules" (with controlled grammar, vocabulary,

and logic flow)

Use case diagrams serve as minimal and abstract "pointers" to the text 

part of the use case specification

Parts of a Use Case

Scenario -- the narrative description

Properties -- metadata to facilitate the use and understanding of the use

case

Diagram -- If use case scenarios are carefully written and organized,

diagrams are not essential, but they can provide a more understandable

view of how a set of interrelated use cases fit together



The Scenario

A scenario is a sequence of interactions between an actor and the 

system

It defines the "success" or "happy" or "expected" situation after the actor 

initiates the first interaction until some "unit of functionality" has been 

produced

The interactions should connect the actor's goal to another actor or 

system that has some responsibility or capability to satisfy it

There should be no significant time gaps in the sequence of interactions

If iteration is required or allowed, it is typically specified simply and 

somewhat informally, not using programming language constructs

Simple Use Case Scenario with Iteration



Actors

Specifying an actor determines a point of view on the "system" - 

because the system is just a type of actor

Actors identify a role of a person, system or some other entity that is 

outside of the system

Actors initiate (or supply the "trigger" for) use cases to obtain something 

from the system or to satisfy some other goal

Documenting the Interactions [1]

Interactions can often be thought of as information or a message being 

sent from the actor to the system (or vice versa)

This naturally implies a "actor-verb-noun" name structure for the use 

case (e.g., "Customer Places Order" or "Customer Cancels Order")

It can be helpful to qualify the noun (e.g. "In-stock inventory" or 

"International shipment")

Avoid generic verbs like "do," "process, or "get"



"Anatomy" of an Interaction

Documenting the Interactions [2]

Write simple declarative sentences using the active voice ("as though it 

works")

Passive sentences are harder to understand, and they usually omit the 

actor, which can create ambiguity or continuity problems

Numbered sentences are preferred to a more narrative, full paragraph 

style because it makes it easier to refer to exception cases



Time as an Actor

Most of the use cases will describe actions or interactions that don't 

occur at specified times

Other use cases are more predictable, "clock-driven" actions that start 

at scheduled times

The actor in these use cases can be a "pseudo-actor" ("Schedule 

Manager" Publishes Monthly Calendar) 

Exceptions and Extensions in Use Cases

Exceptions to the "success" or "happy" scenario -- where things don't go

as expected -- are documented as an alternate route in the scenario that

are usually called "extensions"

Statements should be numbered using a scheme that clearly indicates 

where they branch from the success scenario (e.g., 2a to follow 

statement 2)



Use Case Extension -- Example

Inclusions or Sub-Flows in Use Cases

When a use case must invoke or otherwise "require the behavior" of 

another, the "called" use case is said to be "included" in the "calling" one

Inclusion is the mechanism for "use case reuse"

The convention for inclusion is to underline the name of the included 

case in the calling scenario

But don't overdo it -- if deeply-structured functional decomposition is 

built into your software, it will lose most of the benefits of object-oriented 

software design 



Inclusions in Use Cases -- Example

Templates

"What you need to write down depends on the situation, especially on 

who is writing it and for what purpose"

The Oracle white paper contrasts "casual" and '"dressed" property 

templates

The amount of detail in a use case often increases over time, especially 

when they are developed in a top-down and iterative manner



Use Case Property Template 
("Middleweight")

Scope 

Stakeholders who care about the case

Primary Actor - the stakeholder who initiates the case

Description -- what the use case is supposed to do

Level

Preconditions - what conditions must be met before the case starts

Postconditions - what conditions must be met for the case to succeed

Trigger - the event that starts the case

Refinement of Use Cases

Work from the "top down," beginning with the highest-level or most 

abstract user / stakeholder goals



Use Case Structure -- The "Ship"

Scope and Levels of Use Cases

A challenge when creating use cases is maintaining a consistent level of

abstraction 

Some consensus that three levels of abstraction are useful, but not on 

the exact definitions or names

System level, summary, or business goals -- this is the level when use cases 

document business processes

User level goals, semantic level -- these correspond to "meaningful" activities

and units of work 

Subfunction or technical goals -- often steps in a user level case, or 

interactions with specific functions of the system

Abstract use cases can describe abstract and high level goals, which 

can lead to some definitional confusion wrt the notion of "scenario" 



The "Semantic Interface" of "Essential Use 
Cases"

It is usually unnecessary and inadvisable to write use cases that go past

the "semantic interface"

At this level, interactions with the system are described in terms of 

achieving work goals, in a technology-neutral and "context-free" way to 

preserve implementation options

This will usually mean taking a more abstract and idealized view than 

just describing the concrete behaviors that people are currently doing, 

which should give system designers more options in achieving the goals

Constantine calls these kind of use cases "essential" ones, resulting in 

"usage-centered" as opposed to "user-centered" design

Use cases that are "deeper" or "lower" in detail are not describing user 

goals 

"Conventional" Use Case -- "Withdraw 
Money"



"Essential Use Case" -- "Withdraw Money"

Levels of Use Cases -- Example



The ebXML Process Metamodel

Organizing Use Cases

By primary actor ("responsibility" diagram)

By summary use case

By implementation responsibility or schedule

By subject area



Prioritizing Requirements

Any project with resource or schedule constraints has to set the relative 

priority of any requested features, use cases, or requirements

Clear priorities are essential in setting stakeholders' expectations, 

resolving conflicts and making tradeoffs, and planning for phased 

development/deployment

Priorities should be specified using a "named" value scale, not a 

numerical one

For large or contentious projects requirements should be prioritized 

using a structured, quantitative approach the relative value and cost of 

each requirement so that the greatest value can be produced with the 

smallest total cost

Some Prioritization Scales



MoSCoW Priorities

M - Must have this; non-negotiable; without this the project is a failure; 

all of the Ms should form a coherent set of functionality 

S - Should have this

C - Could have this

W - Won't have this in the current phase/release/product by would like it 

in the future

Wiegers' Method

From "First Things First: Prioritizing Requirements" by Karl Wiegers 

(http://www.processimpact.com/articles/prioritizing.pdf)



Readings for 29 September

Sara Corbett, “Can the cell phone end global poverty,” New York Times,

13 April 2008.

Brigitte Jordan and Brinda Dalal, “Persuasive encounters: Ethnography

in the corporation,” Field Methods, 2006

David Siegel & Susan Dray, “Avoiding the next schism: Ethnography

and usability,” Interactions, March-April 2005.

Donald Norman, “Workarounds and hacks: The leading edge of

innovation” Interactions, July-August 2008.


